Introduction

This instruction describes the unloading, setup, and predelivery requirements for the MacDon R113 SP Rotary Disc Header.

To ensure your customers receive all of the performance and safety benefits from this product, carefully follow the unloading and assembly procedure from the beginning through to completion.

Retain this instruction for future reference.

Carefully read all the material provided before attempting to unload, assemble, or use the machine.

NOTE:
Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).

This instruction is available only in English and can be ordered from MacDon, downloaded from our Dealer Portal, or from our International website (http://www.macdon.com/world).
Summary of Changes

This list covers changes made since the last revision.

<table>
<thead>
<tr>
<th>Section</th>
<th>Summary of Change</th>
<th>Internal Use Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout manual</td>
<td>Removed R116 SP content</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>1.1 Signal Words, page 1</td>
<td>Added topic</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>1.2 General Safety, page 2</td>
<td>Added topic</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>1.3 Welding Precaution, page 4</td>
<td>Added topic</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>1.4 Safety Signs, page 5</td>
<td>Added topic</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>4.2 Attaching R113 SP to M155 or M155E4 SP Windrowsers – Hydraulic Center-Link with Optional Self-Alignment, page 25</td>
<td>Updated safety prop illustration</td>
<td>ECN 58047</td>
</tr>
<tr>
<td>10.1 Recommended Lubricants, page 101</td>
<td>Updated specifications</td>
<td>Support</td>
</tr>
</tbody>
</table>
Chapter 8: Lubricating the Disc Header .. 77
 8.1 Lubrication Locations .. 78

Chapter 9: Performing Predelivery Checks .. 79
 9.1 Checking Conditioner Drive Belt ... 79
 9.1.1 Adjusting Conditioner Drive Belt ... 80
 9.2 Checking Skid Shoes ... 81
 9.3 Checking Float – M1 Series Windrowers ... 82
 9.3.1 Setting the Float – M1 Series Windrowers ... 82
 9.4 Checking Float – M155E4 Windrowers ... 84
 9.4.1 Adjusting Float Using Drawbolts – M155E4 ... 85
 9.5 Checking Roll Timing .. 86
 9.5.1 Adjusting Roll Timing ... 86
 9.6 Checking and Adding Conditioner Roll Timing Gearbox Lubricant 89
 9.7 Checking Header Drive Gearbox Lubricant .. 90
 9.8 Checking and Adding Cutterbar Lubricant .. 91
 9.9 Checking Roll Gap ... 93
 9.9.1 Adjusting Roll Gap – Steel Rolls .. 93
 9.9.2 Adjusting Roll Gap – Polyurethane Rolls ... 94
 9.10 Checking Roll Tension .. 95
 9.10.1 Adjusting Roll Tension ... 95
 9.11 Adjusting Conditioner Baffle Position .. 96
 9.12 Checking and Adjusting Forming Shield Deflector Position 97
 9.13 Checking Lights ... 98
 9.14 Checking Manuals ... 99
 9.15 Running up the Header .. 100

Chapter 10: Reference .. 101
 10.1 Recommended Lubricants ... 101
 10.2 Opening Driveshields ... 102
 10.3 Closing Driveshields .. 104
 10.4 Cutterbar Doors .. 105
 10.4.1 Opening Cutterbar Doors .. 105
 10.4.2 Opening Cutterbar Doors – Export Latches ... 106
 10.4.3 Closing Cutterbar Doors ... 107
 10.5 Torque Specifications .. 108
 10.5.1 Metric Bolt Specifications .. 108
TABLE OF CONTENTS

10.5.2 Metric Bolt Specifications Bolting into Cast Aluminum ... 110
10.5.3 O-Ring Boss Hydraulic Fittings – Adjustable .. 111
10.5.4 O-Ring Boss Hydraulic Fittings – Non-Adjustable .. 113
10.5.5 O-Ring Face Seal Hydraulic Fittings ... 114
10.5.6 Tapered Pipe Thread Fittings .. 115

10.6 Conversion Chart .. 116

10.7 Definitions .. 117

Predelivery Checklist .. 119
Chapter 1: Safety

1.1 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. Two signal words, IMPORTANT and NOTE, identify non-safety related information. Signal words are selected using the following guidelines:

⚠️ DANGER
Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ CAUTION
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

IMPORTANT:
Indicates a situation that, if not avoided, could result in a malfunction or damage to the machine.

NOTE:
Provides additional information or advice.
1.2 General Safety

⚠️ CAUTION

The following general farm safety precautions should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do **NOT** take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip-resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit in case of emergencies.
- Keep a properly maintained fire extinguisher on the machine. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when the operator is tired or in a hurry. Take time to consider safest way. **NEVER** ignore warning signs of fatigue.
• Wear close-fitting clothing and cover long hair. NEVER wear dangling items such as scarves or bracelets.

• Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.

• Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

• Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.

• Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.

• To avoid injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

• Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

• Keep work area well lit.

• Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.

• NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

• When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.3 Welding Precaution

Welding should never be attempted on the header while it is connected to a windrower.

⚠️ WARNING

Severe damage to sensitive, expensive electronics can result from welding on the header while it is connected to the windrower. It can be impossible to know what effect high current could have with regard to future malfunctions or shorter lifespan. It is very important that welding on the header is not attempted while the header is connected to the windrower.

If you need to do any welding on the header, it should first be disconnected and removed from the windrower.

If it is unfeasible to disconnect the header from the windrower before attempting welding, refer to the windrower’s technical manual for welding precautions detailing all electrical components that must be disconnected first for safe welding.
1.4 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If original part on which a safety sign was installed is replaced, be sure the repair part displays the current safety sign.

Figure 1.7: Operator’s Manual Decal
Chapter 2: Unloading the Header

⚠️ CAUTION

To avoid injury to bystanders from being struck by machinery, do NOT allow people to stand in unloading area.

⚠️ CAUTION

Equipment used for unloading must meet or exceed the requirements specified below. Using inadequate equipment may result in chain breakage, vehicle tipping, or machine damage.

IMPORTANT:

Do NOT lift at hooks when unloading from trailer. This procedure is only for laying the machine over into working position.

Table 2.1 Lifting Vehicle

<table>
<thead>
<tr>
<th>Minimum Capacity¹</th>
<th>3630 kg (8000 lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Fork Length</td>
<td>198 cm (78 in.)</td>
</tr>
</tbody>
</table>

IMPORTANT:

Forklifts are normally rated for a load located 610 mm (24 in.) ahead of back end of the forks. To obtain the forklift capacity at 1220 mm (48 in.), check with your forklift distributor.

⚠️ WARNING

Be sure forks are secure before moving away from load. Stand clear when lifting.

1. Remove hauler’s tie-down straps and chains.
2. Approach header from its underside and slide forks in under the lifting framework as far as possible.

 IMPORTANT:

 Do NOT damage the hydraulic hoses hanging below the header.

3. Raise header off the deck.

 IMPORTANT:

 If unloading a header from a two-unit load, take care to avoid contacting or damaging the other header.

¹. At 1220 mm (48 in.) from back end of forks.
4. Back up until the header clears the trailer, and then slowly lower to 150 mm (6 in.) from the ground.
5. Take header to storage or setup area.
6. Set header down on secure, level ground.
7. Check for shipping damage and missing parts.

Figure 2.2: Moving Header with Forklift
Chapter 3: Assembling the Header

Follow each procedure in this chapter in order.

3.1 Removing Lower Shipping Support

1. Support wood brace (B), cut three shipping straps (A), and then remove the wood brace.

2. Remove four bolts (A) on both vertical fork channels (B), and then remove vertical fork channels.

NOTE:
R113 SP headers have one skid shoe per side.

3. Remove bolt (A) at skid shoe (B). Retain bolt for reinstallation.
4. Lift skid shoe (B) out of the way and support it with wire (A). Repeat at opposite skid shoe.

5. Remove three bolts (A) per side on base support (B). Repeat at opposite end of base support.

Figure 3.4: R113 Left Skid Shoe Shown

Figure 3.5: Base Shipping Support (Right Side Shown)
6. Remove base support (A).

7. Remove wire (A) holding skid shoe (B).

8. Tilt skid shoe (B) inward, and align link (A) with the mounting hole in the skid shoe.

9. Install bolt, washer, and nut (C).

10. Push the skid shoe towards the header, and tighten nut (C).

3.2 Lowering the Header

⚠️ CAUTION

Ensure spreader bar is secured to the forks so that it cannot slide off the forks or towards the mast as the header is lowered to the ground.

Table 3.1 Lifting Vehicle

<table>
<thead>
<tr>
<th>Chain Type</th>
<th>Overhead lifting quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 mm (1/2 in.)</td>
</tr>
<tr>
<td>Minimum Working Load</td>
<td>2270 kg (5000 lb.)</td>
</tr>
</tbody>
</table>

1. Attach spreader bar (A) to forks.

IMPORTANT:
Length of spreader bar must be approximately 4600 mm (180 in.).

2. Drive lifting vehicle to approach the header from its underside.

3. Attach chains to hooks (B) on either side of the header.

⚠️ CAUTION

Stand clear when lowering the disc header.

IMPORTANT:
Do **NOT** lift at hooks when unloading from trailer. This procedure is only for laying the machine over into working position.

IMPORTANT:
Chain length must be sufficient to provide a minimum 1220 mm (48 in.) (C) between spreader bar and header.

4. Raise forks until lift chains are fully tensioned.
5. Back up **SLOWLY**, while simultaneously lowering the header until the cutterbar rests on the ground.

6. Remove chains from the header.
3.3 Removing Shipping Stands

NOTE:
This procedure must be completed on both sides of the header near the forming shields.

1. Remove four bolts (A).
2. Remove bolt (B).

3. Remove shipping wires from header lift boots (D).
4. Remove hair pin (A) from clevis pin (B).
5. Hold shipping stand (C) and remove clevis pin (B).
6. Remove stand (C) and discard. Reinsert pin (B) in header lift boot and secure with hair pin (A).

7. Remove shipping hooks (A) from front corners and reinstall hardware.

NOTE:
If installing tall crop divider option, do NOT reinstall hardware.
3.4 Unpacking Hoses for M1 Series Windrowers

Follow these steps to unpack the hydraulic hoses for connecting to an M1 Series Windrower.

1. Remove shipping wire/banding (A), and remove packing material around hydraulic hoses.
2. Remove bolt (C) from support (B) and discard bolt.
3. Remove hose support (B) from the frame.

NOTE:

Unlike an R113 SP Rotary Disc Header configured for the M155 and M155E4 Windrower, R113 SP Rotary Disc Headers configured for the M1 Series Windrowers have a built-in hose support (B) that slots into the windrower frame.

4. Lay the hose and electrical bundle (A) on the ground between the two header supports.
5. Remove shipping wire securing baffle (B) and leave it in the lowered position.

Figure 3.14: Unpacking Hoses (Not All Hoses Shown)

Figure 3.15: Hoses and Baffle
3.5 Unpacking Hoses for M155 or M155E4 Windrowers

Follow these steps to unpack the hydraulic hoses for connecting to an M155 or M155E4 Windrower.

1. Remove shipping wire/banding and packing material securing pressure hose (A) to header hose support (B). Lay hose on top of header.

 NOTE:
 Shipping wire/banding and packing material not shown in illustration at right.

2. Install header hose support (B) on header. Refer to 3.6 Installing Hose Support for M155 or M155E4 Windrowers, page 17 for instructions.

![Figure 3.16: Unpacking Hoses](image-url)
3.6 Installing Hose Support for M155 or M155E4 Windrowers

The hose support ships bolted to the header carrier frame, and should be installed before routing header hydraulic hoses. Follow these steps to install the hose support:

1. Remove bolt (A).
2. Loosen bolt (B) and rotate hose support (C) to upright position.
3. Install bolt (A). Tighten both bolts.
4. Remove shipping material from hose (B), and route hose through hose support (C). Lay hose on header.

Figure 3.17: Hose Support Shipping Position

Figure 3.18: Hose Support Working Position
3.7 **Assembling Hazard Lights**

1. Detach hazard light bracket (A) from shipping bracket (B) by removing four bolts (C), washers (D), and nuts (E). Retain hardware for installation.

![Figure 3.19: Hazard Light Shipping Bracket (Right Side)](image1)

2. Detach shipping bracket (A) from header by removing four bolts (B), washers (C), and nuts (D). Discard hardware.

![Figure 3.20: Hazard Light Shipping Bracket (Right Side)](image2)

3. Install hazard light bracket (A) with hardware retained from Step 1, *page 18*. Install four bolts (B) and washers (C) from above, and secure with nuts (D) from below frame.

4. Repeat on the opposite side of the machine.

![Figure 3.21: Hazard Light Shipping Bracket (Right Side)](image3)
Chapter 4: Attaching Header to Windrower

4.1 Attaching R113 SP Rotary Disc Header to M1 Series Windrowers

The windrower may have an optional self-aligning hydraulic center-link that allows vertical position control of the center-link from the cab.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. **Hydraulic Center-Link without Self-Alignment:** Remove pin (A) and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

2. Remove hairpin (A) from clevis pin (B), and remove pin from header support (C) on both sides of the header.

CAUTION

Check to be sure all bystanders have cleared the area.

ATTACHING HEADER TO WINDROWER

CAUTION
When lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released to prevent damage to the header lift linkages.

4. Press rotary scroll knob (A) on the Harvest Performance Tracker (HPT) display to highlight QuickMenu options.

5. Rotate scroll knob (A) to highlight the HEADER FLOAT symbol (B), and press scroll knob to select. The header float adjust screen displays.

6. Press soft key 3 (A) to remove the header float.

NOTE:
If the header float is active, the icon at soft key 3 will display REMOVE FLOAT; if header float has been removed, the icon will display RESUME FLOAT.
7. Press HEADER DOWN switch (E) on the ground speed lever (GSL) to fully retract header lift cylinders.

8. **Self-Aligning Hydraulic Center-Link**: Press REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

9. Drive the windrower slowly forward until the feet (A) enter the supports (B). Continue to drive slowly forward until feet engage the supports and header nudges forward.

10. Ensure that feet (A) are properly engaged in supports (B).

11. **Self-Aligning Hydraulic Center-Link**:
 a. Adjust position of center-link cylinder (A) with the switches on the GSL until hook (B) is above the header attachment pin.

 IMPORTANT:
 Hook release (C) must be down to enable self-locking mechanism.

 b. If hook release (C) is open (up), stop the engine and remove the ignition key. Manually push hook release (C) down after the hook engages the header pin.

 c. Lower center-link (A) onto the header with REEL DOWN switch on the GSL until the center-link locks into position and hook release (C) is down.

 d. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.
ATTACHING HEADER TO WINDROWER

12. **Hydraulic Center-Link without Self-Alignment:**
 a. Press HEADER TILT UP or HEADER TILT DOWN cylinder switches on the GSL to extend or retract center-link cylinder until the hook is aligned with the header attachment pin.
 b. Stop the engine and remove the key.
 c. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:
 Hook release must be down to enable self-locking mechanism. If the hook release is open (up), manually push it down after hook engages pin.
 d. Check that center-link (A) is locked onto header by pulling upward on rod end (B) of cylinder.

 ![Figure 4.9: Hydraulic Center-Link](image)

 CAUTION
 Check to be sure all bystanders have cleared the area.
 e. Start engine.

13. Press HEADER UP switch (A) to raise the header to maximum height.

 NOTE:
 If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

14. Stop the engine and remove the key.

15. Engage safety props on both lift cylinders as follows:
 a. Pull lever (A), rotate toward header to release, and lower the safety prop onto the cylinder.
 b. Repeat for opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over cylinder piston rods. If safety prop does not engage properly, raise the header until the safety prop fits over the rod.

 ![Figure 4.10: GSL](image)

 ![Figure 4.11: Safety Prop](image)
16. Install clevis pin (A) through support and windrower lift arm and secure with hairpin (B). Repeat for the opposite side of the header.

IMPORTANT:
Ensure clevis pin (A) is fully inserted, and hairpin is installed behind bracket.

17. Disengage safety props on both lift cylinders as follows:

NOTE:
If safety prop will not disengage, raise header to release the prop.

a. Turn lever (A) away from header to raise safety prop until lever locks into vertical position.

b. Repeat for opposite cylinder.

18. Start the engine and press HEADER DOWN switch (A) on GSL to fully lower header.
19. If not prompted by the HPT display to restore header float, restore header float manually by doing the following:
 a. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to highlight QuickMenu options.
 b. Rotate scroll knob (A) to highlight HEADER FLOAT symbol (B), and press scroll knob to select. Screen changes.

20. Press soft key 3 (A) to restore the header float.

 NOTE:
 If the header float is active, the icon at soft key 3 will display REMOVE FLOAT; if header float has been removed, the icon will display RESUME FLOAT.

21. Stop the engine and remove the key.
4.2 Attaching R113 SP to M155 or M155E4 SP Windrowers – Hydraulic Center-Link with Optional Self-Alignment

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove hairpin (B) from clevis pin (A) and remove clevis pin from header support (C) on both sides of the header.

IMPORTANT:
To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage hole (B) and **NOT** in engaged position (A).

3. Remove the float engagement pin from hole (A) to disengage float springs, and insert float engagement pin into storage hole (B). Secure with lynch pin. Repeat for opposite linkage.
ATTACHING HEADER TO WINDROWER

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

4. Start the engine and activate HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

5. Press REEL UP switch (A) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

6. Slowly drive the windrower forward until the windrower feet (A) enter header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.
7. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - REEL UP (A) to raise the center-link
 - REEL DOWN (B) to lower the center-link
 - HEADER TILT UP (C) to retract the center-link
 - HEADER TILT DOWN (D) to extend the center-link

8. Adjust center-link cylinder (A) position with the REEL UP and REEL DOWN switches on the GSL until the hook is positioned above the header attachment pin.

 IMPORTANT:
 Hook release (B) must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

9. Lower center-link (A) onto the header with the REEL DOWN switch until the center-link locks into position and hook release (B) is down.

10. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

 CAUTION
 Check to be sure all bystanders have cleared the area.

11. Press HEADER UP switch (A) to raise the header to maximum height.

12. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:
 It may be necessary to repeat this procedure if there is air in the system.
13. Engage the safety props on both lift cylinders as follows:
 a. Shut down the engine, and remove the key from the ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

14. Install clevis pin (A) through support and windrower lift member, and secure with hairpin (B). Repeat for the opposite side of the machine.

IMPORTANT:
Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
15. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

16. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

17. Repeat for opposite safety prop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

18. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

19. Stop the engine and remove key from ignition.
ATTACHING HEADER TO WINDROWER

4.3 Attaching R113 SP to M155 or M155E4 SP Windrower – Hydraulic Center-Link without Optional Self-Alignment

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove hairpin (B) from clevis pin (A), and then remove clevis pin from header support (C) on both sides of the header.

IMPORTANT:

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and **NOT** in engaged position (A).

3. To disengage float springs, move the float engagement pin from engaged position (A) and insert pin into storage hole (B). Secure float engagement pin with lynch pin. Repeat for opposite linkage.
ATTACHING HEADER TO WINDROWER

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

4. Start the engine and activate HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

5. Remove pin (A) from frame linkage and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

6. Slowly drive the windrower forward until the windrower feet (A) enter header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.
7. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - HEADER TILT UP (A) to retract the center-link
 - HEADER TILT DOWN (B) to extend the center-link

8. Stop engine, and remove key from ignition.

9. Push down on rod end of link cylinder (A) until hook (B) engages and locks onto header pin.

 IMPORTANT:
 The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

10. Check that center-link (A) is locked onto the header by pulling upward on rod end (B) of cylinder.

CAUTION

Check to be sure all bystanders have cleared the area.

11. Start the engine.

12. Press HEADER UP switch (A) to raise the header to maximum height.

13. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:
 It may be necessary to repeat this procedure if there is air in the system.
14. Engage the safety props on both lift cylinders as follows:
 a. Shut down the engine, and remove the key from the ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

15. Install clevis pin (A) through the support and windrower lift member, and secure with hairpin (B). Repeat for the opposite side of the machine.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
16. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

17. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

18. Repeat for opposite safety prop.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

19. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

20. Stop the engine and remove key from ignition.
4.4 Attaching Hydraulic and Electrical Components

The procedure for attaching the header hydraulic and electrical components depends on the windrower model. Refer to the appropriate procedure for instructions:

- **4.4.2 M1170 Windrows, page 40**
- **4.4.1 M1240 Windrows, page 35**
- **4.4.4 M155 or M155E4 Windrows, page 47**

4.4.1 M1240 Windrows

IMPORTANT:

Before connecting the hydraulics from an R113 SP Rotary Disc Header to an M1240 Windrower, first install the M1240 Low Pressure Case Drain kit (MD #B6698) by following the instructions provided in the kit.

The R113 SP Rotary Disc Header hydraulics connection procedure varies depending on the windrower configuration:

- Draper header ready windrowers include one set of hydraulic quick couplers which are compatible with the header drive hoses on the R113 SP Rotary Disc Header.
- Disc header ready windrowers include hard plumbed hydraulics connections.

NOTE:

The R113 SP hydraulics bundle includes a complete set of quick couplers which can be installed onto a rotary disc header configured windrower.

IMPORTANT:

To prevent contamination of the hydraulic system, use a clean rag to remove dirt and moisture from all (fixed and movable) hydraulic couplers.

1. Open the windrower's left platform. For instructions, refer to windrower operator's manual.
2. Retrieve hydraulic hoses (A) from the header and route the hose bundle under the windrower frame.
3. Insert pin (B) into hole (C) in windrower frame, and place hose bundle onto support (D).

IMPORTANT:

Route hydraulic hoses as straight as possible, and avoid rub/wear points that could damage hoses. To prevent damage, hoses should have enough slack to pass by the multicoupler bracket without contact. To adjust hose slack, loosen hose holder (B) on the front windrower leg, adjust hoses, then retighten the hose holder.

![Figure 4.43: Hose Support Attachment](image)
ATTACHING HEADER TO WINDROWER

Proceed with the steps that are relevant to the following windrower configurations:

<table>
<thead>
<tr>
<th>Windrower Configuration</th>
<th>Steps for Connecting Hydraulics and Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc/draper ready configuration (A)</td>
<td>Steps 4, page 36 to 6, page 37</td>
</tr>
<tr>
<td>Disc only hard plumbed configuration (B)</td>
<td>Steps 7, page 37 to 8, page 38</td>
</tr>
<tr>
<td>Disc ready configuration (B) with quick couplers installed</td>
<td>Steps 9, page 38 to 13, page 39</td>
</tr>
</tbody>
</table>

Disc/draper ready configuration with quick couplers:

4. Ensure hose (A) is disconnected from windrower receptacle (B) and placed in storage cup (C) on multicoupler.

Figure 4.44: M1240 Header Hydraulics Configurations

Figure 4.45: Couplers – Draper Ready

1027578
5. Remove the extra hydraulic quick couplers from pressure hose (A) and return hose (B) and store them as spares.

NOTE:
It is normal to have an extra set of quick couplers with the disc/draper ready configuration.

6. Connect the hydraulic hoses to the windrower with quick coupler fittings as follows:
 a. Connect pressure hose female coupler to receptacle (A).
 b. Connect return hose male coupler to receptacle (B).
 c. Connect case drain hose (C) to mating 1/2 in. coupler on frame—installed with the M1240 Low Pressure Case Drain kit (B6698). The other 1/2 in. flat faced coupler for the case drain (E) is **NOT** suitable for the R113 SP.
 d. Connect the electrical harness to receptacle (D).

Hard plumbed fittings – disc ready configuration:

7. If installed, remove the existing quick couplers and elbow fittings from header hydraulic pressure hose (A) and return hose (B). Do **NOT** remove fittings from case drain hose (C).
8. Connect the hydraulic hoses to the windrower with hard plumbed fittings as follows:
 a. Connect disc pressure hose (A) to fitting on frame and torque to 205–226 Nm (151–167 lbf·ft).
 b. Connect disc return hose (B) to fitting on frame and torque to 205–226 Nm (151–167 lbf·ft).
 c. Connect case drain hose (C) to mating 1/2 in. coupler on frame—installed with the M1240 Low Pressure Case Drain kit (B6698). The other 1/2 in. flat faced coupler for case drain (E) is NOT suitable for the R113 SP.
 d. Connect the electrical harness to receptacle (D).

 Quick coupler fittings – disc ready configuration:

9. Remove quick couplers from pressure hose (A) and return hose (B) on the R113 SP hydraulic hose bundle.

 NOTE:
 Do **NOT** remove the fittings on the case drain hose that were installed with the M1240 Low Pressure Case Drain kit (MD #B6698).

10. Remove the extension fittings and elbows (A) from the disc header hydraulic pressure and return connections.
11. Install the male quick coupler at windrower pressure receptacle (A).

12. Install the female quick coupler with adapter at windrower return receptacle (B).

13. Connect the hydraulic hoses to the windrower with quick connect fittings, as follows:
 a. Connect pressure hose (A) female coupler to receptacle.
 b. Connect return hose (B) male coupler to receptacle.
 c. Connect case drain hose (C) to mating 1/2 in. coupler on frame—installed with the M1240 Low Pressure Case Drain kit (B6698). The other 1/2 in. flat faced coupler for case drain (E) is **NOT** suitable for the R113 SP.
 d. Connect the electrical harness to receptacle (D).

14. Push latch (B) to unlock and close the left side platform (A).

15. Calibrate the knife pump on the windrower. For instructions, refer to 4.4.3 Calibrating M1 Series Windrower Knife Drive and Header on the Harvest Performance Tracker Display, page 45.
4.4.2 M1170 Windrows

IMPORTANT:
To prevent contamination of the hydraulic system, use a clean rag to remove dirt and moisture from all (fixed and movable) hydraulic couplers.

1. Open the windrower’s left platform. For instructions, refer to windrower operator’s manual.

2. Retrieve the hydraulic hoses from the header.

3. Attach hose support (A) to the frame near the windrower left cab-forward leg, and route hoses under frame.

 NOTE:
 Route hydraulic hoses as straight as possible, and avoid rub/wear points that could cause damage.

4. Disconnect male coupler (A) from pressure hose.

5. Disconnect female coupler and fitting (B) from return hose.
6. Remove coupling and cap (A) and plug (B) from fittings on windrower.

7. Install male coupler onto pressure fitting (A), and female coupler onto return fitting (B) on windrower.

8. Tighten couplers onto fittings.
ATTACHING HEADER TO WINDROWER

Figure 4.59: Hydraulic Drive Parts – M1170 Only

A - MD #253785, Hose, Hyd, Knife Pressure (1) B - MD #136413, Fitting, Coupling, Female (1) C - MD #243604, Cap, Harness (1)
D - MD #253783, Bracket, Coupler Holder (1) E - MD #135718, Cap, Hyd, SAE-16 ORFS (1)

9. Retrieve the parts shown in Figure 4.59, page 42 from the bag located inside left header support.

10. Connect female coupler (B) to hose (A).

Figure 4.60: Knife Pressure Hose
11. Disconnect steel line (A) from elbow (B) and tee (C) (inside frame) and remove line. Discard line.

12. Install cap (A) on tee.
13. Reposition elbow (B) as shown.

14. Remove two existing nuts (A) securing multicoupler to bracket (B).
15. Position new bracket (C) onto existing bolts and secure with existing nuts (A).
16. Install rubber coupler holder (D) into bracket (C).
17. Connect fitting (A) on knife pressure hose to elbow fitting (B).
18. Place female coupler (C) on knife pressure hose into holder (D).

19. Attach couplers to receptacles on windrower as follows:
 a. Connect pressure hose female coupler to receptacle (A)
 b. Connect return hose male coupler to receptacle (B)
 c. Connect case drain hose coupler to receptacle (C)
 d. Connect the electrical harness to receptacle (D)

IMPORTANT:
The hydraulic hoses should have enough slack to pass by multicoupler (E) without coming into contact with it. This will protect the hoses from rubbing against the multicoupler and becoming damaged. You can increase slack in the hoses by loosening and adjusting the hose holder on the front windrower leg, and pulling the hoses backward toward the windrower.

20. Push latch (B) to unlock platform (A).

21. Calibrate the knife pump on the windrower. For instructions, refer to 4.4.3 Calibrating M1 Series Windrower Knife Drive and Header on the Harvest Performance Tracker Display, page 45.
4.4.3 Calibrating M1 Series Windrower Knife Drive and Header on the Harvest Performance Tracker Display

When an R113 SP Rotary Disc Header is attached to an M1 Series Windrower, the Harvest Performance Tracker (HPT) will recognize the header ID. The header must be calibrated to ensure that the knife drive pump output is accurate.

⚠️ CAUTION

Before starting the machine, check to be sure all bystanders have cleared the area.

NOTE:

To calibrate the knife drive, the header must be attached and engaged. If the header is disengaged when calibration is selected, the message ENGAGE HEADER will appear on the screen.

1. Start the engine, and engage the header.
2. Press soft key 5 (A) to open the Harvest Performance Tracker (HPT) main menu.
3. Use HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel to scroll to settings icon (C).
4. Press HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the settings menu options.

5. Scroll to WINDROWER SETTINGS icon (A) and press SELECT.
6. Scroll to CALIBRATION icon (B), and press SELECT to open the adjustment page.

NOTE:

The F3 shortcut button on the operator’s console will also open the WINDROWER SETTINGS menu.

7. Select KNIFE DRIVE.
8. Press the PLAY button to begin the calibration process.

NOTE:
During the calibration sequence, the engine rpm and header speed will increase and decrease multiple times.

NOTE:
Press the X button (A) on the screen or use the HEADER DISENGAGE switch at any time during the calibration process to exit calibration without saving. The engine speed will return to the original rpm prior to starting the calibration process.

![Figure 4.69: Calibration Page](image-url)
4.4.4 M155 or M155E4 Windrows

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
M155 or M155E4 Windrows require Disc Drive Manifold kit (MD #B4657) to hydraulically connect an R113 SP Rotary Disc Header.

1. Disengage and rotate lever (A) counterclockwise to FULLY-UP position.

2. Remove cap (B) securing the electrical connector to the frame.

3. Move hose bundle (A) from the windrower and rest the bundle on the header.
4. Position the hose support with lower bolt (A) in the forward hole as shown. Loosen both bolts, and adjust as required.

5. Move the windrower’s left (cab-forward) platform (A) to the OPEN position. For instructions, refer to the windrower operator’s manual.
6. Route windrower hose bundle (A) through hose support (B) on the header.

7. Route pressure hose (C) from the header through support (B) to the windrower.

IMPORTANT:
Keep open lines and ports clean.

8. Connect pressure hose (A) routed from the header to port M2 on the disc drive valve (middle block).
9. Remove caps and plugs on hoses from the windrower and lines on the header.

10. Connect pressure hose (B) from drive manifold port M1 to steel line (A) attached to motor port A.

11. Connect return hose (A) from drive manifold port R1 to steel line (B) attached to motor port B.
ATTACHING HEADER TO WINDROWER

NOTE:
If the windrower is equipped with a reverser valve (A) for an auger header, route return hose (C) from port R1 on the reverser valve to steel line (B) attached to motor port B.

12. Connect case drain hose (A) from lift manifold port T3 to the fitting attached to motor port D.
13. Connect electrical harness (A) from the windrower to the electrical connector on the header.

NOTE:
Hydraulic hoses removed from the illustration to improve clarity.

14. Lower and lock lever (A). Secure hose (B) with three cinch straps (C).
ATTACHING HEADER TO WINDROWER

15. Move platform (A) to the CLOSED position. For instructions, refer to the windrower operator’s manual.
Chapter 5: Unpacking Curtains

WARNING

Ensure the cutterbar is completely clear of foreign objects. These objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.

1. Remove two bolts (A) securing cutterbar doors to frame.

2. Remove shipping wire (A) around curtains.
3. Open cutterbar doors. For instructions, refer to 10.4.1 Opening Cutterbar Doors, page 105.

4. For export headers only: insert a screwdriver (or equivalent) through hole (A) in door into notch in latch (B) and push latch to disengage.

5. Check cutterbar area for debris and foreign objects. Ensure all material is removed.
6. Close cutterbar doors. For instructions, refer to 10.4.3 Closing Cutterbar Doors, page 107.

7. Ensure that curtains hang properly and completely enclose cutterbar area. Minor creases in curtains will eventually straighten out.

Figure 5.5: Curtain – Unacceptable

Figure 5.6: Curtain – Acceptable
Chapter 6: Installing Options

6.1 Installing Tall Crop Dividers

To install the Tall Crop Divider kit (MD #B5800), follow these steps:

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower disc header fully.
2. Stop the engine, and remove the key.
3. Unpack the Tall Crop Divider kit.
4. Open cutterbar doors.
5. Remove four bolts (A) from divider (B).

6. Position left divider (B) on rotary disc header left front corner, and install with four bolts (A) and nuts in existing holes. Tighten hardware.

NOTE:
Mounting holes in rotary disc header should be vacant. If necessary, remove fasteners.

7. Repeat for right side of the header.
8. Close the cutterbar doors.
Chapter 7: Changing the Conditioner

This section applies only to machines that require a conditioner change prior to delivery to the customer. If the change is NOT required, proceed to 8 Lubricating the Disc Header, page 77.

The R113 SP Rotary Disc Header can be operated either with no conditioner, with a polyurethane roll conditioner, or with a steel roll conditioner. If the disc header is not conditioner-equipped, a shield must be installed.

NOTE:
These instructions apply to all conditioners. Exceptions are identified where applicable.

7.1 Removing the Conditioner

This procedure is applicable when the header is not attached to the windrower. If necessary, detach the header from the windrower before proceeding.

1. Remove the driveshields. For instructions, refer to header operator’s manual or technical manual.
2. Remove the conditioner drive belt. For instructions, refer to 7.3.1 Removing Conditioner Drive Belt, page 71.
3. **M1 Series**: Move hose bundle (A) clear of the frame and lay it on the header.

4. **M155 and M155E4: SP Windrower** Remove two bolts (A) attaching hose bracket (B) to the header frame. Place the hose bundle and bracket onto the header. Do NOT disconnect the hoses from the motor.

WARNING
To prevent frame from slipping off forks, ensure frame is secured to forks. Failure to do so could result in death or serious injury.
5. Support and secure the adapter frame for lifting using one of the two methods below:

Method 1:

a. Attach straps (A) to adapter frame (B) and the forklift forks. Use straps with a minimum working load of 454 kg (1000 lb.).

![Figure 7.3: Supporting Frame Using Straps](image1)

Method 2:

a. To protect the finish on the frame, wrap packing foam (A) (or equivalent) around the frame at approximately the locations shown.

b. Position forks (B) under the packing foam on the frame as shown at right. Raise forks and lift the frame slightly. The forks should **NOT** directly contact the frame.

c. To secure the frame to the forks, wrap chain (C) around the end of the forks and attach the other end to the forklift.

6. Lift the header with the forklift and place 150 mm (6 in.) wooden blocks (A) under the skid shoes. Lower the header onto the blocks and allow the header to tilt forward.

![Figure 7.4: Supporting Frame Using Chain](image2)

![Figure 7.5: Header on Blocks](image3)
7. Remove nut (A) securing bolt (B), washer (C), and washer shims (D) from the center-link support. If necessary, adjust the height of the forks lifting the frame. Retain the hardware for reinstallation.

8. Remove nut (B).

WARNING
To prevent straps from slipping off forks, ensure straps are securely attached to forks. Failure to do so could result in death or serious injury.

CAUTION
Stand clear when detaching frame as frame may shift when bolts are removed.

9. Remove bolt (A) from frame (C). If necessary, adjust the height of the forks to improve access to bolt (A). Repeat at the opposite side of the frame. Retain the hardware for reinstallation.

10. Slowly and carefully back the forklift away from the header until the frame is clear of the header. Move the frame away from the work area, lower it to the ground and disconnect it from the forklift.

11. Attach spreader bar (A) to a forklift or equivalent lifting device, and attach chains to lugs (B) on conditioner (C). Use a chain rated for overhead lifting with a minimum working load of 1135 kg (2500 lb.).
12. Loosen two M16 hex head bolts (A) at each side of the conditioner that secure it to the header.

![Figure 7.9: Left Side of Conditioner – Right Side Similar](image)

13. Loosen two carriage bolts (A) securing conditioner gearbox support (B) to the header.

⚠️ **WARNING**

To prevent the conditioner from falling backward, ensure lifting chains are secure and tight. Failure to do so may result in death or serious injury.

⚠️ **CAUTION**

Stand clear when detaching frame as frame may shift when bolts are removed.

14. Adjust the height of the forks to raise the conditioner slightly. Remove the loosened bolts and retain hardware for reinstallation.

⚠️ **WARNING**

Ensure spreader bar is secured to the forks so that it cannot slide off the forks or towards the header. Failure to do so could result in death or serious injury.

15. Using the forklift, lift conditioner (A) off header (B). Avoid contact between the top of the conditioner and center-link anchor (C).

16. Move the frame away from the work area, set it on the ground, and remove the chains securing the conditioner to the spreader bar.

![Figure 7.10: Conditioner Gearbox](image)

![Figure 7.11: Lifting Conditioner](image)
7.2 Installing the Conditioner

This procedure is applicable when the header is not attached to the windrower. If necessary, detach the header from the windrower before proceeding. Refer to header operator’s manual for instructions.

1. Attach spreader bar (A) to the forklift (or an equivalent lifting device) and attach chains to lugs (B) on the conditioner. Use a chain rated for overhead lifting with a minimum working load of 1135 kg (2500 lb.).

⚠️ WARNING

Ensure spreader bar is secured to the forks so that it cannot slide off the forks or towards the header while attaching the conditioner to the header. Failure to do so could result in death or serious injury.

2. Lift conditioner (C) and align it with the header opening.

3. Carefully align pin (B) at each end of conditioner (A) with lug (C) on the header. Lower conditioner (A) until pins (B) engage lugs (C) on the header. Avoid contact between the top of the conditioner and the center-link anchor.

4. Align the mounting holes and install four M16 x 40 hex head bolts (A) with the heads facing inboard (two per side). Secure with M16 center lock flanged nuts. Do NOT tighten.
5. Align the holes in support (B) with the mounting holes in the header frame and install two carriage bolts (A) to secure conditioner gearbox support (B) to the header. Bolt heads face inboard. Torque nuts to 69 Nm (51 lbf-ft).

6. Torque nuts (A) to 170 Nm (126 lbf-ft).

7. Remove the lifting chains from the conditioner and move the lifting device clear of the work area.

8. If necessary, install conditioner drive components. For instructions, refer to 7.2.1 Installing Conditioner Drive, page 69.

WARNING

To prevent frame from slipping off forks, ensure frame is secured to forks. Failure to do so could result in death or serious injury.

9. Support and secure the adapter frame for lifting using one of the two methods below:

Method 1:

a. Attach straps (A) to adapter frame (B) and the forklift forks. Use straps rated for overhead lifting with a minimum working load of 454 kg (1000 lb.).

b. Pick up the frame and position it against the header.
Method 2:

a. To protect the finish on the frame, wrap packing foam (A) (or equivalent) around the approximate frame locations shown.

b. Position forks (B) under the packing foam on the frame as shown at right. Raise the forks and lift the frame slightly. The forks should not directly contact the frame.

c. To secure the frame to the forks, wrap chain (C) around the end of the forks and attach it to the forklift.

d. Pick up the frame and position it against the header.

10. Slowly move forward until lift arm (C) is aligned with mounting holes (A) and (B) in the frame.

11. Install bolt (A) through frame (B) and bushing (D) in the lift arm. Repeat for the opposite side of the machine.

12. Check gap (C) between the bushing inner steel sleeve (D) and frame (B). If there is a gap, install 1.2 mm thick flat washers (MD #5113) to minimize the gap on both sides of the bushing.

13. Remove bolt (A).
14. Install washer (A) onto bolt (B) and apply an anti-seize compound to the bolt shank only. Do NOT apply anti-seize to the threads.

15. Install bolt (B) with washers (C) as determined in Step 12, page 67.

16. Install three washers (D) and nut (E) onto bolt. Torque to 332–346 Nm (245–255 lbf-ft).

17. Repeat Step 12, page 67 to Step 16, page 68 for the opposite side.

18. With flat washer shim (A) on both sides of the center-link support, install securing bolt (B) and washer (C) through the conditioner center-link support bracket and center-link support.

19. Install nut (D) and torque to 332–346 Nm (245–255 lbf-ft).

WARNING

To prevent frame from slipping off forks, ensure frame is secured to forks. Failure to do so could result in death or serious injury.

20. Lift the header and remove wooden blocks (A) under the skid shoes. Lower the header to the ground.

21. Remove any straps or chains securing the frame to the forks, and back the forklift away from the work area.
22. **M155 and M155E4 SP Windrowsers**: Position the hose bundle and hose support (B) onto the adapter and secure with bolts (A) and nuts.

23. **M1 Series**: Reposition hose bundle (A) on the frame.

24. Install the conditioner drive belt. For instructions, refer to *7.3.2 Installing Conditioner Drive Belt, page 72*.

7.2.1 Installing Conditioner Drive

This procedure describes the installation of conditioner drive components on a machine that was originally supplied with no conditioner. If a conditioner is to be installed on the R113 SP Rotary Disc Header, refer to *7.2 Installing the Conditioner, page 65*.

Retrieve bag containing the following parts from the conditioner shipment:

- Shaft key
- Pulley
- Bushing with three M10 bolts
- Tensioner assembly
- M16 hex head bolt
- M16 nut
- Two M10 nuts
- Eye bolt
- Hardened washer
- Spring
1. Remove drive cover (A) from left side of header by removing hex head bolt (B), flat washer (C), and nut (D), and sliding cover off pins (E).

2. Position tensioner assembly (A) as shown, and secure with M16 x 120 bolt (B) and nut (C). Torque nut (C) to 54 Nm (40 lbf-ft).

3. Install spring (A) into forward hole (B) in frame.

4. Install eyebolt (C) onto spring (A) and tensioner (D). Secure eyebolt (C) to tensioner (D) with hardened washer (E), and two M10 nuts (F), and straight pin (G).

NOTE:
Install conditioner drive belt after reattaching header to adapter.
7.3 Conditioner Drive Belt

The conditioner drive belt is located inside the left driveshield and is tensioned with a spring tensioner. The tension is factory-set and should not require adjustment.

7.3.1 Removing Conditioner Drive Belt

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.
2. Shut down the engine, and remove key from the ignition.
3. Open the left driveshield. For instructions, refer to 10.2 Opening Driveshields, page 102.
4. Disconnect wire harness (A) from speed sensor (B).

5. Turn jam nut (A) counterclockwise to unlock the tension adjustment.
6. Turn jam nut (A) and adjuster nut (B) counterclockwise to fully collapse tensioner spring (C), and release the tension from conditioner drive belt (D).
7. Remove drive belt (D).
7.3.2 Installing Conditioner Drive Belt

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Install drive belt (A) onto driven pulley (C) first, and then onto drive pulley (B), ensuring that the belt is in the pulley grooves.

NOTE:
If necessary, loosen the jam nut and adjuster nut to relieve the spring tension.

4. Measure the length of tensioner spring (C); dimension (D) should be set to 365 mm (14 3/8 in.) for proper belt tension.
5. To adjust spring tension, loosen jam nut (A).
6. Turn adjuster nut (B) clockwise to increase spring/belt tension or turn adjuster nut (B) counterclockwise to decrease spring/belt tension.
7. Once the correct spring measurement has been achieved, hold adjuster nut (B) and tighten jam nut (A) against it.
8. Reconnect speed sensor (B) to wiring harness (A).

NOTE:
Ensure the speed sensor is installed correctly for the windrower: use the bottom hole for M1 Series; use the top hole for M155E4 SP Windrower.

9. Close the left driveshield. For instructions, refer to 10.3 *Closing Driveshields, page 104.*

![Figure 7.33: Speed Sensor](image_url)
7.4 Discharge Shield (No Conditioner)

- If a conditioner is being installed, the discharge shield needs to be removed. For instructions, refer to 7.4.1 Removing Discharge Shield (No Conditioner), page 74.
- If a conditioner is being removed, the discharge shield needs to be installed. For instructions, refer to 7.4.2 Installing Discharge Shield (No Conditioner), page 75.

7.4.1 Removing Discharge Shield (No Conditioner)

Follow these steps to remove the shielding installed on a disc header configured without a conditioner:

1. Disconnect and remove the header from the windrower. For instructions, refer to header operator’s manual.

2. On both ends of the header, remove four M16 hex head bolts (A), nuts, and flat washers securing shield (B) to header (C).

3. Lift the shield (A) until pins (B) disengage from slots in support (C).

Figure 7.34: Left Side of Header – Right Opposite

Figure 7.35: Left Side of Header – Right Opposite
7.4.2 Installing Discharge Shield (No Conditioner)

Follow these steps to install the shielding on a disc header configured without a conditioner:

1. Position shield (A) until pins (B) engage the slots in support (C) and bolt holes in shield align with holes (D) in header.

2. Secure shield (B) to the header with four M16 hex head bolts (A), nuts, and flat washers.

3. Ensure bolt heads face inboard and torque nuts to 224–298 Nm (165–220 lbf·ft).
Chapter 8: Lubricating the Disc Header

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

The disc header has been lubricated at the factory. However, you should lubricate the disc header prior to delivery to offset the effects of weather during outside storage and transport, and to familiarize yourself with the machine. Unless otherwise specified, use high-temperature, extreme-pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI grade 2) lithium base.

Refer to 8.1 Lubrication Locations, page 78 for a list of grease points on both the right and left side of the header.
2. Use high-temperature, extreme-pressure (EP2) performance grease with 10% max molybdenum disulphide (NLGI grade 2) lithium base.
Chapter 9: Performing Predelivery Checks

Perform final checks and adjustments as listed on the yellow sheet attached at the back of this instruction to ensure the machine is field-ready. Refer to the referenced pages as indicated on the Predelivery Checklist for detailed instructions. The Operator or the Dealer should retain the completed Predelivery Checklist.

9.1 Checking Conditioner Drive Belt

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Open left driveshield. For instructions, refer to 10.2 Opening Driveshields, page 102.

2. Check that belt (A) is properly tensioned and positioned on the pulleys. Overall spring length (B) should be 365 mm (14 3/8 in.). If adjustment is required, refer to 9.1.1 Adjusting Conditioner Drive Belt, page 80.

3. Check that adjuster nuts (C) are tight.

4. Close driveshield. For instructions, refer to 10.3 Closing Driveshields, page 104.

Figure 9.1: Conditioner Drive Belt
9.1.1 Adjusting Conditioner Drive Belt

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the left driveshield. For instructions, refer to 10.2 Opening Driveshields, page 102.
3. Turn jam nut (A) counterclockwise to unlock tension adjustment.
4. Turn adjuster nut (C) clockwise to increase spring length (tension) or counterclockwise to decrease spring length (relax).
5. Set overall spring length (B) to 365 mm (14-3/8 in.).
6. Close driveshield. For instructions, refer to 10.3 Closing Driveshields, page 104.

![Figure 9.2: Conditioner Drive Belt](image-url)
9.2 Checking Skid Shoes

All skid shoes (A) should be at the same position, either up (shown) or down.

NOTE:
The R113 SP Rotary Disc Header is equipped with one skid shoe at each end of the machine.

If adjustment is required, refer to the disc header operator’s manual.

Figure 9.3: Skid Shoe R113
PERFORMING PREDELIVERY CHECKS

9.3 Checking Float – M1 Series Windrowers

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION
Before starting the machine, check to be sure all bystanders have cleared the area.

1. Start the engine.
2. Use HEADER TILT switches (A) on the ground speed lever (GSL) to set the center-link to the mid-range position (5.0 on the Harvest Performance Tracker [HPT]).
3. Using HEADER DOWN switch (B), lower the disc header fully and with the header lift cylinders fully retracted.

 NOTE:
 Ensure the header is level with the ground with zero tilt.
4. Turn the engine off, and remove the ignition key.
5. Grasp one end of the header and lift. Lifting force should be 426–471 N (95–105 lbf) and should be the same at both ends.
6. Restart the engine, and adjust float as required. For instructions, refer to 9.3.1 Setting the Float – M1 Series Windrowers, page 82.

 NOTE:
 Increasing the float value on the HPT makes the header feel lighter.

9.3.1 Setting the Float – M1 Series Windrowers

The float can be set for windrowing with the cutterbar on the ground.

The optimum float setting lets the disc header follow the contour of the terrain. Proceed as follows:

1. Set center-link to mid-range position (5.0 on the Harvest Performance Tracker [HPT]). For instructions, refer to the windrower operator’s manual.
2. Lower the header until the cutterbar is on the ground.

 NOTE:
 To minimize scooping rocks when operating at the flattest header angle, lower the header skid shoes. For instructions, refer to your header operator’s manual.
3. Press rotary scroll knob (A) on the HPT to display the QuickMenu system.

4. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.

5. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

6. Rotate scroll knob (A) to adjust float setting and press knob when finished. Float is now set.

NOTE:
Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments of 0.05 to optimize field performance.

7. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.
9.4 Checking Float – M155E4 Windrowers

The M155E4 is equipped with primary (coarse) and secondary (fine) float adjustment systems. The primary adjustment uses drawbolts to change the tension on the springs in the lift linkages. The secondary adjustment uses hydraulic cylinders to change the spring tension.

Figure 9.8: Cab Display Module (CDM) Float Adjustment

Check header float as follows:

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION

Check to be sure all bystanders have cleared the area.

1. Start the engine.
2. Lower header to ground.
3. Using HEADER TILT switches (D) and (F), set center-link to mid-range position (5.0 on CDM [A]).
4. Using HEADER DOWN switch (E), lower header fully with lift cylinders fully retracted.
5. Set left (B) and right (C) float fine adjustments on CDM to approximately 5.0 as follows:
 a. Using FLOAT SELECTOR switch (B), push + to increase float or – to decrease float on the left side of header. CDM display (A) will indicate selected float for the left side, for example, (5.0 L FLOAT R XX.X).
 b. Repeat for the right side float with switch (C). Display will indicate float for both sides, for example, (5.0 L FLOAT R 5.0).

6. Shut down engine, and remove key.

7. Grasp the end of the header and lift. The force to lift the end of the header should be 426–471 N (95–105 lbf) and should be approximately the same at both ends.

9.4.1 Adjusting Float Using Drawbolts – M155E4

Coarse float adjustment is done using the drawbolts located on either side of the windrower.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Start the engine.

2. Using HEADER UP (A) switch on the ground speed lever (GSL), raise the header fully, shut down the engine, and remove the key.

3. Turn drawbolt (A) clockwise to increase float (makes header lighter) or counterclockwise to decrease float (makes header heavier).

4. Recheck the header float.
9.5 Checking Roll Timing

Check roll timing if excessive noise is coming from the conditioner rolls.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Roll timing is factory-set and should not require adjustment; however, if there is excessive noise coming from the conditioner rolls, the timing will need to be adjusted. For instructions, refer to the header operator’s manual.

9.5.1 Adjusting Roll Timing

1. Shut down the engine and remove the key.
2. On the upper roll, loosen four bolts (A) securing yoke plate (B).

 NOTE:

 Only three of the four bolts are shown in the illustration.

4. Manually rotate upper roll (B) in a counterclockwise direction until it stops.
5. Make a mark (C) across yoke (D) and gearbox flange (E).
6. Manually rotate upper roll (A) in a clockwise direction until it stops. Make a second mark (B) on the yoke flange, and align it with the mark on the gearbox flange.

7. Determine center point (A) between the two marks on the yoke plate, and place a third mark.

8. Rotate upper roll (B) counterclockwise until the bolt lines up with the third (center) mark.
9. Ensure the threads on four bolts (A) are clean and free of lubricant.

NOTE:

Only three of the four bolts are shown in the illustration.

10. Apply medium-strength threadlocker (Loctite® 242 or equivalent), and tighten bolts (A). Torque to 95 Nm (70 lbf-ft).

Figure 9.15: Conditioner Drive
9.6 Checking and Adding Conditioner Roll Timing Gearbox Lubricant

The conditioner roll timing gearbox is located inside the drive compartment at the right side of the disc header.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

IMPORTANT:

Check the conditioner roll timing gearbox lubricant level when the lubricant is warm. If the lubricant is cold, idle the machine for approximately 10 minutes prior to checking.

1. Lower disc header to the ground, and adjust header angle with center-link so that cutterbar is level. Turn off the engine, and remove key.
2. Open a cutterbar door. For instructions, refer to 10.4.1 Opening Cutterbar Doors, page 105.
3. Use a spirit (bubble) level and check that cutterbar is level in fore-aft direction. Adjust header angle as required.
4. Open the right driveshield. For instructions, refer to 10.2 Opening Driveshields, page 102.
5. Clean around lubricant sight glass (A) and breather plug (B) on inboard side of the conditioner roll timing gearbox.
6. Ensure that the lubricant level is at the top of the sight glass. If necessary, add lubricant through plug (B). Refer to 10.1 Recommended Lubricants, page 101 for lubricant information.
7. Replace plug (B) and tighten.
8. Close the right driveshield. For instructions, refer to 10.3 Closing Driveshields, page 104.
9. Close the cutterbar door. For instructions, refer to 10.4.3 Closing Cutterbar Doors, page 107.

Figure 9.16: Roll Timing Gearbox
9.7 Checking Header Drive Gearbox Lubricant

The header drive gearbox is located on the left side of the header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower header until the top of the header is parallel with the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Open the left cutterbar door. For instructions, refer to 10.4.1 Opening Cutterbar Doors, page 105.
4. The gearbox is located inside the cutterbar area at the top right corner (looking into cutterbar area from front). Clean the area around plug (A).
5. Remove the plug in hole (A) with a 13 mm (1/2 in.) socket.
6. Ensure lubricant slightly runs out of hole (A).
7. If necessary, remove plug (B) and add lubricant (SAE 80W-140) to the gearbox through hole (B) until lubricant runs out of hole (A).
8. Reinstall the plugs and tighten.

⚠️ CAUTION

To avoid injury, keep hands and fingers away from corners of doors when closing.

9. Close the left cutterbar door. For instructions, refer to 10.4.3 Closing Cutterbar Doors, page 107.
9.8 Checking and Adding Cutterbar Lubricant

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING
Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Park the machine on level ground.
2. Lower the header onto 25 cm (10 in.) blocks under both ends of the cutterbar.
3. Shut down the engine, and remove the key from the ignition.
4. Open the cutterbar doors. For instructions, refer to 10.4.1 Opening Cutterbar Doors, page 105.
5. Use a spirit (bubble) level (A) to ensure the cutterbar is level in both directions. Adjust the header accordingly.

6. Clean the area around plug (A). Place a 5 liter (5.2 US qts) capacity container under plug (A).
7. Use a 17 mm socket to remove plug (A) and O-ring (B) from cutterbar. Oil level must be up to the inspection plug hole.

NOTE:
If additional lubricant is required, refer to Step 8, page 91. If additional lubricant is NOT required, proceed to Step 14, page 92.

IMPORTANT:
Do NOT overfill the cutterbar. Overfilling can cause overheating, damage, or failure of cutterbar components.

8. Reinstall the inspection plug.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

9. Start the engine, and raise the header slightly.
10. Lower the header onto blocks, so the left end is slightly higher than the right end.
11. Shut down the engine, and remove the key from the ignition.

12. Add lubricant through the inspection hole used to check the oil level.

 IMPORTANT:
 Do **NOT** overfill the cutterbar. Overfilling can cause overheating, damage, or failure of cutterbar components.

 NOTE:
 For lubricant specifications, refer to *10.1 Recommended Lubricants, page 101.*

13. Recheck oil level.

14. Check O-ring (B) for breaks or cracks, and replace if necessary.

15. Install plug (A) and O-ring (B). Tighten securely.

Figure 9.20: Cutterbar Oil Inspection Plug
9.9 Checking Roll Gap

Check factory-set roll gap as follows:

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the disc header to the ground.
2. Stop the engine, and remove the key from the ignition.
3. **Steel Rolls:** The length of thread (A) extending above the jam nut on the adjustment rods can be used as an approximation of roll gap, but does **NOT** provide consistent roll gap measurements. To ensure roll gap is at the factory setting, refer to *9.9.1 Adjusting Roll Gap – Steel Rolls, page 93*.

4. **Polyurethane Rolls:** Insert a feeler gauge between rolls from either front or rear of header. Factory setting is 3 mm (1/8 in.). If adjustments are required, refer to *9.9.2 Adjusting Roll Gap – Polyurethane Rolls, page 94*.

![Figure 9.21: Roll Gap Adjustment](image)

9.9.1 Adjusting Roll Gap – Steel Rolls

The length of thread extending above the jam nut on the adjustment rods can be used as an approximation of roll gap but does **NOT** provide consistent roll gap measurements. To ensure the roll gap is at the factory setting, follow the procedure below:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Loosen jam nut (A) on both sides of the conditioner.

4. Turn lower nut (B) counterclockwise until the upper roll rests on the lower roll. Ensure the rolls intermesh.

5. Turn lower nut (B) two and a half full turns clockwise to raise the upper roll and achieve a 6 mm (1/4 in.) roll gap.

6. Hold nut (B) and tighten jam nut (A) on both sides of the header.

 IMPORTANT:
 Make sure the roll gap adjustment nuts are adjusted equally on both sides of the header to achieve a consistent gap across the rolls.

7. Rotate the rolls manually and use a feeler gauge at the ends of the rolls to check that the actual gap is no less than 2 mm (5/64 in.) and no more than 4 mm (5/32 in.).

9.9.2 Adjusting Roll Gap – Polyurethane Rolls

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground.

2. Shut down the engine, and remove the key from the ignition.

3. Loosen upper jam nut (A) on both sides of the conditioner.

4. Turn lower nut (B) counterclockwise until the upper roll rests on the lower roll.

5. Turn lower nut (B) one full turn clockwise to raise the upper roll and achieve a 3 mm (1/8 in.) roll gap.

6. Hold nut (B) and tighten jam nut (A) on both sides of the header.

 IMPORTANT:
 Make sure the roll gap adjustment nuts are adjusted equally on both sides of the header to achieve a consistent gap across the rolls.

7. Rotate the rolls manually and use a feeler gauge at the ends of the rolls to check that the actual gap is no less than 2 mm (5/64 in.) and no more than 4 mm (5/32 in.).
9.10 Checking Roll Tension

Roll tension is indicated by the exposed thread on the roll tension adjuster bolt.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Measure the amount of exposed thread on the roll tension adjuster bolt (A) at each end of the conditioner. Measurement (B) should be 12–15 mm (1/2–9/16 in.) for both polyurethane and steel roll conditioners.

2. If the tension requires adjusting, refer to 9.10.1 Adjusting Roll Tension, page 95.

![Figure 9.24: Roll Tension Adjuster](image)

9.10.1 Adjusting Roll Tension

To adjust roll tension, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground.

2. Shut down the engine, and remove the key from the ignition.

3. Loosen jam nut (A) on both sides of conditioner.

4. Turn spring drawbolt (B) clockwise to tighten spring (C) and INCREASE roll tension.

5. Turn spring drawbolt (B) counterclockwise to loosen spring (C) and DECREASE roll tension.

6. Measure the amount of exposed thread on spring drawbolt (B) at each end of the conditioner. Measurement (D) should be 12–15 mm (1/2–9/16 in.) for both polyurethane and steel roll conditioners.

IMPORTANT:

Turn each bolt equally. Each turn of the bolt changes the roll tension by approximately 32 N (7.2 lbf).

7. Tighten jam nuts (A) on each end of the conditioner.

![Figure 9.25: Adjusting Roll Tension](image)
9.11 Adjusting Conditioner Baffle Position

The position of the conditioner baffle, along with the forming shields, determines the height and width of the windrow: raising the baffle produces a fluffier, narrower windrow; lowering the baffle produces a flatter, wider windrow. To adjust the conditioner baffle, follow these steps.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Remove clip (A).
2. Move baffle adjustment handle (B) to the desired position on adjustment plate (C).
3. Install clip (A).

Figure 9.26: Conditioner Baffle Adjuster
9.12 Checking and Adjusting Forming Shield Deflector Position

The position of the side deflectors controls the width and placement of the windrow. Both side deflectors must be evenly set at the same position. If the side deflectors are not evenly set, follow the steps below to adjust them:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Loosen locking handle (A).
2. Slide adjuster bar (B) along adjuster plate (C) to the desired deflector position, and then engage bar (B) into a notch in the adjuster plate.
3. Tighten locking handle (A).
4. Repeat for the opposite side of the deflector.

Figure 9.27: Right Forming Shield Side Deflector
PERFORMING PREDELIVERY CHECKS

9.13 Checking Lights

1. Check light mountings (A) for security and damage.
2. Check operation of hazard lights (B) during machine run-up.

Figure 9.28: Lights
9.14 Checking Manuals

The following manuals should be stored in the manual storage case (A) at the right end of the disc header:

- R113 SP Rotary Disc Header Operator’s Manual
- R113 SP Rotary Disc Header Parts Catalog
- R113 SP Rotary Disc Header Quick Card

Open the right driveshield to access the case. For instructions, refer to 10.2 Opening Driveshields, page 102.
9.15 Running up the Header

⚠️ **WARNING**

- Keep everyone several hundred feet away from your operation. Ensure bystanders are never in line with the front or rear of the machine. Stones and other foreign objects can be ejected from either end with force.
- Take extreme care to avoid injury from thrown objects. Do NOT, under any circumstances, operate the header when other people are nearby.
- Check cutterbar area carefully for loose parts and hardware on the cutterbar. These objects can be ejected with considerable force when the machine is started, and may result in serious injury or machine damage.
- Cutterbar curtains reduce the potential for thrown objects. Always keep these curtains down when operating the disc header. Replace the curtains if they become worn or damaged.

⚠️ **WARNING**

Before investigating an unusual sound or attempting to correct a problem, shut off engine, engage parking brake, and remove key.

⚠️ **CAUTION**

Never start or move the machine until you are sure all bystanders have cleared the area.

NOTE:

Higher engine rpm may be required to engage the disc header. Do NOT exceed 1800 rpm.

1. Start the windrower.
2. Set the disc header 152–305 mm (6–12 in.) above the ground and adjust the center-link to mid-position.
3. Run the machine slowly for 5 minutes, and watch and listen FROM THE OPERATOR’S SEAT for binding or interfering parts.
4. Run the machine at operating speed for 15 minutes. Listen for any unusual sounds or abnormal vibration.
5. Perform the run-up check as listed on the Predelivery Checklist (the yellow sheet inside the back cover of this instruction) to ensure the machine is field-ready.
6. Retain the Predelivery Checklist and this instruction for future reference.
Chapter 10: Reference

10.1 Recommended Lubricants

Keep your machine operating at top efficiency by using only clean lubricants and by ensuring the following:

- Use clean containers to handle all lubricants.
- Store lubricants in an area protected from dust, moisture, and other contaminants.

IMPORTANT:

Do **NOT** overfill the cutterbar when adding lubricant. Overfilling could result in overheating and failure of cutterbar components.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant: Grease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE Multipurpose</td>
<td>High temperature extreme pressure (EP) performance with 1% max. molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
<td>—</td>
</tr>
<tr>
<td>SAE Multipurpose</td>
<td>High temperature extreme pressure (EP) performance with 10% max. molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>Driveline slip-joints</td>
<td>—</td>
</tr>
<tr>
<td>Lubricant: Gear Lubricant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE 80W-90</td>
<td>High thermal and oxidation stability API service class GL-5</td>
<td>4.0 m (13 ft.) cutterbar</td>
<td>8 liters (8.5 qts [US])</td>
</tr>
<tr>
<td>SAE 85W-140</td>
<td>Fully Synthetic Oil API GL-5 Minimum, SAE J2360 Preferred</td>
<td>Conditioner roll timing gearbox</td>
<td>0.7 liters (0.75 qts [US])</td>
</tr>
<tr>
<td>SAE 80W-140</td>
<td>Fully Synthetic Oil API GL-5 Minimum, SAE J2360 Preferred</td>
<td>Header drive 90 degree gearbox</td>
<td>1.65 liters (1.74 qts [US])</td>
</tr>
</tbody>
</table>
10.2 Opening Driveshields

⚠️ CAUTION

To reduce the risk of personal injury, do NOT operate the machine without the driveshields in place and secured.

NOTE:
Images shown in this procedure are for the left driveshield—the right driveshield is similar.

1. Remove lynch pin (A) and tool (B) from pin (C).

2. Insert flat end of tool (A) into latch (B) and turn it counterclockwise to unlock.
3. Pull top of driveshield (A) away from the header to open.

NOTE:
For improved access, lift driveshield off the pins at the base of the shield, and lay the shield on the header.

Figure 10.4: Left Driveshield

10.3 Closing Driveshields

⚠️ CAUTION

To reduce the risk of personal injury, do NOT operate the machine without the driveshields in place and secured.

NOTE:
Images shown in this procedure are for the left driveshield—the right driveshield is similar.

1. Position driveshield onto pins at base of driveshield (if necessary).
2. Push driveshield (A) to engage latch (B).
3. Check that driveshield is properly secured.

4. Replace tool (B) and lynch pin (A) on pin (C).

Figure 10.5: Left Driveshield

Figure 10.6: Left Driveshield
10.4 Cutterbar Doors

WARNING

To reduce the risk of personal injury or machine damage, do NOT operate the machine without all the cutterbar doors down or without curtains installed and in good condition. Foreign objects can be ejected with considerable force when the machine is started.

Two doors (A) with rubber curtains provide access to the cutterbar area.

Curtains (B) and (C) are attached to each front corner and at the center respectively. Always keep curtains lowered when operating the disc header.

Rotary disc headers sold outside of North America have latches on the cutterbar door.

IMPORTANT:

Replace curtains if they become worn or damaged.

10.4.1 Opening Cutterbar Doors

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Lift up on doors (A) at the front of header to open.
10.4.2 Opening Cutterbar Doors – Export Latches

Headers sold outside North America require a tool-operated latch on the cutterbar doors. Follow these steps to open cutterbar doors with export latches:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Locate latch access holes (A) for each door.

3. Use a rod or screwdriver to press down on latch (A) and release the cutterbar door.
4. Lift up on doors (A) while pressing down on the latch.

10.4.3 Closing Cutterbar Doors

⚠️ CAUTION
To avoid injury, keep hands and fingers away from corners of doors when closing.

1. Pull down on door (A) from the top to close.
2. Ensure that curtains hang properly and completely enclose the cutterbar area.
10.5 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

10.5.1 Metric Bolt Specifications

Table 10.2 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 10.13: Bolt Grades
Table 10.3 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm) Min.</th>
<th>Torque (Nm) Max.</th>
<th>Torque (lbf-ft) Min.</th>
<th>Torque (lbf-ft) Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
<td>*9</td>
<td>*10</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
<td>*14</td>
<td>*15</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
<td>*20</td>
<td>*22</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
<td>*40</td>
<td>*45</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
<td>*69</td>
<td>*76</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
<td>*167</td>
<td>*185</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
<td>77</td>
<td>85</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
<td>119</td>
<td>132</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
<td>233</td>
<td>257</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
<td>402</td>
<td>444</td>
</tr>
</tbody>
</table>

Figure 10.14: Bolt Grades

Table 10.4 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm) Min.</th>
<th>Torque (Nm) Max.</th>
<th>Torque (lbf-ft) Min.</th>
<th>Torque (lbf-ft) Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
<td>*18</td>
<td>*19</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
<td>*27</td>
<td>*30</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
<td>*41</td>
<td>*45</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
<td>*82</td>
<td>*91</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
<td>*140</td>
<td>*154</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
<td>97</td>
<td>108</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
<td>156</td>
<td>172</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
<td>242</td>
<td>267</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
<td>472</td>
<td>521</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
<td>815</td>
<td>901</td>
</tr>
</tbody>
</table>

Figure 10.15: Bolt Grades
Table 10.5 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3.0-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4.0-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5.0-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6.0-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8.0-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10.0-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12.0-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14.0-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16.0-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20.0-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24.0-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

10.5.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 10.6 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 (Cast Aluminum)</td>
</tr>
<tr>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td>-</td>
</tr>
<tr>
<td>M16</td>
<td>-</td>
</tr>
</tbody>
</table>
10.5.3 O-Ring Boss Hydraulic Fittings – Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.

3. Check that O-ring (A) is **NOT** on threads and adjust if necessary.

4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until backup washer (D) and O-ring (A) contact part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).

8. Check final condition of fitting.
Table 10.7 O-Ring Boss (ORB) Hydraulic Fittings – Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value¹²³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

³. Torque values shown are based on lubricated connections as in reassembly.
10.5.4 O-Ring Boss Hydraulic Fittings – Non-Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 10.8, page 113.
6. Check final condition of fitting.

![Figure 10.20: Hydraulic Fitting](image)

Table 10.8 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

⁴ Torque values shown are based on lubricated connections as in reassembly.
10.5.5 O-Ring Face Seal Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 10.9, page 114.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 10.9 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note6</td>
<td>3/16</td>
<td>-</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note6</td>
<td>5/16</td>
<td>-</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1 3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
<tr>
<td>-14</td>
<td>Note6</td>
<td>7/8</td>
<td>-</td>
</tr>
</tbody>
</table>

5. Torque values and angles shown are based on lubricated connection as in reassembly.
6. O-ring face seal type end not defined for this tube size.
Table 10.9 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value(^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-16</td>
<td>1 7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1 11/16</td>
<td>1 1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1 1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

10.5.6 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks, scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The turns from finger tight (TFFT) and flats from finger tight (FFFT) values are shown in Table 10.10, page 115. Make sure that tube end of a shaped connector (typically 45 degree or 90 degree) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 10.10 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

\(^7\) Torque values and angles shown are based on lubricated connection as in reassembly.
10.6 Conversion Chart

Table 10.11 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>x 2.4710 =</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>x 0.2248 =</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>x 0.0394 =</td>
</tr>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>x 1.341 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>x 0.145 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>megapascal</td>
<td>MPa</td>
<td>x 145.038 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 0.7376 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 8.8507 =</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>°C</td>
<td>(°C x 1.8) + 32 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 =</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>mL</td>
<td>x 0.0338 =</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 =</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>x 2.2046 =</td>
</tr>
</tbody>
</table>
10.7 Definitions

The following terms and acronyms may be used in this instruction:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with Operator and cab facing in direction of travel</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>Export header</td>
<td>Header configuration typical outside North America</td>
</tr>
<tr>
<td>FFFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>North American header</td>
<td>Header configuration typical in North America</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>SP rotary disc header</td>
<td>Rotary disc header that connects to a self-propelled machine (windrower, etc.)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit for a header</td>
</tr>
</tbody>
</table>
Predelivery Checklist

Perform these checks and adjustments before delivering the machine to your Customer. If adjustments are required, refer to the appropriate page number in this manual. The completed Checklist should be retained by either the Operator or the Dealer.

⚠️ WARNING

Do NOT operate the machine with the driveshields open. High speed rotating components may throw debris and could result in death or serious injury.

⚠️ CAUTION

Carefully follow the instructions given. Be alert for safety-related messages that bring your attention to hazards and unsafe practices.

Serial Number:

<table>
<thead>
<tr>
<th>✓</th>
<th>Item</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check for shipping damage or missing parts. Be sure all shipping dunnage is removed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for loose hardware. Tighten to required torque if applicable.</td>
<td>10.5 Torque Specifications, page 108</td>
</tr>
<tr>
<td></td>
<td>Check main drive belt tension.</td>
<td>9.1 Checking Conditioner Drive Belt, page 79</td>
</tr>
<tr>
<td></td>
<td>Check skid shoes are evenly set.</td>
<td>9.2 Checking Skid Shoes, page 81</td>
</tr>
<tr>
<td></td>
<td>Check side forming shields evenly set to desired position.</td>
<td>9.12 Checking and Adjusting Forming Shield Deflector Position, page 97</td>
</tr>
<tr>
<td></td>
<td>Check rear baffle is about mid-position.</td>
<td>9.11 Adjusting Conditioner Baffle Position, page 96</td>
</tr>
<tr>
<td></td>
<td>Check conditioner roll gap (roll conditioner).</td>
<td>9.9 Checking Roll Gap, page 93</td>
</tr>
<tr>
<td></td>
<td>Check conditioner roll tension (roll conditioner).</td>
<td>9.5 Checking Roll Timing, page 86</td>
</tr>
<tr>
<td></td>
<td>Check conditioner roll timing hardware is securely tightened (roll conditioner).</td>
<td>5 Unpacking Curtains, page 55</td>
</tr>
<tr>
<td></td>
<td>Check that cutterbar doors are unbolted from centre channel frame, shipping wire is removed from cutterbar curtains, and cutterbar curtains are hanging properly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grease all bearings and drivelines.</td>
<td>8.1 Lubrication Locations, page 78</td>
</tr>
<tr>
<td></td>
<td>Check conditioner roll timing gearbox lubricant.</td>
<td>9.6 Checking and Adding Conditioner Roll Timing Gearbox Lubricant, page 89</td>
</tr>
<tr>
<td></td>
<td>Check cutterbar lubricant.</td>
<td>9.8 Checking and Adding Cutterbar Lubricant, page 91</td>
</tr>
</tbody>
</table>
R113 SP Rotary Disc Header Predelivery Checklist (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check cutterbar area carefully for loose parts and</td>
<td>9.15 Running up the Header, page 100</td>
</tr>
<tr>
<td>hardware on the cutterbar.</td>
<td></td>
</tr>
<tr>
<td>WARNING</td>
<td></td>
</tr>
<tr>
<td>These objects can be ejected with considerable force</td>
<td></td>
</tr>
<tr>
<td>when the machine is started, and may result in serious</td>
<td></td>
</tr>
<tr>
<td>injury or machine damage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-Up Procedure</td>
<td>9.15 Running up the Header, page 100</td>
</tr>
<tr>
<td>Check hydraulic hose and wiring harness routing to</td>
<td></td>
</tr>
<tr>
<td>ensure adequate clearance when raising or lowering</td>
<td></td>
</tr>
<tr>
<td>header.</td>
<td></td>
</tr>
<tr>
<td>Check hazard lights are functional.</td>
<td>9.13 Checking Lights, page 98</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Run-Up Check – Stop Engine</td>
<td></td>
</tr>
<tr>
<td>Check belt drive for proper idler alignment and</td>
<td>9.1 Checking Conditioner Drive Belt, page 79</td>
</tr>
<tr>
<td>overheating bearings.</td>
<td></td>
</tr>
<tr>
<td>Check for hydraulic leaks.</td>
<td></td>
</tr>
<tr>
<td>Check that header manuals are in storage compartment.</td>
<td>9.14 Checking Manuals, page 99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Checked:</th>
<th>Checked by:</th>
</tr>
</thead>
</table>

—