Noise Levels

The A-weighted sound pressure level inside the operator’s station of a typical self-propelled vehicle (e.g., M1170), when operated in conjunction with this R1 SP Series Disc Header, is **70 dBA**. This measurement was taken in accordance with ISO 5131. The sound pressure level depends upon the rotary disc speed, crop conditions, as well the exact type of self-propelled vehicle used to power the R1 SP Series Disc Header.
Declaration of Conformity

Figure 1: EC Declaration of Conformity

EN
Wx. [1]
Declare, that the product:
Machine type [2]
Name & Model [3]
Serial Number [4]
Is in all relevant provisions of the Directive 2006/42/EC:
Harmonised standards used, as referred to in Article 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Location of identification [5]
Identity and signature of the person empowered to sign the declaration [6]
Name and address of the person authorized to compile the technical file:
Benedikt von Red dev
General Manager, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Germany)
bvreddev@macdon.com

BG
Wx. [1]
Декларация, че съответства продукт:
Модел на машината [2]
Наскачване на модела [3]
Серийен номер [4]
Се изпълнява всички препоръки на Директива 2006/42/EC:
Съгласно гарантите на гарантите „Стандартите на гарантите” (ст. 7(2))
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Идентификация на мястото [5]
Идентификация и подпис на подписания [6]
Името и адресът на лицето, упълномощено да съставя техническата картина:
Бенедикт фон Реддолф
Управител, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Германия)
bvreddev@macdon.com

CZ
Wx. [1]
Declaruji, že produkt:
Typ stroje [2]
Název a model [3]
Sériové číslo [4]
Je všech relevantních požadavcích směrnice 2006/42/ES:
Důležité standardy, které se na podkladě článku 7(2)
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Místo a způsob identifikace [5]
Identifikace a podepis osoby pověřené k podepsání [6]
Jméno a adresa osoby pověřené k vydávání technického dokumentu:
Benedikt von Reddev
Generální ředitel, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Nemecko)
bvreddev@macdon.com

DA
Wx. [1]
Indikerer, at produktet:
Maskintype [2]
Navn og model [3]
Serienummer [4]
Er i alle relevante bestemmelser i direktiv 2006/42/EC:
Hvordan påvirkes harmoniserede standarder, som henvises til i artikel 7(2)
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Stedet og arten for identificering [5]
Identifikation og underskrift fra den person, som er bestemt til at underskrive erklæringen [6]
Navn og adresse på den person, som er bestemt til at underskrive den tekniske dokument:
Benedikt von Reddev
Direktør, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Tyskland)
bvreddev@macdon.com

ES
Wx. [1]
Declaramos que el producto:
Tipo de máquina [2]
Nombre y modelo [3]
Número de serie [4]
Cumple con todas las disposiciones pertinentes de la directiva 2006/42/CE.
Los estándares normalizados, según lo dispuesto en el artículo 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Lugar y fecha de la declaración [5]
Identidad y firma de la persona autorizada para dar la redacción de la declaración [6]
Nombre y dirección de la persona autorizada para elaborar el documento técnico:
Benedikt von Reddev
Gerente general, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Alemania)
bvreddev@macdon.com

ET
Wx. [1]
Märklikse, et toode:
Tüüp masinat [2]
Nimi ja mudel [3]
Seriinumber [4]
Oleb kõik direktiivi 2006/42/EÜ kõrvalseted:
Tühikordsed standardid, mille üle painetud see piiratud (7(2)):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Loojate ja kuju, mida langeb [5]
Identifitseerimine ja allkirjava allkirja annanud ([6]
Tehnilise dokumenti kandideerimine allkirjastatud allkirjadega:
Benedikt von Reddev
Jaotusjuht, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Soome)
bvreddev@macdon.com

FR
Wx. [1]
Déclare que le produit:
Type de machine [2]
Nom et modèle [3]
Numéro de série [4]
Conformément à toutes les dispositions pertinentes de la directive 2006/42/EC:
Les normes harmonisées, telles que mentionnées en l'article 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Lieu et date de la déclaration [5]
Identité et signature de la personne autorisée à délivrer cette déclaration [6]
Nom et adresse de la personne autorisée à construire le dossier technique:
Benedikt von Reddev
Directeur général, MacDon Europe GmbH
Hagenauer Straße 55
63223 Wiesbaden (Allemagne)
bvreddev@macdon.com

The Harvesting Specialists

MacDon
MacDon Industries Ltd.
610 Moray Street,
Winnipeg, Manitoba, Canada
R3J 3S3

Christoph Martens
Product Integrity

Revision A
Figure 2: EC Declaration of Conformity

EC Declaration of Conformity

IT

No. [1] Dichiara il nome del prodotto:
Tipo di macchina: [2]
Nome e modello: [3]
Numero di serie: [4]

Vi viene assegnato il follow-up di [5]

ENISO 4254:2-7:2008
EN ISO 4254-1:2008

NL

Wij, [1] Verklaren dat het product:
Machinewaar: [2]
Noem en model: [3]
Serieaanduiding: [4]

ME

M, [1] Naziv pridržavatelja, haj, haj a ključevni termiki
Glede izdelka: [2]
Ime in model: [3]
Serie: [4]

EN ISO 4254-1:2008
EN ISO 4254-2:2009

SV

VI, [1] Införa om produktet:
Märkesnamn: [2]
Namn och modell: [3]
Serienummer: [4]

VI

VI, [1] Införa om produktet:
Märkesnamn: [2]
Namn och modell: [3]
Serienummer: [4]

FR

M, [1] Description, le produit:
Type de marquage: [2]
Nom et modèle: [3]
Séries numérotées (si): [4]

EN ISO 4254-2:2009

AR

MA [1] مراجعة للطريقة، بالمنتج:
نوع الإسمار: [2]
نوع ورقم الموديل: [3]
رقم السير: [4]

EN ISO 4254-2:2009
EN ISO 4254-1:2008

UK

LT

M, [1] Pasifikatoriai, ka to produktas:
Mažosios tipinio: [2]
Mažosios ir mažosios: [3]
Serijos numeravimo (jei): [4]

EN ISO 4254-2:2009
EN ISO 4254-1:2008

FI

PF

M, [1] Pidest, että tuote:
Tyypissä merkki: [2]
Nimi ja malli: [3]
Sarjanumerot (jos): [4]

EN ISO 4254-2:2009
EN ISO 4254-1:2008

DA

DK

M, [1] Beskriv productet:
Type mellemhøj: [2]
Navn og model: [3]
Serieenheder (hvis): [4]

EN ISO 4254-2:2009
EN ISO 4254-1:2008
Introduction

This instructional manual contains safety, operating, and maintenance procedures for the MacDon R113 Rotary Disc Header. The disc header, when attached to a MacDon M155, M155E4, M1170, or M1240 Windrower, is designed to cut, condition, and lay a wide variety of grasses and hay crops in windrows.

Carefully read all the material provided before attempting to unload, assemble, or use the machine.

Use this manual as your first source of information about the machine. If you follow the instructions provided in this manual, and use MacDon parts, the rotary disc header will work well for many years. If you require more detailed service information, contact your Dealer.

Use the Table of Contents and the Index to guide you to specific topics. Study the Table of Contents to familiarize yourself with how the material is organized. Keep this manual handy for frequent reference and to pass on to new Operators or Owners. Call your Dealer if you need assistance, information, or additional copies of this manual.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

Conventions

The following conventions are used in this document:

- Right and left are determined from the operator’s position. The front of the rotary disc header faces the crop.
- Unless otherwise noted, use the standard torque values provided in this manual.

Store the operator’s manual and the parts catalog in the plastic manual case (A) at the right side of the rotary disc header.

NOTE: Keep your MacDon publications up-to-date. The most current version can be downloaded from our website www.macdon.com or from our Dealer-only site (https://portal.macdon.com) (login required).
Summary of Changes

The following list provides an account of major changes from the previous version of this document.

<table>
<thead>
<tr>
<th>Section</th>
<th>Summary of Change</th>
<th>Internal Use Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout manual</td>
<td>Removed R116 SP-specific content from book.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>1.2 Signal Words, page 2</td>
<td>Added description for IMPORTANT and NOTE signal words appearing throughout this manual.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>2.3 Definitions, page 19</td>
<td>New definitions added: cab-forward, export header, header, North American header, rpm, and windrower.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>• 3.3.1 Engaging and Disengaging Header Safety Props – M1240 Windrower, page 24</td>
<td>Updated illustrations to show MY2020 safety props.</td>
<td>ECN 58047</td>
</tr>
<tr>
<td>• 3.3.2 Engaging and Disengaging Header Safety Props – M Series Self-Propelled Windrower, page 25</td>
<td>Updated float linkage and safety prop illustrations.</td>
<td>ECN 58047</td>
</tr>
<tr>
<td>3.4.1 Attaching R113 SP Rotary Disc Header to M1 Series Windrowers, page 27</td>
<td>Updated illustrations to show MY2020 safety props.</td>
<td>ECN 58047</td>
</tr>
<tr>
<td>• 3.4.2 Attaching R113 SP to M155 or M155E4 SP Windrowers – Hydraulic Center-Link with Optional Self-Alignment, page 32</td>
<td>Updated ground speed chart to only show R113 SP headers.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>• 3.4.3 Attaching R113 SP to M155 or M155E4 SP Windrower – Hydraulic Center-Link without Optional Self-Alignment, page 37</td>
<td>Updated cutterbar configuration illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Connecting Header Hydraulics and Electrical – M155 and M155E4 SP Windrowers, page 45</td>
<td>Updated illustrations for hydraulic connections.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>3.5 Detaching Header from M1240 Windrower, page 52</td>
<td>Updated illustrations to show MY2020 safety props.</td>
<td>ECN 58047</td>
</tr>
<tr>
<td>3.8.4 Ground Speed, page 70</td>
<td>Updated ground speed chart to only show R113 SP headers.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>3.9 Reconfiguring Cutterbar Crop Stream, page 71</td>
<td>Updated cutterbar configuration illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Positioning Rear Baffle – Roll Conditioner, page 82</td>
<td>Updated illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Positioning Rear Baffle Deflector Fins, page 83</td>
<td>Updated illustration for deflector fins in field position.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>4.3.1 Maintenance Schedule/Record, page 93</td>
<td>Updated maintenance intervals.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>4.5 Cutterbar System, page 99</td>
<td>Updated cutterbar illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Draining the Cutterbar, page 102</td>
<td>Updated illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Inspecting Cutterbar Discs, page 104</td>
<td>Added steps to procedure.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Section</td>
<td>Summary of Change</td>
<td>Internal Use Only</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4.5.4 Maintaining Discblades, page 118</td>
<td>Updated disc rotation illustrations.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Inspecting Accelerators, page 125</td>
<td>Updated accelerators illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Installing Accelerators, page 127</td>
<td>Updated cutterbar door illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Inspecting Rock Guards, page 129</td>
<td>Updated rock guard illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Inspecting Large Drums, page 135</td>
<td>Updated cutterbar drum illustration.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Installing Large Driven Drums and Driveline, page 140</td>
<td>Updated topic illustrations.</td>
<td>Tech Pubs</td>
</tr>
<tr>
<td>Printed on the manual’s back cover.</td>
<td>Updated grease description for conditioner roll timing gearbox.</td>
<td>Tech Pubs, Product Support</td>
</tr>
</tbody>
</table>
Model and Serial Number

Record the model number, serial number, and model year of the header on the lines below.

R113 SP

Header Model: ________________________________
Serial Number: ________________________________
Year: ________________________________

The serial number plate (A) is located near the base of the right side hazard/signal light on the right edge of the header.

Figure 3: Right Side of Header
TABLE OF CONTENTS

Declaration of Conformity ... i
Introduction .. iii
Summary of Changes ... iv
Model and Serial Number .. vi

Chapter 1: Safety ... 1

1.1 Safety Alert Symbols ... 1
1.2 Signal Words .. 2
1.3 General Safety .. 3
1.4 Maintenance Safety ... 5
1.5 Hydraulic Safety ... 6
1.6 Welding Precaution .. 7
1.7 Safety Signs .. 8
 1.7.1 Installing Safety Decals ... 8
1.8 Locating Safety Decals ... 9
1.9 Understanding Safety Signs .. 11

Chapter 2: Product Overview ... 15

2.1 Specifications .. 15
2.2 Component Identification .. 17
2.3 Definitions ... 19

Chapter 3: Operation .. 21

3.1 Break-In Period ... 21
3.2 Daily Start-Up Check ... 22
3.3 Engaging and Disengaging Header Safety Props .. 24
 3.3.1 Engaging and Disengaging Header Safety Props – M1240 Windrower 24
 3.3.2 Engaging and Disengaging Header Safety Props – M Series Self-Propelled Windrower 25
3.4 Attaching Header to Windrower .. 27
 3.4.1 Attaching R113 SP Rotary Disc Header to M1 Series Windrows 27
 3.4.2 Attaching R113 SP to M155 or M155E4 SP Windrows – Hydraulic Center-Link with Optional
 Self-Alignment .. 32
 3.4.3 Attaching R113 SP to M155 or M155E4 SP Windrower – Hydraulic Center-Link without Optional
 Self-Alignment .. 37
 3.4.4 Attaching Hydraulic and Electrical Components ... 42
 Connecting Header Hydraulics and Electrical – M1 Series Windrows 42
 Connecting Header Hydraulics and Electrical – M155 and M155E4 SP Windrows 45
3.5 Detaching Header from M1240 Windrower .. 52
 3.5.1 Detaching – M1 Series Windrower ... 52
 3.5.2 Detaching R1 SP Series Header – M155 and M155E4 Windrows 57
3.6 Driveshields ... 61
 3.6.1 Opening Driveshields .. 61
 3.6.2 Closing Driveshields ... 62
3.7 Cutterbar Doors .. 64
 3.7.1 Opening Cutterbar Doors – North America ... 64
 3.7.2 Opening Cutterbar Doors – Export Latches ... 65
 3.7.3 Closing Cutterbar Doors ... 66

3.8 Header Settings ... 67
 3.8.1 Cutting Height ... 67
 Adjusting Cutting Height ... 68
 3.8.2 Adjusting Cutterbar Angle ... 69
 3.8.3 Header Float ... 69
 3.8.4 Ground Speed ... 70

3.9 Reconfiguring Cutterbar Crop Stream .. 71
 3.9.1 Changing R113 SP Cutterbar Crop Stream Configuration .. 72

3.10 Conditioner .. 73
 3.10.1 Roll Gap ... 73
 Checking Roll Gap ... 74
 Adjusting Roll Gap – Polyurethane Rolls .. 75
 Adjusting Roll Gap – Steel Rolls ... 76
 3.10.2 Roll Tension .. 77
 Adjusting Roll Tension .. 77
 3.10.3 Roll Timing .. 78
 Checking Roll Timing .. 78
 Adjusting Roll Timing .. 78
 3.10.4 Adjusting Forming Shields – Roll Conditioner ... 81
 Positioning Forming Shield Side Deflectors – Roll Conditioner .. 81
 Positioning Rear Baffle – Roll Conditioner .. 82

3.11 Cutterbar Deflectors .. 84
 3.11.1 Removing Cutterbar Deflectors ... 84
 3.11.2 Installing Cutterbar Deflectors ... 85

3.12 Haying Tips .. 86
 3.12.1 Curing ... 86
 3.12.2 Topsoil Moisture .. 86
 3.12.3 Weather and Topography ... 86
 3.12.4 Windrow Characteristics .. 87
 3.12.5 Driving on Windrow .. 87
 3.12.6 Using Chemical Drying Agents .. 87

3.13 Transporting the Header .. 88

Chapter 4: Maintenance and Servicing .. 89
 4.1 Preparing Machine for Servicing ... 89
 4.2 Recommended Safety Procedures ... 90
 4.3 Maintenance Requirements .. 92
 4.3.1 Maintenance Schedule/Record ... 93
 4.3.2 Break-In Inspections .. 95
 4.3.3 Preseason Servicing .. 95
 4.3.4 End-of-Season Servicing ... 96
4.4 Lubrication .. 97
 4.4.1 Greasing Procedure ... 97
 Every 25 Hours .. 98
4.5 Cutterbar System .. 99
 4.5.1 Lubricating Cutterbar ... 99
 Checking and Adding Cutterbar Lubricant .. 99
 Draining the Cutterbar .. 102
 Filling Lubricant into a Repaired Cutterbar .. 103
 4.5.2 Maintaining Cutterbar Discs ... 104
 Inspecting Cutterbar Discs .. 104
 Removing Cutterbar Discs ... 106
 Installing Cutterbar Discs .. 108
 4.5.3 Replacing Cutterbar Spindles ... 109
 Removing Cutterbar Spindles ... 111
 Installing Cutterbar Spindles ... 114
 4.5.4 Maintaining Discblades ... 118
 Inspecting Discblades .. 119
 Inspecting Discblade Hardware .. 121
 Removing Discblades .. 122
 Installing Discblades .. 124
 4.5.5 Maintaining Accelerators .. 125
 Inspecting Accelerators ... 125
 Removing Accelerators ... 126
 Installing Accelerators ... 127
 4.5.6 Maintaining Rock Guards ... 129
 Inspecting Rock Guards .. 129
 Removing Inboard Rock Guards ... 130
 Installing Inboard Rock Guards .. 131
 Removing Outboard Rock Guards ... 132
 Installing Outboard Rock Guards .. 133
 4.5.7 Maintaining Large Drums .. 134
 Inspecting Large Drums .. 135
 Removing Large Driven Drums and Driveline .. 136
 Installing Large Driven Drums and Driveline .. 140
 Removing Large Non-Driven Drums ... 145
 Installing Large Non-Driven Drums .. 147
 4.5.8 Replacing Cutterbar Spindle Shear Pin ... 149
 Removing Cutterbar Spindle Shear Pin .. 150
 Installing Cutterbar Spindle Shear Pin .. 154
4.6 Conditioner Roll Timing Gearbox ... 158
 4.6.1 Checking and Changing Gearbox Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211) 158
4.7 Servicing Header Drive Gearbox ... 161
 4.7.1 Changing Header Drive Gearbox Oil .. 161
4.8 Inspecting Cutterbar Doors ... 163
4.9 Maintaining Curtains ... 164
 4.9.1 Inspecting Curtains .. 164
 4.9.2 Removing Cutterbar Door Curtains .. 165
 4.9.3 Installing Cutterbar Door Curtains .. 165
 4.9.4 Removing Cutterbar Inboard Curtain .. 166
TABLE OF CONTENTS

7.1.2 Metric Bolt Specifications Bolting into Cast Aluminum.. 211
7.1.3 O-Ring Boss Hydraulic Fittings – Adjustable ... 212
7.1.4 O-Ring Boss Hydraulic Fittings – Non-Adjustable ... 214
7.1.5 O-Ring Face Seal Hydraulic Fittings .. 215
7.1.6 Tapered Pipe Thread Fittings ... 216

7.2 Conversion Chart ... 217

Index ... 219

Recommended Lubricants .. 225
Chapter 1: Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- ATTENTION!
- BECOME ALERT!
- YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

- Accidents disable and kill
- Accidents cost
- Accidents can be avoided
1.2 Signal Words

Three signal words, **DANGER**, **WARNING**, and **CAUTION**, are used to alert you to hazardous situations. Two signal words, **IMPORTANT** and **NOTE**, identify non-safety related information. Signal words are selected using the following guidelines:

⚠️ **DANGER**
Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ **WARNING**
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ **CAUTION**
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

IMPORTANT:
Indicates a situation that, if not avoided, could result in a malfunction or damage to the machine.

NOTE:
Provides additional information or advice.
1.3 General Safety

CAUTION

The following general farm safety precautions should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do NOT take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip-resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask

- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit in case of emergencies.
- Keep a properly maintained fire extinguisher on the machine. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when the operator is tired or in a hurry. Take time to consider safest way. NEVER ignore warning signs of fatigue.
SAFETY

- Wear close-fitting clothing and cover long hair. **NEVER** wear dangling items such as scarves or bracelets.
- Keep all shields in place. **NEVER** alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
- Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

- Keep hands, feet, clothing, and hair away from moving parts. **NEVER** attempt to clear obstructions or objects from a machine while engine is running.
- Do **NOT** modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.
- To avoid injury or death from unexpected startup of machine, **ALWAYS** stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

- Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
- Keep work area well lit.
- Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do **NOT** allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
- **NEVER** use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
- When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit

- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lubricant fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high-pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Welding Precaution

Welding should never be attempted on the header while it is connected to a windrower.

⚠️ WARNING

Severe damage to sensitive, expensive electronics can result from welding on the header while it is connected to the windrower. It can be impossible to know what effect high current could have with regard to future malfunctions or shorter lifespan. It is very important that welding on the header is not attempted while the header is connected to the windrower.

If an Operator needs to do any welding on the header, it should first be disconnected and removed from the windrower.

If it is unfeasible to disconnect the header from the windrower before attempting welding, contact your MacDon Dealer for welding precautions detailing all electrical components that must be disconnected first for safe welding.
1.7 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If original part on which a safety sign was installed is replaced, be sure the repair part displays the current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.7.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.
1.8 Locating Safety Decals

Figure 1.15: Safety Sign Decal Locations Top View

A - MD #194466
B - MD #247167
C - MD #194465
D - MD #166466
E - MD #113482
F - MD #190546

Figure 1.16: Safety Sign Decals
SAFETY

Figure 1.17: Safety Sign Decal Locations Roll Conditioner

A - MD #190546
B - MD #184385
C - MD #184371
D - MD #246959
E - MD #246956
F - NO STEP Symbol (Imprinted on Shield)
1.9 Understanding Safety Signs

NOTE: This is a general list of safety sign definitions and the decals listed may not necessarily be applicable to your machine.

MD #113482
General hazard pertaining to machine operation and servicing.

CAUTION
- Read the operator’s manual, and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do NOT allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine, and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage self-propelled rotary disc header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Shut off engine and remove key from ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage locks to prevent lowering of self-propelled rotary disc header before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #166832
Hydraulic pressure oil hazard

WARNING
- High pressure oil easily punctures skin causing serious injury, gangrene, or death.
- If injured, seek emergency medical help.
- Do NOT use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

Figure 1.18: MD #113482

Figure 1.19: MD #166832
MD #184371
Open drive hazard

WARNING
- Guard missing. Do NOT operate.
- Keep all shields in place.

Figure 1.20: MD #184371

MD #184385
Entanglement hazard

CAUTION
- To avoid injury from entanglement with rotating auger, stand clear of header while machine is running.

Figure 1.21: MD #184385

MD #190546
Slippery surface

WARNING—DO NOT STEP ON SURFACE
- Do NOT use this area as a step or platform.
- Failure to comply could result in serious injury or death.

Figure 1.22: MD #190546
MD #194465
Rotating cutters

WARNING—STAND CLEAR
- Contact with blades or thrown objects can result in serious injury or death.
- Do **NOT** stand on or near machine when in operation.
- Do **NOT** operate with covers or curtains open or removed.
- Shut off tractor and remove key before opening covers.

MD #194466
Rotating fingers under hood

WARNING—STAND CLEAR
- Crop materials exiting at high speed.
- Stop machine, look, listen, and wait for all movement to stop before approaching.
- Failure to comply could result in death or serious injury.

MD #246956
Keep shields in place

WARNING
- Do **NOT** operate without shields/guards in place.
- Failure to comply will result in death or serious injury.
MD #246959
Pinch hazard

WARNING—KEEP AWAY

- Failure to comply could result in death or serious injury.

Figure 1.26: MD #246959

MD #247167
Rotating blades

WARNING

- Disengage power take-off, shut off tractor, and remove key before opening covers.
- Listen and look for evidence of rotation before lifting cover.
- Cutters may continue to rotate after power is shut off due to inertia.

Figure 1.27: MD #247167
Chapter 2: Product Overview

2.1 Specifications

NOTE:
Specifications and design are subject to change without notice or obligation to revise previously sold units.

<table>
<thead>
<tr>
<th>Frame and Structure</th>
<th>R113 SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (transport)</td>
<td>4063 mm (160 in.)</td>
</tr>
<tr>
<td>Weight: base machine and adapter frame</td>
<td>1364 kg (3007 lb.)</td>
</tr>
<tr>
<td>Weight: base machine, adapter frame, and steel conditioner</td>
<td>1850 kg (4079 lb.)</td>
</tr>
<tr>
<td>Weight: base machine, adapter frame, and polyurethane conditioner</td>
<td>1868 kg (4118 lb.)</td>
</tr>
<tr>
<td>Compatible windrower</td>
<td>MacDon M155, M155E4, M1170, or M1240 Windrower</td>
</tr>
<tr>
<td>Lighting</td>
<td>Left and right turn signals</td>
</tr>
<tr>
<td>Manual storage</td>
<td>Plastic case on header right driveshield</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutterbar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cutting discs</td>
<td>Eight</td>
</tr>
<tr>
<td>Blades per disc</td>
<td>Two 18 degrees bevel down</td>
</tr>
<tr>
<td>Disc speed (full engine speed)</td>
<td>2500 rpm</td>
</tr>
<tr>
<td>Blade max tip speed</td>
<td>80.5 m/s (180 mph)</td>
</tr>
<tr>
<td>Effective cutting width</td>
<td>3978 mm (13 ft.)</td>
</tr>
<tr>
<td>Minimum Cutting height</td>
<td>27 mm (1 1/16 in.)</td>
</tr>
<tr>
<td>Cutting angle range</td>
<td>0–8 degrees below horizontal</td>
</tr>
<tr>
<td>Adjustable shoes</td>
<td>Standard</td>
</tr>
<tr>
<td>Gear train protection</td>
<td>Shearpin (safecut)</td>
</tr>
<tr>
<td>Converging Drums</td>
<td>Two-drum type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic motor</td>
<td>Piston type into 90-degree gearbox</td>
</tr>
<tr>
<td>Cutterbar</td>
<td>Direct drive through 90-degree gearbox and universal shaft</td>
</tr>
<tr>
<td>Conditioner drive</td>
<td>Belt drive (4HB) from 90-degree gearbox to conditioner</td>
</tr>
<tr>
<td>Conditioner roll timing</td>
<td>Timing gearbox</td>
</tr>
<tr>
<td>Hay Conditioner Options</td>
<td>R113 SP</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Steel rolls</td>
<td>Optional</td>
</tr>
<tr>
<td>Roll type</td>
<td>Steel on steel chevron conditioner rolls</td>
</tr>
<tr>
<td>Roll length</td>
<td>3275 mm (129 in.)</td>
</tr>
<tr>
<td>Roll diameter</td>
<td>229 mm (9.0 in.) / 179 mm (7.0 in.) OD tube</td>
</tr>
<tr>
<td>Roll speed</td>
<td>1009 rpm</td>
</tr>
<tr>
<td>Polyurethane rolls</td>
<td>Optional</td>
</tr>
<tr>
<td>Roll type</td>
<td>Polyurethane intermeshing conditioner rolls</td>
</tr>
<tr>
<td>Roll length</td>
<td>3275 mm (129 in.)</td>
</tr>
<tr>
<td>Roll diameter</td>
<td>254 mm (10.0 in.) / 203 mm (8.0 in.) OD tube</td>
</tr>
<tr>
<td>Roll speed</td>
<td>1009 rpm</td>
</tr>
<tr>
<td>Swath width¹</td>
<td>915–2540 mm (36–102 in.)</td>
</tr>
<tr>
<td>Forming shields</td>
<td>Full width adjustable baffle on conditioner with adjustable side deflectors on support frame</td>
</tr>
<tr>
<td>No conditioner</td>
<td>Optional (includes rear curtain)</td>
</tr>
</tbody>
</table>

1. Actual swath width may vary based upon conditioner type, crop type, and crop volume.
2.2 Component Identification

Figure 2.1: R113 SP

A - Front Curtains
B - Cutterbar Doors
C - Drive Shield (Left)
D - Hose Support²
E - Hydraulic Motor³
F - Hose Support
G - Center-Link Tube
H - Hazard/Brake Lights
J - Disc Drum (Right)
K - Conditioner Rolls
L - 8-Disc Cutterbar

2. M155/M155E4 SP Windrower only
3. M155/M155E4 SP Windrower motor shown
Figure 2.2: R113 SP

A - Header Supports
B - Side Deflectors
C - Side Deflector Adjuster Handles
D - Rear Crop Baffle
E - Adapter Frame
F - Drive Shield
2.3 Definitions

The following terms and acronyms may be used in this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with Operator and cab facing in direction of travel</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>Export header</td>
<td>Header configuration typical outside North America</td>
</tr>
<tr>
<td>FFFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>North American header</td>
<td>Header configuration typical in North America</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>SP rotary disc header</td>
<td>Rotary disc header that connects to a self-propelled machine (windrower, etc.)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit for a header</td>
</tr>
</tbody>
</table>
Chapter 3: Operation

3.1 Break-In Period

After attaching the header to the windrower for the first time, operate the machine slowly for five minutes, watching and listening from the operator’s seat for binding or interfering parts.

NOTE:
Until you become familiar with the sound and feel of your new header, be extra alert and attentive.

⚠️ CAUTION
Before investigating an unusual sound or attempting to correct a problem, stop the engine, engage parking brake, and remove the key.

NOTE:
Perform the items specified in 4.3.2 Break-In Inspections, page 95.
3.2 Daily Start-Up Check

Perform the following checks each day before startup:

⚠️ CAUTION ⚠️

- Ensure the windrower and the header are properly attached, all controls are in neutral, and the windrower brakes are engaged.
- Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the header to make sure no one is under, on, or close to it.
- Wear close-fitting clothing and protective shoes with slip resistant soles. As well, carry with you any protective clothing and personal safety devices that could be necessary throughout the day. Don't take chances.
- Remove foreign objects from the machine and surrounding area.

Protect yourself. You may need the following:
- A hard hat
- Protective footwear with slip-resistant soles
- Protective glasses or goggles
- Heavy gloves
- Wet weather gear
- A respirator or filter mask

Use proper hearing protection:

Be aware that exposure to loud noise can cause impairment or loss of hearing. Wear suitable hearing protection such as earmuffs or earplugs to help protect against loud noises.
1. Check the machine for leaks or any parts that are missing, broken, or not working correctly.

NOTE:

2. Clean all lights and reflective surfaces on the machine, and check lights for proper operation.

3. Perform all daily maintenance. Refer to 4.3.1 Maintenance Schedule/Record, page 93.
3.3 Engaging and Disengaging Header Safety Props

Safety props are located on both header lift cylinders on the windrower.

Refer to relevant procedure for your windrower:

- For M1 Series Windrowers, refer to 3.3.1 Engaging and Disengaging Header Safety Props – M1240 Windrower, page 24
- For M Series Self-Propelled Windrowers, refer to 3.3.2 Engaging and Disengaging Header Safety Props – M Series Self-Propelled Windrower, page 25

3.3.1 Engaging and Disengaging Header Safety Props – M1240 Windrower

Safety props are located on both header lift cylinders on the windrower. Follow these steps to engage or disengage the header safety props:

⚠️ DANGER

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

1. Start the engine. Press the HEADER UP (A) switch to raise header to maximum height.

 NOTE:
 If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

2. Shut down the engine, and remove the key from the ignition.

3. Engage safety props on both lift cylinders as follows:
 a. Pull lever (A), rotate toward header to release, and lower the safety prop onto the cylinder.
 b. Repeat for opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over cylinder piston rods. If safety prop does not engage properly, raise the header until the safety prop fits over the rod.

![Figure 3.4: Ground Speed Lever](image)

![Figure 3.5: Safety Prop](image)
4. Disengage safety props on both lift cylinders as follows:

NOTE:
If safety prop will not disengage, raise header to release the prop.

a. Turn lever (A) away from header to raise safety prop until lever locks into vertical position.

b. Repeat for opposite cylinder.

CAUTION
Check to be sure all bystanders have cleared the area.

5. Start the engine, choose a level area, and lower header to the ground. Shut down the engine and remove the key from the ignition.

3.3.2 Engaging and Disengaging Header Safety Props – M Series Self-Propelled Windrower

Safety props are located on both header lift cylinders on the windrower. Follow these steps to engage or disengage the header safety props:

DANGER
To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

Engage safety props as follows:

1. Start engine and press HEADER UP switch (A) to raise header to maximum height.

2. Rephase cylinders if one end of the header does not raise fully. If rephasing is required, proceed as follows:

 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.

 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.
3. Pull lever (A) and rotate toward header to lower safety prop (B) onto cylinder. Repeat for opposite cylinder.

![Figure 3.8: Safety Prop](image)

Disengage safety props as follows:

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Turn lever (A) away from header to raise safety prop until lever locks into vertical position. Repeat for opposite cylinder.
2. Start the engine, choose a level area, and lower the header to the ground.
3. Shut down the engine, and remove the key from the ignition.

![Figure 3.9: Safety Prop](image)
3.4 Attaching Header to Windrower

3.4.1 Attaching R113 SP Rotary Disc Header to M1 Series Windrowers

The windrower may have an optional self-aligning hydraulic center-link that allows vertical position control of the center-link from the cab.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. **Hydraulic Center-Link without Self-Alignment**: Remove pin (A) and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

2. Remove hairpin (A) from clevis pin (B), and remove pin from header support (C) on both sides of the header.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

CAUTION

When lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released to prevent damage to the header lift linkages.

NOTE:
If not prompted by the Harvest Performance Tracker (HPT) display to remove float, remove float manually. Refer to windrower operator’s manual for instructions.

4. Press rotary scroll knob (A) on the display to highlight QuickMenu options.

5. Rotate scroll knob (A) to highlight the HEADER FLOAT symbol (B), and press scroll knob to select. The header float adjust screen displays.

6. Press soft key 3 (A) to remove the header float.

NOTE:
If the header float is active, the icon at soft key 3 will display REMOVE FLOAT; if header float has been removed, the icon will display RESUME FLOAT.
7. Press HEADER DOWN switch (E) on the ground speed lever (GSL) to fully retract header lift cylinders.

8. **Self-Aligning Hydraulic Center-Link**: Press REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

9. Drive the windrower slowly forward until the feet (A) enter the supports (B). Continue to drive slowly forward until feet engage the supports and header nudges forward.

10. Ensure that feet (A) are properly engaged in supports (B).

11. **Self-Aligning Hydraulic Center-Link**:

 a. Adjust position of center-link cylinder (A) with the switches on the GSL until hook (B) is above the header attachment pin.

 IMPORTANT:
 Hook release (C) must be down to enable self-locking mechanism.

 b. If hook release (C) is open (up), stop the engine and remove the ignition key. Manually push hook release (C) down after the hook engages the header pin.

 c. Lower center-link (A) onto the header with REEL DOWN switch on the GSL until the center-link locks into position and hook release (C) is down.

 d. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.
12. **Hydraulic Center-Link without Self-Alignment:**

a. Press HEADER TILT UP or HEADER TILT DOWN cylinder switches on the GSL to extend or retract center-link cylinder until the hook is aligned with the header attachment pin.

b. Stop the engine and remove the key.

c. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:
 Hook release must be down to enable self-locking mechanism. If the hook release is open (up), manually push it down after hook engages pin.

d. Check that center-link (A) is locked onto header by pulling upward on rod end (B) of cylinder.

 CAUTION
 Check to be sure all bystanders have cleared the area.

e. Start engine.

13. Press HEADER UP switch (A) to raise the header to maximum height.

 NOTE:
 If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:

 a. Press and hold HEADER UP switch (A) until both cylinders stop moving.

 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

14. Stop the engine and remove the key.

15. Engage safety props on both lift cylinders as follows:

 a. Pull lever (A), rotate toward header to release, and lower the safety prop onto the cylinder.

 b. Repeat for opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over cylinder piston rods. If safety prop does not engage properly, raise the header until the safety prop fits over the rod.
16. Install clevis pin (A) through support and windrower lift arm and secure with hairpin (B). Repeat for the opposite side of the header.

IMPORTANT:
Ensure clevis pin (A) is fully inserted, and hairpin is installed behind bracket.

17. Disengage safety props on both lift cylinders as follows:

NOTE:
If safety prop will not disengage, raise header to release the prop.

a. Turn lever (A) away from header to raise safety prop until lever locks into vertical position.

b. Repeat for opposite cylinder.

18. Start the engine and press HEADER DOWN switch (A) on GSL to fully lower header.

NOTE:
If not prompted by the HPT display to restore float, restore float manually.

19. Stop the engine and remove the key.
3.4.2 Attaching R113 SP to M155 or M155E4 SP Windrowers – Hydraulic Center-Link with Optional Self-Alignment

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove hairpin (B) from clevis pin (A) and remove clevis pin from header support (C) on both sides of the header.

![Figure 3.24: Header Support](image)

![Figure 3.25: Float Linkage](image)

IMPORTANT:
To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage hole (B) and **NOT** in engaged position (A).

3. Remove the float engagement pin from hole (A) to disengage float springs, and insert float engagement pin into storage hole (B). Secure with lynch pin. Repeat for opposite linkage.

![Figure 3.26: Ground Speed Lever](image)

CAUTION
Check to be sure all bystanders have cleared the area.

4. Start the engine and activate HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.
5. Press REEL UP switch (A) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

6. Slowly drive the windrower forward until the windrower feet (A) enter header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.

7. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - REEL UP (A) to raise the center-link
 - REEL DOWN (B) to lower the center-link
 - HEADER TILT UP (C) to retract the center-link
 - HEADER TILT DOWN (D) to extend the center-link
8. Adjust center-link cylinder (A) position with the REEL UP and REEL DOWN switches on the GSL until the hook is positioned above the header attachment pin.

IMPORTANT:
Hook release (B) must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

9. Lower center-link (A) onto the header with the REEL DOWN switch until the center-link locks into position and hook release (B) is down.

10. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

![Figure 3.30: Hydraulic Center-Link](image)

CAUTION
Check to be sure all bystanders have cleared the area.

11. Press HEADER UP switch (A) to raise the header to maximum height.

12. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

NOTE:
It may be necessary to repeat this procedure if there is air in the system.

![Figure 3.31: Ground Speed Lever](image)
13. Engage the safety props on both lift cylinders as follows:
 a. Shut down the engine, and remove the key from the ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

14. Install clevis pin (A) through support and windrower lift member, and secure with hairpin (B). Repeat for the opposite side of the machine.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
15. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

16. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

17. Repeat for opposite safety prop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

18. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

19. Stop the engine and remove key from ignition.
3.4.3 Attaching R113 SP to M155 or M155E4 SP Windrower – Hydraulic Center-Link without Optional Self-Alignment

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove hairpin (B) from clevis pin (A), and then remove clevis pin from header support (C) on both sides of the header.

IMPORTANT:

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and **NOT** in engaged position (A).

3. To disengage float springs, move the float engagement pin from engaged position (A) and insert pin into storage hole (B). Secure float engagement pin with lynch pin. Repeat for opposite linkage.
CAUTION

Check to be sure all bystanders have cleared the area.

4. Start the engine and activate HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

5. Remove pin (A) from frame linkage and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

6. Slowly drive the windrower forward until the windrower feet (A) enter header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.
7. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - HEADER TILT UP (A) to retract the center-link
 - HEADER TILT DOWN (B) to extend the center-link
8. Stop engine, and remove key from ignition.

9. Push down on rod end of link cylinder (A) until hook (B) engages and locks onto header pin.

 IMPORTANT:
 The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

10. Check that center-link (A) is locked onto the header by pulling upward on rod end (B) of cylinder.

CAUTION

Check to be sure all bystanders have cleared the area.

11. Start the engine.

12. Press HEADER UP switch (A) to raise the header to maximum height.

13. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:
 It may be necessary to repeat this procedure if there is air in the system.
14. Engage the safety props on both lift cylinders as follows:
 a. Shut down the engine, and remove the key from the ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

15. Install clevis pin (A) through the support and windrower lift member, and secure with hairpin (B). Repeat for the opposite side of the machine.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
16. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

17. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

18. Repeat for opposite safety prop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

19. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

20. Stop the engine and remove key from ignition.
3.4.4 Attaching Hydraulic and Electrical Components

The procedure for attaching the header hydraulic and electrical components depends on the windrower model. Refer to the appropriate procedure for instructions:

NOTE:

Headers are factory-configured for either M series or M1 series windrowers. M1 configured headers have a bent axis motor while M series configured headers are fitted with a straight in line motor.

Hydraulic conversion kits are available (motors, hoses, etc.) to convert a factory configured header from M1 to M series application and vise versa. If required, order Header Drive Conversion Kit.

- Connecting Header Hydraulics and Electrical – M1 Series Windrowers, page 42
- Connecting Header Hydraulics and Electrical – M155 and M155E4 SP Windrowers, page 45

Connecting Header Hydraulics and Electrical – M1 Series Windrowers

NOTE:

Hydraulic drive kit (A) (MD #B6621) is required for an R113 SP Disc Header that is originally configured for use with an M155 or M155E4 to operate correctly on an M1 Series Windrower. To order this kit, contact your MacDon Dealer.

NOTE:

When connecting the R113 SP to an M1240 windrower, the Low Pressure Case Drain kit (MD #B6698) (A) must be installed onto the M1240. This kit contains an alternative case drain line which is routed directly to the hydraulic reservoir via unique set of 1/2 in. hydraulic couplers.

1. Move the windrower’s left (cab-forward) platform to the OPEN position. Refer to your windrower operator’s manual for instructions.
2. Retrieve hydraulic hoses from header.
3. Attach hose support (A) to windrower frame near left cab-forward leg, and route hose bundle under frame.

NOTE:
Route hoses as straight as possible and avoid rub/wear points that could damage hydraulic hoses.

4. Rest hose bundle routed from windrower on header’s hose support (A).

5. If necessary, use a clean rag to remove dirt and moisture from the couplers.

6. Connect header hydraulic hoses and electrical harness as follows:
 a. Connect pressure hose to receptacle (A).
 b. Connect return hose to receptacle (B).
 c. Connect case drain hose to receptacle (C).
 d. Connect electrical harness to windrower electrical harness (D).
7. **For M1170:** Connect hydraulic hoses and electrical harness to receptacles on windrower as follows:
 a. Connect pressure hose to receptacle (A).
 b. Connect return hose to receptacle (B).
 c. Connect case drain hose to receptacle (C).
 d. Connect the electrical harness to receptacle (D).

 NOTE:
 The hydraulic hoses should have enough slack to pass by the multicoupler (E) without coming into contact with it. This will protect the hoses from rubbing against the multicoupler and becoming damaged. You can increase slack in the hoses by loosening and adjusting the hose holder on the front windrower leg, and pulling the hoses backward toward the windrower.

8. **For M1240:** Connect hydraulic hoses and electrical harness to receptacles on windrower as follows:
 a. Connect pressure hose to receptacle (A).
 b. Connect return hose to receptacle (B).
 c. Connect case drain hose non-flat face coupler to receptacle (C).

 NOTE:
 The R113 SP when attached to M1240 requires a different set of low pressure case drain couplers with a different hose connection to the hydraulic tank.

d. Connect the electrical harness to receptacle (D).

 NOTE:
 The hydraulic hoses should have enough slack to pass by the multicoupler (E) without coming into contact with it. This will protect the hoses from rubbing against the multicoupler and becoming damaged. You can increase slack in the hoses by loosening and adjusting the hose holder on the front windrower leg, and pulling the hoses backward toward the windrower.

9. Close the windrower’s left side platform. Refer to windrower operator’s manual for procedure.
Connecting Header Hydraulics and Electrical – M155 and M155E4 SP Windrowers

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:

Hydraulic drive kit (A) (MD #B6272) is required for an R113 SP Disc Header to operate correctly on M155 and M155E4 Self-Propelled Windrowers. To order this kit, contact your MacDon Dealer.

1. Disengage and rotate lever (A) counterclockwise to FULLY UP position.

2. Remove cap (B) securing the electrical connector to the frame.

Figure 3.57: Hydraulic Drive Kit (MD #B6272)

Figure 3.58: Hose Bundle
3. Move hose bundle (A) from the windrower and rest the bundle on the header.

4. Position the hose support with lower bolt (A) in the forward hole as shown in the illustration at right. Loosen both bolts and adjust as required.

5. Install hose support (A) from kit with supplied hardware (B) onto header.
6. Move the windrower’s left (cab-forward) platform (A) to the OPEN position. Refer to your windrower operator’s manual for instructions.

7. Route the windrower hose bundle (A) through hose support (B) on the header.

NOTE:
Route hoses as straight as possible and avoid rub/wear points that could damage hydraulic hoses.

8. Route pressure hose (C) from the header through support (B) to the windrower.
9. Connect pressure hose (A) routed from the header to the hydraulic coupler at port M2 (B) on the windrower’s auxiliary disc drive manifold (middle valve block).

10. Remove caps and plugs from hoses on windrower and lines on header.

11. Connect pressure hose (B) from port M1 (C) on the windrower’s drive manifold to the female coupler at the steel line attached to port (A) on the header motor.
12. Connect return hose (A) from port R1 (C) on the windrower’s drive manifold to the coupler on steel line (B) attached to the aft port on the header motor.

NOTE:
If the windrower is equipped with a reverser manifold (A) for an auger header, route the return hose (B) from port R1 (D) on the windrower’s reverser manifold to the steel line (C) attached to the aft port on the header motor.
13. Connect case drain hose (A) from the lift manifold port T3 (C) to the 1/2 in. female coupler at the bulkhead, which is attached to motor port (B).

14. Connect electrical harness (A) from windrower to electrical connector (B) on the header.
15. Lower and lock lever (A).
16. Secure hose (B) with three adjustable straps (C).

17. Move platform (A) to the CLOSED position.
3.5 Detaching Header from M1240 Windrower

3.5.1 Detaching – M1 Series Windrower

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Start the engine, and press switch (A) to raise the header to the maximum height.
2. Stop the engine, and remove the key.

3. Disengage safety props on both lift cylinders as follows:

 NOTE:
 If safety prop will not disengage, raise header to release the prop.
 a. Turn lever (A) away from header to raise safety prop until lever locks into vertical position.
 b. Repeat for opposite cylinder.

4. Open left side platform. For instructions, refer to the windrower operator’s manual.
5. Disconnect electrical harness (A) and hydraulic hoses (B), (C), and (D) from the windrower:

6. Remove hose support (A) and hose bundle from windrower frame.

7. Slide support (A) into center-link support (B) and secure with hardware (C).
8. Store hoses (A) and electrical harness (B) disconnected from the windrower in Step 5, page 53 into storage plate (C).

NOTE:
Install caps and plugs on open lines to prevent buildup of dirt and debris while in storage.

NOTE:
Some parts removed from the illustration for clarity.

9. Remove hairpin (B) from clevis pin (A). Remove clevis pin from header support (C) on both sides of header.
Windrowers with center-link self-alignment kit only:

10. Release the center-link latch (A) before returning to the cab.

11. Disengage safety props on both lift cylinders as follows:

 NOTE:
 If safety prop will not disengage, raise header to release the prop.

 a. Turn lever (A) away from header to raise safety prop until lever locks into vertical position.

 b. Repeat for opposite cylinder.

12. Repeat for the opposite side.

![Figure 3.80: Safety Prop]

 CAUTION
 Check to be sure all bystanders have cleared the area.

13. Start engine and remove header float when prompted by the Harvest Performance Tracker (HPT).

 NOTE:
 If not prompted by the HPT to remove float, remove float manually.

14. Lower the header to the ground.
Self-aligning center-link (if installed):

15. Use HEADER TILT cylinder switches (A) on GSL to release load on center-link cylinder.

16. Operate the link lift cylinder with the REEL UP switch (B) to disengage the center-link from the header.

Non-self-aligning center-link:

17. Shut off the engine and remove the key.

18. Lift hook release (A) and lift hook (B) off header pin.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

19. Start the engine.

20. Back the windrower slowly away from header.

21. Reinstall clevis pin (A) through support (C) and secure with hairpin (B). Repeat for opposite side.
3.5.2 Detaching R1 SP Series Header – M155 and M155E4 Windrowers

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground. If the ground is soft, place blocks under the header.
2. Stop the engine, and remove the key.
3. Move the left side (cab-forward) platform (A) to the open position.

4. Disconnect hose (A) from port M2 on the disc drive valve.

![Figure 3.84: Windrower Left Side Platform](image)

![Figure 3.85: Hydraulic Connections](image)
5. Raise lever (A) and undo the three cinch straps (C).

6. Move hose (B) to store on header.

7. Disconnect the following hoses from the hydraulic motor:
 - Pressure hose (A)
 - Return hose (B)
 - Case drain hose (C)

8. Install caps on the connectors and hose ends (if equipped) to prevent buildup of dirt and debris.
9. Disconnect the electrical connector (A) by turning the collar counterclockwise and pulling connector to disengage.

NOTE:
Hydraulic lines and hoses hidden on illustration to show the electrical connection.

10. Move the hose bundle from header to the left-side (cab-forward) hose support (B).

11. Rotate lever (A) clockwise and push to engage bracket.

12. Route the electrical harness through the hose support (B) and attach cap to electrical connector (C).
13. Move the windrower platform (A) to the CLOSED position.

14. Refer to the windrower operator’s manual to mechanically detach the header from the windrower.

Figure 3.90: M155 Windrower
3.6 Driveshields

3.6.1 Opening Driveshields

⚠️ CAUTION
To reduce the risk of personal injury, do NOT operate the machine without the driveshields in place and secured.

NOTE:
Images shown in this procedure are for the left driveshield—the right driveshield is similar.

1. Remove lynch pin (A) and tool (B) from pin (C).

2. Insert flat end of tool (A) into latch (B) and turn it counterclockwise to unlock.
3. Pull top of driveshield (A) away from the header to open.

NOTE:
For improved access, lift driveshield off the pins at the base of the shield, and lay the shield on the header.

3.6.2 Closing Driveshields

⚠️ **CAUTION**
To reduce the risk of personal injury, do NOT operate the machine without the driveshields in place and secured.

NOTE:
Images shown in this procedure are for the left driveshield—the right driveshield is similar.

1. Position driveshield onto pins at base of driveshield (if necessary).
2. Push driveshield (A) to engage latch (B).
3. Check that driveshield is properly secured.
4. Replace tool (B) and lynch pin (A) on pin (C).
3.7 Cutterbar Doors

⚠️ WARNING
To reduce the risk of personal injury or machine damage, do NOT operate the machine without all the cutterbar doors down or without curtains installed and in good condition. Foreign objects can be ejected with considerable force when the machine is started.

Two doors (A) with rubber curtains provide access to the cutterbar area.

Curtains (B) and (C) are attached to each front corner and at the center respectively. Always keep curtains lowered when operating the disc header.

Rotary disc headers sold outside of North America have latches on the cutterbar door.

IMPORTANT:
Replace curtains if they become worn or damaged. Refer to 4.9 Maintaining Curtains, page 164.

3.7.1 Opening Cutterbar Doors – North America

To open cutterbar doors on a header with export latches, refer to 3.7.2 Opening Cutterbar Doors – Export Latches, page 65.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Lift up on doors (A) at the front of header to open.
3.7.2 Opening Cutterbar Doors – Export Latches

Headers sold outside North America require a tool-operated latch on the cutterbar doors. Follow these steps to open cutterbar doors with export latches:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Locate latch access holes (A) for each door.

3. Use a rod or screwdriver to press down on latch (A) and release the cutterbar door.
4. Lift up on doors (A) while pressing down on the latch.

3.7.3 Closing Cutterbar Doors

⚠️ CAUTION

To avoid injury, keep hands and fingers away from corners of doors when closing.

1. Pull down on door (A) from the top to close.
2. Ensure that curtains hang properly and completely enclose the cutterbar area.
3.8 **Header Settings**

Satisfactory operation of the disc header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and increases productivity. Proper adjustments and timely maintenance increases the length of service of the machine.

The variables listed in the following table and detailed in this manual, affect the performance of the disc header. Most of the adjustments have been set at the factory, but settings can be changed to suit your crop conditions.

Table 3.1 Header Operating Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>3.8.3 Header Float, page 69</td>
</tr>
<tr>
<td>Header angle</td>
<td>3.8.2 Adjusting Cutterbar Angle, page 69</td>
</tr>
<tr>
<td>Cutting height</td>
<td>3.8.1 Cutting Height, page 67</td>
</tr>
<tr>
<td>Ground speed</td>
<td>3.8.4 Ground Speed, page 70</td>
</tr>
<tr>
<td>Conditioner Settings</td>
<td>3.10 Conditioner, page 73</td>
</tr>
<tr>
<td>Crop Stream Configuration</td>
<td>3.9 Reconfiguring Cutterbar Crop Stream, page 71</td>
</tr>
<tr>
<td>Cutterbar Deflectors</td>
<td>3.11 Cutterbar Deflectors, page 84</td>
</tr>
</tbody>
</table>

3.8.1 **Cutting Height**

Cutting height is determined by a combination of the cutterbar angle and skid shoe settings. Adjust cutting height for optimum cutting performance while preventing excessive build-up of mud and soil inside the disc header, which can lead to poor crop flow and increased wear on cutting components.

Lowering the skid shoes and decreasing the cutterbar angle increases the cutting height, resulting in higher stubble that helps material dry faster. This may be desirable in stony conditions to help reduce damage to cutting components.

Raising the skid shoes and increasing the cutterbar angle decreases the cutting height, resulting in a shorter stubble. Refer to *Adjusting Cutting Height, page 68*.

To choose a header angle that maximizes performance for your crop and field conditions, refer to *3.8.2 Adjusting Cutterbar Angle, page 69*.

To minimize cutterbar damage, scooping soil, and soil build-up at the cutterbar in damp conditions, the float should be set as light as possible without causing excessive bouncing. Refer to *3.8.3 Header Float, page 69*.
Adjusting Cutting Height

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

NOTE:
There are two skid shoes on the R113.

1. Raise the header fully.
2. Shut down the engine, and remove the key from the ignition.
4. Loosen bolts (C).
5. Remove bolts, nuts, and washers (D).
6. Raise or lower the skid shoe.

 NOTE:
 Skid shoes have two adjustment settings: fully raised (A) and fully lowered (B).

7. Install bolts, nuts, and washers (D), and then tighten.
8. Tighten bolts (C).
9. Adjust the cutterbar angle to the desired working position. If the angle is not critical, set it to the mid-position. For instructions, refer to 3.8.2 Adjusting Cutterbar Angle, page 69.
10. Check the header float. Refer to the windrower operator’s manual.

Figure 3.103: Skid Shoes
3.8.2 Adjusting Cutterbar Angle

The header angle (A) adjustment ranges from 0 to 8 degrees below horizontal. Choose an angle that maximizes performance for your crop and field conditions. A flatter angle provides better clearance in stony conditions, while a steeper angle is required in downed crops for better lifting action.

Check the float after significantly adjusting the header angle because the adjustments affect the header float due to shifting the header center of gravity. Refer to your windrower operator’s manual for instructions.

3.8.3 Header Float

The M1 Series, M155, and M155E4 windrowers have different float adjustments. Although they both have float springs, the M1 Series are completely adjustable from the cab through the Harvest Performance Tracker (HPT), the M155 and M155E4 have coarse adjustment done at the spring drawbolt and fine adjustment done through the Cab Display Module (CDM) in the windrower cab.

The header float feature allows the header to closely follow ground contours and respond quickly to sudden changes or obstacles. The float setting is ideal when the cutterbar is on the ground with minimal bouncing, scooping, or pushing soil.

IMPORTANT:

- Set header float as light as possible—without excessive bouncing—to avoid frequent breakage of knife components, scooping soil, or soil build-up at the cutterbar in wet conditions.
- Avoid excessive bouncing (resulting in a ragged cut) by operating at a slower ground speed when the float setting is light.
- Install applicable header options (crop dividers, etc.) before setting header float.
- Adjust the float when adding or removing optional attachments that affect the weight of the header.
- Changing header angle affects the float. Check the float after making appropriate changes to header angle for crop type and conditions, field conditions, and speed settings.

For instructions on setting and adjusting the header float, refer to your windrower operator’s manual.
3.8.4 Ground Speed

Choose a ground speed that allows the cutterbar to cut the crop smoothly and evenly. Try different combinations of disc speed and ground speed to suit your specific crop. Refer to your windrower operator’s manual for instructions on changing ground speed.

⚠️ CAUTION

Reduce speed when turning, crossing slopes, or traveling over rough ground.

In tough cutting conditions (such as native grasses), set the disc speed to MAXIMUM.

In light crops, reduce the disc header’s disc speed while maintaining ground speed.

NOTE:

Operating the disc header at the minimum disc speed will extend the wear life of cutting components.

The example shown in Figure 3.105, page 70 illustrates the relationship between ground speed and cut area for an R113 disc header. The chart demonstrates that a ground speed of 21 km/h (13 mph) would produce a cut area of approximately 8 hectares (20 acres) per hour.

Figure 3.105: Ground Speed for R113 SP Disc Header

![Graph](image)
3.9 Reconfiguring Cutterbar Crop Stream

Discs are factory-installed to produce three crop streams, but disc rotation pattern can be changed by substitution of spindle and corresponding disc to suit crop conditions. Each spindle and disc pair is designed to rotate in one direction and must be changed as sets when altering crop flows.

Reducing or increasing the number of crop streams will produce the following results:

- Reducing the number of crop streams will result in narrower windrows.
- Increasing the number of crop streams will result in smoother, wider windrows.

NOTE:
Increasing the number of crop streams will also increase the number of diverging disc pairs which may negatively affect cut quality in certain conditions.

IMPORTANT:
- Spindles that rotate clockwise have right-leading threading and are identified by a smooth top on the spindle gear shaft (A).
- Spindles that rotate counterclockwise have left-leading threading and are identified by machined grooves on the spindle gear shaft (B) and nut (C).
- If the spindle position in the cutterbar has changed, the rotational direction of that spindle **MUST** remain the same (that is, a clockwise spindle must maintain its clockwise rotation).
- Failure to maintain the rotation pattern can result in damage to spindle and/or cutterbar components.
- Safecut (shear pin) will not work if the spindles used in the wrong orientation.
3.9.1 Changing R113 SP Cutterbar Crop Stream Configuration

Figure 3.108: R113 SP (8 Disc) Spindle Rotation Pattern and Crop Streams

NOTE:
Refer to Removing Cutterbar Spindles, page 111 and Installing Cutterbar Spindles, page 114.

To change R113 SP (8 disc) spindle rotation from three crop streams (B) to one crop stream (A):

- Swap disc/spindle (3) with disc/spindle (6)

To change R113 SP (8 disc) spindle rotation from one crop stream (A) to three crop streams (B):

- Swap disc/spindle (6) with disc/spindle (3)
3.10 Conditioner

Rolls condition the crop by crimping and crushing the stem in several places, which allows the release of moisture resulting in faster drying times. Both steel and polyurethane conditioner rolls are available. Refer to 5 Options and Attachments, page 197 for ordering information.

3.10.1 Roll Gap

The roll gap controls the degree to which crop is conditioned as it passes through the rolls. Roll gap is factory-set at approximately 3 mm (1/8 in.) for polyurethane rolls, and at 6 mm (1/4 in.) for steel rolls.

Polyurethane rolls are better suited for crushing stems while providing reduced crimping and are recommended for alfalfa, clover, legumes, and similar crops. Correct crop conditioning is achieved when 90% of the stems show cracking, but no more than 5% of the leaves are damaged. Set the roll gap to produce these results.

Steel rolls can be operated over a larger range of roll gap settings (intermesh) and are therefore suited to a wider range of crops (alfalfa to thicker-stemmed cane-type crops) using a roll gap of up to 25 mm (1 in.); however, too large of a gap may cause feeding problems.

Grass-type crops may require less gap for proper feeding and conditioning.

IMPORTANT:
If using settings below the factory setting, visually inspect the roll gap.
Checking Roll Gap

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. **Polyurethane Roll**: Insert a feeler gauge through the inspection hole in the conditioner endsheet to check roll gap on polyurethane roll conditioners. Factory setting is 3 mm (1/8 in.). If adjustments are required, refer to *Adjusting Roll Gap – Polyurethane Rolls, page 75*.

4. **Steel Roll**: The length of thread (A) extending above the jam nut on the adjustment rods can be used as an approximation of roll gap but does **NOT** provide consistent roll gap measurements. Roll gap factory setting is 6 mm (1/4 in.). Refer to *Adjusting Roll Gap – Steel Rolls, page 76*.
Adjusting Roll Gap – Polyurethane Rolls

Because polyurethane rolls operate at smaller gaps and the conditioning is less aggressive, the roll gap setting is more sensitive than on steel rolls. To return roll gap to the factory setting, follow the procedure below:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Loosen upper jam nut (A) on both sides of the conditioner.
4. Turn lower nut (B) counterclockwise until the upper roll rests on the lower roll.
5. Turn lower nut (B) one full turn clockwise to raise the upper roll and achieve a 3 mm (1/8 in.) roll gap.
6. Hold nut (B) and tighten jam nut (A) on both sides of the header.

IMPORTANT:
Make sure the roll gap adjustment nuts are adjusted equally on both sides of the header to achieve a consistent gap across the rolls.

7. Rotate the rolls manually and use a feeler gauge at the ends of the rolls to check that the actual gap is no less than 2 mm (5/64 in.) and no more than 4 mm (5/32 in.).

Figure 3.111: Roll Gap Adjustment
Adjusting Roll Gap – Steel Rolls

The length of thread extending above the jam nut on the adjustment rods can be used as an approximation of roll gap but does NOT provide consistent roll gap measurements. To ensure the roll gap is at the factory setting, follow the procedure below:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Loosen jam nut (A) on both sides of the conditioner.
4. Turn lower nut (B) counterclockwise until the upper roll rests on the lower roll. Ensure the rolls intermesh.
5. Turn lower nut (B) two and a half full turns clockwise to raise the upper roll and achieve a 6 mm (1/4 in.) roll gap.
6. Hold nut (B) and tighten jam nut (A) on both sides of the header.

IMPORTANT:

Make sure the roll gap adjustment nuts are adjusted equally on both sides of the header to achieve a consistent gap across the rolls.

7. If further adjustment to roll gap is required:
 - Turn lower nut (B) clockwise to increase roll gap.
 - Turn lower nut (B) counterclockwise to decrease roll gap.

NOTE:

Make further adjustments to roll gap based on header performance and crop conditions.
3.10.2 Roll Tension

Roll tension (the pressure holding the rolls together) is factory-set to maximum and should rarely require adjustment. Heavy crops or tough forage can cause the rolls to separate; therefore, maximum roll tension is required to ensure that materials are sufficiently crimped.

Adjusting Roll Tension

To adjust roll tension, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Loosen jam nut (A) on both sides of conditioner.
4. Turn spring drawbolt (B) clockwise to tighten spring (C) and INCREASE roll tension.
5. Turn spring drawbolt (B) counterclockwise to loosen spring (C) and DECREASE roll tension.
6. Measure the amount of exposed thread on spring drawbolt (B) at each end of the conditioner. Measurement (D) should be 12–15 mm (1/2–9/16 in.) for both polyurethane and steel roll conditioners.
 IMPORTANT:
 Turn each bolt equally. Each turn of the bolt changes the roll tension by approximately 32 N (7.2 lbf).
7. Tighten jam nuts (A) on each end of the conditioner.

Figure 3.113: Adjusting Roll Tension
3.10.3 Roll Timing

For proper conditioning, the rolls must be properly timed with the bar on one roll centered between two bars on the other roll. The factory setting should be suitable for most crop conditions.

IMPORTANT:

Roll timing is critical when the roll gap is decreased because conditioning is affected and the bars may contact each other.

Checking Roll Timing

Check roll timing if excessive noise is coming from the conditioner rolls.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Roll timing is factory-set and should not require adjustment; however, if there is excessive noise coming from the conditioner rolls, the timing will need to be adjusted. For instructions, refer to Adjusting Roll Timing, page 78.

Adjusting Roll Timing

1. Shut down the engine and remove the key.
2. On the upper roll, loosen four bolts (A) securing yoke plate (B).

 NOTE:
 Only three of the four bolts are shown in the illustration.

4. Manually rotate upper roll (B) in a counterclockwise direction until it stops.

5. Make a mark (C) across yoke (D) and gearbox flange (E).

6. Manually rotate upper roll (A) in a clockwise direction until it stops. Make a second mark (B) on the yoke flange, and align it with the mark on the gearbox flange.
7. Determine center point (A) between the two marks on the yoke plate, and place a third mark.

8. Rotate upper roll (B) counterclockwise until the bolt lines up with the third (center) mark.

9. Ensure the threads on four bolts (A) are clean and free of lubricant.

NOTE:

Only three of the four bolts are shown in the illustration.

10. Apply medium-strength threadlocker (Loctite® 242 or equivalent), and tighten bolts (A). Torque to 95 Nm (70 lbf·ft).
3.10.4 Adjusting Forming Shields – Roll Conditioner

WARNING

Keep everyone several hundred feet away from your operation. Ensure bystanders are never in line with the front or rear of the machine. Stones or other foreign objects can be ejected from either end with force.

The forming shield position controls the width and placement of the windrow. Consider the following factors when setting the forming shield position:

- Weather conditions (rain, sun, humidity, and wind)
- Type and yield of crop
- Available drying time
- Method of processing (bales, silage, and green-feed)

A wider windrow will generally dry faster and more evenly, resulting in less protein loss. Fast drying is especially important in areas where the weather allows only a few days to cut and bale. A narrower windrow may be preferable for ease of pick-up and when drying is not critical (for example, when cutting for silage or green feed).

Positioning Forming Shield Side Deflectors – Roll Conditioner

The position of the side deflectors controls the width and placement of the windrow. To ensure windrow placement is centered between the carrier wheels, adjust the left and right deflectors to the same position.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Loosen locking handle (A).
2. Slide adjuster bar (B) along adjuster plate (C) to the desired deflector position and engage bar (B) into a notch in the adjuster plate.
3. Tighten locking handle (A).
4. Repeat for other side.

![Figure 3.120: Forming Shield Side Deflector and Adjuster Bar](image)
Positioning Rear Baffle – Roll Conditioner

The rear baffle is used in conjunction with the forming shields to determine the height and width the windrow. It is located immediately behind and above the conditioning rolls and can be positioned to do the following:

- Raise the baffle and direct crop flow into forming shields for a fluffier, narrower or moderate-width windrow.
- Lower the baffle and direct crop downward to form a flatter, wider windrow.
- Provide even material distribution across windrow with adjustable fins under rear baffle. For instructions, refer to Positioning Rear Baffle Deflector Fins, page 83.

To position the rear baffle, follow these steps:

DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Remove lynch pin (A) securing rear baffle adjustment lever (B) to bracket (C).
2. Pull rear baffle adjustment lever (B) inboard to disengage from bracket (C).
3. Position rear baffle adjustment lever (B) as follows:
 - Move the lever forward to raise the baffle
 - Move the lever backward to lower the baffle
4. Release rear baffle adjustment lever (B) so that the tab engages the middle notch in bracket (C).
5. Secure baffle adjustment lever (B) with lynch pin (A).

Figure 3.121: Right of Conditioner
Positioning Rear Baffle Deflector Fins

The additional rear baffle deflector fins are stored on top of the baffle, but can be moved under the baffle when a narrower windrow is desired.

To install fins, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove the two deflector fins (A) from rear baffle (B).

2. Position deflector fin (A) under the baffle and secure with existing bolt and nut (B). Install bolt with bolt head facing down. Adjust to approximately 60° as shown, and torque nut to 69 Nm (51 lbf·ft).

3. Repeat for the opposite deflector fin.

NOTE:
Adjusting the angle of the fins can be useful to spread crop within the desired windrow width.
3.11 Cutterbar Deflectors

A two-piece cutterbar deflector is attached to the cutterbar just below the header’s conditioner rolls. Deflectors provide improved feeding into the conditioner rolls and prevent heavy crop with long stems from feeding under the rolls.

Cutterbar deflectors may not be well-suited for some crop and field conditions. Refer to the following table:

<table>
<thead>
<tr>
<th>Crop/Field Condition</th>
<th>Use Deflector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average crop/normal field conditions</td>
<td>No</td>
</tr>
<tr>
<td>Long stemmed and heavy/normal field conditions</td>
<td>Yes</td>
</tr>
<tr>
<td>Long stemmed and heavy/sandy soil</td>
<td>No</td>
</tr>
<tr>
<td>Long stemmed and heavy/gopher mounds or rocks</td>
<td>No</td>
</tr>
</tbody>
</table>

NOTE:
Removing the deflector helps feed dirt/rocks through the header and prevents debris build up, wear and damage from rocks.

3.11.1 Removing Cutterbar Deflectors

The cutterbar deflectors are used with roll conditioners only.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

1. Raise the header fully.
2. Shut down the engine, and remove the key from the ignition.
4. Locate deflector (A) on the back of the cutterbar.
5. Clean debris from deflectors and deflector area.
6. Remove bolt (C) shared with the rock guard from the cutterbar on outboard end of deflector. Retain the hardware.
7. Remove three bolts (B) and nuts securing deflector (A) to the cutterbar using an 8 mm hex key and a 17 mm socket. Remove deflector (A). Retain the hardware.
8. Repeat above steps for deflector (D) on opposite side of the header.
9. If the conditioner is going to be completely removed, reinstall bolt (C) through the rock guard and secure it with an M12 washer and locking nut. Torque hardware to 68 Nm (50 lbf·ft). Store the deflectors and hardware in a safe place.
10. If the cutterbar is being replaced, install the deflectors on the new cutterbar. For instructions, refer to 3.11.2 Installing Cutterbar Deflectors, page 85.
3.11.2 Installing Cutterbar Deflectors

The cutterbar deflectors are used with roll conditioners only.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

1. Raise the header fully.
2. Shut down the engine, and remove the key from the ignition.
4. Clean debris from ledge and the six mounting holes along aft edge of cutterbar.
5. Position left deflector (A) on the aft edge of the cutterbar, and align slots in deflector (A) with the existing fasteners and cutterbar plug.
6. Install bolt (C) shared with rock guard at outboard end of deflector.
7. Secure the deflector to the cutterbar with three button socket head M10 bolts (B) and lock nuts. Bolts are inserted into the cutterbar from the bottom.

8. Position right deflector (A) on aft edge of cutterbar, and install three button socket head M10 bolts (B) with lock nuts. Bolts are inserted into the cutterbar from the bottom.
9. Install bolt (C) shared with rock guard at outboard end of deflector.
10. Align the right deflectors with the left one at position (D) and tighten bolts (B) to 54 Nm (40 lbf·ft) with a 17 mm socket and an 8 mm hex key.
3.12 Haying Tips

3.12.1 Curing

Curing crops quickly helps maintain the highest quality of crop material as 5% of protein is lost from hay for each day that it lays on the ground after cutting.

Leaving the windrow as wide and fluffy as possible results in the quickest curing. Cured hay should be baled as soon as possible.

3.12.2 Topsoil Moisture

Table 3.3 Topsoil Moisture Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>% Moisture</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>Over 45%</td>
<td>Soil is muddy</td>
</tr>
<tr>
<td>Damp</td>
<td>25–45%</td>
<td>Shows footprints</td>
</tr>
<tr>
<td>Dry</td>
<td>Under 25%</td>
<td>Surface is dusty</td>
</tr>
</tbody>
</table>

- On wet soil, the general rule of wide and thin does not apply. A narrower windrow will dry faster than hay left flat on wet ground.
- When the ground is wetter than the hay, moisture from the soil is absorbed by the hay above it. Determine topsoil moisture level before cutting. Use a moisture tester or estimate level.
- If ground is wet due to irrigation, wait until soil moisture drops below 45%.
- If ground is wet due to frequent rains, cut hay when weather allows and let the forage lie on wet ground until it dries to the moisture level of the ground.
- Cut hay will dry only to the moisture level of the ground beneath it, so consider moving the windrow to drier ground.

3.12.3 Weather and Topography

- Cut as much hay as possible by midday when drying conditions are best.
- Slopes that face the sun receive up to 100% more exposure to the sun’s heat than slopes that do not face the sun. If hay is baled and chopped, consider baling sun-facing slopes and chopping slopes that do not.
- When relative humidity is high, the evaporation rate is low and hay dries slowly.
- Humid air is trapped around the windrow in calm conditions. Raking or tedding will expose the hay to fresher and drier air.
- Cut hay perpendicular to the direction of the prevailing winds if possible.
3.12.4 Windrow Characteristics

Producing windrows with the recommended characteristics will achieve the best results. Refer to *3 Operation, page 21* for instructions on adjusting the header.

Table 3.4 Recommended Windrow Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High and fluffy</td>
<td>Enables airflow through windrow, which is more important to the curing process than direct sunlight</td>
</tr>
<tr>
<td>Consistent formation (not bunching)</td>
<td>Permits an even flow of material into the baler, chopper, etc.</td>
</tr>
<tr>
<td>Even distribution of material across windrow</td>
<td>Results in even and consistent bales to minimize handling and stacking problems</td>
</tr>
<tr>
<td>Properly conditioned</td>
<td>Prevents excessive leaf damage</td>
</tr>
</tbody>
</table>

3.12.5 Driving on Windrow

Driving on previously cut windrows that will not be raked can lengthen drying time by a full day. If practical, set forming shields to produce a narrower windrow that the machine can straddle.

NOTE:
Driving on the windrow in high-yield crops may be unavoidable if a full width windrow is necessary.

3.12.6 Using Chemical Drying Agents

Hay drying agents work by removing wax from legume surfaces and allowing moisture to escape cut crop and evaporate faster; however, treated hay lying on wet ground will absorb ground moisture faster.

Before deciding to use a drying agent, carefully compare the relative costs and benefits for your area.
3.13 Transporting the Header

For information on transporting the header when attached to the windrower, refer to your windrower operator's manual.

IMPORTANT:
For cab-forward road travel, the M155 and M155E4 windrower must have the lighting and marking bundle installed (MD #B5412).
Chapter 4: Maintenance and Servicing

The following instructions provide information about routine servicing for the header. A parts catalog is located in a plastic case at the right end of the header.

Log hours of operation and use the maintenance record provided (refer to 4.3.1 Maintenance Schedule/Record, page 93) to keep track of your scheduled maintenance.

4.1 Preparing Machine for Servicing

⚠️ CAUTION

To avoid personal injury, perform the following procedures before servicing self-propelled disc header or opening drive covers:

1. Lower the header fully. If you need to perform service in the raised position, always engage safety props. For instructions, refer to 3.3 Engaging and Disengaging Header Safety Props, page 24.

2. Shut down the engine and remove the key from the ignition.

3. Engage park brake.

4. Wait for all moving parts to stop.
4.2 Recommended Safety Procedures

- Park on level surface when possible. Follow all recommendations in your tractor operator’s manual.
- Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.
- Wear protective shoes with slip-resistant soles, a hard hat, protective glasses or goggles, and heavy gloves.
- Be aware that if more than one person is servicing the machine at the same time, rotating a driveline or other mechanically driven component by hand (for example, to access a lube fitting) will cause drive components in other areas (belts, pulleys, and discs) to move. Stay clear of driven components at all times.
• Be prepared if an accident should occur. Know where the first aid kits and fire extinguishers are located, and know how to use them.

Figure 4.4: Safety Equipment

• Keep the service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

Figure 4.5: Safety Around Equipment

• Use adequate light for the job at hand.
• Replace all shields removed or opened for service.
• Use only service and repair parts made or approved by the equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.
• Keep machinery clean. Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
4.3 Maintenance Requirements

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine’s life. Periodic maintenance requirements are organized according to service intervals.

If more than one interval is specified for a service item (e.g., 100 hours or annually), service the machine at whichever interval is reached first.

When servicing the machine, refer to the specific headings in this section. Refer to this manual’s inside back cover and use only the specified fluids and lubricants.

Log hours of operation, use the maintenance record, and keep copies of your maintenance records. Refer to 4.3.1 Maintenance Schedule/Record, page 93.

⚠️ CAUTION
Carefully follow all safety messages. Refer to 4.2 Recommended Safety Procedures, page 90.
4.3.1 Maintenance Schedule/Record

Keep a record of maintenance as evidence of a properly maintained machine. Daily maintenance records are not required to meet normal warranty conditions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Check</th>
<th>Lubrate</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>At First 10 Hours and then Daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Inspect cutterbar discs. Refer to Inspecting Cutterbar Discs, page 104.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Inspect discblades. Refer to Inspecting Discblades, page 119.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Inspect accelerators. Refer to Inspecting Accelerators, page 125.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Inspect rock guards. Refer to Inspecting Rock Guards, page 129.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Inspect drums. Refer to Inspecting Large Drums, page 135.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check hydraulic hoses and lines. Refer to 4.12.1 Checking Hydraulic Hoses and Lines, page 195.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At First 25 Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check conditioner drive belt tension. Refer to Inspecting Conditioner Drive Belt, page 172.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check roll timing gearbox lubricant level. Refer to 4.6.1 Checking and Changing Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211), page 158.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Lube idler pivot. Refer to 4.4 Lubrication, page 97.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Lube upper and lower driveline universal joints. Refer to 4.4 Lubrication, page 97.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Lube roller conditioner bearings. Refer to 4.4 Lubrication, page 97.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Lube conditioner roll driveline slip joints. Refer to 4.4 Lubrication, page 97.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. The driveline inside the driven drum is lubricated for life and does not require any routine lubrication.
MAINTENANCE AND SERVICING

At First 50 Hours

- ▲ Change roll timing gearbox lubricant. Refer to [4.6.1 Checking and Changing Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211), page 158](#).

- ▲ Change header drive gearbox. Refer to [4.7.1 Changing Header Drive Gearbox Oil, page 161](#).

- ✓ Check cutterbar lubricant. Refer to [4.5.1 Lubricating Cutterbar, page 99](#).

Every 100 Hours or Annually?

- ✓ Check conditioner drive belt tension. Refer to [Inspecting Conditioner Drive Belt, page 172](#).

- ✓ Check roll timing gearbox lubricant. Refer to [4.6.1 Checking and Changing Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211), page 158](#).

- ✓ Check header drive gearbox lubricant. Refer to [4.7.1 Changing Header Drive Gearbox Oil, page 161](#).

Every 250 Hours or Annually

- ▲ Change roll timing gearbox lubricant. Refer to [4.6.1 Checking and Changing Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211), page 158](#).

- ▲ Change header drive gearbox lubricant. Refer to [4.7.1 Changing Header Drive Gearbox Oil, page 161](#).

- ▲ Change cutterbar lubricant. Refer to [4.5.1 Lubricating Cutterbar, page 99](#).

5. 100-hour check intervals continue after 250 hours.
4.3.2 Break-In Inspections

Table 4.1 Break-In Inspection Schedule

<table>
<thead>
<tr>
<th>Inspection Interval</th>
<th>Item</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hour</td>
<td>Check for loose hardware and tighten to required torque</td>
<td>7.1 Torque Specifications, page 209</td>
</tr>
<tr>
<td>5 Hours</td>
<td>Check for loose hardware and tighten to required torque</td>
<td>7.1 Torque Specifications, page 209</td>
</tr>
<tr>
<td>5 Hours</td>
<td>Check conditioner drive belt tension</td>
<td>Inspecting Conditioner Drive Belt, page 172</td>
</tr>
<tr>
<td>25 Hours</td>
<td>Check conditioner drive belt tension</td>
<td>Inspecting Conditioner Drive Belt, page 172</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Check conditioner drive belt tension</td>
<td>Inspecting Conditioner Drive Belt, page 172</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Change conditioner roll timing gearbox lubricant</td>
<td>4.6.1 Checking and Changing Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211), page 158</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Change header drive gearbox lubricant</td>
<td>4.7.1 Changing Header Drive Gearbox Oil, page 161</td>
</tr>
<tr>
<td>150 Hours</td>
<td>Check conditioner drive belt tension</td>
<td>Inspecting Conditioner Drive Belt, page 172</td>
</tr>
</tbody>
</table>

4.3.3 Preseason Servicing

⚠️ CAUTION

- Review the operator’s manual to refresh your memory on safety and operating recommendations.
- Review all safety signs and other decals on the self-propelled disc header and note hazard areas.
- Ensure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Make certain you understand and have practiced safe use of all controls. Know the capacity and the operating characteristics of the machine.
- Check the first aid kit and fire extinguisher. Know where they are and how to use them.

Perform the following procedures at the beginning of each operating season:

2. Perform all annual maintenance. Refer to 4.3.1 Maintenance Schedule/Record, page 93.
4.3.4 End-of-Season Servicing

⚠️ CAUTION
Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

⚠️ CAUTION
Cover cutterbar to prevent injury from accidental contact.

Perform the following procedures at the end of each operating season:

1. Raise the header and engage lift cylinder safety props.
2. Clean the header thoroughly.
3. Check for worn components and repair as necessary.
4. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at beginning of next season.
5. Replace or tighten any missing or loose hardware. Refer to 7.1 Torque Specifications, page 209.
6. Lubricate the header thoroughly leaving excess grease on fittings to keep moisture out of bearings.
7. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.
8. Oil cutterbar components to prevent rust.
9. Loosen drive belt.
10. Remove divider rods (if equipped) to reduce space required for inside storage.
11. Repaint all worn or chipped painted surfaces to prevent rust.
12. Store in a dry, protected place if possible. If stored outside, always cover header with a waterproof canvas or other protective material.
4.4 Lubrication

WARNING

To avoid personal injury, before servicing header or opening drive covers, refer to 4.1 Preparing Machine for Servicing, page 89.

Greasing points are marked on the machine by decals showing a grease gun and the grease interval in hours of operation.

Log hours of operation and use the maintenance schedule provided to keep a record of scheduled maintenance. Refer to 4.3.1 Maintenance Schedule/Record, page 93.

4.4.1 Greasing Procedure

Only use clean, high temperature, extreme pressure grease. Refer to this manual’s inside back cover for a list of recommended fluids and lubricants.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Open driveshields at the ends of the header to access greasing points. Refer to 3.6.1 Opening Driveshields, page 61.
2. Wipe grease fitting with a clean cloth before greasing to avoid injecting dirt and grit.
3. Replace any loose or broken fittings immediately.
4. Inject grease through fitting with grease gun until grease overflows fitting (except where noted).
5. Leave excess grease on fitting to keep out dirt.
6. Remove and thoroughly clean any fitting that will not take grease and clean lubricant passageway. Replace fitting if necessary.
Every 25 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI grade 2) lithium base unless otherwise specified.

Figure 4.7: Every 25 Hours

6. Use high temperature extreme pressure (EP2) performance grease with 10% max molybdenum disulphide (NLGI grade 2) lithium base
4.5 Cutterbar System

Figure 4.8: Cutterbar

The 3978 mm (13 ft.) cutterbar (A) holds eight discs that rotate to a maximum of 2500 rpm at full engine speed. Each disc carries two cutting blades.

4.5.1 Lubricating Cutterbar

Checking and Adding Cutterbar Lubricant

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING
Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Park the machine on level ground.
2. Lower the header onto 25 cm (10 in.) blocks under both ends of the cutterbar.
3. Shut down the engine, and remove the key from the ignition.
4. Open the cutterbar doors. For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64 or 3.7.2 Opening Cutterbar Doors – Export Latches, page 65.
5. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

6. Use a spirit (bubble) level (A) to ensure the cutterbar is level in both directions. Adjust the header accordingly.

7. Clean the area around plug (A). Place a 5 liter (5.2 US qts) capacity container under plug (A).

8. Use a 17 mm socket to remove plug (A) and O-ring (B) from cutterbar. Oil level must be up to the inspection plug hole.

 NOTE:
 If additional lubricant is required, refer to Step 9, page 100. If additional lubricant is **NOT** required, proceed to Step 15, page 101.

 IMPORTANT:
 Do **NOT** overfill the cutterbar. Overfilling can cause overheating, damage, or failure of cutterbar components.

9. Reinstall the inspection plug.
CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

10. Start the engine, and raise the header slightly.
11. Lower the header onto blocks, so the left end is slightly higher than the right end.
12. Shut down the engine, and remove the key from the ignition.
13. Add lubricant through the inspection hole used to check the oil level.

IMPORTANT:
Do NOT overfill the cutterbar. Overfilling can cause overheating, damage, or failure of cutterbar components.

NOTE:
Refer to the inside back cover of this manual for lubricant specifications.

14. Recheck oil level.
15. Check O-ring (B) for breaks or cracks, and replace if necessary.
16. Install plug (A) and O-ring (B). Tighten securely.

17. Close cutterbar doors (A). For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.
Draining the Cutterbar

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Remove the right outboard rock guard. This will improve access to the drain plug located in the end cap of the cutterbar. To remove the outboard rock guard, refer to Removing Outboard Rock Guards, page 132.

2. Start the engine and raise the disc header.

3. Place a block under each end of the disc header so the right end is lower than the left end.

 IMPORTANT:
 Always drain lubricant from the right end of the disc header. Draining lubricant from the left end of the disc header may lead to breather contamination or failure.

4. Lower the disc header onto the blocks.

5. Shut down the engine, and remove the key from the ignition.

6. Place a 10 liter (10.5 US qts) capacity container under lower end of cutterbar, clean area around plug (A), and remove plug.

 IMPORTANT:
 Do NOT remove hex head bolts (B) securing cutterbar end plate to cutterbar or lubricant leaks could result.

7. Allow sufficient time for lubricant to drain, then reinstall cutterbar plug (A).

 NOTE:
 Do NOT flush the cutterbar.

8. Fill the cutterbar with lubricant before operating the disc header. For instructions, refer to Filling Lubricant into a Repaired Cutterbar, page 103.

 IMPORTANT:
 Dispose of used lubricant responsibly.

9. Reinstall the right outboard rock guard. For instructions, refer to Installing Outboard Rock Guards, page 133.
Filling Lubricant into a Repaired Cutterbar

This procedure should be used when the cutterbar has been completely drained of oil. If you are checking oil level or topping it up, refer to Checking and Adding Cutterbar Lubricant, page 99.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

IMPORTANT:
The cutterbar should be completely empty of oil before filling it. For instructions, refer to Draining the Cutterbar, page 102.

1. Start the engine, and raise the header fully.
2. Place a block under each end of the disc header, so the right end is higher than the left end.
3. Lower the header onto the blocks.
4. Shut down the engine, and remove the key from the ignition.
5. Remove access plug (A) from the raised end of the cutterbar and add the EXACT amount of lubricant specified. Refer to the inside back cover of this manual for list of recommended fluids and lubricants.

 IMPORTANT:
 Do NOT overfill the cutterbar. Overfilling can cause overheating, damage, or failure of cutterbar components.

6. Install access plug (A). Torque to 30 Nm (22 lbf·ft).

⚠️ CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

7. Start the engine, and raise the header fully.
8. Shut down the engine, and remove the key from the ignition. Engage the windrower lift cylinder safety props. For instructions, refer to 3.3 Engaging and Disengaging Header Safety Props, page 24.
9. Remove the block from under the cutterbar.
10. Check the lubricant level. For instructions, refer to Checking and Adding Cutterbar Lubricant, page 99.
11. Install the right outboard rock guard. For instructions, refer to Installing Outboard Rock Guards, page 133.

Figure 4.15: Filling Cutterbar
4.5.2 Maintaining Cutterbar Discs

Perform daily inspections to ensure that cutterbar discs have not suffered damage from rocks, or experienced excessive wear from abrasive working conditions.

Cutterbar discs are interchangeable and can be moved to a spindle that rotates in the opposite direction as long as the disc is in usable condition and the blades are oriented to cut in the correct direction.

The cutterbar discs are NOT repairable and must be replaced if severely damaged or worn.

IMPORTANT:

If holes appear in a cutterbar disc, replace the disc immediately. Do NOT attempt to repair the cutterbar discs. Always use factory replacement parts.

Inspecting Cutterbar Discs

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

⚠️ CAUTION

Damaged blades may damage the cutterbar and result in poor cutting performance. Replace damaged blades immediately.

1. Inspect cutterbar disc for any deformity on the side of the disc blades. Dimension (A) must not exceed 48 mm (1 7/8 in.). Replace as required.

 NOTE:
 Dimension (A) is between cutterbar and edge of disc as shown.

Figure 4.16: Cutterbar Disc
2. Inspect for abrasion (A) on the disc at the cutting blade sides. Replace disc if the material thickness is less than 3 mm (1/8 in.)

3. Inspect the cutterbar disc surface (D) for cracks, excessive wear, and disc distortion. Replace as required.

4. Inspect the cutterbar disc edges (E) for cracks, excessive wear, and edge distortion. Replace as required.

NOTE:
Cutterbar discs are **NOT** repairable and must be replaced if damaged.

5. Ensure that the discblade fasteners (A) are securely attached to the cutterbar disc and that nut shields (B) are present and undamaged. Replace as required.

6. Check that the cutterbar disc bolts (C) are securely attached to the spindles. Tighten as required.

Figure 4.17: Cutterbar Disc

Figure 4.18: Cutterbar Disc
Removing Cutterbar Discs

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ CAUTION

Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

1. Raise the header fully.

2. Shut off the engine, and remove key from the ignition.

4. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

Figure 4.19: Cutterbar Doors – R113 SP
5. Place a pin (or equivalent) in the front hole of the rock guard (B) to prevent disc rotation while loosening bolts.

6. Remove four M12 bolts (A) and washers.

7. Remove cutterbar disc cap (A).

8. Remove cutterbar disc (B).
Installing Cutterbar Discs

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ **WARNING**

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Install spacer plate (A) on spindle.

2. Place a pin (or equivalent) in the front hole of the rock guard (D) to prevent disc rotation while tightening bolts.

3. Position new disc (A) on spindle ensuring that it is positioned at a 90 degree angle in relation to the adjacent discs.

4. Install cutter disc cap (B), and secure assembly with four M12 bolts and washers (C). Torque bolts to 85 Nm (63 lbf·ft).

⚠️ **WARNING**

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.
5. Remove pin (or equivalent) from front hole of rock guard.

6. Close cutterbar doors (A). For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.

4.5.3 Replacing Cutterbar Spindles

To prevent damage to the cutterbar and drive systems, each disc is attached to a spindle containing a shear pin (A).

If the disc contacts a large object such as a stone or stump, the pin will shear and the disc will stop rotating and move upwards while remaining attached to the spindle with a snap ring (B).

NOTE:

Once spindle has risen due to shear pin failure, the spindle’s bearing will become unloaded. Do **NOT** replace the spindle due to excessive play. Check play after torquing spindle nut and replacing damaged shear pins.

Refer to 4.5.8 Replacing Cutterbar Spindle Shear Pin, page 149 to replace shear pin.
IMPORTANT:

- Spindles that rotate clockwise have right-leading threading and are identified by a smooth top on the spindle gear shaft (A).
- Spindles that rotate counterclockwise have left-leading threading and are identified by machined grooves on the spindle gear shaft (B) and nut (C).
- If the spindle position in the cutterbar has changed, the rotational direction of that spindle **MUST** remain the same (that is, a clockwise spindle must maintain its clockwise rotation).
- Failure to maintain the rotation pattern can result in damage to spindle and/or cutterbar components.
- Safecut (shear pin) will not work if the spindles used in the wrong orientation.

Figure 4.26: Cutterbar Spindles
Removing Cutterbar Spindles

DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

CAUTION
Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.
1. Park on a flat, level surface.
2. Lower the header fully.

NOTE:
To prevent oil from spilling from the cutterbar when removing disc spindles, ensure the header is on a flat, level surface and is tilted all the way back.
3. Shut off the engine, and remove the key from the ignition.
4. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

Figure 4.27: Cutterbar Doors – R113 SP Shown
MAINTENANCE AND SERVICING

5. Place a pin (or equivalent) in the front hole of the rock guard (B) to prevent disc rotation while loosening bolts.

6. Remove four M12 bolts (A) and washers.

7. Remove cutterbar disc cap (A).

8. Remove cutterbar disc (B).

IMPORTANT:
Blades are rotation specific. Switch entire disc when swapping spindles.

9. Remove spacer plate (A).
MAINTENANCE AND SERVICING

10. Rotate spindle hub (A) to access nuts, and remove eleven M12 lock nuts (B) and washers.

11. Remove spindle (A) from cutterbar.
Installing Cutterbar Spindles

Figure 4.33: Underside of Cutterbar Spindles

IMPORTANT:
Right discs (A) and left discs (B) are timed and must be at a 90 degree angle from adjacent discs when reinstalled. Misaligned discs could result in the following:

- Disc blades of co-rotating discs hitting each other
- Disc blades of diverging discs hitting adjacent discs

Check clearance (timing) before tightening spindle to the cutterbar. Turn disc by hand to ensure disc blades do not contact each other or adjacent discs. If contact occurs or alignment is incorrect, lift spindle to clear mounting bolts, rotate spindle 180 degrees (ensuring that base does not turn), and reinstall. Recheck timing before bolting hub down and tightening all of the nuts.

NOTE:
Right discs (A) and left discs (B) are slightly offset as shown, depending on which idler gear the spindle is turning.

- Spindles that rotate clockwise have left-leading threading
- Spindles that rotate counterclockwise have right-leading threading

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ CAUTION
Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.
1. Park on a flat, level surface.

2. Lower the disc header fully, shut off engine, and remove key.

NOTE:
To prevent oil from spilling from the cutterbar while installing disc spindles, ensure the disc header is on a flat, level surface and is tilted all the way back.

3. Determine suitable spindle rotation pattern for crop conditions. For instructions, refer to 4.5.3 Replacing Cutterbar Spindles, page 109.

4. Ensure that spindle O-ring (A) is properly seated, cleaned, and undamaged.

5. Insert spindle (A) into cutterbar.
6. Insert studs (A) into spindle as shown.

NOTE:
Plugs are factory-installed as shown in position (B), but may come loose over time. Ensure studs are inserted into proper location.

IMPORTANT:
Ensure clockwise spindles rotate clockwise and counterclockwise spindles (with machined grooves) rotate counterclockwise.

IMPORTANT:
The offset gear design makes it possible to install spindles that rotate in the wrong direction. This will prevent discs from spinning up after impact, resulting in cutterbar component damage.

7. Ensure that hub (A) is fully seated into cutterbar before tightening nuts (B).

8. Rotate spindle hub (A) to access studs, and install eleven M12 lock nuts (B) and washers.

9. Torque bolts to 50 Nm (37 lbf-ft) following the tightening pattern shown at right.

NOTE:
Hub removed from illustration for clarity.
10. Install spacer plate (A).

11. Place a pin (or equivalent) in the front hole of the rock guard (D) to prevent disc rotation while tightening bolts.

IMPORTANT:
Blades are rotation specific. It is necessary to switch entire disc when swapping spindles.

12. Position disc (A) on spindle ensuring that it is positioned at a 90 degree angle in relation to the adjacent discs.

NOTE:
Turn disc (A) by hand to ensure disc blades do not contact each other or adjacent discs.

13. Install cutter disc cap (B) and secure assembly with four M12 bolts and washers (C). Torque bolts to 85 Nm (63 lbf·ft).

WARNING
Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.

14. Remove pin (or equivalent) from front hole of rock guard.

15. Close cutterbar doors (A). For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.
4.5.4 Maintaining Discblades

Each disc has two blades (A) attached at opposite ends that are free to rotate horizontally on a specially designed shoulder bolt. The blade (A) has two cutting edges and can be flipped over so that the blade does not need replacing as often.

The blades are NOT repairable and must be replaced if severely worn or damaged.

IMPORTANT:
Always use factory replacement parts.

NOTE:
Discs are equipped with 18-degree bevel-down blades; 11-degree bevel-down blades are offered as a non-standard option. Refer to the R113 and R116 Rotary Disc Header Parts Catalog.

Figure 4.42: Discblades
Inspectionng Discblades

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION
Discblades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

CAUTION
Damaged blades may damage the cutterbar and result in poor cutting performance. Replace damaged blades immediately.

CAUTION
Damaged or loose discblades or blade attachment hardware can be ejected during machine operation and may cause personal injury or machine damage.

1. Check daily that the discblades are securely attached to the disc.
2. Inspect blades for cracks, blade wear (A), and/or elongated hole (B) beyond safe operating limits (C).
3. Replace blades immediately when problems are noticed.

IMPORTANT:
Blades should be replaced in pairs or the disc may become unbalanced and cause damage to the cutterbar.

Figure 4.43: Discblades
A - Blade Wear to Center Line
B - Elongated Hole
C - Maximum Elongation 21 mm (13/16 in.)
MAINTENANCE AND SERVICING

IMPORTANT:
The disc blades have cutting edges on both sides so the blades can be turned over and reused. The twist in each blade determines the cutting direction. If you are unsure which direction the spindles rotate, refer to 3.9.1 Changing R113 SP Cutterbar Crop Stream Configuration, page 72 for instructions.

Figure 4.44: Counterclockwise Disc Rotation

Figure 4.45: Clockwise Disc Rotation
Inspecting Discblade Hardware

CAUTION

Damaged or loose discblades or blade attachment hardware can be ejected during machine operation and may cause personal injury or machine damage.

Inspect blade attachment hardware each time blades are changed. For instructions, refer to *Removing Discblades, page 122* and *Installing Discblades, page 124* for hardware replacement procedure.

1. Check and replace bolt if:
 - Bolt has been removed and installed five times
 - Head (A) is worn flush with bearing surface of blade
 - Diameter of bolt neck is worn (B) 3 mm (1/8 in.)
 - Bolt is cracked (C)
 - Bolt is visibly distorted (D)
 - Bolt shows evidence of interference (E) with adjacent parts

![Figure 4.46: Discblade Bolts](image)
MAINTENANCE AND SERVICING

2. Check and replace nuts under the following conditions:
 - Nut has been previously installed—nuts are one-time use only
 - Nut shows signs of wear (A) that is more than half the original height (B)
 - Nut is cracked

Removing Discblades

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ CAUTION
Discblades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

1. Raise disc header fully, shut off engine, and remove key.
3. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.
4. Rotate disc (A) so blade (B) faces forward and lines up with hole (C) in rock guard.

5. Place a pin (or equivalent) in the front hole of the rock guard to prevent disc rotation while loosening blade bolts.

6. Clean debris from blade attachment area.

7. Remove nut (A) and discard.

IMPORTANT:
Nuts are one-time-use only. When flipping or changing a blade, replace using a **NEW** nut only.

8. Remove shoulder bolt (B) and blade (C).
Installing Discblades

⚠️ **CAUTION**

Discblades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

IMPORTANT:

If you are unsure which direction the spindles rotate, refer to 3.9 Reconfiguring Cutterbar Crop Stream, page 71.

1. Place a pin (or equivalent) in the front hole of the rock guard to prevent disc rotation while tightening blade bolts.

2. Install new or reversed blade (A) with shoulder bolt (B) onto disc (C).

 IMPORTANT:

 Nuts are one-time-use only. When flipping or changing a blade, replace using a **NEW** nut only.

3. Install new nut (D) and torque to 125 Nm (92 lbf-ft).

⚠️ **WARNING**

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.

4.5.5 Maintaining Accelerators

Accelerators (A) are mounted on each outboard disc and are designed to quickly move cut material off the disc and into the conditioner.

One pair of accelerators is installed at each outboard end of a R113 SP.

Periodically inspect accelerators for damage and loose or missing fasteners, and replace as necessary.

IMPORTANT:
Always replace accelerators in pairs to ensure proper disc balance.

Inspecting Accelerators

⚠️ **WARNING**
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Raise the header fully.
2. Shut down the engine, and remove the key from the ignition.

4. Open the cutterbar doors. For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

⚠️ **CAUTION**
Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

5. Inspect accelerators (A) for damage and wear, and replace if worn to 50% or more of their original height or if they are no longer effectively moving crop.
6. Tighten or replace loose or missing fasteners.
Removing Accelerators

IMPORTANT:
Always replace accelerators in pairs to ensure proper disc balance.

1. Raise the header fully.
2. Shut off the engine, and remove the key from the ignition.
4. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

CAUTION
Discblades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

5. Remove nut (A), flange bolt (B), and discblade (C) from disc. Discard nut.
6. Remove lock nut (A), accelerator (B), blade holder (C), and hex-socket bolt (D).

7. Repeat the removal procedure for the second accelerator.

Installing Accelerators

⚠️ **CAUTION**

Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

IMPORTANT:

Always replace accelerators in pairs to ensure proper disc balance.

1. Place a wooden block between two cutterbar discs to prevent disc rotation while tightening blade bolts.

 IMPORTANT:

 Accelerators are unidirectional; both clockwise and counterclockwise accelerators are used on the cutterbar. Verify the direction of the disc before installing accelerators.

2. Install lock nut (A), accelerator (B), blade holder (C), and hex-socket bolt (D). Do **NOT** tighten at this time.
3. Install new nut (A), flange bolt (B), and discblade (C) onto disc.

4. Torque the inside nut (A) to 58 Nm (43 lbf·ft).
5. Torque the outside nut (B) (closest to the blade) to 125 Nm (92 lbf·ft).
6. Repeat the installation procedure for the second accelerator.

⚠️ **WARNING**

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.

7. Remove the wooden block.

8. Close cutterbar doors (A). For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.
4.5.6 Maintaining Rock Guards

The machine is equipped with rock guards at each cutting disc location. Rock guards prevent the cutterbar from digging into the ground and protect the disc from coming in contact with stones and other debris. Periodically inspect rock guards for damage and replace as necessary.

Inspecting Rock Guards

WARNING

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Raise the header fully.
2. Shut down the engine, and remove the key from the ignition.
4. Inspect rock guards for wear, cracks, damage, or distortion. Replace if worn to 75% or more of their original thickness.
5. Check for loose or missing fasteners; tighten or replace fasteners as needed.

![Figure 4.62: Rock Guards](image)
Removing Inboard Rock Guards

1. Remove two hex head screws, washers, and lock nuts (A).

2. Slide inboard rock guard (A) forward (in the direction of arrow [B]) and remove.

Figure 4.63: Inboard Rock Guards

Figure 4.64: Inboard Rock Guards
Installing Inboard Rock Guards

1. Guide inboard rock guard onto cutterbar until tabs (A) sit on top of the cutterbar and bottom back bolt holes line up.

2. Install two hex head screws, washers, and lock nuts (A). Torque hardware to 68 Nm (50 lbf·ft).

NOTE:

Lock nuts (A) are installed on top.
Removing Outboard Rock Guards

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

WARNING

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Raise the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Engage the header safety props. For instructions, refer to [3.3 Engaging and Disengaging Header Safety Props, page 24](#).
4. Locate rock guard (B) on the bottom outboard end of the cutterbar. There is one guard on each end of the cutterbar.
5. Remove the two hex head screws (A), washers, and lock nuts (C) securing rock guard (B) to the cutterbar assembly.

6. Remove bolt and washers (A).
7. Loosen bolt (B).
8. Remove rock guard (C) by sliding it forward.
9. Repeat Steps 4, page 132 to 8, page 132 at the opposite side of the cutterbar.
Installing Outboard Rock Guards

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

1. Check and remove any cutterbar debris that could obstruct installation of the outboard rock guard.

2. Raise the header fully.

3. Shut down the engine, and remove the key from the ignition.

5. Apply medium-strength threadlocker (Loctite® 242 or equivalent) to bolt (B).

 NOTE:
 Some parts removed for clarity.

6. Install bolt (B) with washer onto the cutterbar.

7. Angle rock guard (A) outward as shown. Align the slot in the side plate between the washer and the cutterbar on rear M16 bolt (B).

8. Rotate the rock guard towards the center of the header until the tabs on the front of the rock guard are supported by the cutterbar.

9. Using a rubber mallet, tap rock guard (A) so it is parallel and flush against cutterbar (B).
10. Ensure rock guards (B) and (C) are parallel to one another.

NOTE:
A parallel gap (A) of 5–7 mm (3/16–1/4 in.) between outboard (B) and inboard (C) rock guards is acceptable. You may need to loosen the next one or two rock guards to space out the gap evenly.

11. Apply medium-strength threadlocker (Loctite® 242 or equivalent) on two hex head screws (C). Loosely install with lock nuts.

12. Install the M16 x 60 bolt (A) (MD #136141) and one washer (B) as shown. Torque bolts (A) and (D) to 251 Nm (185 lbf·ft.).

13. Torque screws (C) to 54 Nm (40 lbf-ft).
14. Repeat at the opposite side of the cutterbar.

4.5.7 Maintaining Large Drums

Drums deliver cut material from the ends of the cutterbar and help maintain an even crop flow into the conditioner. Large drums are attached to the two outboard discs on R113 SP headers.
Inspecting Large Drums

Inspect drums daily for signs of damage or wear.

⚠ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠ CAUTION

Discblades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

4. Inspect drums (A) and (B) for damage and wear, and replace if drum feed bars are worn at the center to 50% or more of their original thickness. Do NOT repair drums.
5. Examine drums for large dents. Replace dented drums to prevent an imbalance in the cutterbar.
6. Tighten or replace loose or missing fasteners.

⚠ WARNING

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.
7. Close cutterbar doors (A).

![Figure 4.76: Cutterbars](image)

Removing Large Driven Drums and Driveline

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ **WARNING**

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

NOTE:

Illustrations show the left drum and driveline.

1. Open cutterbar doors (A). Refer to 3.7.1 Opening Cutterbar Doors – North America, page 64 for instructions.

![Figure 4.77: Cutterbar Doors](image)
2. Remove four M10 hex flange head bolts (A) and remove vertical driveshield (B).

3. Remove two M10 hex flange head bolts (A) and remove cover plate (B).

4. Remove four M10 hex flange head bolts (A), and remove top plate (B) and drum top (C).
5. Remove one M10 x 20 hex flange head bolt (A), two M10 x 16 hex flange head bolts (B), and vertical shield (C).

6. Remove eight M8 hex flange head bolts (A), and remove two drum shields (B).

7. Remove four M12 hex flange head bolts (A) and spacers securing driveline assembly (B) to hub drive (C).
MAINTENANCE AND SERVICING

8. Slide driveline (A) downwards, and tilt it to the side. Pull the driveline up and out of the drum.

NOTE:
For clarity, the illustration shows a cutaway view of drum and tube shield.

9. Inside the drum, use a 305 mm (12 in.) extension and 18 mm socket to remove four M12 bolts (A) and washers holding the drum disc in place.

10. Remove the drum disc assembly.

Figure 4.84: Driveline

Figure 4.85: Driven Drum
Installing Large Driven Drums and Driveline

DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

WARNING
Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

NOTE:
Illustrations show left the drum and driveline.

1. Ensure spacer plate (A) is on the spindle.

2. Position the drum disc assembly as shown.

 NOTE:
 Orient the disc so that the blades are at 90 degrees (1/4 turn) to the adjacent disc.

3. Use a 305 mm (12 in.) extension and 16 mm deep socket to install four M12 bolts (A) and washers that hold the drum disc in place. Torque hardware to 85 Nm (63 lbf·ft).
4. Lubricate spindle splines (A). For specifications, refer to the inside back cover of this manual.

NOTE:
The driveline U-joints were greased at the factory and are considered to be lubricated for life. No further lubrication is required.

NOTE:
For clarity, the illustration shows a cutaway view of the drum and the tube shield.

5. Insert driveline (B) at an angle and guide it past hub drive (C) and drum (D).

6. Insert splined spindle end (A) into the splined bore on driveline (B).

7. Place a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of four M12 hex flange head bolts (A). Use the bolts and spacers to secure driveline assembly (B) to hub drive (C). Torque bolts to 102 Nm (75 lbf·ft).

8. Position two drum shields (B) as shown. Apply a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of eight M8 hex flange head bolts (A). Use the bolts to secure the drum shields in place. Torque to 27 Nm (20 lbf·ft).
9. Position vertical shield (A) as shown. Apply a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of one M10 hex flange head bolt (B) and two M10 hex flange head bolts (C). Use bolts (B) and (C) to secure the vertical shield in place. Torque to 61 Nm (45 lbf·ft).

10. Position top plate (B) and drum top (C) onto the drum as shown. Apply a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of four M10 hex flange head bolts (A). Use the bolts to secure the top plate and drum top in place. Torque hardware to 61 Nm (45 lbf·ft).
11. Apply a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of an M10 hex flange head bolt (B). Install bolt (B) through cover plate (A) and top plate (C). Torque hardware to 61 Nm (45 lbf·ft).

12. Apply a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of an M10 hex flange head bolt (D). Install bolt (D) through cover plate (A) and vertical shield (E). Torque hardware to 61 Nm (45 lbf·ft).

13. Tighten bolts (B) and (D).

14. Position vertical driveshield (B) as shown at right. Apply a bead of medium-strength threadlocker (Loctite® 243 or equivalent) around the threads of four M10 hex flange head bolts (A). Use bolts (A) to secure vertical driveshield in place. Torque to 61 Nm (45 lbf·ft).

⚠️ **WARNING**

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.
MAINTENANCE AND SERVICING

15. Close cutterbar doors (A). For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.
Removing Large Non-Driven Drums

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

WARNING

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

2. Place a wooden block between two cutterbar discs to prevent disc rotation while loosening blade bolts.

3. Remove eight M8 bolts (A) and washers securing the cover (B) to the non-driven drum, and remove cover.

Figure 4.96: Cutterbar Doors

Figure 4.97: Non-Driven Drum
4. Remove the four M10 bolts (A) inside the drum using a 305 mm (12 in.) extension and 16 mm socket.

5. Remove wooden block.

6. Remove drum/disc (B).

Figure 4.98: Non-Driven Drum
Installing Large Non-Driven Drums

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ WARNING

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Ensure spacer (A) is on spindle.

2. Position the non-driven drum/disc (B) onto spindle as shown.

3. Use a 305 mm (12 in.) extension and 16 mm deep socket to install the four M12 bolts (A) and washers securing drum/disc to spindle. Torque hardware to 85 Nm (63 lb-ft).
4. Install eight M8 bolts (A) and washers to secure cover (B) to non-driven drum, and torque to 28 Nm (20 lbf-ft).

WARNING

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.

5. Close cutterbar doors (A). For instructions, refer to 3.7.3 *Closing Cutterbar Doors, page 66.*
4.5.8 Replacing Cutterbar Spindle Shear Pin

To prevent damage to the cutterbar and drive systems, each disc is attached to a spindle containing a shear pin (A).

If the disc contacts a large object such as a stone or stump, the pin will shear and the disc will stop rotating and move upwards while remaining attached to the spindle with a snap ring (B).

IMPORTANT:
Ensure correct orientation of the shear pins during replacement.
- Spindles that rotate clockwise have right-leading threading.
- Spindles that rotate counterclockwise have left-leading threading.

NOTE:
Once spindle has risen due to shear pin failure, the spindle’s bearing will become unloaded. Do **NOT** replace the spindle due to excessive play. Check play after torquing spindle nut and replacing damaged shear pins.

Figure 4.103: Cutterbar Spindles
MAINTENANCE AND SERVICING

Removing Cutterbar Spindle Shear Pin

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
Disclades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

1. Raise the header fully.
2. Shut off the engine, and remove the key from the ignition.
4. Open the cutterbar doors. For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.
5. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.
6. Clean debris from the work area.

Figure 4.104: Cutterbar Doors
7. Depending on the type of disc with a broken shear pin, refer to the applicable disc removal procedure:
 - To remove cutterbar disc (A), refer to *Removing Cutterbar Discs, page 106.*
 - To remove driven drum (B), refer to *Removing Large Driven Drums and Driveline, page 136.*
 - To remove non-driven drum (C), refer to *Removing Large Non-Driven Drums, page 145.*

8. Remove retaining ring (A).
9. Remove the M12 bolt and remove safecut spindle-nut wrench (A) from its storage location.

IMPORTANT:

- Spindles that rotate clockwise have right-leading threading and a smooth top on the spindle gear shaft (A).

- Spindles that rotate counterclockwise have left-leading threading and machined grooves on the spindle gear shaft (B) and nut (C).

- If the spindle position in the cutterbar has changed, the rotational direction of that spindle **MUST** remain the same (that is, a clockwise spindle must maintain its clockwise rotation). Failure to maintain rotation pattern can result in damage to spindle and/or cutterbar components.

10. Remove two M10 bolts and washers (A).
11. Use the safecut spindle-nut wrench and remove nut (A).

12. Remove shear pins (B). Do NOT damage the pin bore on the pinion.

13. Remove hub (A).

14. Check the nut and hub for damage, and replace if necessary.
Installing Cutterbar Spindle Shear Pin

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
Disc blades have two sharp cutting edges that can cause serious injury. Exercise caution and wear gloves when working with blades.

1. Fill the space above the bearing with grease.
2. Place hub (A) on spindle (C).
3. Install shear pins (B).

 NOTE:
 Ensure that the ends of shear pins (B) do not protrude past the step in hub (C).

4. Observe the orientation of the grooves in shear pins (A).

 IMPORTANT:
 Correct shear pin orientation is critical. Both shear pin grooves (A) must be facing in the same direction and be parallel to the cutterbar.

 NOTE:
 Shaft removed from the illustration for clarity.

![Figure 4.112: Cutterbar Spindle](image1)

![Figure 4.113: Shear Pin Orientation](image2)
5. Install nut (A).

6. Attach safecut spindle-nut wrench (B) 90 degrees (D) to the torque wrench (A).

IMPORTANT:
If this is not done, the proper torque will NOT be applied to the nut.

7. Position safecut spindle-nut wrench (B) on spindle nut (C). Torque nut to 300 Nm (221 lbf·ft).

8. Return safecut spindle-nut wrench (B) to the left shield plate.

9. Inspect the threads of two M10 bolts (A) and replace if damaged.

10. Install two M10 bolts (A) and washers. Torque hardware to 55 Nm (40 lbf·ft).
11. Install retaining ring (A).

12. Depending on the type of disc with the new shear pin, refer to the applicable disc installation procedure:

- Install cutterbar disc (A). For instructions, refer to Installing Cutterbar Discs, page 108.
- Install driven drum (B). For instructions, refer to Installing Large Driven Drums and Driveline, page 140.
- Install non-driven drum (C). For instructions, refer to Installing Large Non-Driven Drums, page 147.

WARNING

Ensure the cutterbar is completely clear of foreign objects. Foreign objects can be ejected with considerable force when the machine is started and may result in serious injury or machine damage.
4.6 Conditioner Roll Timing Gearbox

The conditioner roll timing gearbox (A), located inside the drive compartment at the right of the header, transfers power from the gearbox-driven lower roll to the upper roll.

NOTE:
MD #221748 is for model year 2018 and prior; MD #307211 is for model year 2019.

4.6.1 Checking and Changing Oil in Conditioner Roll Timing Gearbox (MD #221748 or MD #307211)

Change oil after the first 50 hours of operation. Perform subsequent oil changes every 250 hours or annually (preferably before the start of the cutting season). Refer to the inside back cover for a list of recommended fluids, lubricants, and capacity.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

IMPORTANT:
Check the gearbox oil level when the oil is warm. If the oil is cold, idle the machine for approximately 10 minutes prior to checking.

1. Lower the header to the ground and adjust the header angle (tilt) so that the top of the conditioner is level (parallel) with the ground.

2. Shut down the engine, and remove the key from the ignition.
3. Remove right driveshield (A). For instructions, refer to
Removing Driveshields, page 188.

Checking conditioner roll timing gearbox oil level:

4. Clean around oil level sight glass (A) and breather (B) on the
 inboard side of the gearbox.

5. Ensure that the lubricant is level at the top of the sight
glass. If necessary, add lubricant through breather (B).

6. Top up oil level with gear oil if necessary. Refer to this
 manual’s inside back cover for a list of recommended fluids,
lubricants, and capacities.
Changing conditioner roll timing gearbox oil:

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up or fall of raised machine: stop engine, remove key, and engage lift cylinder lock-out valves before going under machine.

7. Raise the header to provide sufficient access to oil drain plug (A).
8. Shut down the engine, and remove the key from the ignition.
10. Clean around oil drain plug (A) on the bottom of the gearbox and around oil level plug (B) on the inboard side of the gearbox.
11. Place a 1 liter (1.05 qts [US]) container underneath the conditioner gearbox.
12. Remove oil drain plug (A) using a hex key.
13. Allow sufficient time for the oil to drain, replace oil drain plug (A), and tighten.
14. Fill with the specified volume of oil as listed on the inside back cover of this manual or until level is visible in the sight glass (B).
15. Properly dispose of oil.

Figure 4.123: Roll Timing Gearbox
4.7 Servicing Header Drive Gearbox

The header drive gearbox (A), transfers power from the hydraulic motor to the cutterbar and conditioner. It is located inside the drive compartment at the left end of the header.

The only regular servicing required is maintaining the lubricant level and changing the lubricant according to the intervals specified in this manual. Refer to 4.3.1 Maintenance Schedule/Record, page 93.

4.7.1 Changing Header Drive Gearbox Oil

Change oil after the first 50 hours of operation. Perform subsequent oil changes every 250 hours or annually (preferably before the start of the cutting season).

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Open the left cutterbar door. For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.
4. Clean around oil drain plug (A) on the bottom of the gearbox and around oil level plug (B) on the inboard side of the gearbox.

5. Place a 4 liter (1 gal. [US]) container under drain (A).

6. Remove hex plug (A).

7. Allow sufficient time for oil to drain, replace oil drain plug (A), and tighten.

8. Remove the oil level plug from bore hole (B).

9. Remove the plug from fill hole (C).

10. Add lubricant through fill hole (C) until the oil level is even with bore hole (B). For a list of recommended fluid and lubricant types and amounts, refer to this manual’s inside back cover.

11. Replace plugs in bore hole (B) and fill hole (C). Tighten plugs.

12. Clean up any spilled oil and properly dispose of any used oil and wipes.

13. Close the cutterbar door. For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.

Figure 4.125: Header Drive Gearbox
4.8 Inspecting Cutterbar Doors

1. Ensure that the door operates smoothly and lies flat when closed. Adjust if necessary.

2. Inspect hinge pin bolts (A) and tighten to 68.5 Nm (50.5 lbf-ft) if loose.

3. Check the door for cracks, and repair if required.

4. Check for exposed metal surfaces and surface rust. Repair and repaint if necessary.

5. Check shield/curtain bolts (B) and replace if missing, or tighten if loose.

Figure 4.126: Right Cutterbar Door in Open Position
4.9 Maintaining Curtains

Rubber curtains are installed at the following locations:

- Inboard curtain (A) attached to the center fixed cover
- Door curtains (B) attached to each cutterbar door
- Outboard curtains (C) attached to each front corner

The curtains form a barrier that minimizes the risk of thrown objects being ejected from the cutterbar area. Always keep curtains down during operation.

Replace the curtains if they become worn or damaged.

4.9.1 Inspecting Curtains

The cutterbar curtains are important safety features that reduce the potential for thrown objects. Always keep these curtains down when operating the header.

⚠️ WARNING

To reduce the risk of personal injury or machine damage, do NOT operate the machine without all the cutterbar doors down or without curtains installed and in good condition. Foreign objects can be ejected with considerable force when the machine is started.

⚠️ CAUTION

To avoid injury, keep hands and fingers away from corners of doors when closing.

Check cutterbar curtains (A) for the following conditions:

- Rips and tears: Replace curtain.
- Cracking: While the curtain may look whole, this is an indicator that failure is imminent—replace curtain.
- Missing bolts: Replace missing hardware before operating.
4.9.2 Removing Cutterbar Door Curtains

The procedure for removing cutterbar door curtains is the same for both doors.

1. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

2. Remove seven nuts (A) from the bolt studs.

3. Remove aluminum liner (B).

4. Remove curtain (C).

4.9.3 Installing Cutterbar Door Curtains

The procedure for installing cutterbar door curtains is the same for both doors.

1. Insert seven cutterbar door stud bolts (B) into the precut holes on curtain (A).

2. Install seven large washers (C).

3. Install liner panel (D) against washers.

4. Install seven nuts (E) onto bolt studs and torque to 28 Nm (21 lbf·ft).

 IMPORTANT:
 To avoid damaging bolt studs, do NOT overtighten the nuts.

5. Close cutterbar doors. For instructions, refer to 3.7.3 Closing Cutterbar Doors, page 66.
4.9.4 Removing Cutterbar Inboard Curtain

1. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

2. Remove two M10 carriage head bolts (A) and nuts securing curtain assembly (B) to the disc header, and remove curtain assembly.

3. Remove four nuts (A) from weld and bolt studs on center shield, remove two curtain brackets (B), and remove curtain.
4.9.5 Installing Cutterbar Inboard Curtain

1. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

2. Install curtain onto weld and bolt studs on center shield, install two curtain brackets (B), and secure with four nuts (A).

3. Torque hardware to 28 Nm (21 lbf·ft).

 IMPORTANT:
 To avoid damaging bolt studs, do **NOT** overtighten the nuts.

4. Secure two curtain brackets (A) to center shield using two M10 carriage head bolts (B) and nuts.

5. Torque bolts (B) to 39 Nm (29 lbf·ft).
4.9.6 Removing Outboard Curtains

The procedure for removing outboard curtains is the same for both sides.

1. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

2. Remove four bolts, large washers, and nuts (A) securing outboard curtain (B) to endsheet.

3. Remove two nuts (A) from bolt studs.

4. Remove nut (B) from carriage head bolt, slide out the bracket (C), and remove curtain (D).

Figure 4.138: Cutterbar Doors – R113 Shown

Figure 4.139: Left Endsheet

Figure 4.140: Outboard Curtain
4.9.7 Installing Outboard Curtains

The procedure for installing outboard curtains is the same for both sides.

1. Open cutterbar doors (A). For instructions, refer to 3.7.1 Opening Cutterbar Doors – North America, page 64.

2. Install curtain (A) into bracket (B).

3. Install two nuts (D) and tighten.

4. Slide bracket (B) into position, and install the square neck carriage head bolt and flange nut (C).

5. Torque flange nut (C) to 39 Nm (29 lbf·ft).

6. Install four bolts, large washers, and nuts (A) to secure outboard curtain (B) to endsheet. Torque bolts to 39 Nm (29 lbf·ft).
4.10 Conditioner System

The conditioner system (A) is intended to crimp and crush crop stems, helping the crop to dry faster; it is attached to the rear of the header.

Figure 4.144: R113 SP Shown, R116 SP Similar

4.10.1 Inspecting Roll Conditioner

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, stop engine, remove key, and engage windrower lift cylinder safety props before going under machine for any reason.

⚠️ **WARNING**

Exercise caution when working around the blades. Blades are sharp and can cause serious injury. Wear gloves when handling blades.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
MAINTENANCE AND SERVICING

4. Remove left and right driveshields (A). Refer to 3.6.1 Opening Driveshields, page 61.

5. Inspect conditioner roll left bearing (A) for signs of wear or damage. If the bearing needs replacing, contact your Dealer.

6. Inspect conditioner drive U-joints (A) for signs of wear or damage. If the U-joints need replacing, contact your Dealer.
7. Inspect roll timing gearbox bearings (A) for signs of wear or damage. If the bearing needs replacing, contact your Dealer.

4.10.2 Conditioner Drive Belt
The conditioner drive belt is located inside the left driveshield and is tensioned with a spring tensioner. The tension is factory-set and should not require adjustment.

Inspecting Conditioner Drive Belt
Check the belt tension and inspect for damage or wear every 100 hours or annually (preferably before the start of the cutting season).

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
4. Inspect drive belt (A) and replace if damaged or cracked.

5. Check that jam nut (B) and adjuster nut (C) are tight.

6. Measure the length of belt tensioner spring (A) and ensure spring length (B) is 366 mm (14 3/8 in.) in accordance with spring tension decal (C). If spring length requires adjustment, refer to Installing Conditioner Drive Belt, page 175.

7. Close the driveshield. For instructions, refer to 3.6.2 Closing Driveshields, page 62.
Removing Conditioner Drive Belt

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.
2. Shut down the engine, and remove key from the ignition.
3. Open the left driveshield. For instructions, refer to 3.6.1 Opening Driveshields, page 61.
4. Disconnect wire harness (A) from speed sensor (B).

5. Turn jam nut (A) counterclockwise to unlock the tension adjustment.
6. Turn jam nut (A) and adjuster nut (B) counterclockwise to fully collapse tensioner spring (C), and release the tension from conditioner drive belt (D).
7. Remove drive belt (D).
Installing Conditioner Drive Belt

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.

2. Shut down the engine, and remove the key from the ignition.

3. Install drive belt (A) onto driven pulley (C) first, and then onto drive pulley (B), ensuring that the belt is in the pulley grooves.

 NOTE:
 If necessary, loosen the jam nut and adjuster nut to relieve the spring tension.

4. Measure the length of tensioner spring (C); dimension (D) should be set to 365 mm (14 3/8 in.) for proper belt tension.

5. To adjust spring tension, loosen jam nut (A).

6. Turn adjuster nut (B) clockwise to increase spring/belt tension or turn adjuster nut (B) counterclockwise to decrease spring/belt tension.

7. Once the correct spring measurement has been achieved, hold adjuster nut (B) and tighten jam nut (A) against it.
MAINTENANCE AND SERVICING

8. Reconnect speed sensor (B) to wiring harness (A).

NOTE:
Ensure the speed sensor is installed correctly for the windrower: use the bottom hole for M1 Series; use the top hole for M155E4 SP Windrower.

9. Close the left driveshield. For instructions, refer to 3.6.2 Closing Driveshields, page 62.

Figure 4.156: Speed Sensor
4.10.3 Changing the Conditioner

The R113 SP Rotary Disc Header can be operated either with no conditioner, with a polyurethane roll conditioner, or with a steel roll conditioner. If the disc header is not conditioner-equipped, a shield must be installed.

NOTE:
These instructions apply to all conditioners. Exceptions are identified where applicable.

Removing the Conditioner

This procedure is applicable when the header is not attached to the windrower. If necessary, detach the header from the windrower before proceeding.

1. Remove the driveshields. For instructions, refer to Removing Driveshields, page 188. For instructions, refer to header operator’s manual or technical manual.

2. Remove the conditioner drive belt. For instructions, refer to Removing Conditioner Drive Belt, page 174.

3. **M1 Series:** Move hose bundle (A) clear of the frame and lay it on the header.

4. **M155 and M155E4 SP Windrower:** Remove two bolts (A) attaching hose bracket (B) to the header frame. Place the hose bundle and bracket onto the header. Do **NOT** disconnect the hoses from the motor.

![Figure 4.157: M1 Series Hose Bundle](image1)

![Figure 4.158: M155 and M155E4 SP Windrower Hoses](image2)
WARNING

To prevent frame from slipping off forks, ensure frame is secured to forks. Failure to do so could result in death or serious injury.

5. Support and secure the adapter frame for lifting using one of the two methods below:

Method 1:

a. Attach straps (A) to adapter frame (B) and the forklift forks. Use straps with a minimum working load of 454 kg (1000 lb.).

Method 2:

a. To protect the finish on the frame, wrap packing foam (A) (or equivalent) around the frame at approximately the locations shown.

b. Position forks (B) under the packing foam on the frame as shown at right. Raise forks and lift the frame slightly. The forks should **NOT** directly contact the frame.

c. To secure the frame to the forks, wrap chain (C) around the end of the forks and attach the other end to the forklift.

6. Lift the header with the forklift and place 150 mm (6 in.) wooden blocks (A) under the skid shoes. Lower the header onto the blocks and allow the header to tilt forward.
7. Remove nut (A) securing bolt (B), washer (C), and washer shims (D) from the center-link support. If necessary, adjust the height of the forks lifting the frame. Retain the hardware for reinstallation.

Figure 4.162: Center-Link Support

8. Remove nut (B).

⚠️ WARNING
To prevent straps from slipping off forks, ensure straps are securely attached to forks. Failure to do so could result in death or serious injury.

⚠️ CAUTION
Stand clear when detaching frame as frame may shift when bolts are removed.

9. Remove bolt (A) from frame (C). If necessary, adjust the height of the forks to improve access to bolt (A). Repeat at the opposite side of the frame. Retain the hardware for reinstallation.

10. Slowly and carefully back the forklift away from the header until the frame is clear of the header. Move the frame away from the work area, lower it to the ground and disconnect it from the forklift.

11. Attach spreader bar (A) to a forklift or equivalent lifting device, and attach chains to lugs (B) on conditioner (C). Use a chain rated for overhead lifting with a minimum working load of 1135 kg (2500 lb.).

Figure 4.163: Left Side of Adapter Frame

Figure 4.164: Spreader Bar
12. Loosen two M16 hex head bolts (A) at each side of the conditioner that secure it to the header.

13. Loosen two carriage bolts (A) securing conditioner gearbox support (B) to the header.

⚠️ **WARNING**

To prevent the conditioner from falling backward, ensure lifting chains are secure and tight. Failure to do so may result in death or serious injury.

⚠️ **CAUTION**

Stand clear when detaching frame as frame may shift when bolts are removed.

14. Adjust the height of the forks to raise the conditioner slightly. Remove the loosened bolts and retain hardware for reinstallation.

⚠️ **WARNING**

Ensure spreader bar is secured to the forks so that it cannot slide off the forks or towards the header. Failure to do so could result in death or serious injury.

15. Using the forklift, lift conditioner (A) off header (B). Avoid contact between the top of the conditioner and center-link anchor (C).

16. Move the frame away from the work area, set it on the ground, and remove the chains securing the conditioner to the spreader bar.
Installing the Conditioner

This procedure is applicable when the header is not attached to the windrower. If necessary, detach the header from the windrower before proceeding. Refer to header operator’s manual for instructions.

1. Attach spreader bar (A) to the forklift (or an equivalent lifting device) and attach chains to lugs (B) on the conditioner. Use a chain rated for overhead lifting with a minimum working load of 1135 kg (2500 lb.).

⚠️ WARNING

Ensure spreader bar is secured to the forks so that it cannot slide off the forks or towards the header while attaching the conditioner to the header. Failure to do so could result in death or serious injury.

2. Lift conditioner (C) and align it with the header opening.

3. Carefully align pin (B) at each end of conditioner (A) with lug (C) on the header. Lower conditioner (A) until pins (B) engage lugs (C) on the header. Avoid contact between the top of the conditioner and the center-link anchor.

4. Align the mounting holes and install four M16 x 40 hex head bolts (A) with the heads facing inboard (two per side). Secure with M16 center lock flanged nuts. Do NOT tighten.
5. Align the holes in support (B) with the mounting holes in the header frame and install two carriage bolts (A) to secure conditioner gearbox support (B) to the header. Bolt heads face inboard. Torque nuts to 69 Nm (51 lbf·ft).

6. Torque nuts (A) to 170 Nm (126 lbf·ft).

7. Remove the lifting chains from the conditioner and move the lifting device clear of the work area.

8. If necessary, install conditioner drive components. For instructions, refer to *Installing Conditioner Drive, page 185.*

WARNING

To prevent frame from slipping off forks, ensure frame is secured to forks. Failure to do so could result in death or serious injury.

9. Support and secure the adapter frame for lifting using one of the two methods below:

Method 1:

a. Attach straps (A) to adapter frame (B) and the forklift forks. Use straps rated for overhead lifting with a minimum working load of 454 kg (1000 lb.).

b. Pick up the frame and position it against the header.
Method 2:

a. To protect the finish on the frame, wrap packing foam (A) (or equivalent) around the approximate frame locations shown.

b. Position forks (B) under the packing foam on the frame as shown at right. Raise the forks and lift the frame slightly. The forks should not directly contact the frame.

c. To secure the frame to the forks, wrap chain (C) around the end of the forks and attach it to the forklift.

d. Pick up the frame and position it against the header.

10. Slowly move forward until lift arm (C) is aligned with mounting holes (A) and (B) in the frame.

11. Install bolt (A) through frame (B) and bushing (D) in the lift arm. Repeat for the opposite side of the machine.

12. Check gap (C) between the bushing inner steel sleeve (D) and frame (B). If there is a gap, install 1.2 mm thick flat washers (MD #5113) to minimize the gap on both sides of the bushing.

13. Remove bolt (A).
14. Install washer (A) onto bolt (B) and apply an anti-seize compound to the bolt shank only. Do NOT apply anti-seize to the threads.

15. Install bolt (B) with washers (C) as determined in Step 12, page 183.

16. Install three washers (D) and nut (E) onto bolt. Torque to 332–346 Nm (245–255 lbf·ft).

17. Repeat Step 12, page 183 to Step 16, page 184 for the opposite side.

18. With flat washer shim (A) on both sides of the center-link support, install securing bolt (B) and washer (C) through the conditioner center-link support bracket and center-link support.

19. Install nut (D) and torque to 332–346 Nm (245–255 lbf·ft).

WARNING

To prevent frame from slipping off forks, ensure frame is secured to forks. Failure to do so could result in death or serious injury.

20. Lift the header and remove wooden blocks (A) under the skid shoes. Lower the header to the ground.

21. Remove any straps or chains securing the frame to the forks, and back the forklift away from the work area.
22. **M155 and M155E4 SP Windrows**: Position the hose bundle and hose support (B) onto the adapter and secure with bolts (A) and nuts.

23. **M1 Series**: Reposition hose bundle (A) on the frame.

24. Install the conditioner drive belt. For instructions, refer to *Installing Conditioner Drive Belt, page 175*.

25. Install the driveshields. For instructions, refer to *Installing Driveshields, page 190*.

Installing Conditioner Drive

This procedure describes the installation of conditioner drive components on a machine that was originally supplied with no conditioner. The procedure is similar for machines that will have a conditioner installed.

If a conditioner is to be installed on the R113 SP, refer to *Installing the Conditioner, page 181* and *Installing Conditioner Drive Belt, page 175*.

1. Remove drive cover (A) from left side of header by removing hex head bolt (B), flat washer (C) and nut (D) and sliding cover off pins (E).
2. Position tensioner assembly (A) as shown, and secure with M16 x 120 bolt (B) and nut (C). Torque nut (C) to 47–54 Nm (35–40 lbf-ft).

3. Install spring (A) into forward hole (B) in the frame.

4. Install eyebolt (C) onto spring (A) and tensioner (D). Secure eyebolt (C) to tensioner (D) with hardened washer (E), and two M10 nuts (F), and straight pin (G).

NOTE:
Install the conditioner drive belt after reattaching the header to the adapter.

4.10.4 Replacing Shield – No Conditioner

Removing Discharge Shield (No Conditioner)

Follow these steps to remove the shielding installed on a disc header configured without a conditioner:

1. Disconnect and remove the header from the windrower. For instructions, refer to header operator’s manual.

2. On both ends of the header, remove four M16 hex head bolts (A), nuts, and flat washers securing shield (B) to header (C).
MAINTENANCE AND SERVICING

3. Lift the shield (A) until pins (B) disengage from slots in support (C).

Installing Discharge Shield (No Conditioner)

Follow these steps to install the shielding on a disc header configured without a conditioner:

1. Position shield (A) until pins (B) engage the slots in support (C) and bolt holes in shield align with holes (D) in header.

2. Secure shield (B) to the header with four M16 hex head bolts (A), nuts, and flat washers.

3. Ensure bolt heads face inboard and torque nuts to 224–298 Nm (165–220 lbf·ft).
4.10.5 Replacing Driveshields

If driveshields are missing, severely damaged, or are not securely installed due to damage, they must be replaced.

Removing Driveshields

⚠️ CAUTION

To reduce the risk of personal injury, do NOT operate the machine without the driveshields in place and secured.

NOTE:
Images shown in this procedure are for the left driveshield—the right driveshield is similar.

1. Remove lynch pin (A) and tool (B) from pin (C).

![Figure 4.189: Left Driveshield](image)

![Figure 4.190: Tool to Unlock Driveshield](image)
2. Insert the flat end of tool (A) into latch (B) and turn it counterclockwise to unlock.

3. Pull the top of driveshield (A) away from the header and lift off the pins at the base of the shield to remove.
Installing Driveshields

⚠️ CAUTION

Do NOT operate the machine without the driveshields in place and secured.

NOTE:

Images shown in this procedure are for the left driveshield—the right driveshield is similar.

1. Position driveshield (A) onto pins (B) at the base of driveshield.
2. Push the driveshield to engage latch (C).
3. Check that driveshield (A) is properly secured.

4. Replace tool (B) and lynch pin (A) on pin (C).
Replacing Driveshield Latch

⚠️ CAUTION

Do NOT operate the machine without the driveshields in place and secured.

NOTE:

Images shown are for left side driveshield—right side driveshield is similar.

1. Remove driveshield (A). Refer to Removing Driveshields, page 188.

2. Remove hex nut (A) and flat washer securing latch to the backside of the driveshield, replace latch if worn or damaged, and reinstall the nut and washer.

3. Remove two carriage bolts (A), replace stud and clip assembly (B) if worn or damaged, and reinstall carriage bolts.

4. Install driveshield. Refer to Installing Driveshields, page 190.
4.11 Electrical System

The header’s electrical system is powered by the windrower. The electrical harness (A) from the header connects to the windrower, and supplies power to hazard/signal lights and speed sensor that is on the header.

Figure 4.198: Electrical Harness

4.11.1 Maintaining Electrical System

- Use electrical tape and cable ties as required to prevent the wiring harness from dragging or rubbing.
- Keep lights clean and replace defective bulbs.
4.11.2 Replacing Amber Hazard/Signal Light Fixture

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Remove four nuts (A) and bolts (B) (only three shown) securing the light to the bracket, and remove light. Disconnect the light from the electrical harness.
4. Connect the new light to the electrical harness.
5. Position the new light on bracket with bolts (B), and install and tighten four nuts (A).
6. Check operation of the new light.

![Figure 4.199: Amber Hazard Light](image)

4.11.3 Replacing Amber Hazard/Signal Bulb

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Remove two Phillips screws (A) from the fixture, and remove the plastic lens.
4. Replace the bulb (trade #1157), and reinstall plastic the lens and screws.

![Figure 4.200: Plastic Lens and Screws](image)
4.11.4 Replacing Header RPM Sensor

If the header rpm sensor malfunctions or is damaged, use this procedure to replace it.

1. Lower the header fully.
2. Shut down the engine, and remove the key from the ignition.
3. Remove the left driveshield. For instructions, refer to Removing Driveshields, page 188.
4. Remove plastic fastener (B) from the bracket and cut cable tie (E) securing the sensor wire to the existing harness.
5. Disconnect wire harness (C) from speed sensor connector (D).
6. Remove nut (F) from the end of the sensor and remove the sensor from bracket (A).
7. Remove nut from the end of new sensor, install the new sensor into bracket (C) securing with nut (F).

NOTE:
Ensure the speed sensor is correctly installed for the windrower: use the bottom hole for M1 Series Windrowers; use the top hole for M155E4 SP Windrowers.

8. Connect sensor wire (D) to harness (C).
9. Install plastic fastener (B) in the small hole in bracket (A). Secure the sensor wire to fastener (B) with a cable tie, allowing 102–104 mm (4–4 3/16 in.) between the fastener and sensor.
10. Secure the sensor wire to header harness (C) with plastic cable tie (E). Ensure the wires are clear of the belt and pulley.
11. Adjust nuts (A) as required to achieve a 2–3 mm (1/16–1/8 in.) gap (B) between sensor (C) and pulley (D). Ensure the sensor face and the pulley face are parallel. Bend bracket (E) as required.
12. Tighten nuts (A) to 12 Nm (9 lbf·ft).
13. Reinstall the driveshield. For instructions, refer to Installing Driveshields, page 190.
14. Start the windrower, engage the header, and check the operation of the speed sensor on the monitor. The sensor may require re-calibrating. Refer to the windrower operator’s manual for the calibration procedure.
4.12 Hydraulics

4.12.1 Checking Hydraulic Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

⚠️ WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure. Keep hands and body away from pin holes and nozzles which eject fluids under high pressure.

- If any fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

- Use a piece of cardboard or paper to search for leaks.

IMPORTANT:

Keep hydraulic coupler tips and connectors clean. Allowing dust, dirt, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do NOT attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.
Chapter 5: Options and Attachments

5.1 Performance Kits

The following kits are available through your MacDon Dealer. The Dealer will require the bundle number for pricing and availability.

5.1.1 Tall Crop Divider Kit

Tall crop dividers attach to the ends of the self-propelled disc header for clean crop dividing and cutterbar entry in tall crops. The kit includes left and right dividers and attachment hardware.

MD #B5800

5.1.2 No Conditioner Kit

The R113 SP Rotary Disc Header can be operated without a conditioner. Kit includes required rear windrow shielding and curtain.

MD #B5818

5.1.3 Polyurethane Roll Conditioner Kit

Rolls condition the crop by crimping and crushing the stem in several places, which allows the release of moisture resulting in faster drying times. A polyurethane roll conditioner is better suited for crushing stems while providing reduced crimping and is recommended for alfalfa, clover, legumes, and similar crops. The kit includes the conditioner and installation hardware.

MD #B6557

5.1.4 Steel Roll Conditioner Kit

Rolls condition the crop by crimping and crushing the stem in several places, which allows the release of moisture resulting in faster drying times. Steel rolls with a larger gap (up to 25 mm [1 in.]) may be desirable for thick-stemmed cane-type crops; however, too large a gap may cause feeding problems. Steel rolls are recommended for these types of situations. The kit includes the conditioner and installation hardware.

MD #B6558
5.2 Hydraulic Drive Conversion Kits

Headers are factory-configured for use with either M155 and M155E4 SP Windrows, or M1 Series Windrows. Headers can be reconfigured for use on the alternative windrower options by using hydraulic conversion kits.

5.2.1 M1 Series Hydraulic Drive Conversion Kit

Hydraulic Drive kit is required for an R113 Rotary Disc Header that is originally configured for use with an M155 or M155E4 SP Windrower to operate correctly on an M1 Series SP Windrower.

MD #B6621

![Figure 5.2: Hydraulic Drive Kit (MD #B6621)](image1)

5.2.2 M1240 Case Drain Kit

When connecting the R113 to an M1240 SP Windrower, the Case Drain kit (A) must be installed onto the M1240. This kit contains an alternative case drain line which is routed directly to the hydraulic reservoir with a unique set of 1/2 in. hydraulic couplers.

MD #B6698

![Figure 5.3: Case Drain Kit (MD #B6698)](image2)
5.2.3 M155 and M155E4 Hydraulic Drive Conversion Kit

Hydraulic Drive kit (A) is required for an R1 Series Rotary Disc Header that is originally configured for use with an M1 Series to operate correctly on M155 or M155E4 Self-Propelled Windrower.

MD #B6272

Figure 5.4: Hydraulic Drive Kit (MD #B6272)
Chapter 6: Troubleshooting

6.1 Performance Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Cutterbar plugging</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dull, bent, or badly worn discblades | Replace discblades. | • *Removing Discblades, page 122*
• *Installing Discblades, page 124* |
| Build-up of dirt between rock guards | Decrease header angle and increase float. In some conditions, it may be necessary to carry header slightly with header lift cylinders. | • *3.8.1 Cutting Height, page 67*
• Refer to windrower operator’s manual |
| Conditioner drive belt slipping | Adjust conditioner drive belt tension. | 4.10.2 *Conditioner Drive Belt, page 172* |
| **Symptom: Ragged or uneven cutting of crop** | | |
| Header angle too flat for guards to pick up downed crop | Increase header angle. | 3.8.1 *Cutting Height, page 67* |
| Downed crop | Adjust header angle to cut closer to ground. | 3.8.1 *Cutting Height, page 67* |
| Header float too light, causing bouncing | Adjust to heavier float setting. | Refer to windrower operator’s manual |
| Excessive ground speed | Reduce ground speed. | — |
| **Symptom: Strips of uncut crop left on field** | | |
| Dull, bent, or badly worn discblades | Replace discblades. | • *Removing Discblades, page 122*
• *Installing Discblades, page 124* |
| Build-up of dirt between rock guards | Decrease header angle and increase float. In some conditions, it may be necessary to carry header slightly with header lift cylinders. | • *3.8.1 Cutting Height, page 67*
• Refer to windrower operator’s manual |
| Excessive header speed | Reduce header disc speed. | — |
| Foreign object on cutterbar | Disengage header and stop engine. When all moving parts are completely stopped, remove foreign object. | 4.5.2 *Maintaining Cutterbar Discs, page 104* |
| Disc not turning | Replace spindle shear pin. | 4.5.8 *Replacing Cutterbar Spindle Shear Pin, page 149* |
| Ground speed too slow | Increase ground speed. | — |
| **Symptom: Conditioner rolls plugging** | | |
| Ground speed too fast | Reduce ground speed. | — |
| Roll gap too large for proper feeding | Decrease roll gap. | • *Adjusting Roll Gap – Polyurethane Rolls, page 75*
• *Adjusting Roll Gap – Steel Rolls, page 76* |
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll gap too small in thick-stemmed cane-type crops</td>
<td>Increase roll gap.</td>
<td>• Adjusting Roll Gap – Polyurethane Rolls, page 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjusting Roll Gap – Steel Rolls, page 76</td>
</tr>
<tr>
<td>Swath baffle set too low</td>
<td>Raise swath baffle.</td>
<td>3.10.4 Adjusting Forming Shields – Roll Conditioner, page 81</td>
</tr>
<tr>
<td>Roll speed too low</td>
<td>Increase disc speed.</td>
<td>—</td>
</tr>
<tr>
<td>Foreign object between rolls</td>
<td>Disengage header and stop engine. When all</td>
<td>4.5.2 Maintaining Cutterbar Discs, page 104</td>
</tr>
<tr>
<td></td>
<td>moving parts are completely stopped, remove</td>
<td></td>
</tr>
<tr>
<td></td>
<td>foreign object.</td>
<td></td>
</tr>
<tr>
<td>Cutting height too low</td>
<td>Decrease header angle to raise cutting</td>
<td>3.8.1 Cutting Height, page 67</td>
</tr>
<tr>
<td>Backing into windrow</td>
<td>Raise header before backing up.</td>
<td>—</td>
</tr>
<tr>
<td>Rolls improperly timed</td>
<td>Adjust roll timing.</td>
<td>Adjusting Roll Timing, page 78</td>
</tr>
<tr>
<td>Symptom: Uneven formation and bunching of windrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swath baffle (deflector) bypassing or dragging crop</td>
<td>Adjust rear deflector for proper crop control.</td>
<td>Positioning Rear Baffle – Roll Conditioner, page 82</td>
</tr>
<tr>
<td>Forming shields improperly adjusted</td>
<td>Adjust roll conditioner forming shields.</td>
<td>• Positioning Forming Shield Side Deflectors – Roll Conditioner, page 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Positioning Rear Baffle – Roll Conditioner, page 82</td>
</tr>
<tr>
<td>Roll gap too large</td>
<td>Adjust roll gap.</td>
<td>• Adjusting Roll Gap – Polyurethane Rolls, page 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjusting Roll Gap – Steel Rolls, page 76</td>
</tr>
<tr>
<td>Conditioner rolls running too slow</td>
<td>Maintain rated header speed.</td>
<td>Refer to windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Uneven windrow formation in light crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uneven feeding</td>
<td>Reduce header speed.</td>
<td>Refer to windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Plugging behind end hourglass deflectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground speed too slow</td>
<td>Increase ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>Dirt building up on cutterbar</td>
<td>Remove crop deflectors attached to rear of</td>
<td>3.11.1 Removing Cutterbar Deflectors, page 84</td>
</tr>
<tr>
<td></td>
<td>cutterbar.</td>
<td></td>
</tr>
<tr>
<td>Symptom: Not cutting short enough in down crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground speed too fast</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>Broken, bent, or dull blades</td>
<td>Replace blades or turn blades over.</td>
<td>• Removing Discblades, page 122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Installing Discblades, page 124</td>
</tr>
<tr>
<td>Cutting height too high</td>
<td>Adjust header angle steeper to lower cutting</td>
<td>3.8.1 Cutting Height, page 67</td>
</tr>
<tr>
<td></td>
<td>height if field conditions allow.</td>
<td></td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Material being pulled out by roots when cutting, and tall crop leaning into machine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop in conditioner rolls before crop is cut</td>
<td>Increase roll gap.</td>
<td>- Adjusting Roll Gap – Polyurethane Rolls, page 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjusting Roll Gap – Steel Rolls, page 76</td>
</tr>
<tr>
<td>Symptom: Damaged leaves and broken stems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient roll gap</td>
<td>Increase roll gap.</td>
<td>- Adjusting Roll Gap – Polyurethane Rolls, page 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjusting Roll Gap – Steel Rolls, page 76</td>
</tr>
<tr>
<td>Roll timing off</td>
<td>Check roll timing and adjust if necessary.</td>
<td>- Checking Roll Timing, page 78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjusting Roll Timing, page 78</td>
</tr>
<tr>
<td>Symptom: Cutting height varies from one side to the other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Float not properly balanced</td>
<td>Adjust header float.</td>
<td>Refer to windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Slow crop drying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop is bunched in windrow</td>
<td>Adjust forming shields/baffle.</td>
<td>- Positioning Forming Shield Side Deflectors – Roll Conditioner, page 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Positioning Rear Baffle – Roll Conditioner, page 82</td>
</tr>
<tr>
<td>Rolls not crimping crop sufficiently</td>
<td>Decrease roll gap.</td>
<td>- Adjusting Roll Gap – Polyurethane Rolls, page 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjusting Roll Gap – Steel Rolls, page 76</td>
</tr>
<tr>
<td>Symptom: Excessive drying or bleaching of crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive crimping</td>
<td>Increase roll gap.</td>
<td>- Adjusting Roll Gap – Polyurethane Rolls, page 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjusting Roll Gap – Steel Rolls, page 76</td>
</tr>
<tr>
<td>Crop is spread too wide in windrow</td>
<td>Adjust forming shields.</td>
<td>- Positioning Forming Shield Side Deflectors – Roll Conditioner, page 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Positioning Rear Baffle – Roll Conditioner, page 82</td>
</tr>
</tbody>
</table>
Problem Solution

Symptom: Poorly formed or bunchy windrows

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming shields not properly positioned</td>
<td>Adjust forming shields.</td>
<td>• Positioning Forming Shield Side Deflectors – Roll Conditioner, page 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Positioning Rear Baffle – Roll Conditioner, page 82</td>
</tr>
</tbody>
</table>
6.2 Mechanical Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Excessive noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Bent discblade | Replace blade. | • Removing Discblades, page 122
• Installing Discblades, page 124 |
| Conditioner roll timing off | Check roll timing and adjust if necessary. | • Checking Roll Timing, page 78
• Adjusting Roll Timing, page 78 |
| Bent drum deflector | Replace drum. | 4.5.7 Maintaining Large Drums, page 134 |
| Conditioner roll gap too small | Check gap and adjust if necessary. | • Checking Roll Gap, page 74
• Adjusting Roll Gap – Polyurethane Rolls, page 75
• Adjusting Roll Gap – Steel Rolls, page 76 |

| Symptom: Excessive vibration or noise in header | | |
| Mud deposits on conditioner rolls | Clean rolls. | |
| Conditioner rolls contacting each other | Increase roll gap. | • Adjusting Roll Gap – Polyurethane Rolls, page 75
• Adjusting Roll Gap – Steel Rolls, page 76 |
| Conditioner rolls contacting each other | Check roll timing. | Checking Roll Timing, page 78 |

| Symptom: Excessive heat in cutterbar | | |
| Incorrect level of lubricant in cutterbar —either too little or too much | Drain lubricant and refill with specified amount. | Draining the Cutterbar, page 102 |

| Symptom: Frequent blade damage | | |
| Mud on cutterbar | Remove mud from cutterbar. Do NOT allow mud to dry on cutterbar. | |
| Spindle bearing failure | Replace spindle bearing. | • Removing Cutterbar Spindles, page 111
• Installing Cutterbar Spindles, page 114 |
| Header float set too heavy | Increase float. | Refer to windrower operator’s manual |
| Material wrapped around spindle | Remove disc and remove material. | • Removing Discblades, page 122
• Installing Discblades, page 124 |
| Cutting too low in rocky field conditions | Decrease header angle, increase float. | • 3.8.1 Cutting Height, page 67
• Refer to windrower operator’s manual |
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground speed too high in rocky field conditions. At high ground speed, header tends to dig rocks from ground instead of floating over them</td>
<td>Reduce ground speed.</td>
<td></td>
</tr>
<tr>
<td>Discblades incorrectly mounted</td>
<td>Check all blade mounting hardware and ensure blades are free to move.</td>
<td>Inspecting Discblades, page 119</td>
</tr>
<tr>
<td>Symptom: Excessive wear of cutting components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header angle too steep</td>
<td>Reduce header angle.</td>
<td>3.8.1 Cutting Height, page 67</td>
</tr>
<tr>
<td>Crop residue and dirt deposits on cutterbar</td>
<td>Clean cutterbar.</td>
<td>—</td>
</tr>
<tr>
<td>Mud on cutterbar</td>
<td>Remove mud from cutterbar. Do NOT allow mud to dry on cutterbar.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Machine pulling to one side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header dragging on one end and pulling to that side</td>
<td>Adjust header float on both ends.</td>
<td>Refer to windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Breakage of conditioner roll timing belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belt not in proper groove in pulley</td>
<td>Move belt to proper groove.</td>
<td>4.10.2 Conditioner Drive Belt, page 172</td>
</tr>
<tr>
<td>Foreign object between rolls</td>
<td>Disengage header and stop the engine. When all moving parts are completely stopped, remove foreign object.</td>
<td>Inspecting Conditioner Drive Belt, page 172</td>
</tr>
<tr>
<td>Belt pulleys and idlers misaligned</td>
<td>Align pulleys and idler.</td>
<td>See MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Conditioner roll does not rotate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faulty drive belt</td>
<td>Check drive belt pulleys.</td>
<td>Inspecting Conditioner Drive Belt, page 172</td>
</tr>
<tr>
<td>Symptom: Disc does not turn when engaging header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoses not connected</td>
<td>Connect hoses.</td>
<td>3.4 Attaching Header to Windrower, page 27</td>
</tr>
<tr>
<td>Poor electrical connection at pump solenoid</td>
<td>Check connection at windrower.</td>
<td>Refer to windrower operator’s manual</td>
</tr>
<tr>
<td>Faulty header drive 90-degree gearbox</td>
<td>Check gearbox.</td>
<td></td>
</tr>
<tr>
<td>• 4.7 Servicing Header Drive Gearbox, page 161</td>
<td>• 4.7.1 Changing Header Drive Gearbox Oil, page 161</td>
<td></td>
</tr>
<tr>
<td>Symptom: Header slows when going uphill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic oil level in windrower is low</td>
<td>Add oil to windrower reservoir.</td>
<td>Refer to windrower operator’s manual</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Header runs while unloaded, but slows or stops when starting to cut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defective hydraulic motor</td>
<td>Repair/replace hydraulic motor.</td>
<td>See MacDon Dealer</td>
</tr>
<tr>
<td>Defective hydraulic pump in windrower</td>
<td>Repair/replace pump.</td>
<td>See MacDon Dealer</td>
</tr>
<tr>
<td>Defective relief valve in windrower</td>
<td>Repair/replace relief valve.</td>
<td>See MacDon Dealer</td>
</tr>
<tr>
<td>Cold oil in hydraulic drive system</td>
<td>Reduce ground speed until oil reaches operating temperature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Chapter 7: Reference

7.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

7.1.1 Metric Bolt Specifications

Table 7.1 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 7.1: Bolt Grades
Table 7.2 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 7.3 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>
Table 7.4 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

7.1.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 7.5 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 (Cast Aluminum)</td>
</tr>
<tr>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
</tr>
</tbody>
</table>
7.1.3 O-Ring Boss Hydraulic Fittings – Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.
3. Check that O-ring (A) is NOT on threads and adjust if necessary.
4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until backup washer (D) and O-ring (A) contact part face (E).
6. Position angle fittings by unscrewing no more than one turn.
7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).
8. Check final condition of fitting.
Table 7.6 O-Ring Boss (ORB) Hydraulic Fittings – Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>7</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

⁷ Torque values shown are based on lubricated connections as in reassembly.
7.1.4 O-Ring Boss Hydraulic Fittings – Non-Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is NOT on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 7.7, page 214.
6. Check final condition of fitting.

Table 7.7 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

8. Torque values shown are based on lubricated connections as in reassembly.
7.1.5 O-Ring Face Seal Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 7.8, page 215.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 7.8 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Note<sup>10</sup></td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>Note<sup>10</sup></td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note<sup>10</sup></td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1 3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
<tr>
<td>-14</td>
<td>Note<sup>10</sup></td>
<td>7/8</td>
<td>–</td>
</tr>
</tbody>
</table>

9. Torque values and angles shown are based on lubricated connection as in reassembly.
10. O-ring face seal type end not defined for this tube size.
Table 7.8 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-16</td>
<td>1 7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1 11/16</td>
<td>1 1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1 1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

7.1.6 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks, scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The turns from finger tight (TFFT) and flats from finger tight (FFFT) values are shown in Table 7.9, page 216. Make sure that tube end of a shaped connector (typically 45 degree or 90 degree) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 7.9 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

11. Torque values and angles shown are based on lubricated connection as in reassembly.
7.2 Conversion Chart

Table 7.10 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>x 2.4710 = acre</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 = US gallons per minute</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>x 0.2248 = pound force</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>x 0.0394 = inch</td>
</tr>
<tr>
<td></td>
<td>meter</td>
<td>m</td>
<td>x 3.2808 = foot</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>x 1.341 = horsepower</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>x 0.145 = pounds per square inch</td>
</tr>
<tr>
<td></td>
<td>megapascal</td>
<td>MPa</td>
<td>x 145.038 = pounds per square inch</td>
</tr>
<tr>
<td></td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 = pounds per square inch</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 0.7376 = pound feet or foot pounds</td>
</tr>
<tr>
<td></td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 8.8507 = pound inches or inch pounds</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>°C</td>
<td>(°C x 1.8) + 32 = degrees Fahrenheit</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 = feet per minute</td>
</tr>
<tr>
<td></td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 = feet per second</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 = miles per hour</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>x 0.2642 = US gallon</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>mL</td>
<td>x 0.0338 = ounce</td>
</tr>
<tr>
<td></td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 = cubic inch</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>x 2.2046 = pound</td>
</tr>
</tbody>
</table>
Index

A
accelerators
inspecting .. 125
installing .. 127
maintaining .. 125
removing .. 126
API
definition .. 19
assembly
center-link without self-alignment kit 32, 37
hydraulic center-link with optional self-alignment
kit ... 32, 37
ASTM
definition .. 19
attachments, See options and attachments

B
belts
inspecting conditioner drive belt 172
installing conditioner drive belt 175
removing conditioner drive belt 174
bolts
definition .. 19
break-in
break-in inspections 95
break-in period .. 21

c
center-links
definition .. 19
CGVW
definition .. 19
component identification 17
conditioner drive
installing .. 185
conditioner drive belts 172
conditioner roll timing gearbox, See gearboxes
conditioners
forming shields
adjusting .. 81
positioning rear baffle 82
positioning rear baffle deflector fins 83
positioning side deflectors 81
inspecting ... 170
installing .. 181
removing .. 177
roll conditioners ... 73
roll gaps .. 73
adjusting roll gap 73
polyurethane rolls 75
steel rolls .. 76
checking roll gap
polyurethane rolls 74
roll tension ... 77
adjusting .. 77
roll timing ... 78
adjusting .. 78
checking .. 78
conversion chart 217
curtains
inspecting curtains 164
installing door curtains 165
installing inboard curtains 167
installing outboard curtains 169
maintaining .. 164
removing door curtains 165
removing inboard curtains 166
removing outboard curtains 168
cutterbars ... 99, 125, 149
See also accelerators
See also spindle shear pins
crop streams .. 71
changing cutterbar configuration 72
deflectors ... 84
installing .. 85
removing .. 84
discblades ... 118
doors ... 64
closing doors ... 66
inspecting doors 163
opening doors
Export latches .. 65
North America headers 64
large drums .. 134
lubricating ... 99
adding lubricant 99
checking lubricant level 99
draining cutterbar 102
filling a repaired cutterbar 103
maintaining cutterbar discs
inspecting discs 104
installing discs .. 108
removing discs .. 106
cutting heights ... 67
adjusting cutting height 68

d
daily start-up check 22
decals ... 9
declaration of conformity i
INDEX

definition of terms ... 19
deflectors
 cutterbar deflectors ... 84
 installing ... 85
 removing ... 84
side deflectors
 positioning on roll conditioner .. 81
disc maintenance
 accelerators
 inspecting .. 125
 installing .. 127
 maintaining .. 125
 removing .. 126
cutterbar discs
 inspecting .. 104
 installing .. 108
 removing .. 106
disc blades
 See also cutterbars
 inspecting .. 119
 inspecting hardware .. 121
 installing .. 124
 maintaining .. 118
 removing .. 122
drive systems
 conditioner drive belts ... 172
 header drive gearbox .. 161
driveshield latches
 replacing .. 191
driveshields .. 61
closing .. 62
 opening .. 190
 installing .. 61
 removing .. 188
drums
 large drums
 inspecting .. 135
 installing driven drum and driveline 140
 installing non-driven drums 147
 maintaining .. 134
 removing driven drum and driveline 136
 removing non-driven drums 145
drying agents .. 87
decals ... 97
greasing procedures .. 97
every 25 hours .. 98
maintenance schedule/records 93
ground speed .. 70
GVW ... 19

haying tips ... 86
 chemical drying agents ... 87
 curing .. 86
 driving on windrows ... 87
 topsoil moisture .. 86
 weather and topography .. 86
 windrow characteristics .. 87
header rpm sensor .. 194
headers
 adjusting header angle ... 69
attaching windrowers
 M1 Series .. 27
 M155, M155E4 SP Windrowers
 hydraulic center-link with optional self-alignment kit 32
 hydraulic center-link without optional self-alignment kit 37
detaching from windrowers
 M1 Series .. 52
 M155, M155E4 SP Windrowers 57
float ... 69
maintenance and servicing ... 89

F
FFFT
 definition .. 19
finger tight
 definition .. 19
fixtures, See lights
fluids, See lubricants
forming shields
 on roll conditioner .. 81–82
 positioning side deflectors 81
 positioning rear baffle ... 82

g
gearboxes .. 158
 conditioner roll timing gearbox (MD #221748 or MD #307211)
 checking gearbox oil ... 158
header drive
 changing oil .. 161
glossary .. 19
greasing
decals ... 97
greasing procedures .. 97
every 25 hours .. 98
maintenance schedule/records 93

H
haying tips ... 86
 chemical drying agents ... 87
 curing .. 86
 driving on windrows ... 87
 topsoil moisture .. 86
 weather and topography .. 86
 windrow characteristics .. 87
header rpm sensor .. 194
headers
 adjusting header angle ... 69
attaching windrowers
 M1 Series .. 27
 M155, M155E4 SP Windrowers
 hydraulic center-link with optional self-alignment kit 32
 hydraulic center-link without optional self-alignment kit 37
detaching from windrowers
 M1 Series .. 52
 M155, M155E4 SP Windrowers 57
float ... 69
maintenance and servicing ... 89
INDEX

operation ... 21
recommended settings .. 67
transferring .. 88
hex keys
definition .. 19
hydraulics
connecting header hydraulics
 M1 Series windrower ... 42
 M155, M155E4 SP Windrowers 45
fittings
 O-ring boss (ORB) adjustable 212
 O-ring boss (ORB) non-adjustable 214
 O-ring face seal (ORFS).. 215
 tapered pipe thread fittings 216
hoses and lines .. 195
hydraulic safety .. 6
maintenance .. 195

I
inspections
 accelerators .. 125
 break-in ... 95
 cutterbar curtains ... 164
 cutterbar discs .. 104
 disclad blade hardware 121
 disclades .. 119
 large drum ... 135
 maintenance schedule/records 93
introduction .. iii
declaration of conformity i
model numbers .. vi
noise levels .. 2
serial numbers .. vi

L
large drums
 inspecting ... 135
 installing large driven drums and driveline 140
 installing non-driven drums 147
 removing large driven drum and driveline 136
 removing non-driven drums 145
lights
 amber hazard/signal lights
 replacing bulbs .. 193
 replacing light fixtures 193
lubricating .. 97
 See also greasing
cutterbars ... 99
lubricating the disc header
conditioner roll timing gearbox (MD #221748 or MD #307211)
 checking gearbox oil .. 158

M
maintenance and servicing
 break-in inspections 95
 break-in period .. 21
 end-of-season servicing 96
 maintenance requirements 92
 maintenance schedule/records 93
 preparing for servicing 89
 preseason/annual servicing 95
 recommended lubricants 225
 safety ... 5
 safety procedures ... 90
metric bolts
torque specifications ... 209
model numbers
 locations .. vi
 records ... vi
 moisture ... 86

N
noise levels ... 2
NPT
definition .. 19

O
operations
cutting height .. 67
daily start-up check ... 22
driveshields .. 61
haying tips ... 86
header .. 21
header angle .. 69
roll gaps ... 73
roll tension ... 77
roll timing .. 78
safety props .. 25
options and attachments 197
 11-degree disclades .. 118
 M1 series hydraulic drive conversion kit 198
 M1240 Windrower case drain kit 198
 M155 SP Windrower hydraulic drive conversion kit 199
 M155E4 SP Windrower hydraulic drive conversion kit 199
 no conditioner kit .. 197
 polyurethane roll conditioner kit 197
 steel roll conditioner kit 197
tall crop divider kits .. 197
ORB
definition .. 19
INDEX

P
preseason servicing .. 95

R
rear baffles
 positioning on roll conditioner 82
recommended settings
 header .. 67
reference
 conversion chart .. 217
 maintenance requirements 92
torque specifications .. 209
rock guards
 inspecting .. 129
 installing inboard rock guards 131
 installing outboard rock guards 133
 maintaining ... 129
 removing inboard rock guards 130
 removing outboard rock guards 132
roll conditioners .. 73
deflectors .. 81
 forming shields ... 81
roll tension ... 77
roll timing .. 78
roll gaps .. 73–74
 adjusting roll gap
 polyurethane rolls .. 75
 steel rolls ... 76
roll tension ... 77
 adjusting .. 77
roll timing .. 78
 adjusting .. 78
 checking ... 78
roll-type conditioning, See roll conditioners
rpm
definition .. 19

S
SAE
definition .. 19
safety .. 1
 daily start-up checks ... 22
 general safety ... 3
header safety props .. 25
hydraulic safety .. 6
maintenance safety .. 5
noise levels ... 2
procedures ... 90
 safety alert symbols ... 1
 safety sign decals ... 8
 installing decals .. 8
locations ... 9
signal words ... 2
understanding safety signs 11
screws
definition .. 19
SDD
definition .. 19
serial numbers
 locations .. vi
 records .. vi
servicing
 maintenance and servicing 89
preparing for servicing .. 89
 shields – no conditioner .. 186
installing .. 187
removing .. 186
soft joints
definition .. 19
specifications
 header .. 15
 torque specifications .. 209
spindles
 changing .. 109
 installing ... 114
 removing ... 111
 rotating ... 109
start-up procedures
 daily start-up check ... 22

T
TFFT
definition .. 19
topography .. 86
torque
definition .. 19
torque angles
definition .. 19
torque specifications ... 209
metric bolt specifications ... 209
 bolting into cast aluminum 211
O-ring boss (ORB) hydraulic fittings – adjustable ... 212
O-ring boss (ORB) hydraulic fittings – non-adjustable 214
O-ring face seal (ORFS) fittings 215
tapered pipe thread fittings 216
torque-tension
definition .. 19
transporting the header .. 88
troubleshooting
 mechanical .. 205
 performance .. 201
W

washers
 definition... 19
weather .. 86
windrowers
 definition.. 19
 M1 Series
 attaching to header... 27
 detaching from header 52
 M155, M155E4
 detaching from header 57
M155, M155E4 SP Windrowers
 attaching to header
 hydraulic center-link with optional self-alignment
 kit ... 32
 hydraulic center-link without optional self-
 alignment kit ... 37
windrows
 driving on windrows .. 87
 windrow characteristics .. 87
Recommended Lubricants

Keep your machine operating at top efficiency by using only clean lubricants and by ensuring the following:

- Use clean containers to handle all lubricants.
- Store lubricants in an area protected from dust, moisture, and other contaminants.

IMPORTANT:

Do **NOT** overfill the cutterbar when adding lubricant. Overfilling could result in overheating and failure of cutterbar components.

Table .11 Recommended Lubricants

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant: Grease</td>
<td>High temperature extreme pressure (EP) performance with 1% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
<td>—</td>
</tr>
<tr>
<td>SAE Multipurpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE Multipurpose</td>
<td>High temperature extreme pressure (EP) performance with 10% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>Driveline slip-joints</td>
<td>—</td>
</tr>
<tr>
<td>Lubricant: Gear Lubricant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE 80W-90</td>
<td>High thermal and oxidation stability API service class GL-5</td>
<td>R113 Cutterbar</td>
<td>8 L (8.5 qts [US])</td>
</tr>
<tr>
<td>SAE 85W-140</td>
<td>Fully synthetic oil API GL-5 minimum, SAE J2360 preferred</td>
<td>Conditioner roll timing gearbox</td>
<td>0.7 L (0.75 qts [US])</td>
</tr>
<tr>
<td>SAE 80W-140</td>
<td>Fully synthetic oil API GL-5 minimum, SAE J2360 preferred</td>
<td>Header drive 90-degree gearbox</td>
<td>1.65 L (1.74 qts [US])</td>
</tr>
</tbody>
</table>