PW8 Pick-Up Header

Published May 2018
# Declaration of Conformity

**Figure 1. EC Declaration of Conformity**

<table>
<thead>
<tr>
<th>EN</th>
<th>Name, [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARE, that the product:</td>
</tr>
<tr>
<td></td>
<td>TYPE OF MACHINE: [2]</td>
</tr>
<tr>
<td></td>
<td>NAME OF MODEL: [3]</td>
</tr>
<tr>
<td></td>
<td>SERIAL NUMBER(S): [4]</td>
</tr>
</tbody>
</table>

Fulfills all the relevant provisions of the Directive 2006/42/EC.

### Harmonized standards used, as referred to in Article 7(2)

- EN ISO 4246-1:2013
- EN ISO 4246-7:2000

### Place and date of declaration: [5]

Identity and signature of the person empowered to draw up the declaration: [6]

Name and address of the person authorized to compile the technical file:

- **Benefit von Riedesel**
- **General Manager**, MacDon Europe GmbH
- **Vennsæther 50**
- 6320 Windebø (Norway)
- bvsriiedesel@macdon.com

---

### EC Declaration of Conformity

| MacDon Industries Ltd. |
| 680 Moray Street, |
| Winnipeg, Manitoba, Canada |
| R3J 3B3 |

| [1] | 4 |
| As per Shipping Document |

| [2] | 5 |
| May 2, 2018 |

| [3] | 6 |
| Christoph Martens |
| Product Integrity |

---

### Declaration of Conformity

**MacDon PW8**

- EN 4246-1:2013
- EN 4246-7:2000

### Identification number: [7]

- **Certificate number (CEN)**: [8]
- **Certification body**: [9]

**Manufacturer/Importer**: MacDon Europe GmbH

**Address**: Vennsæther 50, 6320 Windebø, Norway

**Contact Person**: bvsriiedesel@macdon.com

---

**The Harvesting Specialists**

---

**Revision A**

---
**EC Declaration of Conformity**

<table>
<thead>
<tr>
<th>IT</th>
<th>HL</th>
<th>CS</th>
<th>EN</th>
<th>DE</th>
<th>NL</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nota [1]</td>
<td>Direzione dei prodotti</td>
<td>Tipo di macchina (a)</td>
<td>Nome e modello (a)</td>
<td>Numero (a)</td>
<td>Direzione dei prodotti</td>
<td>Cerniere 1-2012</td>
</tr>
<tr>
<td>Nome e numero (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número(s) de serie(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direzione dei prodotti</td>
<td>Tipo di macchina (a)</td>
<td>Nome e modello (a)</td>
<td>Numero (a)</td>
<td>Direzione dei prodotti</td>
<td>Cerniere 1-2012</td>
</tr>
<tr>
<td>Nome e numero (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número(s) de serie(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direzione dei prodotti</td>
<td>Tipo di macchina (a)</td>
<td>Nome e modello (a)</td>
<td>Numero (a)</td>
<td>Direzione dei prodotti</td>
<td>Cerniere 1-2012</td>
</tr>
<tr>
<td>Nome e numero (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número(s) de serie(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direzione dei prodotti</td>
<td>Tipo di macchina (a)</td>
<td>Nome e modello (a)</td>
<td>Numero (a)</td>
<td>Direzione dei prodotti</td>
<td>Cerniere 1-2012</td>
</tr>
<tr>
<td>Nome e numero (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número(s) de serie(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Notes**

1. Nota: The product is designed, manufactured and tested to comply with the applicable technical standards.

---

**References**

- EN ISO 4245-1:2013
- EN ISO 4245-2:2009
- Cerniere 1-2012

---

**Signature**

Benedict von Reden
Manager, Macdon Europe GmbH
Hagenauer Straße 59
51223 Wiesbaden (Germany)
bewarade@macdon.com
Introduction

The PW8 Pick-Up Header is designed to pick up windrows and feed them into a combine. This manual contains operating and maintenance procedures for the PW8 Pick-Up Header for the following combines:

<table>
<thead>
<tr>
<th>Combine</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IH</td>
<td>50/60/7088, 51/61/7130, 51/61/7140, 70/8010, 71/81/9120, 72/82/9230, and 72/82/9240</td>
</tr>
<tr>
<td>John Deere</td>
<td>96/97/9860STS, 96/97/9870, S650/660/670/680/690, 9660WTS, and T670</td>
</tr>
<tr>
<td>New Holland</td>
<td>All CR/CX Series</td>
</tr>
<tr>
<td>Versatile</td>
<td>RT490</td>
</tr>
</tbody>
</table>

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

Conventions

- Right and left are determined from the operator’s position. The front of the header is the side that faces the crop; the back of the header is the side that connects to the combine.
- Unless otherwise noted, use the standard torque values provided in Chapter 8.1 Torque Specifications, page 273.

NOTE:
Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).
Keep this manual handy for frequent reference and to pass on to new Operators or Owners. The PW8 Pick-Up Header Parts Catalog also is supplied with your new header. Call your Dealer if you need assistance, information, or additional copies of the manuals.

Store the operator’s manual and the parts catalog in the manual case (A) attached to the back of the header.

**Carefully read all the material provided before attempting to maintain, service, or use the machine.**

This manual is available in English and Russian.
## List of Revisions

The following table lists the changes made from the previous version of this document:

<table>
<thead>
<tr>
<th>Summary of Change</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>New declaration of conformity.</td>
<td>Declaration of Conformity, page i</td>
</tr>
<tr>
<td>Added illustrations</td>
<td>3.3.5 Removing Right Endshield, page 343.3.6</td>
</tr>
<tr>
<td></td>
<td>Installing Right Endshield, page 35</td>
</tr>
<tr>
<td>Added steps</td>
<td>3.3.4 Installing Left Endshield, page 32</td>
</tr>
<tr>
<td>John Deere T-Series added</td>
<td>4.1.8 John Deere S and T Series Combines, page 135</td>
</tr>
<tr>
<td>Added Auto Header Height Control topics for Case IH 5130/6130/7130 and 5140/6140/7140 mid-range combines.</td>
<td>4.1.4 Case IH 5130/6130/7130 and 5140/6140/7140 Midrange Combines, page 107</td>
</tr>
<tr>
<td>Added Seed Saver Performance Kit</td>
<td>6 Options and Attachments, page 263</td>
</tr>
</tbody>
</table>
Serial Number

The serial number plate (A) is located on the left endsheet. Record the serial number of the PW8 Combine Pick-Up Header here:

____________________________________________

Figure 4.  Left Side (Rear View)
# TABLE OF CONTENTS

Declaration of Conformity .............................................................................................................................................. i
Introduction ........................................................................................................................................................................ iii
List of Revisions ..................................................................................................................................................................... v
Serial Number ....................................................................................................................................................................... vi

**Chapter 1: Safety ......................................................................................................................................................... 1**

1.1 Safety Alert Symbols .................................................................................................................................................... 1
1.2 Signal Words ................................................................................................................................................................. 2
1.3 General Safety ............................................................................................................................................................... 3
1.4 Maintenance Safety ....................................................................................................................................................... 5
1.5 Hydraulic Safety ........................................................................................................................................................... 6
1.6 Safety Signs ................................................................................................................................................................... 7
1.6.1 Installing Safety Decals ........................................................................................................................................... 7
1.7 Safety Sign Locations .................................................................................................................................................... 8
1.8 Understanding Safety Signs ......................................................................................................................................... 16

**Chapter 2: Product Overview ................................................................................................................................. 21**

2.1 Header Specifications .................................................................................................................................................. 21
2.2 Header Dimensions ...................................................................................................................................................... 22
2.3 Component Identification .......................................................................................................................................... 23
2.4 Definitions .................................................................................................................................................................. 24

**Chapter 3: Operation .................................................................................................................................................... 27**

3.1 Owner/Operator Responsibilities ............................................................................................................................. 27
3.2 Operational Safety .................................................................................................................................................... 28
3.3 Endshields ................................................................................................................................................................. 29
3.3.1 Opening Left Endshield ....................................................................................................................................... 29
3.3.2 Closing Left Endshield ....................................................................................................................................... 30
3.3.3 Removing Left Endshield .................................................................................................................................. 31
3.3.4 Installing Left Endshield ................................................................................................................................... 32
3.3.5 Removing Right Endshield ................................................................................................................................ 34
3.3.6 Installing Right Endshield ................................................................................................................................ 35
3.4 Header Lift Cylinder Safety Props .......................................................................................................................... 36
3.5 Engaging Hold-Down Lift Cylinder Safety Props ...................................................................................................... 37
3.6 Daily Start-Up Check .................................................................................................................................................. 38
3.7 Shutting down the Machine ...................................................................................................................................... 39
3.8 Break-In Period .......................................................................................................................................................... 40
3.9 Changing Header Opening ....................................................................................................................................... 41
3.10 Header Attachment and Detachment ..................................................................................................................... 42
3.10.1 Case IH ............................................................................................................................................................... 42
  Attaching to Case IH Combine ................................................................................................................................... 42
# TABLE OF CONTENTS

Detaching from Case IH Combine ................................................................. 45
3.10.2 John Deere 60, 70, S, and T Series ...................................................... 49
   Attaching to John Deere 60, 70, S, and T Series Combine ....................... 49
   Detaching from John Deere 60, 70, S, and T Series Combine .................... 53
3.10.3 New Holland CR/CX Series Combine .................................................. 56
   Attaching to New Holland CR/CX Series Combine ................................... 56
   Detaching from New Holland CR/CX Combine ......................................... 59
3.10.4 Versatile ............................................................................................. 61
   Attaching to Versatile Combine ............................................................... 61
   Detaching from Versatile Combine ......................................................... 65
3.11 Header Transport ................................................................................... 69
   3.11.1 Transport Lights ............................................................................. 69
3.12 Header Operation .................................................................................. 70
   3.12.1 Operating Speed ............................................................................ 70
       Adjusting Draper Speed ........................................................................ 71
   3.12.2 Auger Operation ........................................................................... 72
       Auger Speed ......................................................................................... 72
       Checking Auger Position ...................................................................... 72
       Adjusting Auger Position ..................................................................... 73
       Auger Float .......................................................................................... 74
       Stripper Plate Clearance ..................................................................... 77
   3.12.3 Operating Height ........................................................................... 79
       Header Height ....................................................................................... 79
       Pick-Up Height .................................................................................... 80
   3.12.4 Adjusting Header Float ................................................................. 82
   3.12.5 Hold-Downs .................................................................................. 84
       Hold-Down Position ............................................................................. 84
       Adjusting Hold-Down Rod Angle ......................................................... 85
   3.12.6 Crop Deflectors ............................................................................ 85
       Removing Crop Deflectors from Field Position ..................................... 85
       Installing Crop Deflectors .................................................................... 86
   3.12.7 Draper Belt Tension ...................................................................... 87
       Checking Draper Belt Tension ............................................................... 87
       Adjusting Front Draper Belt Tension ..................................................... 88
       Adjusting Rear Draper Belt Tension ...................................................... 90
   3.12.8 Driveline ....................................................................................... 91
       Clutch ................................................................................................. 91
       Driveline Guard .................................................................................. 91
3.13 Unplugging the Header ........................................................................ 92
3.14 Adjusting the Pan Seal Assembly ......................................................... 93
3.15 Storing the Header ............................................................................... 94

Chapter 4: AHHC System ........................................................................... 95

4.1 Auto Header Height Control (AHHC) System Overview ....................... 95
   4.1.1 AHHC Sensor Operation ................................................................. 96
   4.1.2 Header Height Sensors ................................................................... 96
       Removing Header Height Sensor Assembly (Left Side) ....................... 97
       Installing Header Height Sensor Assembly (Left Side) ..................... 98
## TABLE OF CONTENTS

Removing Header Height Control System (Right Side)..................................................... 98  
Installing Header Height Sensor Assembly (Right Side).................................................. 100  
### 4.1.3 Height Sensor Output Voltage Range – Combine Requirements ................................. 102  
Manually Checking Voltage Range................................................................................ 102  
Adjusting Header Height Sensor Voltage Range (Left Side)......................................... 105  
Adjusting Header Height Sensor Voltage Range (Right Side)....................................... 105  
### 4.1.4 Case IH 5130/6130/7130 and 5140/6140/7140 Midrange Combines ......................... 107  
Setting up the Header on the Combine Display (Case IH 5130/6130/7130; 5140/6140/7140) ......................................................................................................................... 107  
Checking Voltage Range from Combine Cab (Case IH 5130/6130/7130; 5140/6140/7140) ......................................................................................................................... 108  
Calibrating Auto Header Height Control (Case IH 5130/6130/7130, 5140/6140/7140) ......... 110  
Setting Preset Cutting Height (Case 5130/6130/7130, 5140/6140/7140) ......................... 110  
### 4.1.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, and 7240/8240/9240 Combines ........................................................................................................ 113  
Checking Voltage Range from Combine Cab (Case 8010) .............................................. 113  
Checking Voltage Range from Combine Cab (Case IH 7010/8010; 7120/8120/9120; 7230/8230/9230; 7240/8240/9240) ......................................................................................... 115  
Calibrating Auto Header Height Control (Case IH 7010/8010; 7120/8120/9120; 7230/8230/9230; 7240/8240/9240) .............................................................................. 116  
Calibrating Auto Header Height Control (Case Combines with Version 28.00 or Higher Software) ........................................................................................................ 118  
Setting Preset Cutting Height (Case 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240) ........................................................................................................ 120  
### 4.1.6 John Deere 60 Series Combines ............................................................................... 122  
Checking Voltage Range from Combine Cab (John Deere 60 Series).............................. 122  
Calibrating Auto Header Height Control (John Deere 60 Series).................................... 123  
Turning Off Accumulator (John Deere 60 Series) ......................................................... 125  
Setting Sensing Grain Header Height to 50 (John Deere 60 Series) ............................... 126  
Setting Sensitivity of Auto Header Height Control (John Deere 60 Series)........................ 127  
Adjusting Threshold for Drop Rate Valve (John Deere 60 Series) ................................. 127  
### 4.1.7 John Deere 70 Series Combines ............................................................................... 128  
Checking Voltage Range from Combine Cab (John Deere 70 Series).............................. 128  
Calibrating Feeder House Speed (John Deere 70 Series).............................................. 129  
Calibrating Auto Header Height Control (John Deere 70 Series).................................... 130  
Setting Sensitivity of Auto Header Height Control (John Deere 70 Series)...................... 132  
Adjusting Manual Header Raise/Lower Rate (John Deere 70 Series)............................. 134  
### 4.1.8 John Deere S and T Series Combines ....................................................................... 135  
Checking Voltage Range from Combine Cab (John Deere S and T Series)...................... 135  
Calibrating Feeder House Fore-Aft Tilt Range (John Deere S and T Series).................... 135  
Calibrating Auto Header Height Control (John Deere S and T Series)........................... 136  
Setting Sensitivity of Auto Header Height Control (John Deere S and T Series).............. 138  
Adjusting Manual Header Raise/Lower Rate (John Deere S and T Series)...................... 139  
Setting Preset Cutting Height (John Deere S and T Series)............................................. 140  
### 4.1.9 New Holland Combines CX/CX Series (CR Series – Model Year 2014 and Earlier) ........ 144  
Checking Voltage Range from Combine Cab (New Holland) ..................................... 144  
Engaging Auto Header Height Control (New Holland CR/CX Series) ......................... 145  
Calibrating Auto Header Height Control (New Holland CR/CX Series) ....................... 146  
Adjusting Header Raise Rate (New Holland CR/CX Series) ....................................... 148  
Setting Header Lower Rate to 50 (New Holland CR/CX Series) .................................. 149  
Setting Sensitivity of Auto Header Height Control to 200 (New Holland CR/CX Series) .... 150  
Setting Preset Cutting Height (New Holland CR/CX Series) ....................................... 150  
Configuring Reel Fore-Aft, Header Tilt, and Header Type (New Holland CR Series) ........ 151
Chapter 5: Maintenance and Servicing ................................................................. 163

5.1 Preparing Header for Servicing ................................................................. 163
5.2 Maintenance Requirements .................................................................... 164
  5.2.1 Maintenance Schedule/Record ......................................................... 164
  5.2.2 Preseason/Annual Service ............................................................... 165
  5.2.3 End-of-Season Service ................................................................. 166
5.3 Lubrication .............................................................................................. 167
  5.3.1 Greasing Procedure ....................................................................... 167
  5.3.2 Greasing Points ............................................................................. 168
  5.3.3 Lubricating Auger Drive Chain ...................................................... 169
5.4 Installing Sealed Bearing ........................................................................ 170
5.5 Drives ...................................................................................................... 171
  5.5.1 Header Driveshaft ............................................................................ 171
  5.5.2 Header Driveline ............................................................................. 171
    Removing Header Driveline ................................................................. 171
    Installing Header Driveline ................................................................. 173
    Replacing Driveline Clutch ................................................................. 175
    Removing Driveline Guard ................................................................. 175
    Installing Driveline Guard ................................................................. 177
    Cleaning Driveline Splined Shaft ...................................................... 179
  5.5.3 Draper Drives .................................................................................. 180
    Removing Front Hydraulic Motor ...................................................... 180
    Installing Front Hydraulic Motor ...................................................... 181
    Removing Rear Hydraulic Motor ...................................................... 182
    Installing Rear Hydraulic Motor ...................................................... 183
    Removing Hydraulic Motor Hoses .................................................... 184
    Installing Hydraulic Motor Hoses ..................................................... 186
  5.5.4 Auger Drive ..................................................................................... 188
    Auger Drive Chain ............................................................................. 188
    Auger Drive Sprockets ....................................................................... 190
5.6 Auger Maintenance ................................................................................. 197
  5.6.1 Replacing Auger Fingers ................................................................. 197
  5.6.2 Replacing Auger Finger Guides ...................................................... 198
  5.6.3 Replacing Auger Finger Holder ...................................................... 200
  5.6.4 Replacing Stripper Plates ............................................................... 203
  5.6.5 Replacing Flighting Extensions ...................................................... 204
5.7 Decks ...................................................................................................... 206
  5.7.1 Draper Belts .................................................................................... 206
    Removing Front Draper Belt ............................................................. 206
    Installing Front Draper Belt ............................................................. 207
TABLE OF CONTENTS

Removing Rear Draper Belt ........................................................................................................... 208
Installing Rear Draper Belt ........................................................................................................... 210

5.7.2 Draper Fingers and Guides ............................................................................................... 211
Replacing Draper Fingers ........................................................................................................... 211
Replacing Draper Guide .............................................................................................................. 212

5.7.3 Draper Deck Roller Bearings ......................................................................................... 213
Replacing Drive Roller Bearing on Left Side of Rear Deck ......................................................... 214
Replacing Drive Roller Bearing on Right Side of Rear Deck ....................................................... 218
Replacing Idler Roller Bearing on Left Side of Rear Deck .......................................................... 222
Replacing Idler Roller Bearing on Right Side of Rear Deck ....................................................... 223
Aligning Rear Draper Deck Rollers ............................................................................................ 224
Replacing Drive Roller Bearing on Left Side of Front Deck ....................................................... 226
Replacing Drive Roller Bearing on Right Side of Front Deck .................................................... 229
Replacing Front Deck Idler Roller Bearings ............................................................................. 229
Aligning Front Draper Deck Rollers ........................................................................................... 231

5.8 Header Spring Float Assembly ............................................................................................. 236
  5.8.1 Removing Header Spring Float Assembly ........................................................................ 236
  5.8.2 Installing Header Spring Float Assembly ....................................................................... 238

5.9 Hold-Downs .......................................................................................................................... 240
  5.9.1 Replacing Fiberglass Rods ............................................................................................ 240
  5.9.2 Replacing Master Hold-Down Cylinder .......................................................................... 241
     Removing Master Cylinder ..................................................................................................... 241
     Installing Master Cylinder ..................................................................................................... 243
  5.9.3 Replacing Slave Hold-Down Cylinder ........................................................................... 244
     Removing Slave Cylinder ....................................................................................................... 244
     Installing Slave Cylinder ....................................................................................................... 246
  5.9.4 Bleeding Cylinders and Lines ........................................................................................ 247
  5.9.5 Hydraulic Hoses and Lines ............................................................................................ 248
     Removing Master Cylinder Hose .......................................................................................... 249
     Installing Master Cylinder Hose ........................................................................................... 251

5.10 Draper Speed Sensor ............................................................................................................ 254
  5.10.1 Checking Draper Speed Sensor Position ....................................................................... 254
  5.10.2 Adjusting Draper Speed Sensor ..................................................................................... 255
  5.10.3 Replacing Draper Speed Sensor ..................................................................................... 256

5.11 Wheels and Tires .................................................................................................................. 257
  5.11.1 Removing Wheel ............................................................................................................. 257
  5.11.2 Installing Wheel .............................................................................................................. 258
  5.11.3 Inflating Tire .................................................................................................................... 258

5.12 Lights .................................................................................................................................. 259
  5.12.1 Adjusting Transport Lights ............................................................................................ 259
  5.12.2 Replacing Transport Light Bulb ..................................................................................... 260
  5.12.3 Replacing Lens ............................................................................................................... 260
  5.12.4 Replacing Lamp Housing ............................................................................................... 261

Chapter 6: Options and Attachments ......................................................................................... 263

  6.1 Hold-Down Performance Kit ................................................................................................. 263
1 Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- ATTENTION!
- BECOME ALERT!
- YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

- Accidents disable and kill
- Accidents cost
- Accidents can be avoided

Figure 1.1: Safety Symbol
1.2 Signal Words

Three signal words, **DANGER**, **WARNING**, and **CAUTION**, are used to alert you to hazardous situations. Signal words are selected using the following guidelines:

⚠️ **DANGER**

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ **WARNING**

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ **CAUTION**

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.
1.3 General Safety

⚠️ CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do **NOT** take chances. You may need the following:
  - Hard hat
  - Protective footwear with slip-resistant soles
  - Protective glasses or goggles
  - Heavy gloves
  - Wet weather gear
  - Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. Never ignore warning signs of fatigue.
SAFETY

- Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.
- Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
- Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

- Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.
- Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.
- To avoid bodily injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

- Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
- Keep work area well lit.
- Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
- NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
- When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
  - Keep service areas clean and dry
  - Be sure electrical outlets and tools are properly grounded
  - Keep work area well lit

- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lubricant fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high-pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If original part on which a safety sign was installed is replaced, be sure repair part also bears current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.6.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.

Figure 1.14: Operator’s Manual Decal
1.7 Safety Sign Locations

Figure 1.15: Header Decals – Case IH

Figure 1.16: Header Decals
SAFETY

Figure 1.17: Header Decals – John Deere

Figure 1.18: Header Decals
SAFETY

Figure 1.19: Header Decals – New Holland

Figure 1.20: Header Decals
SAFETY

Figure 1.21: Header Decals – Versatile

Figure 1.22: Header Decals
Figure 1.23: Driveline and Hold-Down Decals – Case IH

Figure 1.24: Driveline and Hold-Down Decals
SAFETY

Figure 1.25: Driveline and Hold-Down Decals – John Deere

A - MD #30316
D - MD #184422 (Behind Endshield)

B - MD #191099
E - MD #237229

C - MD #36651
F - MD #237254

Figure 1.26: Driveline and Hold-Down Decals
SAFETY

Figure 1.27: Driveline and Hold-Down Decals – New Holland

A - MD #30316
B - MD #191099
C - MD #36651
D - MD #184422 (Behind Endshield)
E - MD #237229
F - MD #237254

Figure 1.28: Driveline and Hold-Down Decals
SAFETY

Figure 1.29: Driveline and Hold-Down Decals – Versatile

A - MD #30316
D - MD #184422 (Behind Endshield)

B - MD #191099
E - MD #237229

C - MD #36651
F - MD #237254

Figure 1.30: Driveline and Hold-Down Decals
1.8 Understanding Safety Signs

MD #30316
Rotating driveline

DANGER
- Rotating driveline contact can cause death—keep away!

Do NOT operate without:
- All driveline guards, tractor, and equipment shields in place.
- Drivelines securely attached at both ends.
- Driveline guards that turn freely on driveline.

Figure 1.31: MD #30316

MD #36651
Rotating driveline

DANGER
- Rotating driveline contact can cause death—keep away!

Do NOT operate without:
- Stopping the engine and removing the key before opening shield.
- All driveline guards, tractor, and equipment shields in place.

Figure 1.32: MD #36651

MD #166466
High-pressure oil hazard

WARNING
- Do NOT go near leaks.
- High pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do NOT use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

Figure 1.33: MD #166466
MD #184370
Crushing hazard

**CAUTION**
- Rest header on ground or engage cylinder safety props before going under unit.
- Failure to comply could result in death or serious injury.

MD #184371
Hand entanglement hazard

**WARNING**
- Do **NOT** operate without shields in place.
- To avoid injury, stop engine and remove key before opening shield.

MD #184372
General hazard pertaining to machine operation and servicing

**CAUTION**
To avoid injury or death from improper or unsafe machine operation:
- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do **NOT** allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
SAFETY

- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

**MD #184420**
Crushing hazard

**WARNING**
- To avoid injury from being pinned or crushed, stay clear of header while machine is operating or in motion. Failure to comply could result in death or serious injury.

**Figure 1.37: MD #184420**

**MD #184422**
Chain drive hand and arm entanglement hazard

**WARNING**
- Do NOT open or remove safety shields while engine is running.
- To avoid injury, stop the engine and remove the key before opening shield.

**Figure 1.38: MD #184422**
MD #191099
Auger entanglement hazard

CAUTION

- To avoid injury from entanglement with rotating auger, stand clear of header while machine is running.

General hazard pertaining to machine operation and servicing

CAUTION

- Read the operator’s manual and follow safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do NOT allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #237229
Header crushing hazard

WARNING

- Rest header on ground or engage cylinder safety props before going under unit.
MD #237254
Header entanglement hazard

CAUTION

• To avoid injury from entanglement with crop gathering elements, stand clear of header while machine is running.

MD #237298
Auger entanglement hazard

CAUTION

• To avoid injury from rotating auger, stand clear of auger while machine is running.
## 2 Product Overview

### 2.1 Header Specifications

#### Table 2.1 Header Specifications

<table>
<thead>
<tr>
<th>Components</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Frame and Structure</strong></td>
<td></td>
</tr>
<tr>
<td>Width to edge of tires</td>
<td></td>
</tr>
<tr>
<td>Width (transport lights extended)</td>
<td>Refer to 2.2 Header Dimensions, page 22</td>
</tr>
<tr>
<td>Depth</td>
<td></td>
</tr>
<tr>
<td>Height (transport lights extended)</td>
<td>1366 kg (3006 lb.)</td>
</tr>
<tr>
<td>Weight (not including completion packages)</td>
<td>Case IH, New Holland, John Deere, Versatile</td>
</tr>
<tr>
<td>Carrier</td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>Two amber transport</td>
</tr>
<tr>
<td>Manual storage</td>
<td>Header mounted manual storage case</td>
</tr>
<tr>
<td><strong>Pick-up</strong></td>
<td></td>
</tr>
<tr>
<td>Actual picking width</td>
<td></td>
</tr>
<tr>
<td>Draper width</td>
<td>Refer to 2.2 Header Dimensions, page 22</td>
</tr>
<tr>
<td>Quantity of pick-up fingers</td>
<td>392</td>
</tr>
<tr>
<td>Draper drives</td>
<td>Two 97 cc (5.9 cu. in.) hydraulic motors</td>
</tr>
<tr>
<td><strong>Auger</strong></td>
<td></td>
</tr>
<tr>
<td>Diameter (including flighting)</td>
<td>615 mm (24 in.)</td>
</tr>
<tr>
<td>Tube diameter</td>
<td>410 mm (16 in.)</td>
</tr>
<tr>
<td>Quantity of fingers</td>
<td>13–22</td>
</tr>
<tr>
<td>Finger diameter</td>
<td>16 mm (5/8 in.) diameter induction hardened</td>
</tr>
<tr>
<td>Speed (combine dependent)</td>
<td>141–204 rpm</td>
</tr>
<tr>
<td><strong>Driveline</strong></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Heavy duty PTO type, fully shielded with built-in clutch</td>
</tr>
<tr>
<td>Connections</td>
<td>Locking collar</td>
</tr>
<tr>
<td><strong>Tires</strong></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>18-1/2 / 8-1/2 x 8</td>
</tr>
<tr>
<td>Pressure</td>
<td>240–310 kPa (35–45 psi)</td>
</tr>
</tbody>
</table>

**NOTE:**
Specifications and design are subject to change without notice or obligation to revise previously sold units.
2.2 Header Dimensions

Figure 2.1: Header Dimensions

A - 565.8 cm (222-3/4 in.)
B - 516.9 cm (203-1/2 in.)
C - 452.3 cm (178-1/8 in.)
D - 476.6 cm (187-5/8 in.)
E - 531.8 cm (209-3/8 in.)

Figure 2.2: Header Dimensions

A - 246.1 cm (96-7/8 in.)
B - 251.3 cm (98-7/8 in.)
C - 154.4 cm (60-3/4 in.)
D - 138.1 cm (54-3/8 in.)
2.3 Component Identification

Figure 2.3: PW8 Header

A - Transport Light
D - Stripper Plate
G - Auger Pan
K - Manual Case
N - Draper Drive Motor
R - Reflector
U - Hold-Down
X - Rear Draper Deck

B - Endshield (Fixed)
E - Auger
H - Multicoupler Receptacle
L - Endshield (Latched)
P - Hold-Down Lift Cylinder
S - Handle
V - Hold-Down Fiberglass Rod
Y - Auger Flighting

C - Transition Frame
F - Auger Finger
J - Driveline
M - Hold-Down Cylinder Safety Prop
Q - Gauge Wheel
T - Draper Finger
W - Forward Draper Deck
# 2.4 Definitions

The following definitions and acronyms may be used in this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>American Petroleum Institute.</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut.</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined Gross Vehicle Weight.</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other and the fitting has been tightened to a point where the fitting is no longer loose.</td>
</tr>
<tr>
<td>F.F.F.T.</td>
<td>Flats from finger tight.</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross Vehicle Weight.</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower.</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed the standard sizing and shape for original 37° flared fitting.</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt.</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit.</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring Boss: a style of fitting commonly used in port opening on manifolds, pumps and motors.</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring Seal.</td>
</tr>
<tr>
<td>Pick-Up Header</td>
<td>A machine that attaches to a combine that picks up grain that has been cut and laid in windrows.</td>
</tr>
<tr>
<td>PTO</td>
<td>Power take-off.</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict the use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings).</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers.</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread in one of the mating parts.</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with the use of a fastener where the joining materials are compressible or experience relaxation over a period of time.</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute.</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.).</td>
</tr>
<tr>
<td>T.F.F.T.</td>
<td>Turns from finger tight.</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft).</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where the fitting is assembled to a precondition (finger tight) and then the nut is turned further a number of degrees or a number of flats to achieve its final position.</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between the assembly torque applied to a piece of hardware and the axial load it induces in the bolt or screw.</td>
</tr>
<tr>
<td>Tractor</td>
<td>Agricultural-type tractor.</td>
</tr>
<tr>
<td>Truck</td>
<td>A four-wheel highway/road vehicle weighing no less than 3400 kg (7500 lb.).</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center and is to be used as a spacer, load distribution element or a locking mechanism.</td>
</tr>
</tbody>
</table>
3 Operation

3.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the header. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety decals applied to the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Immediately correct mistakes to prevent accidents.
- Do NOT modify the machine. Unauthorized modifications may impair function and/or safety and affect machine life.
- The safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
3.2 Operational Safety

⚠️ CAUTION

- Follow all safety and operational instructions given in your combine Operator’s Manual. If you do not have a combine manual, get one from your Dealer and read it thoroughly.
- Never start or move the machine until you are sure all bystanders have cleared the area.
- To avoid bodily injury or death from unexpected startup of machine, always stop combine engine and remove key before adjusting or removing plugged material from the machine.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine.

⚠️ CAUTION

Follow proper shutdown procedure:
- Engage combine brake.
- Turn off engine and remove key.
- Wait for all movement to stop.
- Dismount and engage safety props before inspecting raised machine.
- Operate only in daylight or good artificial light.
3.3 Endshields

The endshields are molded polyethylene covers that are attached to the ends of the header. They provide shielding for the header drive components and also display the make of the combine. The left endshield is hinged to the endsheet and can be opened for routine maintenance or easily removed for major servicing. The right endshield is bolted directly to the header.

3.3.1 Opening Left Endshield

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Lower header to ground, shut down engine, and remove key from ignition.

2. Use a slotted screwdriver to unlock endshield (B) by turning latch (A) counterclockwise until it stops (slightly more than one half turn).

3. Grasp forward end of endshield (A) and pull open until support (B) engages and holds endshield in open position.

NOTE:
If additional access to the drive area is required, remove the endshield. Refer to 3.3.3 Removing Left Endshield, page 31.
3.3.2 Closing Left Endshield

1. Move endshield (A) slightly so support (B) can be moved out of the locked position.

2. Close endshield (A) ensuring magnet (B) and stop (C) in header frame are aligned. This will ensure that latch (D) aligns with receptacle (E).

   **NOTE:**
   Latch (D) and magnet (B) positions are factory-set and should not require adjustment.

3. If front of endshield needs to be raised or lowered, loosen nuts (B) on clips (C) at the back of the endshield (A), and reposition the endshield. Tighten the nuts (B).

   **IMPORTANT:**
   Do **NOT** overtighten nuts (B). Overtightening can damage the endshield.
4. Close endshield (D) and use a slotted screwdriver to turn latch (A) clockwise until it stops (slightly more than one-half turn).

**NOTE:**
When latch is fully engaged, the slot will align with notch (C), and the endshield will draw tightly against the header.

5. Check that magnet (B) on endshield is against the header endsheet and aligned with the cutout in the frame, and that latch (A) is engaged.

3.3.3 Removing Left Endshield

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Grasp forward end of endshield (C) and pull open until support (B) engages and holds endshield in open position.

2. Remove nut (A) securing support (B) to endshield (C), and move support (B) off the bolt.
3. Swing endshield (A) fully back and loosen nuts (B) on clips (C) at back of endshield so clips disengage slots in header frame.

4. Move endshield (A) away from header.

3.3.4 Installing Left Endshield

1. Hold endshield (A) up to frame and insert clips (C) into slots in header frame.

2. Tighten nuts (B) on clips (C) just enough to hold endshield in place.

3. Close endshield (A) ensuring magnet (B) and stop (C) in header frame are aligned. This will ensure that latch (D) aligns with receptacle (E).

   **NOTE:**
   Latch (D) and magnet (B) positions are factory-set and should not require adjustment.

4. If adjustment is necessary, loosen nuts on clips installed in Step 1, page 32 and reposition the endshield (A). Tighten nuts but do **NOT** overtighten. Over tightening nuts can damage the endshield.
5. Open the endshield (C) slightly so the support (B) can be installed onto endshield. Check that washer (D) is between the support and the endshield.

6. Install nut (A), leaving a gap of 8–10 mm (5/16–3/8 in.) between the nut and washer (D), which allows support (B) to move.

7. Move endshield (A) slightly so support (B) can be moved out of the locked position.

8. Close endshield (D) and use a slotted screwdriver to turn latch (A) clockwise until it stops (slightly more than one-half turn).

**NOTE:**
When latch is fully engaged, the slot will align with notch (C), and the endshield will draw tightly against the header.

9. Check that magnet (B) on endshield is against the header endsheet and aligned with the cutout in the frame, and that latch (A) is engaged.
3.3.5 Removing Right Endshield

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground, shut down engine, and remove key from ignition.

2. Remove nuts and bolts at location (A) attaching endshield lower brackets to header frame.

3. Remove nuts and bolts at location (B) attaching endshield upper brackets to header frame.
3.3.6 Installing Right Endshield

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground, shut down engine, and remove key from ignition.

2. Position endshield against the frame, and install bolts (B) and nuts to attach endshield upper brackets to frame. Do NOT tighten nuts.

3. Install bolts (A) and nuts to attach endshield lower brackets to frame.

4. Tighten all hardware.
3.4 Header Lift Cylinder Safety Props

Refer to your combine operator’s manual.

IMPORTANT:
Always engage combine safety props before working on header in elevated position.
3.5 Engaging Hold-Down Lift Cylinder Safety Props

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:
John Deere combines use the fore/aft circuit to control the hold-down cylinders.

IMPORTANT:
To prevent damage to hold-down support arms, do NOT transport header with cylinder safety props engaged.

1. Raise hold-down (A) to maximum height.

2. Remove retaining pin (A) from safety prop.

3. Raise safety prop (B) to engaged position.

4. Install retaining pin (A) onto safety prop (B).

5. Lower hold-down (C) onto safety prop (B).
3.6 Daily Start-Up Check

**CAUTION**

- Ensure combine and header are properly attached, all controls are in neutral and combine brake is engaged.
- Clear the area of other persons, pets, etc. Keep children away from machinery. Walk around the machine to make sure no one is under, on, or close to it.
- Wear close-fitting clothing and protective shoes with slip-resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that could be necessary through the day. Don’t take chances. You may need a hard hat, protective glasses or goggles, heavy gloves, a respirator or filter mask, or wet weather gear.
- Protect against noise. Wear suitable hearing protection devices such as ear muffs or ear plugs to help protect against objectionable or loud noises.

Perform the following checks each day before startup:

1. Check the machine for leaks or any parts that are missing, broken, or not working correctly.

   **NOTE:**
   Use proper procedure when searching for pressurized fluid leaks. Refer to 5.9.5 Hydraulic Hoses and Lines, page 248.

2. Clean all lights and reflective surfaces on the machine, and check lights for proper operation.
3. Perform all daily maintenance. Refer to 5.2.1 Maintenance Schedule/Record, page 164.
3.7 Shutting down the Machine

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

Before leaving the combine seat for any reason, follow this entire procedure:

1. Park on level ground if possible.
2. Lower the header fully.
3. Place all controls in neutral, and engage combine brake.
4. Stop engine and remove key from ignition.
5. Wait for all movement to stop.
3.8 Break-In Period

CAUTION

Before investigating an unusual sound or attempting to correct a problem, shut off engine, engage parking brake, and remove key.

1. After attaching header to combine for the first time, operate the machine at low speed for five minutes while carefully watching and listening from the operator’s seat for binding or interfering parts.

2. Refer to 5.2.1 Maintenance Schedule/Record, page 164 and perform items listed under heading 10 Hours.

NOTE:

Until you become familiar with the sound and feel of your new header, be extra alert and attentive.
3.9 Changing Header Opening

To minimize setup at the dealership, PW8 Pick-Up Headers are factory-configured to suit a particular combine make, model, and feeder house size. Each header configuration includes the parts and hardware needed to fit a different combine model within the same brand family. Refer to the following chart:

**NOTE:**
The conversion procedure is included in the Unloading and Assembly Instruction provided with the header.

<table>
<thead>
<tr>
<th>Table 3.1 Combine Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Factory Header Configuration</strong></td>
</tr>
<tr>
<td>Combine Make</td>
</tr>
<tr>
<td>Case IH</td>
</tr>
<tr>
<td>John Deere</td>
</tr>
<tr>
<td>New Holland</td>
</tr>
<tr>
<td>Versatile</td>
</tr>
</tbody>
</table>

OPERATION
3.10 Header Attachment and Detachment

This section provides instructions for attaching/detaching the PW8 Pick-Up Header to/from the combines listed in Table 3.2, page 42.

Table 3.2 Attaching PW8 Header to Combine

<table>
<thead>
<tr>
<th>Combine</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IH</td>
<td>3.10.1 Case IH, page 42</td>
</tr>
<tr>
<td>John Deere 60, 70, and S Series</td>
<td>3.10.2 John Deere 60, 70, S, and T Series, page 49</td>
</tr>
<tr>
<td>New Holland CR and CX</td>
<td>3.10.3 New Holland CR/CX Series Combine, page 56</td>
</tr>
<tr>
<td>Versatile</td>
<td>3.10.4 Versatile, page 61</td>
</tr>
</tbody>
</table>

3.10.1 Case IH

This section provides instructions for attaching/detaching the PW8 Pick-Up Header to/from Case IH 50/60/7088, 51/61/7130, 51/61/7140, 70/8010, 71/81/9120, 72/82/9230, and 72/82/9240 combines.

**Attaching to Case IH Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Pull handle (A) on combine to raise hooks (B) on both sides of the feeder house.
2. Drive combine slowly up to header until feeder house saddle (A) is directly under the header top beam (B).

3. Raise feeder house slightly to lift header ensuring feeder house saddle (A) is properly engaged in header frame.

4. Stop engine, and remove key from ignition.

5. Lift lever (A) on header at left side of feeder house and push handle (B) on combine to engage locks (C) on both sides of the feeder house.

6. Push down on lever (A) so that slot in lever engages handle (B) to lock handle in place.

7. If locks (C) do not fully engage the spacer tube and bolt on the header, loosen nut (E) and adjust position of the spacer tube and bolt (D) as necessary (both sides). Tighten nut.

8. Loosen bolts (F) and adjust lock as required to obtain full lock on spacer tube and bolt (D) when lift lever (A) and handle (B) are engaged. Retighten bolts.
9. Rotate disc (B) on header driveline storage hook (A) and remove driveline from hook.

10. Pull back collar (A) on end of driveline and push onto combine output shaft (B) until collar locks.

11. Open cover (A) on header receptacle.

12. Push in lock button (B) and pull handle (C) upward to fully open position.

13. Remove coupler (D) from combine, and clean mating surfaces.
14. Position coupler (A) onto header receptacle and push handle (B) downward to engage coupler pins in receptacle.

15. Push handle to closed position until lock button (C) snaps out.

16. Open cover (D) on header electrical receptacle.

17. Remove electrical connector (E) from storage cup on combine.

18. Align lugs on electrical connector (E) with slots in receptacle, push connector onto receptacle, and turn collar on connector to lock it in place.

**Detaching from Case IH Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Choose a level area, and position the header slightly off the ground.

2. Stop the engine and remove the key from the ignition.

3. Push in lock button (C), and pull handle (B) upward to release coupler (A).
4. Position coupler (A) onto storage plate (B) on combine.

5. Disconnect electrical connector (A) from header.

6. Place electrical connector (A) into storage cup (B) on combine.
7. Close cover on header electrical receptacle (A).
8. Push handle (B) on header down into storage position until lock button (C) snaps out.
9. Close cover (D).

10. Open driveshield (A) on combine.
11. Pull back collar (B) on driveline (C), and remove driveline from combine.
12. Slide driveline into storage hook (A) on header and rotate disc (B) to secure driveline.

13. Close driveshield (A) on combine.

14. Lift lever (A) and pull and lower handle (B) to disengage feeder house/header lock (C).

15. Lower feeder house until it disengages from header support.

16. Slowly back combine away from header.
3.10.2 John Deere 60, 70, S, and T Series

This section provides instructions for attaching/detaching the PW8 Pick-Up Header to/from John Deere 96/97/9860STS, 96/97/9870, S650/660/670/680/690, 9660WTS, and T670 combines.

**Attaching to John Deere 60, 70, S, and T Series Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Push handle (A) on combine coupler toward feeder house to retract pins (B) at bottom corners of feeder house.

2. Drive combine slowly up to header until feeder house saddles (A) are directly under the header top beam (B).

3. Raise feeder house to lift header ensuring feeder house saddles (A) are properly engaged in header frame.

4. Position header slightly off the ground, stop engine, and remove key from ignition.
5. Open driveshield (A) on combine feeder house.

6. Rotate disc (B) on header driveline storage hook (A) and remove driveline from hook.

7. Pull back collar (A) on end of driveline and slide driveline on feeder house driveshaft until the collar locks.

8. Close feeder house driveshield.
9. Remove cover (A) from combine multicoupler receptacle.

10. Pull handle (A) on header to release multicoupler (B) from storage position, remove coupler, and push handle back into header to store.

11. Place coupler (A) onto combine receptacle.

12. Pull out knob (B) to release handle, and pull handle (C) to engage pins in coupler.
13. Pull handle (A) from vertical to fully horizontal position to fully engage multicoupler and to extend pins (B) at base of feeder house into the locking plates (C). Knob (D) will engage lock handle.

NOTE:
If handle does not move to fully horizontal position, check alignment of locking plates (A) on the header with locking pins (B) on both sides of the feeder house. If necessary, loosen nuts (C) and adjust plates (A) to line up with pins (B). Retighten nuts.
Detaching from John Deere 60, 70, S, and T Series Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Choose a level area, and position the header slightly off the ground.
2. Stop the engine and remove the key from the ignition.
3. Pull out knob (A) on combine multicoupler, and move handle (B) toward feeder house to release coupler (C) from combine and to retract locking pins at base of feeder house.

4. Lower handle (A) on header, and position coupler (B) onto header as shown.

Figure 3.47: Releasing Multicoupler

Figure 3.48: Replacing Coupler
5. Raise handle (A) to lock coupler.
6. Open feeder house driveshield (B).

7. Pull back collar (A) on driveline, and remove driveline from combine output shaft.

8. Slide driveline into storage hook (A) on header and rotate disc (B) to secure driveline.
10. Lower feeder house until saddle (B) disengages and clears header top beam (C).
11. Slowly back combine away from header.
3.10.3 New Holland CR/CX Series Combine

This section provides instructions for attaching/detaching the PW8 Pick-Up Header to/from all New Holland CR/CX Series combines.

**Attaching to New Holland CR/CX Series Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Pull handle (A) on combine to raise hooks (B) on both sides of the feeder house.

2. Drive combine slowly up to header until feeder house saddle (A) is directly under the header top beam (B).

3. Raise feeder house to lift header, ensuring feeder house saddle (A) is properly engaged in header frame.

![Figure 3.53: Feeder House Locks](image1)

![Figure 3.54: Header on Combine](image2)
4. Lift lever (A) on header at left side of feeder house and push handle (B) on combine so that hooks (C) engage pins (D) on both sides of the feeder house.

5. Push down on lever (A) so that slot in lever engages handle (B) to lock handle in place.

6. Loosen nut (E) and adjust position of pin (D) as necessary (both sides) if locks (C) do not fully engage pins (D) on header. Tighten nut.

7. Loosen bolts (F) and adjust lock as required to obtain full lock on pin (D) when lift lever (A) and handle (B) are engaged. Retighten bolts.

8. Rotate disc (B) on header driveline storage hook (A) and remove driveline from hook.
9. Pull back collar (B) on end of driveline and push onto combine output shaft (A) until collar locks.

10. Open cover (A).

11. Push in lock button (B) and pull handle (C) halfway up to open position.

12. Remove coupler (A) from storage location on combine and clean mating surface of coupler.
13. Position coupler onto header receptacle (A) and push handle (B) downward to engage pins into receptacle.

14. Push handle (B) to closed position until lock button (C) snaps out.

15. Open cover (D) on header electrical receptacle.

16. Remove electrical connector (E) from combine.

17. Align lugs on electrical connector (E) with slots in header receptacle, push connector onto receptacle, and turn collar on connector to lock it in place.

---

**Detaching from New Holland CR/CX Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Choose a level area, and position the header slightly off the ground.

2. Stop the engine and remove the key from the ignition.

3. Push in lock button (C), and pull handle (B) upward to release coupler (A).

4. Remove coupler (A) from header receptacle.
5. Position coupler (A) onto storage plate (B) on combine.

6. Disconnect electrical connector from header, and place in storage cup (C) on combine.

7. Close cover (A) on header hydraulic receptacle, and cover (B) on electrical receptacle.

8. Push handle (C) on header down into storage position until lock button (D) snaps out.

9. Pull back collar (A) on driveline (B) and remove driveline from combine.
10. Slide driveline into storage hook (A) on header and rotate disc (B) to secure driveline.

11. Lift lever (A) and pull and lower handle (B) to disengage feeder house/header lock (C).

12. Lower feeder house until it disengages from header support.

13. Slowly back combine away from header.

### 3.10.4 Versatile

This section provides instructions for attaching/detaching the PW8 Pick-Up Header to/from Versatile RT490 combines.

**Attaching to Versatile Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Check that pins (A) at lower corners of header opening are retracted.

2. Drive combine slowly up to header until feeder house posts (A) are directly under the header top brackets (B).

3. Raise feeder house to lift header, ensuring posts (A) are properly engaged around the header frame (B).

4. Position header slightly off the ground, stop the engine, and remove the key from the ignition.

5. Grasp handle (A) and slide pin (B) into the feeder house receptacle (C) until pin stop (D) drops down to lock the pin (see inset). Ensure pin is engaged on the opposite side of the feeder house.

6. If pin (B) does not align with feeder house receptacle (C), or if alignment of the header pan and bottom of feeder house opening is unacceptable, reposition the top beam by performing Step 7, page 62 to Step 12, page 63.

   **NOTE:**
   If pin aligns with feeder house receptacle (C), proceed to Step 14, page 64.

7. Measure the misalignment between pin (B) and the feeder house receptacle (C).

8. Lower header to the ground until the feeder house disengages the top beam.
9. Loosen the seven bolts (A) along the top beam (B) on the auger side of the header.

10. Loosen the seven bolts (A) along the top beam (B) on the back side of the header.

11. Move support channel (A) according to measurement in Step 7, page 62 to achieve proper alignment of locking pin and feeder house receptacle.

12. Tighten all bolts.

14. Rotate disc (B) on the header driveline storage hook (A), and remove driveline from the hook.

15. Pull back collar (A) at the end of driveline and push onto the combine output shaft (B) until collar locks.

16. Open cover (A) on header receptacle.

17. Push in lock button (B) and pull handle (C) upward to fully open position.
18. Remove coupler (A) from combine and clean mating surfaces.

19. Position coupler (A) onto header receptacle and push handle (B) downward to engage coupler pins into receptacle.

20. Push handle to closed position until lock button (C) snaps out.

21. Open cover (D) on header electrical receptacle.

22. Remove electrical connector (E) from storage cup on combine.

23. Align lugs on electrical connector (E) with slots in receptacle, push connector onto receptacle, and turn collar on connector to lock it in place.

**Detaching from Versatile Combine**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Choose a level area, and position the header slightly off the ground.

2. Stop the engine and remove the key from the ignition.
3. Push in lock button (C), and pull handle (B) upward to release coupler (A).
4. Remove coupler (A) from header receptacle.

5. Position coupler (A) onto storage plate (B) on combine.
6. Disconnect electrical connector from header, and place in storage cup (C) on combine.

7. Close cover (A) on header hydraulic receptacle, and cover (B) on electrical receptacle.
8. Push handle (C) on header down into storage position until lock button (D) snaps out.
9. Pull back collar on driveline (A) and remove driveline from combine.

10. Slide driveline into storage hook (A) on header and rotate disc (B) to secure driveline.

11. Rotate pin stop (C) from lowered position (see inset), and disengage pin (B) from feeder house using handle (A).
12. Start combine and lower header to ground until feeder house posts (A) disengage from header.
13. Slowly back combine away from header.
3.11 Header Transport

Refer to your combine operator’s manual for transporting headers when attached to the combine.

3.11.1 Transport Lights

The transport lights (A), which are mounted on both ends of the header, are activated by switches inside the combine cab. They function as flashing amber hazard lights and turn signals, and should be positioned perpendicular to the endsheet.

Refer to your combine operator’s manual for operating instructions.

Figure 3.85: Transport Lights
3.12 Header Operation

Satisfactory operation of the header in all situations requires making proper adjustments to suit various crops and conditions.

Proper operation reduces crop loss and increases productivity, and proper adjustments and timely maintenance will increase the length of service you receive from your machine.

The variables listed in Table 3.3, page 70 and detailed on the following pages will affect header performance.

You will quickly become adept at adjusting the machine to achieve the results you desire. Most of the adjustments have been preset at the factory, but the settings can be changed to suit crop conditions.

**Table 3.3 Operating Variables**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating speed</td>
<td>3.12.1 Operating Speed, page 70</td>
</tr>
<tr>
<td>Auger speed</td>
<td>Auger Speed, page 72</td>
</tr>
<tr>
<td>Stripper plates</td>
<td>Stripper Plate Clearance, page 77</td>
</tr>
<tr>
<td>Auger position</td>
<td>Checking Auger Position, page 72</td>
</tr>
<tr>
<td>Header height</td>
<td>Header Height, page 79</td>
</tr>
<tr>
<td>Pick-up height</td>
<td>Pick-Up Height, page 80</td>
</tr>
<tr>
<td>Header flotation</td>
<td>3.12.4 Adjusting Header Float, page 82</td>
</tr>
<tr>
<td>Hold-down position</td>
<td>Hold-Down Position, page 84</td>
</tr>
<tr>
<td>Hold-down rod angle</td>
<td>Adjusting Hold-Down Rod Angle, page 85</td>
</tr>
<tr>
<td>Draper belt tension - front</td>
<td>Adjusting Front Draper Belt Tension, page 88</td>
</tr>
<tr>
<td>Draper belt tension - rear</td>
<td>Adjusting Rear Draper Belt Tension, page 90</td>
</tr>
</tbody>
</table>

3.12.1 Operating Speed

Performance of the pick-up header in various crop and field conditions largely depends upon the speed at which the drapers are turning and the forward speed of the combine.

- If the swath is pushed ahead, the draper speed is too low and some of the crop may remain unpicked.
- If the swath is torn apart and is pulled toward the combine header, the draper speed is too high and uneven combine feeding will occur.

Optimum pick-up speed for most conditions generally results when the swath is always being pushed slightly ahead.

Draper speed is adjusted from the combine cab by regulating oil flow to the pick-up hydraulic motors, typically by using the reel speed controls for the combine. The ratio of pick-up speed to combine ground speed can be set using the combine header controls. Refer to your combine operator’s manual.

**IMPORTANT:**

Do NOT overspeed pick-up. Overspeeding causes premature wear of drive components and adversely affects pick-up performance.
The following operating speed is suggested:

**Front and Rear Deck Aft Roller:** 51 rpm per 1.6 km/h (1 mph) of combine ground speed.

**Example:** For combining at 8 km/h (5 mph), the rear roller shaft should run at 51 x (8/1.6) = 255 rpm (51 x 5 mph = 255 rpm).

**Adjusting Draper Speed**

Draper speed is determined by measuring the rpm of the aft roller on the rear pick-up deck.

1. Check the aft roller (A) rpm with a handheld tachometer and adjust with the reel speed control in the combine.

   **NOTE:**
   Some combines are equipped with a speed sensor (B) that displays the roller rpm inside the combine cab.

![Figure 3.86: Draper Roller and Speed Sensor](image)
3.12.2 Auger Operation

Auger Speed

The header is equipped with an auger drive sprocket to match the combine. The auger is chain-driven by a direct connection to the feeder house, and auger speed depends on the feeder house speed. You can adjust auger speeds from the combine to suit crop conditions. Contact your Dealer for available sprocket options.

Refer to Auger Drive Sprockets, page 190 for instructions on changing the sprocket.

Checking Auger Position

The auger position is critical for a smooth, high-capacity flow of crop into the feeder house. It is factory-set for normal crop conditions, but it may require adjustment for different crops and conditions. Check the auger position prior to operating the pick-up header to ensure the auger rotates freely without touching the auger pan or stripper bars.

1. Ensure clearance (A) between the auger flighting (B) and pan (C) is 5–14 mm (3/16–9/16 in.).

2. Ensure clearance (A) between the auger fingers (B) and pan (C) is 20–25 mm (13/16–1 in.).
OPERATION

Adjusting Auger Position

The auger is adjustable on both ends in order to maintain uniform clearance across the entire width of the header.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down combine, and remove key from ignition.

   **NOTE:**
   Access the auger/pan area from the top of the header.

   Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

2. Loosen two nuts (A) on auger stops at both ends of header.

3. Loosen jam nuts (B) on adjuster bolts (C).

4. Turn adjuster bolt (C) to raise or lower auger.

5. Manually rotate the auger to check for interference and to check clearance between the auger flighting and auger pan. Adjust if necessary.

6. Tighten jam nuts (B) and downstop nuts (A).

7. Check clearance between auger flighting and stripper plates and adjust if necessary. Refer to Stripper Plate Clearance, page 77.

Figure 3.89: Left Endshield

Figure 3.90: Left Side Auger Stop
Auger Float

The auger has an upward float range of 74 mm (3 in.), but it can be locked to operate in rigid-header mode.

Locking Auger Float

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground, shut down the combine, and remove the key from the ignition.

2. Open the left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.
3. Loosen two bolts (A) on auger upstops (B) at the left side of header.
4. Slide the stops (B) downwards until they contact the rubber blocks (C) on the auger arm.
5. Tighten bolts (A).

6. Loosen two bolts (A) on auger upstops (B) at the right side of header.
7. Slide the stops (B) downwards until they contact the rubber blocks (C) on the auger arm.
8. Tighten bolts (A).

9. Close the left endshield (A). Refer to 3.3.2 Closing Left Endshield, page 30.
Unlocking Auger Float

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground, shut down the combine, and remove the key from the ignition.
2. Open the left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

3. Loosen the two bolts (A) on auger upstops (B) at the left side of header.
4. Slide stops (C) upwards to desired float range.
5. Tighten bolts (A).
6. Loosen the two bolts (A) on auger upstops (B) at the right side of header.

7. Slide stops (C) upwards to desired float range.

8. Tighten bolts (A).

9. Close the left endshield (A). Refer to 3.3.2 Closing Left Endshield, page 30.

**Stripper Plate Clearance**

The header is equipped with a pair of stripper plates (A) located on either side of the center opening. The stripper plates are designed to minimize crop carryover behind the auger, but they require proper adjustment.

Stripper plate clearance is factory-set to 3–8 mm (1/8–5/16 in.).

**NOTE:**

- If the clearance between the flighting and stripper plates is too large, crop has a tendency to wrap around the auger and disrupt the crop flow into the combine.
- If the clearance is too little, the auger flighting may contact the stripper plates and cause excessive wear to the flighting and stripper plates.
Checking Stripper Plate Clearance

Check the stripper plate clearance whenever the auger position is changed, and adjust if necessary.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Lower the header to the ground, shut down the combine, and remove the key from the ignition.
2. Rotate the auger manually to check for interference and to check the clearance between the auger flighting (A) and stripper plates (B).

   **NOTE:**
   Access the auger/stripper plate area from the top of the header.
3. Run the header slowly, and listen for contact between the auger flighting (A) and the stripper plates (B). Gradually increase speed until the header is at full speed. If there is contact between the auger flighting and the stripper plates, adjust the stripper plate clearance. Refer to Adjusting Stripper Plate Clearance, page 78.

**Adjusting Stripper Plate Clearance**

1. Loosen nuts (A) on the stripper plate (B), and adjust the stripper plate to achieve clearance (C) of 3–8 mm (1/8–5/16 in.).
2. Tighten nuts (A).
3. Recheck clearance.
3.12.3 Operating Height

Header Height

Header height is the distance between the deck pivot and the ground. Recommended operating height (A) is between 4 and 5 on the end plate decal or 305 mm (12 in.) above the ground.

Header height adjustments are made using the combine header height control. The numbered decals (A) on both sides of the header indicate the header operating height if the combine is not equipped with an in-cab header height display.

The position of the end plate (B) on the numbered decals (A) represents the header height. Setting the end plate position between 4 and 5 will achieve the recommended operating height of 305 mm (12 in.).

NOTE:
Position 1 represents the lowest header height and position 7 represents the highest.

If your combine is factory equipped with auto header height control (AHHC), refer to the following operating and adjustment information. If AHHC is not functioning properly, the sensor output voltage or header height range may require adjustment. For more information, refer to 4.1 Auto Header Height Control (AHHC) System Overview, page 95.

1. Ensure the optimum operating height is 305 mm (12 in.) off the ground under normal conditions and with the AHHC set to the NEUTRAL position.
2. Use the AHHC to change the pick-up operating height to suit your specific crop condition. Refer to your combine operator’s manual for details.
3. If the AHHC sensor requires adjustment, refer to 4.1 Auto Header Height Control (AHHC) System Overview, page 95.
**Pick-Up Height**

Pick-up height (A) is the distance between the pick-up finger and the ground.

The recommended pick-up height is 25 mm (1 in.), but it may need to be adjusted to suit field conditions. The following symptoms indicate that an adjustment is necessary:

- If the pick-up leaves material in the swath, the pick-up height is too high.
- If the pick-up fingers are wearing quickly or are picking up dirt and stones, the pick-up height is too low.

**Adjusting Pick-Up Height**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Check that tire pressure is set to 240–310 kPa (35–45 psi).
2. Adjust the operating height (A) until the rear roller is 305 mm (12 in.) off the ground. Refer to **Header Height**, page 79.
3. Check the pick-up height (A). Refer to Pick-Up Height, page 80, and complete Steps 4, page 81 to 10, page 81, if adjustment is necessary.

4. Use the combine controls to fully raise the header and take the load off the wheels.

5. Engage the combine lift cylinder safety props.

6. Stop the engine and remove the key from the ignition.

7. Loosen the two bolts (A) securing the wheel spindle assembly (B) to the front of the pickup.

8. Rotate the wheel spindle assembly (B) to raise or lower the wheel and achieve the desired draper finger clearance to the ground.

   **NOTE:**
   The pick-up is factory-set to position number 2 to provide 25 mm (1 in.) clearance to the ground. Rotating the wheel spindle assembly (A) towards position 1 will lower the wheel and provide more finger to ground clearance. Rotating towards position 3 will raise the wheel and provide less finger to ground clearance.


10. Repeat Step 4, page 81 to Step 9, page 81 for the opposite side.

11. Adjust the auto header height control (AHHC) if necessary. Refer to 4.1 Auto Header Height Control (AHHC) System Overview, page 95.
3.12.4 Adjusting Header Float

Header float is factory set, but it can be adjusted if the wheel ground pressure is higher than desired or if it is too light and the wheels don’t follow ground terrain.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Attach the header to the combine feeder house and ensure it is latched securely. It is not necessary to hook up the driveline or hydraulics. Refer to the relevant combine attaching procedure:
   - Attaching to Case IH Combine, page 42
   - Attaching to John Deere 60, 70, S, and T Series Combine, page 49
   - Attaching to New Holland CR/CX Series Combine, page 56
   - Attaching to Versatile Combine, page 61

2. Lower combine feeder house so the front draper deck is rotated upwards to full floated-up position. Header frame will be close to the ground and coil spring will be fully collapsed.

   NOTE:
   Spring tension is factory-set to the second hole from the bottom on the float anchor.

3. Shut down the combine, and remove the key from the ignition.

4. Open the left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

   NOTE:
   The right side spring float assembly can be removed or adjusted without removing the right endshield. For improved accessibility, however, remove four M12 carriage bolts and hex flange nuts from the endshield support (not shown), and remove the right endshield.

Figure 3.109: Left Endshield
5. Check that all spring tension is released from the spring float assembly (A). Remove cotter pin (B), clevis pin (C), and three flat washers (D).

**NOTE:**
When spring tension is fully released, spring coils should be fully collapsed and the spring float assembly should rock from side to side when moved by hand. If pressure on the clevis pin persists, slightly raise or lower the header.

6. Move spring float assembly (A) to float anchor holes (B) to make wheel ground pressure lighter, or move spring float assembly to float anchor hole (C) to make wheel ground pressure heavier.

**IMPORTANT:**
The left and right spring float assemblies must be set to the same anchor hole position or draper deck damage could result.

**NOTE:**
If the spring float assembly (A) hole does not align with float anchor holes (B) and (C), raise or lower header as necessary.

7. Insert clevis pin (A) from the inboard side through the rod end of spring float assembly (B), three flat washers (C), and anchor (D) as shown. Secure with cotter pin (E).

8. Repeat procedure for opposite side of header, ensuring that left and right spring float assemblies are set to the same anchor hole position on header.

9. Close left endshield. For instructions, refer to 3.3.2 Closing Left Endshield, page 30.

10. Replace right endshield if previously removed.
3.12.5 Hold-Downs

Hold-downs help crop to transition smoothly from the drapers to the auger and can be adjusted for crop conditions.

**Hold-Down Position**

Hold-down position refers to the position of the fiberglass rods (A) with respect to the swath and can be adjusted according to crop conditions.

The fiberglass rods (A) not only ensure that contact between the swath and pick-up belts is maintained, they also guide the crop under the auger. Applying constant downward pressure to the crop assists with pick-up performance.

Adjust the hold-down position using the combine reel height control according to the following crop conditions:

1. Short crop
2. Average crop
3. Heavy crop

**IMPORTANT:**

Before reversing the combine feeder house to unplug the feeder, fully raise the hold-down.
Adjusting Hold-Down Rod Angle

The angle between the fiberglass rods (C) and the hold-down support arms is factory-set to optimize crop flow into the combine. The factory setting should be satisfactory for most crop conditions, but the rods are adjustable if necessary.

1. Loosen two hex head M12 nuts (A) on both ends of the hold-down crossbar (B) until the crossbar rotates.
2. Rotate the crossbar (B) to the desired angle using handle (D).
3. Tighten nuts (A).

3.12.6 Crop Deflectors

When there is a tendency for stems to collect under the hold-down support arm pivot, crop deflectors can be installed. They are bolted to the frame inside the left endsheet for shipment from the factory and should have been removed at the dealership during setup and installed or retained by the Operator. Under no circumstances should the header be run until the crop deflectors are removed from inside the header drive compartment.

⚠️ CAUTION

To avoid damage to the header drive, do NOT operate the header with the crop deflectors bolted in the shipping location inside the header drive compartment.

Removing Crop Deflectors from Field Position

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower hold-down.
2. Lower header to the ground, shut down combine, and remove key from ignition.
3. Remove two M12 x 25 bolts (B) and nuts and remove crop deflector (A).
4. Repeat for opposite side.
5. Store deflectors and hardware in combine cab or an alternative safe location.

Installing Crop Deflectors

1. Retrieve crop deflectors from combine cab or previously stored location.
2. Lower hold-down.
3. Lower header to the ground, shut down combine, and remove key from ignition.
4. Position crop deflector (A) onto the header endsheet and secure with two M12 x 25 bolts (B) and nuts provided in the bag.

   **NOTE:**
   Bolt heads must face inboard.
5. Repeat Step 4, page 86 for the opposite deflector.
3.12.7 Draper Belt Tension

The pick-up draper belt tension is set at the factory but should be checked before operating.

**NOTE:**
- There should be visible sag in the underside of the draper.
- Draper tension needs to be set only to prevent slippage.
- Drapers may be sticky when new. Talcum or baby powder applied to the drapers should help reduce stickiness.

*Checking Draper Belt Tension*

**DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

**NOTE:**

Drapers may be sticky when new. Talcum or baby powder applied to the drapers should help reduce stickiness.

1. Raise the header fully and engage the combine safety props.
2. Stop engine and remove key from ignition.
3. Ensure drapers are visible through slots (A). Proper tension is achieved when the draper aligns with indicator notch in slots (A).

**IMPORTANT:**

For proper draper tracking, ensure deck indicator (B) is in the same position on both sides of the header.

If adjustment is required, refer to *Adjusting Front Draper Belt Tension, page 88* or *Adjusting Rear Draper Belt Tension, page 90*.

![Figure 3.117: Draper Tension Indicator](image)
**Adjusting Front Draper Belt Tension**

Draper belt tension is factory-set, but it should be checked before operating.

The stepped position indicator gauges are used to precisely align each side of the front and rear decks. Each notch (A) represents an adjustment of 1 mm (3/64 in.).

1. Loosen three clamp bolts (A) on each side of the header.
2. Loosen jam nut (B) on the left side.
3. Turn adjuster nut (C) to set the draper tension. Proper tension is achieved when the draper lines up with indicator notch (D).

**IMPORTANT:**

Do **NOT** tighten draper above the indicator notch (D). Drapers only need to be tight enough to prevent slippage.

Overtightening drapers may result in the following:

- Joining bolts pulling out of draper
- Damage to the rollers or bearings
- Twisting and wrinkling of drapers

4. Note the position of the stepped position indicator gauge (E).
5. Loosen jam nut (A) on the right side of the header, and turn adjuster nut (B) until the position of stepped position indicator gauge (C) is identical to the left side.

6. Tighten three clamp bolts (A) and jam nut (B) on both sides of the header.
Adjusting Rear Draper Belt Tension

The stepped position indicator gauges are used to precisely align each side of the front and rear decks. Each notch (A) represents an adjustment of 1 mm (3/64 in.).

1. Loosen two clamp bolts (A) on the left side.
2. Loosen jam nut (B).
3. Turn adjuster nut (C) to set draper tension. Proper tension is achieved when the draper lines up with indicator notch (D).

**IMPORTANT:**
Do **NOT** tighten draper above the indicator notch (D). Drapers only need to be tight enough to prevent slippage.
Overtightening drapers may result in the following:
- Joining bolts pulling out of draper
- Damage to the rollers or bearings
- Twisting and wrinkling of drapers

4. Tighten clamp bolts (A) and jam nut (B).
5. Note the position of indicator (E) and set the right side to the same position.
6. Loosen three clamp bolts (A) on the right side.
7. Loosen jam nut (B).
8. Turn adjuster nut (C) until the position of the indicator notch (D) is exactly the same as the left side.
9. Tighten clamp bolts (A) and jam nut (B).
3.12.8 Driveline

Clutch

The header-to-combine driveline contains a radial pin clutch (A) that provides protection against overload. When the auger encounters an obstruction, an overload occurs and the clutch slips while making a rattling sound and pulsating action. Frequent slippage of more than 2 or 3 seconds may result in clutch damage.

IMPORTANT:
Prolonged operation of the header with the clutch slipping will cause damage to the header and/or clutch.

If the clutch becomes permanently damaged, it must be replaced. Refer to *Replacing Driveline Clutch, page 175*.

Driveline Guard

⚠️ DANGER

To avoid serious injury or death, do NOT operate machine if guard is missing or not in place.

The driveline guard (A) must always remain attached to the driveline. Tethers (light chains) (B) on either end of the driveline guard prevent the guard from rotating. Remove the guard for maintenance purposes only (refer to *Removing Driveline Guard, page 175*).
3.13 Unplugging the Header

⚠ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Stop forward movement of the combine and disengage the header.
2. Fully raise the hold-down.
3. Disengage the pick-up draper drive.

IMPORTANT:

- To prevent damage to the feeder motor, do NOT engage the feeder reverser for more than five seconds if the feeder and auger will not turn.
- To prevent damage to the hold-down rods, raise hold-down assembly before reversing the header.

4. Run the feeder backwards using the reverse controls inside the combine cab to clear the plug.
3.14  Adjusting the Pan Seal Assembly

The flap provides a tighter seal to the rear draper, but the draper connection hardware will eventually wear down the rubber flap. If plugging occurs between the rear draper and the pan seal bar, the rubber flap can be removed to eliminate the pan seal.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

To eliminate the pan seal:

1. Raise the header fully and engage the combine safety props.
2. Stop the engine and remove the key from the ignition.
3. Remove eight M12 carriage bolts and hex flange nuts (A) from support (B) and pan seal bar (C), and remove rubber flap (D).
4. Store rubber flap (D) for reinstallation, or flip rubber flap upside down, install eight M12 carriage bolts and hex flange nuts (A) through support (B), hole (E) in rubber flap, and pan seal bar (C), and torque to 54–68 Nm (40–50 lbf·ft).

Figure 3.128: Pan Seal Assembly
3.15 Storing the Header

Perform the following tasks before storing the header at the end of each operating season:

⚠️ **CAUTION**

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

1. Clean the header thoroughly.
2. Store the machine in a dry, protected place if possible. If storing outside, cover the header with a waterproof canvas or other protective material.
3. Raise the header and engage the header lift cylinder safety props on combine.
4. Use blocks under the header (if possible) to take the weight off the tires.
5. Repaint all worn or chipped painted surfaces to prevent rust.
6. Lubricate the header thoroughly, leaving excess grease on fittings to keep moisture out of bearings.
7. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.
8. Check for worn components and repair as necessary.
9. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at the beginning of next season.
10. Replace or tighten any missing or loose hardware. Refer to 8.1 Torque Specifications, page 273.
4 AHHC System

4.1 Auto Header Height Control (AHHC) System Overview

MacDon’s AHHC feature works in conjunction with the AHHC option available on certain combine models.

NOTE:
This section does not apply to Versatile combines.

Sensors installed at each end of the PW8 Pick-Up Header send a signal to the combine allowing it to maintain a consistent cutting height as the header follows ground contours.

PW8 Pick-Up Headers are factory-equipped for AHHC; however, before using AHHC feature, you must do the following:

1. Ensure that AHHC sensor’s output voltage range is appropriate for combine. For more information, refer to 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102.

2. Prepare combine to use AHHC feature.

3. Calibrate AHHC system so that combine can correctly interpret data from height sensors on header. Once calibration is complete, you are ready to use AHHC feature in the field. For each combine, certain operation settings can be used to improve performance of AHHC feature.

NOTE:
If your PW8 Pick-Up Header is not equipped to work with a specific combine model, you will need to install appropriate combine completion package. Completion packages come with instructions for installing height sensors.

Refer to the following instructions for your specific combine model:

- 4.1.4 Case IH 5130/6130/7130 and 5140/6140/7140 Midrange Combines, page 107
- 4.1.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, and 7240/8240/9240 Combines, page 113
- 4.1.7 John Deere 70 Series Combines, page 128
- 4.1.8 John Deere S and T Series Combines, page 135
- 4.1.9 New Holland Combines CX/CR Series (CR Series – Model Year 2014 and Earlier), page 144
- 4.1.10 New Holland Combines (CR Series – Model Year 2015 and Later), page 153
4.1.1 AHHC Sensor Operation

The position sensors supplied with the auto header height control (AHHC) system are 1000 ohm (1 k) industrial series variable resistor consisting of a sealed unit with a three pin connection point (A) and two mounting holes (B). A signal wire is connected internally to a movable wiper (C) that sweeps across a high resistance filament band. An external arm is attached to the movable wiper (C) and as it moves, the wiper moves across the resistance filament to change the resistance at signal wire, which changes the output voltage. The resistance across the power and ground pins should be approximately 100 ohms. Normal operating signal voltages are 0.5–4.5 VDC or 5–95% of available voltage.

- A sensor operating with a signal voltage below 5% is considered to be shorted.
- A sensor with a signal voltage above 95% is considered to be open.
- A change in header height will cause the voltage signal to change.

4.1.2 Header Height Sensors

The PW8 Pick-Up Header is equipped with two height sensors—one at each end of header. The height sensors do not require maintenance, but they may need to be repaired or replaced due to normal wear and tear.

The sensors may require calibration if there are problems with pick-up height control. Contact your Dealer.
Removing Header Height Sensor Assembly (Left Side)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground, shut down combine, and remove key from ignition.
2. Open left endshield. Refer to 3.3.1 Opening Left Endshield, page 29.
3. Disconnect wire harness (A).
4. Push up on rod end clip (B). Slide linkage rod (C) out of rod end clip (B).

5. Remove nuts and bolts (A).
6. Remove sensor (B) and control arm (C).

**NOTE:**
Note orientation of control arm, this will be required for reassembly.
Installing Header Height Sensor Assembly (Left Side)

1. Install control arm (C). Ensure that flat side is facing towards header.

2. Install sensor (B), center bolts in slots, and secure with nuts (A).

3. Slide linkage rod (C) into rod end clip (B). Secure rod end clip by pressing it onto linkage rod (C).


5. Close left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.

Removing Header Height Control System (Right Side)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise hold-down and engage lift cylinder safety props.

2. Lower header to ground, shut down combine, and remove key from ignition.
3. Locate access panel on inside of right end frame. Remove two bolts (A) from access panel (B).
4. Remove access panel (B).

5. Disconnect wire harness (A).
6. Push up on rod end clip (B). Slide linkage rod (C) out of rod end clip (B).

7. Remove nuts and bolts (A).
8. Remove sensor (B) and control arm (C).

**NOTE:**
Note orientation of control arm, this will be required for reassembly.
9. Locate plug (A) on outboard side of endsheet and remove plug to gain access to nut (B) securing long control arm to frame.

10. Remove nut (B).

11. Remove long control arm (A) complete with linkage rod, rod end clip, and activator arm.

**Installing Header Height Sensor Assembly (Right Side)**

1. Install long control arm (A) complete with linkage rod, rod end clip, and activator arm.
2. Install nut (B).
3. Install hole plug (A).

4. Install control arm (C). Ensure that flat side is facing towards header.

5. Install sensor (B), center bolts in slots, and secure with nuts (A).

6. Slide linkage rod (C) into rod end clip (B). Secure rod end clip by pressing it onto linkage rod (C).

7. Connect wire harness (A).
8. Install access panel (B), and secure it with bolts (A).

**NOTE:**
Auger has been removed for illustration purposes.

8. Install access panel (B), and secure it with bolts (A).

**NOTE:**
Auger has been removed for illustration purposes.

### 4.1.3 Height Sensor Output Voltage Range – Combine Requirements

The height sensor output must be within a specific voltage range for each combine or the auto header height control (AHHC) feature will not work properly.

#### Table 4.1 Combine Voltage Range

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IH 7/8010, 5/6/7088, 7/8/9120, 5/6/7130, 5/6/7140, 7/8/9230, 7/8/9240</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>John Deere 60/70/S/T Series</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>New Holland CR/CX – 5 V system</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>New Holland CR/CX – 10 V system</td>
<td>3.0 V</td>
<td>7.0 V</td>
<td>4.1 – 4.4 V</td>
</tr>
</tbody>
</table>

**NOTE:**
For instructions on manually checking voltage range, refer to *Manually Checking Voltage Range, page 102*.

#### Manually Checking Voltage Range

In some combines, output voltage range of auto header height control (AHHC) sensors can be checked from cab. For instructions, refer to combine operator’s manual or AHHC instructions later in this document.

1. Position header until header wheels are approximately 150 mm (6 in.) above ground.

**NOTE:**
Ensure float spring is fully extended. Refer to *3.12.4 Adjusting Header Float, page 82*. If float spring is not fully extended during next step, voltage may go out of range during operation causing a malfunction of AHHC system.

2. Shut down combine. Position key so that power is supplied to sensors.

3. Open left endshield. Refer to *3.3.1 Opening Left Endshield, page 29*.
4. Locate left height sensor (A).

**NOTE:**
Sensor and connector may not be exactly as shown.

5. With connector plugged into sensor, measure voltage between orange signal wire (B) in middle position on connector, and the brown ground wire (C) at one side of connector. This is the maximum voltage for the left sensor.

6. Locate access panel (A) on inside of right end frame.
7. Remove two bolts (A) from access panel (B).

8. Remove access panel (B).

9. Locate right height sensor (A).

**NOTE:**
Sensor may not be exactly as shown, and view of harness is from inboard side of endsheet.

10. With connector plugged into the sensor, measure voltage between the orange signal wire (B) in middle position on connector, and the brown ground wire (C) on one side of connector. This is maximum voltage for the right sensor.

11. Start combine and fully lower combine feeder house. The float springs should be fully compressed. Shut down combine, and position the key so that power is supplied to sensors.

12. Repeat voltage measurements for both sensors. These are the minimum voltages.

13. Compare voltage measurements to specified values. Refer to 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102.

14. If sensor voltage is outside low and high limits, or if voltage range is less than specified value, adjustments are required. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 or Adjusting Header Height Sensor Voltage Range (Right Side), page 105.
Adjusting Header Height Sensor Voltage Range (Left Side)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground, shut down combine, and remove key from ignition.

2. Open left endshield. Refer to 3.3.1 Opening Left Endshield, page 29.

3. Loosen nuts (A).

4. Rotate control (B) until desired voltage range is achieved. Refer to 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102.

   NOTE:
   If voltage range is too large or too small, you may need to relocate linkage rod (C) to a different hole in sensor control arm (D). If that doesn’t work, relocate linkage rod (C) to a different hole in sensor control arm (E).

5. Close left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.

Adjusting Header Height Sensor Voltage Range (Right Side)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise hold-down and engage lift cylinder safety props.

2. Lower header to ground, shut down combine, and remove key from ignition.

3. Locate access panel (A) on inside of right end frame.
4. Remove two bolts (A) from access panel (B).
5. Remove access panel (B).

7. Rotate sensor (B) until desired voltage range is achieved. Refer to 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102.

**NOTE:**
If voltage range is too large or too small, you may need to relocate linkage rod (C) to a different hole in sensor control arm (D). If that doesn’t work, relocate linkage rod (C) to a different hole in sensor control arm (E).

8. Once complete, install access panel (B) and secure it with bolts (A).

**NOTE:**
Auger removed for illustration purposes.
4.1.4 Case IH 5130/6130/7130 and 5140/6140/7140 Midrange Combines

Setting up the Header on the Combine Display (Case IH 5130/6130/7130; 5140/6140/7140)

1. On the main page of the combine display, select TOOLBOX (A).

2. Select the HEAD 1 tab (A). The HEADER SETUP page displays.

3. From the CUTTING TYPE menu (B), select PLATFORM.

4. Select the HEAD 2 tab (A). The HEADER SETUP 2 page displays.

5. From the HEADER PRESSURE FLOAT menu (B), select NOT INSTALLED.
6. From the BELT DRIVE TYPE menu (A), select
   • 1 - for most pickup headers
   • 2 - for 4.9 m (16 ft.) Rake-Up pickup headers
   • 3 - for SwathMaster pickup headers

   **NOTE:**
   Proper belt drive selection optimizes auto-belt to ground speed.

---

**Checking Voltage Range from Combine Cab (Case IH 5130/6130/7130; 5140/6140/7140)**

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

**CAUTION**
Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.
2. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

4. From the GROUP menu (B), select HEADER.

5. From the PARAMETER menu, select LEFT HEIGHT/TILT SENSOR (A).

6. The SETTINGS page updates to display the voltage in the VALUE/STATUS field (A). Lower the feeder house fully, and then raise it 305 mm (12 in.) off the ground to view the full range of voltage readings.

7. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.
Calibrating Auto Header Height Control (Case IH 5130/6130/7130, 5140/6140/7140)

NOTE:
This procedure applies to combines with a software version below 28.00. For instructions on calibrating the AHHC for combines with software version 28.00 or above, refer to Calibrating Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 118.

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Ensure all header electrical and hydraulic connections are made.
2. Lower the combine feeder house all the way down (the feeder house will stop moving).
3. Hold the DOWN button for 2 seconds.
4. Push the RAISE button and hold it until the feeder house travels all the way up. It will stop 61 cm (2 feet) above ground for 5 seconds, then it will resume lift. This is an indication that calibration is successful.

Figure 4.34: Calibrating Auto Header Height

Setting Preset Cutting Height (Case 5130/6130/7130, 5140/6140/7140)
To set preset cutting height, follow these steps:

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Engage separator and header.
2. Manually raise or lower header to desired cutting height.
3. Press 1 on button (A). A yellow light next to the button will illuminate.
4. Manually raise or lower header to a second desired cutting height.

5. Press 2 on button (A). A yellow light next to the button will illuminate.

Up and down arrows should now appear in the MANUAL HEIGHT box (A) on the RUN 1 page on the combine display. This indicates that the auto header height control (AHHC) is functioning.

6. To enable the presets, activate AHHC button (A) to place the header on the ground. To enable the first preset, tap the button once. To enable the second preset, tap the button twice.

To lift the header to maximum working height, hold the SHIFT button on the back of the ground speed lever (GSL) while tapping AHHC button (A).
7. The maximum working height can be adjusted on the HEADER SETUP page on the combine display. Enter the desired height in the MAXIMUM WORKING HEIGHT field (A).

8. If you need to change the position of one of the presets, you can fine tune this setting with button (A) on the combine console.
4.1.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, and 7240/8240/9240 Combines

Checking Voltage Range from Combine Cab (Case 8010)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.
2. Select DIAG (A) on Universal display MAIN page. The DIAG page displays.


![Figure 4.41: Case 8010 Combine Display](image1)

![Figure 4.42: Case 8010 Combine Display](image2)
4. Select HDR HEIGHT/TILT (A). The SENSOR page displays.

5. Select LEFT SEN (A). The exact voltage is displayed. Raise and lower header to see full range of voltage readings.

6. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.
Checking Voltage Range from Combine Cab (Case IH 7010/8010; 7120/8120/9120; 7230/8230/9230; 7240/8240/9240)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.
2. Select DIAGNOSTICS (A) on MAIN page. The DIAGNOSTICS page opens.
3. Select SETTINGS. The SETTINGS page opens.
4. Select GROUP drop-down arrow (A). The GROUP dialog box displays.

Figure 4.46: Case IH Combine Display

Figure 4.47: Case IH Combine Display

6. Select LEFT HEADER HEIGHT SEN (A), and then select GRAPH button (B). The exact voltage is displayed at top of page. Raise and lower header to see full range of voltage readings.

7. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.

Calibrating Auto Header Height Control (Case IH 7010/8010; 7120/8120/9120; 7230/8230/9230; 7240/8240/9240)

NOTE:
This procedure applies to combines with a software version below 28.00. For instructions on calibrating the AHHC for combines with software version 28.00 or above, refer to Calibrating Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 118.

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Ensure all header electrical and hydraulic connections are made.
2. Select TOOLBOX on MAIN page, and then select HEADER.
AHHC SYSTEM

3. Set appropriate HEADER STYLE.

4. Set AUTO REEL SPEED SLOPE.
5. Set HEADER PRESSURE FLOAT to NO if equipped, and ensure REEL DRIVE is HYDRAULIC.

6. Install REEL FORE-BACK (if applicable).
7. Set HEIGHT SENSITIVITY to desired value. The recommended starting point is 180.
8. Install FORE-AFT CONTROL and HDR FORE-AFT TILT (if applicable).


10. Ensure HEADER TYPE is PICK-UP.

   **NOTE:**
   If recognition resistor is plugged in to header harness, you will not be able to change this.

11. Set cutting type to PLATFORM.

12. Set appropriate HEADER WIDTH and HEADER USAGE.

---

**Calibrating Auto Header Height Control (Case Combines with Version 28.00 or Higher Software)**

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Select TOOLBOX on MAIN page, and then select HEADER SETUP.

2. Locate HEADER SUB TYPE field. It will be located on either HEAD 1 or HEAD 2 tab.

4. Locate HEADER SENSORS and HEADER PRESSURE FLOAT fields. They will be located on either HEAD 1 or HEAD 2 tab.

5. Select ENABLE (A) in HEADER SENSORS field.

6. Select NO (B) in HEADER PRESSURE FLOAT field.

7. Engage separator, header, and press preset 1 or 2.

8. Ensure AUTO HEIGHT icon (A) appears on monitor and is displayed at location (B) as shown. When header is set for cutting on ground, this verifies that the combine is using the potentiometers on the header correctly to sense ground pressure.

**NOTE:**
AUTO HEIGHT field (B) may appear on any of RUN tabs and not necessarily on RUN 1 tab.

9. Select CALIBRATION on combine display, and press right arrow navigation key to enter information box.

10. Select HEADER (A), and press ENTER. The CALIBRATION dialog box opens.

**NOTE:**
You can use up and down navigation keys to move between options.
11. Follow calibration steps in the order they appear in dialog box. As you proceed through calibration process, display will automatically update to show next step.

**NOTE:**
The calibration procedure will stop if the system sits idle for more than 3 minutes, or if the ESC key is pressed during any step.

**NOTE:**
Refer to your combine operator’s manual for an explanation of any error codes.

12. When all steps have been completed, CALIBRATION SUCCESSFUL is displayed on page. Exit CALIBRATION menu by pressing ENTER or ESC key.

**NOTE:**
If float was set heavier to complete ground calibration procedure, adjust to recommended operating float after calibration is complete.

13. If unit does not function properly, conduct maximum stubble height calibration.

*Setting Preset Cutting Height (Case 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)*

To set preset cutting height, follow these steps:

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Engage separator and header.
2. Manually raise or lower header to desired cutting height.
3. Press SET #1 switch (A). The HEADER HEIGHT MODE light (C), next to SET #1 switch, turns on.
4. Manually raise or lower header to a second desired cutting height.
5. Press SET #2 switch (B). The HEADER HEIGHT MODE light (D), next to SET #2 switch, turns on.
6. To swap between set points, press HEADER RESUME (A).

7. To pick up header at headlands, press HEADER RESUME (A) twice. To lower, press HEADER RESUME (A).

**NOTE:**
You can fine adjust these set points by using FINE ADJUST switch (E) in figure 4.60, page 120.

**NOTE:**
Pressing HEADER RAISE/LOWER switch will disengage AUTO HEIGHT mode. Press HEADER RESUME to re-engage.
4.1.6 John Deere 60 Series Combines

Checking Voltage Range from Combine Cab (John Deere 60 Series)

The auto header height sensor output must be within a specific range, or feature will not work properly.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere 60 Series</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>3.0 V</td>
</tr>
</tbody>
</table>

Check sensor’s output voltage range from combine cab according to instructions that follow.

**NOTE:**

Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.

**Figure 4.62: John Deere Combine Display**

2. Press diagnostic button (D) on HHS monitor (the button with open book with wrench on top of it). dIA appears on monitor.
3. Press up button (A) until EO1 appears on monitor (these are header adjustments).
4. Press ENTER button (C).
5. Press up (A) or down (B) until 22 is displayed on top portion of monitor. This is voltage reading of sensor.
6. Start combine and lower feeder house to ground until feeder house stops moving.
NOTE:
You may need to hold HEADER DOWN switch for a few seconds to ensure feeder house is entirely down.

7. Check sensor reading on monitor.

8. Raise header so it is just off ground and check sensor reading again.

9. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.

Calibrating Auto Header Height Control (John Deere 60 Series)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Start combine.

2. Press DIAGNOSTIC button (A) on monitor. DIA appears on monitor.

3. Press CAL button (B). DIA-CAL appears on monitor.
4. Press UP or DOWN buttons until HDR appears on monitor.
5. Press ENTER button. HDR H-DN appears on monitor.
6. Fully lower feeder house to ground.
   
   **NOTE:**
   You may need to hold HEADER DOWN switch for a few seconds to ensure feeder house is fully lowered.

7. Press CAL button (A) to save calibration of header. HDR H-UP appears on monitor.
8. Raise header 3 feet off the ground, and press CAL (A) button. EOC appears on monitor.
9. Press ENTER button (B) to save calibration of header. Your AHHC is now calibrated.

**NOTE:**
If an error code appears during calibration, sensor is out of voltage range and will require adjustment. Refer to *Calibrating Auto Header Height Control (John Deere 60 Series), page 123.*

**NOTE:**
After calibration is complete, adjust combine operation settings to ensure proper field operation.
**Turning Off Accumulator (John Deere 60 Series)**

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press DIAGNOSTIC button (A) on monitor. DIA appears on the monitor.
2. Press UP button (B) until EO1 appears on monitor, and press ENTER (D). This is header adjustment.
3. Press UP (B) or DOWN (C) button until 132 is displayed on top portion of monitor. This is reading for accumulator.
4. Press ENTER (D) to select 132 as accumulator reading (this will allow you to change display to a three-digit number so it has a 0 in it, for example, x0x).
5. Press UP (B) or DOWN (C) button until desired number is displayed, and press CAL (E) button.
6. Press ENTER (D) to save changes. The accumulator is now deactivated.

![Figure 4.66: John Deere Combine Display](image)
Setting Sensing Grain Header Height to 50 (John Deere 60 Series)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

To set sensing grain header height, follow these steps:

1. Press DIAGNOSTIC button (A) on monitor. DIA appears on the monitor.
2. Press UP button (B) until EO1 appears on monitor, and press ENTER (D). This is header adjustment.
3. Press UP (B) or DOWN (C) button until 128 is displayed on top portion of monitor. This is reading for the sensor.
4. Press ENTER (D) to select 128 as sensor reading (this will allow you to change display to a three-digit number so it has a 50 in it).
5. Press UP (B) or DOWN (C) button until desired number is displayed, and press CAL (E) button.
6. Press ENTER (D) to save the changes. The height is now set.

NOTE:
Do NOT use active header float function (A) in combination with MacDon auto header height control (AHHC)—the two systems will counteract one another. The header symbol (B) on display should NOT have a wavy line under it and should appear exactly as shown on Active Header Control Display in Figure 4.68, page 126.
Setting Sensitivity of Auto Header Height Control (John Deere 60 Series)

This is also known as dead band adjustment.

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press DIAGNOSTIC button (A) on monitor. DIA appears on the monitor.
2. Press UP button (B) until EO1 appears on monitor, and press ENTER (D). This is header adjustment.
3. Press UP (B) or DOWN (C) button until 112 is displayed on monitor. This is your sensitivity setting.
   **NOTE:**
   The lower the reading, the higher the sensitivity. Ideal operating range is typically between 50 and 80.
4. Press ENTER (D) to select 112 as sensitivity setting (this will allow you to change first digit of number sequence).
5. Press UP (B) or DOWN (C) until desired number is displayed, then press CAL (E) button. This will bring you to second digit. Repeat this procedure until desired setting is achieved.
6. Press ENTER (D) to save changes.
   **NOTE:**
   The numbers depicted on displays in these illustrations are for reference purposes only; they are not intended to represent specific settings for your equipment.

Adjusting Threshold for Drop Rate Valve (John Deere 60 Series)

This procedure explains how to adjust point at which restrictor valve opens allowing full flow to lift cylinders.

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.
1. Press DIAGNOSTIC button (A) on monitor. DIA appears on the monitor.

2. Press UP button (B) until EO1 appears on monitor and press ENTER (C). This is header adjustment.

3. Press UP (B) or DOWN button (E) until 114 is displayed on top portion of monitor. This is setting that adjusts when fast drop rate starts with respect to dead band.

   **NOTE:**
   The default setting is 100. Ideal operating range is typically between 60 and 85.

4. Press ENTER (C) to select 114 as fast drop rate (this will allow you to change first digit of number sequence).

5. Press UP (B) or DOWN (E) until desired number is displayed, then press CAL button (D). This will bring you to second digit. Repeat this procedure until desired setting is achieved.

6. Press ENTER (C) to save changes.

   **NOTE:**
   The numbers depicted on displays in these illustrations are for reference purposes only; they are not intended to represent specific settings for your equipment.

### 4.1.7 John Deere 70 Series Combines

**Checking Voltage Range from Combine Cab (John Deere 70 Series)**

The auto header height sensor output must be within a specific range, or feature will not work properly.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere 70 Series</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>3.0 V</td>
</tr>
</tbody>
</table>

Check sensor’s output voltage range from combine cab according to instructions that follow.

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.

2. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.
Calibrating Feeder House Speed (John Deere 70 Series)

The feeder house speed must be calibrated before you calibrate auto header height control (AHHC) system. Refer to combine operator’s manual for instructions.
Calibrating Auto Header Height Control (John Deere 70 Series)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠ CAUTION
Check to be sure all bystanders have cleared the area.

1. Start combine.
2. Press button located fourth from left along top of monitor (A) to select icon that resembles an open book with a wrench on it (B).
3. Press button (A) a second time to enter diagnostics and calibration mode.

4. Select HEADER in box (A) by scrolling down to box using scroll knob, and then pressing check mark button (knob and button are shown in the figure below).
5. Scroll down to lower right icon that resembles an arrow in a diamond (B) and press check mark button to select it.
Figure 4.73: John Deere Combine Control Console
A - Scroll Knob  B - Check Mark Button
6. Follow steps listed on combine display to perform the calibration.

**NOTE:**
If an error code appears on page, sensor is not in correct working range. Refer to *Checking Voltage Range from Combine Cab (John Deere 70 Series)*, page 128 to check and adjust range.

**Setting Sensitivity of Auto Header Height Control (John Deere 70 Series)**

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press button (A) twice and current sensitivity setting will appear on combine display (the lower the reading, the lower the sensitivity).

2. Use scroll knob (B) to adjust sensitivity setting. The adjustment will be saved automatically.

**NOTE:**
If page remains idle for a short period of time, it will automatically return to previous page. Pressing check mark button (C) also will return combine display to previous page.

**NOTE:**
The numbers depicted on displays in these illustrations are for reference purposes only; they are not intended to represent specific settings for your equipment.
Adjusting Manual Header Raise/Lower Rate (John Deere 70 Series)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press button (A) and current raise/lower rate setting will appear on monitor (the lower reading, slower rate).

2. Use scroll knob (B) to adjust rate. The adjustment will be saved automatically.

NOTE:
If page remains idle for a short period of time, it will automatically return to previous page. Pressing check mark button (C) will also return monitor to previous page.

NOTE:
The numbers depicted on displays in these illustrations are for reference purposes only; they are not intended to represent specific settings for your equipment.
### 4.1.8 John Deere S and T Series Combines

**Checking Voltage Range from Combine Cab (John Deere S and T Series)**

The auto header height sensor output must be within a specific range, or feature will not work properly.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere S and T Series</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>3.0 V</td>
</tr>
</tbody>
</table>

Check sensor’s output voltage range from combine cab according to instructions that follow.

**NOTE:**

Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.
2. Start combine and fully lower feeder house to the ground.
   **NOTE:**
   You may need to hold HEADER DOWN switch for a few seconds to ensure feeder house is fully lowered.
3. Check sensor reading on monitor.
4. If sensor voltage is not within low and high limits shown in [4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102](#), or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to [Adjusting Header Height Sensor Voltage Range (Left Side), page 105](#) and [Adjusting Header Height Sensor Voltage Range (Right Side), page 105](#).

**Calibrating Feeder House Fore-Aft Tilt Range (John Deere S and T Series)**

This procedure applies only to model year 2015 and later John Deere S and T Series combines.

**NOTE:**

Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

The feeder house fore-aft tilt is controlled by buttons (C) and (D) at back of hydro handle.

![Figure 4.78: John Deere Hydro Handle](#)
NOTE:
The feeder house fore-aft tilt controls can be changed to work with buttons E and F by pressing hydro handle icon (A) and then selecting FEEDER HOUSE FORE/AFT TILT from drop-down menu (B) on combine display.

To calibrate feeder house fore-aft tilt range, follow these steps:

1. Press DIAGNOSTIC icon (A) on main page of combine display. The CALIBRATION page displays.

2. Select CALIBRATIONS drop-down menu (A) to view list of calibration options.
3. Press arrow (A) to cycle up through calibration options and select FEEDER HOUSE FORE/AFT TILT RANGE.

![Figure 4.82: John Deere Combine Display](image1)


![Figure 4.83: John Deere Combine Display](image2)

5. Follow instructions that appear on combine display. As you proceed through calibration process, display will automatically update to show next step.

**NOTE:**
If an error code appears during calibration, sensor is out of voltage range and will require adjustment. Refer to Checking Voltage Range from Combine Cab (John Deere S and T Series), page 135.

![Figure 4.84: John Deere Combine Display](image3)
Calibrating Auto Header Height Control (John Deere S and T Series)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press DIAGNOSTIC icon (A) on main page of monitor. The CALIBRATION page appears.

2. Select THRESHING CLEARANCE (A) and a list of calibration options appears.

3. Select FEEDER HOUSE SPEED (A) and calibrate.

4. Select HEADER (B) and calibrate.
5. Press icon (A) with either FEEDER HOUSE SPEED or HEADER selected and icon will turn green.

![Figure 4.88: John Deere Combine Display](image)

6. Click button (A) and instructions will appear on screen to guide you through remaining calibration steps.

**NOTE:**
If an error code appears during calibration, one or both sensors are out of voltage range and will require adjustment. Refer to *Adjusting Header Height Sensor Voltage Range (Left Side), page 105* and *Adjusting Header Height Sensor Voltage Range (Right Side), page 105*.

![Figure 4.89: John Deere Combine Display](image)

**Setting Sensitivity of Auto Header Height Control (John Deere S and T Series)**

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press button (A) twice and current sensitivity setting will appear on combine display.

![Figure 4.90: John Deere Combine Command Center](image)
2. Press – or + icon (A) to adjust rates.

NOTE:
The numbers depicted on displays in these illustrations are for reference purposes only; they are not intended to represent specific settings for your equipment.

Adjusting Manual Header Raise/Lower Rate (John Deere S and T Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press button (A) and current sensitivity setting will appear on monitor.
2. Press – or + icon (A) to adjust rates.

**NOTE:**
The numbers depicted on displays in these illustrations are for reference purposes only; they are not intended to represent specific settings for your equipment.

**Setting Preset Cutting Height (John Deere S and T Series)**

**NOTE:**
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press COMBINE – HEADER SETUP icon (A) on main page. The COMBINE – HEADER SETUP page appears. This page is used to set various header settings such as reel speed, header width, and height of feeder house for acre counter engagement.

3. Select HEADER HEIGHT SENSING ENABLE (A), HEADER HEIGHT RESUME ENABLE (B), and REEL POSITION RESUME ENABLE (C) icons.

4. Turn on header engagement switch (A) and move header to desired preset position.

5. Position can be fine-tuned with HEADER HEIGHT PRESSURE CONTROL DIAL (B).

6. Hold joystick button 2 (B) until the AHHC icon flashes on monitor.

7. To store another preset, repeat Step 4, page 142 and Step 6, page 142 for button 3 (C).

8. Select an appropriate ground pressure setting:
   - Preset button 2 (B) on joystick for a light ground pressure setting in muddy or soft soil conditions
   - Preset button 3 (C) for a heavy ground pressure setting in harder soil conditions and a faster ground speed

**NOTE:**

Preset button 1 (A) is reserved for header lift on headland and is not used for ground cutting.
NOTE:
When auto header height control (AHHC) is engaged, AHHC icon (A) appears on monitor and number indicating which button was pressed (B) is displayed on the screen.

Figure 4.99: Combine Display
4.1.9 New Holland Combines CX/CR Series (CR Series – Model Year 2014 and Earlier)

NOTE:

Checking Voltage Range from Combine Cab (New Holland)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Raise header until header wheels are 150 mm (6 in.) above ground.
2. Select DIAGNOSTICS (A) on main page. The DIAGNOSTICS page displays.
3. Select SETTINGS. The SETTINGS page displays.
4. Select GROUP drop-down arrow (A). The GROUP dialog box displays.
5. Select HEADER HEIGHT/TILT (A). The PARAMETER page displays.

6. Select LEFT HEADER HEIGHT SEN (A), and then select GRAPH button (B). The exact voltage is displayed at top of page.

7. Raise and lower header to see full range of voltage readings.

8. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.

Engaging Auto Header Height Control (New Holland CR/CX Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator's manual for updates.

1. Select HEADER LATERAL FLOAT on combine display, and press ENTER.

2. Use up and down navigation keys to move between options, and select INSTALLED.
3. Select HEADER AUTOFLOAT, and press ENTER.
4. Use up and down navigation keys to move between options, and select INSTALLED.

![Figure 4.105: New Holland Combine Display](image)

**Calibrating Auto Header Height Control (New Holland CR/CX Series)**

**NOTE:**
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

Check following conditions before starting header calibration procedure:
- The header is attached to combine.
- The combine is on level ground, with header level to ground.
- The engine is running.
- The combine is not moving.
- No faults have been received from Header Height Controller (HHC) module.
- Header/feeder is disengaged.
- Lateral float buttons are **NOT** pressed.
- ESC key is **NOT** pressed.

To calibrate the AHHC, follow these steps:

1. Select CALIBRATION on combine display, and press right arrow navigation key to enter information box.
2. Select HEADER (A), and press ENTER. The CALIBRATION dialog box opens.

**NOTE:**
You can use up and down navigation keys to move between options.

3. Follow calibration steps in order in which they appear in dialog box. As you proceed through calibration process, display will automatically update to show next step.

**NOTE:**
Pressing ESC key during any of steps or letting system sit idle for more than 3 minutes will cause calibration procedure to stop.

**NOTE:**
Refer to your combine operator’s manual for an explanation of any error codes.

4. When all steps have been completed, CALIBRATION SUCCESSFUL message is displayed on page. Exit CALIBRATION menu by pressing ENTER or ESC key.

**NOTE:**
If float was set heavier to complete ground calibration procedure, adjust to recommended operating float after calibration is complete.

5. If unit does not function properly, conduct maximum stubble height calibration.

**Calibrating Maximum Stubble Height**
This procedure describes how to calibrate the area counter to stop or start counting at the correct height. Program header to a height that will never be reached while cutting. The area counter will stop counting when header is above programmed height, and will begin counting when header is below programmed height.

Select height of header that corresponds to description above.

**IMPORTANT:**
- If value is set too low, area may **NOT** be counted since header is sometimes raised above this threshold although combine is still cutting.
- If value is set too high, area counter will keep counting even when header is raised (but below this threshold) and combine is no longer cutting crop.
**CAUTION**

Check to be sure all bystanders have cleared the area.

1. Select MAXIMUM STUBBLE HEIGHT calibration dialog box. As you proceed through calibration process, display will automatically update to show next step.

![Figure 4.108: New Holland Calibration Dialog Box](image)

2. Move header to correct position using header up or down control switch on multifunction handle.

3. Press ENTER to continue. As you proceed through calibration process, display will automatically update to show next step.

4. Press ENTER or ESC to close calibration page. The calibration is now complete.

![Figure 4.109: New Holland Calibration Dialog Box](image)

---

**Adjusting Header Raise Rate (New Holland CR/CX Series)**

If necessary, header raise rate (the first speed on HEADER HEIGHT rocker switch of multifunctional handle) can be adjusted.

**NOTE:**

Changes may have been made to the combine controls or display since this document was published. Refer to combine operator’s manual for updates.
1. Select HEADER RAISE RATE on combine display.
2. Use + or – buttons to change setting.
3. Press ENTER to save new setting.

**NOTE:**
The raise rate can be changed from 32 to 236 in increments of 34. The factory setting is 100.

*Figure 4.110: New Holland Combine Display*

---

Setting Header Lower Rate to 50 (New Holland CR/CX Series)

If necessary, header lower rate (using the automatic header height control button or second speed on header height rocker switch of multifunction handle) can be adjusted.

**NOTE:**
Changes may have been made to the combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Select HEADER LOWER RATE on combine display.
2. Use + or – buttons to change setting to 50.
3. Press ENTER to save new setting.

**NOTE:**
The lower rate can be changed from 2 to 247 in increments of 7. It is factory-set to 100.

*Figure 4.111: New Holland Combine Display*
Setting Sensitivity of Auto Header Height Control to 200 (New Holland CR/CX Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Engage threshing and feeder house.
2. Select HEIGHT SENSITIVITY on combine display screen.
3. Use + or – buttons to change setting to 200.
4. Press ENTER to save new setting.

NOTE:
The sensitivity can be changed from 10 to 250 in increments of 10. It is factory-set to 100.

Setting Preset Cutting Height (New Holland CR/CX Series)

To set preset cutting height, follow these steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Engage threshing mechanism and feeder with switches (A) and (B).
2. Set HEADER MEMORY rocker switch (D) in STUBBLE HEIGHT/AUTO FLOAT MODE.
3. Lower header to desired cutting height using HEADER HEIGHT AND HEADER LATERAL FLOAT rocker switch (C).
4. Press AUTOMATIC HEADER HEIGHT CONTROL button (E) for a minimum of 2 seconds to store height position. A beep will confirm setting.

NOTE:
It is possible to store two different header height values by using HEADER MEMORY rocker switch (D) in STUBBLE HEIGHT/AUTO FLOAT MODE.
5. To change one of saved header height set points while combine is in use, use HEADER HEIGHT AND HEADER LATERAL FLOAT rocker switch (A) (slow up/down) to raise or lower header to desired value. Press AUTOMATIC HEADER HEIGHT CONTROL button (B) for a minimum of 2 seconds to store new height position. A beep will confirm setting.

**NOTE:**
Do **NOT** press too hard on AUTOMATIC HEADER HEIGHT CONTROL button (B), or float mode will be disengaged.

**NOTE:**
It is not necessary to press rocker switch (C) again after adjusting.

*Configuring Reel Fore-Aft, Header Tilt, and Header Type (New Holland CR Series)*

This procedure applies only to 2016 New Holland CR models 6.90, 7.90, 8.90, and 9.90.

**NOTE:**
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Simultaneously press both UNLOAD (A) and RESUME (B) buttons on hydro handle.
2. On HEAD 1 page, change CUTTING TYPE from FLEX to PLATFORM (A).

3. On HEAD 2 page, change HEADER SUB TYPE from DEFAULT to 80/90 (A).

There are now two buttons for ON GROUND presets. The toggle switch from previous models is configured as shown. MacDon headers require the first two buttons (A) and (B). The third button (C) is not configured.
4.1.10 New Holland Combines (CR Series – Model Year 2015 and Later)

This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other New Holland combine models, refer to 4.1.9 New Holland Combines CX/CR Series (CR Series – Model Year 2014 and Earlier), page 144.

Engaging Auto Header Height Control (New Holland CR Series)

This procedure applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90).

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Select TOOLBOX (A) on main page. The TOOLBOX page displays.

2. Simultaneously press both UNLOAD (A) and RESUME (B) buttons on hydro handle.


4. Select CUTTING TYPE drop-down arrow (B) and change CUTTING TYPE to PLATFORM (C).

Figure 4.119: New Holland Combine Controls

Figure 4.120: New Holland Combine Display
AHHC SYSTEM

5. Select HEADER SUB TYPE drop-down arrow (A). The HEADER SUB TYPE dialog box displays.

6. Select 80/90 (A).

7. Select HEAD 2 (A). The HEADER SETUP 2 page displays.

Figure 4.121: New Holland Combine Display

Figure 4.122: New Holland Combine Display

Figure 4.123: New Holland Combine Display
8. Select AUTOFLOAT drop-down arrow and set AUTOFLOAT to INSTALLED (A).

9. Select AUTO HEADER LIFT drop-down arrow and set AUTO HEADER LIFT to INSTALLED (B).

**NOTE:**
With AUTO HEADER LIFT installed and AHHC engaged, header will lift up automatically when you pull back on hydro handle.

10. Set values for MANUAL HHC RAISE RATE (C) and MANUAL HHC LOWER RATE (D) for best performance according to ground conditions.

11. Set values for HHC HEIGHT SENSITIVITY (A) and HHC TILT SENSITIVITY (B) for best performance according to ground conditions.

---

*Checking Voltage Range from Combine Cab (New Holland CR Series)*

**NOTE:**
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

**CAUTION**
Check to be sure all bystanders have cleared the area.

1. Position header 150 mm (6 in.) above ground.
2. Select DIAGNOSTICS (A) on main page. The DIAGNOSTICS page displays.


4. Select HEADER HEIGHT/ TILT (A) from GROUP drop-down menu.

5. Select HEADER HEIGHT SENS. L (B) from PARAMETER drop-down menu.
6. Select GRAPH (A). The exact voltage (B) is displayed at top of page.

7. Raise and lower header to see full range of voltage readings.

8. If sensor voltage is not within low and high limits shown in 4.1.3 Height Sensor Output Voltage Range – Combine Requirements, page 102, or if range between low and high limits is insufficient, you need to make adjustments. For instructions, refer to Adjusting Header Height Sensor Voltage Range (Left Side), page 105 and Adjusting Header Height Sensor Voltage Range (Right Side), page 105.

### Calibrating Auto Header Height Control (New Holland CR Series)

**NOTE:**
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

Check following conditions before starting header calibration procedure:

- The header is attached to combine.
- The combine is on level ground, with header level to ground.
- The engine is running.
- The combine is not moving.
- No faults have been received from Header Height Controller (HHC) module.
- Header/feeder is disengaged.
- Lateral float buttons are NOT pressed.
- ESC key is NOT pressed.

To calibrate AHHC, follow these steps:
1. Select CALIBRATIONS (A) on main page. The CALIBRATION page displays.

2. Select CALIBRATION drop-down arrow (A).

3. Select HEADER (A) from list of calibration options.

Figure 4.130: New Holland Combine Display

Figure 4.131: New Holland Combine Display

Figure 4.132: New Holland Combine Display
4. Follow calibration steps in the order they appear on screen. As you proceed through calibration process, display will automatically update to show next step.

**NOTE:**
Pressing ESC key during programming or letting system sit idle for more than three minutes will cause calibration procedure to stop.

**NOTE:**
Refer to your combine operator’s manual for an explanation of any error codes.

5. When all steps have been completed, CALIBRATION COMPLETED message is displayed on screen.

**NOTE:**
If float was set heavier to complete ground calibration procedure, adjust to recommended operating float after calibration is complete.

---

**Setting Auto Height (New Holland CR Series)**

This procedure applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90).

The console has two buttons used for auto height presets. The toggle switch that was present on previous models is now configured as shown at right. MacDon headers only require first two buttons (A) and (B). The third button (C) is not configured.

To set auto height, follow these steps:
1. Engage separator and header.

2. Select RUN SCREENS (A) on main page.

3. Select RUN tab that shows MANUAL HEIGHT. 
   **NOTE:**
   The MANUAL HEIGHT field may appear on any of RUN tabs. When an auto height set point button is pressed, display will change to AUTO HEIGHT (A).

4. Lower header to ground.

5. Select one of auto height set point buttons shown in Figure 4.135, page 159.
   - Press SET 1 button for lower position
   - Press SET 2 button for higher position
Setting Maximum Work Height (New Holland CR Series)

This procedure applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90).

1. Select TOOLBOX (A) on main page. The TOOLBOX page displays.

2. Select FEEDER (A). The FEEDER SETUP page displays.

3. Select MAXIMUM WORK HEIGHT field (B).

4. Set MAXIMUM WORK HEIGHT to desired value.

5. Press SET and then press ENTER.
5  Maintenance and Servicing

The following instructions provide information about routine maintenance and servicing of the PW8 Pick-Up
Header. For detailed maintenance and service information, contact your Dealer. A parts catalog is located in the
manual case at the left end of the header.

Log hours of operation and use the Maintenance Schedule/Record provided to keep a record of scheduled
maintenance. Refer to 5.2.1 Maintenance Schedule/Record, page 164.

5.1  Preparing Header for Servicing

⚠️ CAUTION

To avoid personal injury, before servicing header or opening drive covers, perform the following procedures:

• Lower the header fully. If necessary to service in the raised position, always engage header lift cylinder
  safety props on combine.

• Stop engine and remove key.

• Engage park brake.

• Wait for all moving parts to stop.
5.2 Maintenance Requirements

Periodic maintenance requirements are organized according to service intervals.

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine’s life.

When servicing the machine, refer to the specific headings in this section and use only fluids and lubricants specified in the inside back cover of this book.

If a service interval specifies more than one time frame, e.g., 100 hours or annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operated under adverse conditions (severe dust, extra heavy loads, etc.).

⚠️ CAUTION
Carefully follow all safety messages, refer to 1 Safety, page 1.

5.2.1 Maintenance Schedule/Record

Table 5.1 Maintenance Schedule/Record

<table>
<thead>
<tr>
<th>ACTION:</th>
<th>✓ - Check</th>
<th>♦ - Lubricate</th>
<th>▲ - Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour meter reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviced by</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 Hours

♦ Lubricate auger drive chain – refer to 5.3.3 Lubricating Auger Drive Chain, page 169.

✓ Check auger drive chain tension – refer to Adjusting Auger Drive Chain Tension, page 189.

✓ Check hydraulic hoses for leaks – refer to 5.9.5 Hydraulic Hoses and Lines, page 248.

✓ Check draper belt tension – refer to 3.12.7 Draper Belt Tension, page 87.

50 Hours

✓ Check auger drive chain tension – refer to Adjusting Auger Drive Chain Tension, page 189.

✓ Check hydraulic hoses for leaks – refer to 5.9.5 Hydraulic Hoses and Lines, page 248.

✓ Check draper belt tension – refer to 3.12.7 Draper Belt Tension, page 87.

✓ Check draper belt condition – refer to 5.7.1 Draper Belts, page 206.

✓ Check draper plastic guides for wear – refer to 5.7.1 Draper Belts, page 206.
### Table 5.1 Maintenance Schedule/Record (continued)

<table>
<thead>
<tr>
<th>ACTION:</th>
<th>✓ - Check</th>
<th>✪ - Lubricate</th>
<th>▲ - Change</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>100 Hours</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Clean and grease driveshaft splines – refer to <em>Cleaning Driveline Splined Shaft, page 179.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Lubricate driveline slip-joint and clutch – refer to <em>5.3 Lubrication, page 167.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Lubricate auger drive chain and bearing – refer to <em>5.3 Lubrication, page 167.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check tire pressure – refer to <em>5.11.3 Inflating Tire, page 258.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check wheel bolt torque – refer to <em>5.11.2 Installing Wheel, page 258.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check loose fasteners – refer to <em>8.1 Torque Specifications, page 273.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check bearings and seals – refer to <em>5.7.3 Draper Deck Roller Bearings, page 213.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check pick-up fingers for wear – refer to <em>5.7.2 Draper Fingers and Guides, page 211.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Check height control sensor pivot points – refer to <em>4.1.2 Header Height Sensors, page 96.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End of Season</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean and touch-up worn paint spots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>Check header for wear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 5.2.2 Preseason/Annual Service

**CAUTION**

- Review the operator’s manual to refresh your memory on safety and operating recommendations.
- Review all safety signs and other decals on the header and note hazard areas.
- Ensure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Make certain you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.

Perform the following at the beginning of each operating season:

1. Lubricate machine completely. Refer to *5.3 Lubrication, page 167.*
2. Perform all annual maintenance. Refer to *5.2.1 Maintenance Schedule/Record, page 164.*
5.2.3 End-of-Season Service

Refer to 3.15 Storing the Header, page 94 for end of season servicing information.
5.3 Lubrication

**WARNING**
To avoid personal injury, before servicing header or opening drive covers, refer to .

Lubricate the machine after every 100 hours of operation.

Log hours of operation and use the maintenance schedule provided to keep a record of scheduled maintenance. Refer to 5.2.1 Maintenance Schedule/Record, page 164.

5.3.1 Greasing Procedure

**WARNING**
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Use the recommended lubricants specified in the inside back cover of this manual.
2. Wipe grease fitting with a clean cloth before greasing to avoid injecting dirt and grit.
3. Inject grease through fitting with grease gun until grease overflows fitting, except where noted.
4. Leave excess grease on fitting to keep out dirt.
5. Replace any loose or broken fittings immediately.
6. If fitting will not take grease, remove and clean thoroughly. Also clean lubricant passageway. Replace fitting if necessary.
5.3.2 Greasing Points

Every 100 Hours

Figure 5.1: Greasing Points

A - Driveline Slip-Joint
B - Driveline Guard (Both Ends)
C - Driveline Clutch
5.3.3 Lubricating Auger Drive Chain

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down the combine, and remove the key from the ignition.

2. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

3. Apply a liberal amount of SAE 30 engine oil to the chain (A) every 10 hours.

4. Close left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.
5.4 Installing Sealed Bearing

1. Clean shaft and apply rust preventive coating.

2. Install flangette (A), bearing (B), second flangette (C), and lock collar (D).
   
   **NOTE:**
   The locking cam is on only one side of the bearing.

3. Install and tighten the flangette bolts (E).

4. Lock the lock collar (D) with a punch once the shaft is correctly positioned.
   
   **NOTE:**
   Lock the collar in the same direction the shaft rotates, and tighten the setscrew in the collar.

5. Loosen the flangette bolts (E) on the mating bearing one turn, and retighten. This will enable the bearing to properly line up.
5.5 Drives

This section covers maintenance procedures for the header, draper, and auger drives.

5.5.1 Header Driveshaft

Clean and grease header driveshaft splines (A) annually to prevent excessive corrosion and wear.

NOTE:
Remove header end of driveline to access splines. Refer to Removing Header Driveline, page 171.

5.5.2 Header Driveline

Removing Header Driveline

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground, shut down combine, and remove key from ignition.
2. Disconnect tethers (A) securing driveline guard to header.

3. Pull back guard (B) to expose collar (C) at the combine end of the driveline.

**CAUTION**

To prevent injury, or damage to the driveline, hold the driveline so that it doesn't fall to the floor.

4. Pull back collar (C) and pull driveline (D) off feeder house shaft while supporting end of driveline.

5. Pull back guard (A) to expose collar (B) at the header end of driveline. If necessary, loosen bolt (C) and move plate (D) to release guard.

6. Pull back collar (B), and pull driveline off header driveshaft.
Installing Header Driveline

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

⚠️ **CAUTION**

To prevent injury, or damage to the driveline, hold the driveline so that it doesn’t fall to the floor.

1. Lower header to ground, shut down combine, and remove key from ignition.

2. Pull back guard (A) to expose collar (B) at the header (notched) end of the driveline.

   **NOTE:**

   The driveline may separate if not supported at both ends.

3. Pull back collar (B), and slide coupler onto splined input shaft (C) until it locks. Release collar (B).

4. Loosen bolt (D) and move plate (E) (if necessary) to provide sufficient clearance for driveline guard.

5. Line up notch (A) in the driveline’s rubber bellows with bolt (B) so the notch fits around casting (C) inside the auger drive compartment.
6. Sandwich the lip (A) on the driveline bellows between the hole in the endsheet and the casting (B).
7. Tighten bolt (C).

8. Pull back guard (B) to expose collar (C) at the combine end of the driveline (D).
9. Pull back collar (C), and push driveline (D) onto feeder house shaft until collar locks.
10. Attach tethers (A) to secure driveline guard to header.
Replacing Driveline Clutch

Repair or replace the driveline clutch if it can no longer generate the necessary torque to operate the header. Refer to your PW8 Pick-Up Header Parts Catalog for replacement part numbers.

1. Remove the driveline from the header. Refer to Removing Header Driveline, page 171.
2. Remove the driveline guard. Refer to Removing Driveline Guard, page 175.
3. Remove cross and bearings (A) connecting clutch (B) to driveline yoke (C).
4. Install new cross and bearings (A) and new clutch (B) onto existing driveline yoke (C).
5. Reinstall driveline guard. Refer to Installing Driveline Guard, page 177.

Removing Driveline Guard

The driveline guard must remain attached to the driveline, but can be removed for maintenance purposes only.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

NOTE:
The driveline does NOT need to be removed from the header in order to remove the driveline guard.

1. Stop the engine, and remove the key from the ignition.
2. Disconnect tethers (not shown) at ends of driveline.
3. If the driveline is in the storage position, rotate disc (B) on the driveline storage hook (A), and remove the driveline from the hook.
4. If the driveline is attached to the combine, remove the driveline from the combine by pulling the quick disconnect collar (A) to release the driveline yoke from the combine shaft. Refer to *Removing Header Driveline, page 171.*

5. Lift the combine end of the driveline (A) from the hook, and extend the driveline until it separates. Hold the adapter end of the driveline (B) to prevent it from dropping and hitting the ground.

6. Use a slotted screwdriver to release grease zerk/lock (A).
7. Rotate driveline guard locking ring (A) counterclockwise using a slotted screwdriver until lugs (B) line up with the slots in the guard.

8. Pull driveline guard off driveline.

**Installing Driveline Guard**

1. Slide driveline guard onto driveline, and line up slotted lug on locking ring (A) with arrow (B) on guard.
2. Push driveline guard onto ring until locking ring is visible in slots (A).

3. Use a slotted screwdriver to rotate ring (A) clockwise and lock ring in guard.

4. Push grease zerk (A) back into guard.
5. Reassemble driveline.

   **NOTE:**
   The splines are keyed to ensure proper alignment of the universals. Align weld (A) with missing spline (B) when reassembling.

   **NOTE:**
   If spline weld is missing, driveshaft should be replaced. Excessive vibration may occur if U-joints are not in phase.

6. Slide driveline into hook (A) on header and rotate disc (B) to secure driveline, or connect the driveline to the combine.

7. Attach tethers (not shown) to header.

---

**Cleaning Driveline Splined Shaft**

1. Remove the driveline guard. Refer to *Removing Driveline Guard, page 175*.

2. Clean internal and external splines.

3. Install driveline guard. Refer to *Installing Driveline Guard, page 177*. 
5.5.3 Draper Drives

The two hydraulic drive motors do not require any maintenance. If repairs are required (other than replacing motor seal kits), motors should be removed and serviced at your dealership.

Removing Front Hydraulic Motor

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down the combine, and remove the key from the ignition.

2. Disconnect hydraulic hoses (A) from front motor on left side of header. Install caps onto hose ends, or wrap with plastic and move hoses away from work area.

   ⚠️ IMPORTANT:
   Keep hydraulic coupler tips and connectors clean. Allowing dirt, dust, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do NOT attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.

3. Use a 13 mm socket wrench to remove two M8 hex flange nuts (B).

4. Pull hydraulic motor (A) from roller shaft.

---

Figure 5.24: Front Hydraulic Motor – Left Side

Figure 5.25: Front Hydraulic Motor – Left Side
Installing Front Hydraulic Motor

1. Apply grease to splines of front hydraulic motor (A) shaft.

2. Install hydraulic motor (A) onto roller shaft (B) and install shoulder bolts (C).

3. Secure hydraulic motor with two M8 hex flange nuts (A) and torque to 50 Nm (37 lbf-ft) using a 13 mm socket wrench.

**IMPORTANT:**
Hydraulic motor must be able to move slightly during operation. Tighten to required torque only, and do **NOT** use washers or shims. It is normal for the motor to feel somewhat loose after torquing.

4. If installing a new motor, reuse hydraulic fittings (A) from original motor.
5. Reconnect hydraulic hoses (A) to motor.

**Figure 5.29: Hydraulic Hoses**

**Removing Rear Hydraulic Motor**

**DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down the combine, and remove the key from the ignition.

2. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.
3. Disconnect hydraulic hoses (A) from motor. Install plugs onto hose ends, or wrap with plastic and move hoses away from work area. Loosen or remove adjacent cinch straps if necessary.

**IMPORTANT:**
Keep hydraulic coupler tips and connectors clean. Allowing dirt, dust, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do **NOT** attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.

4. Remove two 10 mm shoulder bolts (B) using an 8 mm hex key.

5. Pull hydraulic motor (C) from roller shaft.

**Installing Rear Hydraulic Motor**

1. Apply grease (extreme pressure [EP] performance with 1.5–5% molybdenum disulphide, NLGI grade 2) to splines of hydraulic motor shaft (A).

2. Install hydraulic motor (B) onto roller shaft, and secure with two 10 mm shoulder bolts (C).

3. Torque bolts to 50 Nm (37 lbf-ft) using an 8 mm hex key.

**IMPORTANT:**
Hydraulic motor must be able to move slightly during operation. Tighten to required torque only, and do **NOT** use washers or shims. It is normal for the motor and the hardware to feel somewhat loose after torquing.

4. Install hydraulic fittings (D) from original motor (if installing new motor).

5. Reconnect hydraulic hoses (A) to motor.

6. Install previously removed cinch straps.

7. Close endshield. Refer to **3.3.2 Closing Left Endshield, page 30**.
MAINTENANCE AND SERVICING

Removing Hydraulic Motor Hoses

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, and lower the hold-down completely.
2. Shut down the combine and remove the key from the ignition.
3. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

4. Remove hose clips (A) and cinch straps (B).

Figure 5.34: Left Endshield

Figure 5.35: Left Side of Header
5. Disconnect and remove hydraulic hoses (A), (B), and (C) from drive motors (D) and (E). Install caps onto hose ends or wrap with plastic.

**IMPORTANT:**
Keep hydraulic coupler tips and connectors clean. Allowing dirt, dust, water, or foreign material to enter the system is the major cause of hydraulic system damage. **Do NOT** attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.

6. Remove cinch strap (A).
7. Disconnect hoses (B) and (C) from multicoupler (D).

8. Loosen three M12 hex flange nuts (A), and remove bottom beam cover (B).
9. Pull hoses out of bottom beam cover (B).
10. Pull hoses through hole (B) in endsheet and through hole (A) in frame.

**Installing Hydraulic Motor Hoses**

1. Route the two longer hoses (A) and (B) through hole (C) in endsheet and hole (D) in frame.

   **NOTE:**
   Angled fitting on hose (B) attaches to the pick-up rear drive motor. Hose (A) with yellow cable ties has identical fittings at both ends and attaches to the forward drive motor fitting that has a matching yellow cable tie.

2. Route hoses (A) and (B) through grommet (C) in bottom beam cover. Match colored cable ties and attach hoses (A) and (B) to multicoupler. If colored cable ties are missing, attach as follows:
   a. Attach longer hose (A) to forward port on forward drive motor and to connector (E) on multicoupler.
   b. Attach shorter hose (B) to aft port on rear drive motor and to connector (F) on multicoupler.
   c. Secure hoses with cinch strap (D).
3. Connect the shorter hose (A) to the hydraulic motors.

   **NOTE:**
   Angled fitting attaches to rear motor (B).

4. Secure hoses with clips (A) and cinch straps (B).

5. Install bottom beam cover (B), and tighten three M12 hex flange nuts (A) along lower edge of cover.

6. Close left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.
5.5.4 Auger Drive

The chain driven auger is powered by a driveshaft connected directly to the combine feeder house, and auger speed depends on the feeder house speed. You can adjust auger speeds from the combine to suit crop conditions. Contact your Dealer for available sprocket options. Refer to Auger Drive Sprockets, page 190 for procedure for changing sprockets.

Auger Drive Chain

Removing Auger Drive Chain

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down the combine, and remove the key from the ignition.

2. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

3. Turn the tensioner bolt (A) to release tension on chain (B) until chain can be removed from drive sprocket (D). Refer to Adjusting Auger Drive Chain Tension, page 189.

4. Remove chain from driven sprocket (C).
Installing Auger Drive Chain

1. Install chain (A) onto driven sprocket (B) and then onto drive sprocket (C).
2. Tighten chain. Refer to Adjusting Auger Drive Chain Tension, page 189.
3. Apply a liberal amount of SAE 30 engine oil to the chain (A).
4. Close left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.

Adjusting Auger Drive Chain Tension

To adjust the tension of the auger drive chain, follow these steps:

1. Loosen the two M16 hex flange nuts (A).
2. To access tensioner bolt (B), remove the plug from the access hole in the endsheet.
3. Turn tensioner bolt (B) to adjust the chain tension.
4. Rotate chain until the tightest point is at the mid-span, and ensure there is 11–15 mm (7/16–9/16 in.) of deflection (A) when a force of 44.5 N (10 lbf) is applied at the midspan.
Auger Drive Sprockets
Removing Driven Sprocket

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down the combine, and remove the key from the ignition.

2. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29. If more access is required, remove endshield. Refer to 3.3.3 Removing Left Endshield, page 31.

3. Remove drive chain. Refer to Removing Auger Drive Chain, page 188.
4. Remove three M10 hex bolts (A) from tapered bushing (D) in sprocket (C) using a 16 mm wrench.

5. Reinstall two of the M10 hex bolts (A) into the threaded holes (B) in the tapered bushing (D).

6. Turn bolts into tapered bushing equal amounts in half-turn increments until the tapered bushing (D) becomes loose.

7. Remove tapered bushing (D) and sprocket (C) from shaft.

8. Retain keys from driveshaft and tapered bushing.

9. Clean and inspect components. Replace worn or damaged parts.

Installing Driven Sprocket

1. Apply anti-seize compound to the mating surfaces of driveshaft (A), tapered bushing (B), and sprocket (C).

2. Install keys into driveshaft (A) and tapered bushing (B).

3. Insert tapered bushing (B) into sprocket (C) while aligning key with keyway in sprocket.

4. Align key in driveshaft (A) with keyway in tapered bushing (B), and slide bushing and sprocket (C) onto driveshaft.

5. Remove two M10 hex bolts from threaded holes (B) in tapered bushing (D).

6. Reinstall three M10 hex bolts (A) through tapered bushing (D) and into sprocket (C). Do **NOT** tighten.
7. Align driven sprocket (A) with drive sprocket (B) using a straight edge. The sprockets are aligned when the two faces are within 1 mm (3/64 in.) of each other.

8. Torque three M10 hex bolts (A) in equal increments to 44 Nm (32 lbf·ft) while maintaining sprocket alignment.

9. Tap bushing (B) with a hammer and retorque. Repeat three times or until bolts no longer turn at 44 Nm (32 lbf·ft).

10. Check alignment of sprockets. If misaligned more than 1 mm (3/64 in.), proceed as follows:
   a. Measure and record the position of the tapered bushing (D) relative to the driveshaft.
   b. Remove the three M10 hex bolts (A) from tapered bushing (D).
   c. Reinstall two of the M10 hex bolts (A) into the threaded holes (B) in tapered bushing (D).
   d. Turn M10 hex bolts (A) into tapered bushing (D) equal amounts in half-turn increments until the tapered bushing and sprocket (C) are moveable.
   e. Reposition the tapered bushing (D) to account for the misalignment.
   g. Check alignment of sprockets.
   h. Repeat Step 10, page 192 until sprockets are in proper alignment.
MAINTENANCE AND SERVICING

11. Install and tension chain. Refer to *Installing Auger Drive Chain, page 189.*

12. Close left endshield. Refer to 3.3.2 *Closing Left Endshield, page 30.*
Removing Drive Sprocket

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut down the combine, and remove the key from the ignition.

2. Open left endshield (A). Refer to **3.3.1 Opening Left Endshield, page 29.**

3. If header is not attached to combine, place a pry bar or equivalent through a hole in the driven sprocket (A) and against the frame to stop the driveshaft from rotating.

---

Figure 5.58: Left Endshield

Figure 5.59: Driven Sprocket
MAINTENANCE AND SERVICING

4. Remove cotter pin (B).

5. Remove M20 castle nut (C) and washer (D) from driveshaft.

6. Remove chain (A). Refer to Removing Auger Drive Chain, page 188.

7. Remove drive sprocket (A), using a puller if necessary.

8. Clean and inspect components. Replace worn or damaged parts.

Installing Drive Sprocket

1. Apply anti-seize compound to driveshaft (B) and drive sprocket (A) splines.
2. Install drive sprocket (A), washer (B), and castle nut (C) onto driveshaft.

3. Reinstall drive chain, but do **NOT** fully tension. Refer to *Installing Auger Drive Chain, page 189.*

4. If header is not attached to combine, place a pry bar or equivalent through a hole in the driven sprocket (A) and against the frame to stop the driveshaft from rotating.

5. Torque castle nut (A) to 68 Nm (50 lbf-ft). If slot in castle nut and hole in driveshaft are not aligned, continue to tighten castle nut to 81 Nm (60 lbf-ft). If alignment is still not achieved, back off castle nut until it is possible to install the cotter pin (B).

6. Install cotter pin (B) into driveshaft, and bend cotter pin around castle nut (A).

7. Set drive chain (C) tension. Refer to *Adjusting Auger Drive Chain Tension, page 189.*

8. Close left endshield. Refer to *3.3.2 Closing Left Endshield, page 30.*
5.6 Auger Maintenance

5.6.1 Replacing Auger Fingers

Periodically check auger for missing, bent, or severely worn fingers, and replace if necessary.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Raise the hold-down fully, and engage lift cylinder safety props.
2. Shut down the combine, and remove the key from the ignition.
3. Remove two screws (A) from the access cover (B) closest to the auger finger (C) being serviced, and remove access cover.

4. Reach inside the auger, remove hairpin (A), and pull auger finger (B) out of holder (C).
5. Reach inside the auger, swivel auger finger (B) away from holder (C), pull from plastic guide (D), and remove from auger through access hole.
6. From inside the auger, insert new auger finger (B) through plastic guide (D).
7. Insert auger finger (B) into holder (C), and secure auger finger in holder with hairpin (A). Install hairpin with closed end leading with respect to auger forward rotation.
8. Install access cover (B) using two screws (A) coated with medium-strength threadlocker (Loctite® 243 or equivalent). Torque screws to 8.5 Nm (75 lbf-in).

NOTE:
If reusing hardware, apply a fresh coat of medium-strength threadlocker.

5.6.2 Replacing Auger Finger Guides

If the hole in the finger guide has elongated to the maximum length of 24 mm (15/16 in.), replace the finger guide.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the hold-down fully, and engage lift cylinder safety props.
2. Shut down the combine, and remove the key from the ignition.
3. Remove two screws (A) from the access cover (B) closest to the finger guide being replaced, and remove access cover.
4. Remove auger finger (C). Refer to 5.6.1 Replacing Auger Fingers, page 197.
5. Remove two screws (A) from finger guide (B), and remove finger guide through access hole.

6. Reach inside the auger and install new finger guide (A) using existing screws (B) and tee nuts (C) as shown. Torque screws to 8.5 Nm (75 lbf-in).

7. Reinstall auger finger. Refer to 5.6.1 Replacing Auger Fingers, page 197.

8. Install access cover (B) using two screws (A) coated with medium-strength threadlocker (Loctite® 243 or equivalent). Torque screws to 8.5 Nm (75 lbf-in).

**NOTE:**
If reusing hardware, apply a fresh coat of medium-strength threadlocker.
5.6.3 Replacing Auger Finger Holder

Periodically check auger for damaged or severely worn finger holders and replace if necessary.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Raise the hold-down fully, and engage lift cylinder safety props.
2. Shut down the combine, and remove the key from the ignition.
3. Remove two screws (A) and remove center access cover (B).

4. Remove two screws (A) and remove right access cover (B) if the finger holder requiring replacement is located on the right side of the auger, or remove two screws (C) and remove the left access cover (D) if the finger holder is located on the left side.
5. Reach inside the auger, remove hairpin (A) from the auger finger (B) requiring holder replacement, and pull auger finger out of holder (C).

6. Reach inside the auger, swivel auger finger (B) away from holder (C), pull from plastic guide (D), and remove from auger.

**NOTE:**
Depending on the number of auger fingers (B) installed in the auger, there may be spare holders (C) on the shaft. Look inside the drum to see if there are any spare holders. If there are spare holders already installed, completely remove the damaged holder. To access the spare holder, remove auger fingers accordingly.

**IMPORTANT:**
There must always be 24 holders (C) on the shaft; otherwise, the holders may slide over and cause the auger fingers (B) to fall into the drum during operation.

7. If the auger finger removed in Step 5, page 201 is on the right side of the auger, reach inside, and remove all the fingers between the damaged holder (A) and the right finger support clamp (B) as described in the following steps.

8. If the auger finger removed in Step 5, page 201 is on the left side of the auger, remove all the fingers between the damaged holder (C) and the left finger support clamp (D) as described in the following steps.

**NOTE:**
Middle auger sheet removed for illustration purposes.

9. Reach inside the auger, remove two M10 hex head bolts, nuts, and washers (A), and remove finger support clamp (B) from the shaft.
10. Reach inside the auger, and slide the auger finger holders (A) off the end of the shaft (B).

**NOTE:**
Middle auger sheet removed for illustration purposes.

11. Reach inside the auger, and slide new auger finger holders (A) onto the shaft (B).

**NOTE:**
Middle auger sheet removed for illustration purposes.

12. Reach inside the auger, place finger support clamp (B) onto shafts, and secure with two M10 hex head bolts, nuts, and washers (A). Torque bolts to 54–61 Nm (40–45 lbf-ft).
13. Reach inside the auger, and reinstall auger fingers (B) through plastic guides (D) from the inside.

**NOTE:**
Replace worn or damaged auger fingers.

14. Insert auger fingers (B) into holders (C), and secure auger fingers in holder with hairpins (A). Install hairpins with closed end leading with respect to auger forward rotation.

15. Install access covers (A) using two screws (B) coated with medium-strength threadlocker (Loctite® 243 or equivalent). Torque screws to 8.5 Nm (75 lbf-in).

**NOTE:**
If reusing hardware, apply a fresh coat of medium-strength threadlocker.

---

### 5.6.4 Replacing Stripper Plates

Replace stripper plates and missing or damaged fasteners if specified clearance cannot be maintained.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground, shut down the combine, and remove the key from the ignition.

**NOTE:**
Access the auger/stripper plate area from the top of the header.
2. Remove four bolts and nuts (A) from stripper plate (B).
3. Replace stripper plate (B), secure with four bolts and nuts (A), but do **NOT** fully tighten.
4. Adjust the stripper plate (B) to achieve 3–8 mm (1/8–5/16 in.) clearance (C) to auger flighting.
5. Tighten nuts (A).
6. Recheck the clearance.

**5.6.5 Replacing Flighting Extensions**

With header removed from combine, proceed as follows:

1. Remove two access covers (A) from both sides of the center of the auger.

2. Remove hardware (A) securing existing auger flighting extensions (B), and remove extensions. Retain hardware.
3. Place the new flighting extension (A) on the auger and ensure that new flighting is positioned on the outboard side of the existing flighting (B).

4. Secure flighting extension (A) to auger using existing hardware (C).

**NOTE:**
Install bolts (C) with heads facing inboard and nuts facing outboard.

5. Repeat for opposite side.

**IMPORTANT:**
To avoid damaging the auger, remove all loose hardware and tools from inside the auger.

6. Install access covers (A) using two screws (B) coated with medium-strength threadlocker (Loctite® 243 or equivalent). Torque screws to 8.5 Nm (75 lbf-in).

7. Rotate the auger manually to check for interference and to check the clearance between the auger flighting and stripper plates (B). Ensure clearance (C) is 3–8 mm (1/8–5/16 in.) and adjust nuts (A) if necessary. Refer to Adjusting Stripper Plate Clearance, page 78.

**Figure 5.86: Flighting Extension**

**Figure 5.87: Access Cover**

**Figure 5.88: Stripper Plate Clearance**
5.7 Decks

5.7.1 Draper Belts

Periodically check the draper belts for signs of wear and damage. Replace drapers that have stretched, have cuts or tears, or have worn slats. Replace missing or damaged fasteners, damaged connector bars, and damaged straps.

Removing Front Draper Belt

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the hold-down fully and engage lift cylinder safety props. Refer to 3.5 Engaging Hold-Down Lift Cylinder Safety Props, page 37.

2. Raise the header fully, and engage the combine lift cylinder safety props.

3. Stop the engine and remove the key from the ignition.

4. Release draper belt tension fully. Refer to Adjusting Front Draper Belt Tension, page 88.

5. Remove seven M6 flange nuts (A), belt edge protector (B), and pronged elevator bolts (C) from belt (D) (if removing end belt).

6. Remove M6 flange nuts (A), connector bar (B), and pronged elevator bolts (C) from belt (D).
7. Remove M6 flange nuts (A), fingers (B), and straps (C) connecting adjacent belts.
8. Remove draper belt (D).

Installing Front Draper Belt

**NOTE:**
If replacing more than one belt, it may be easier to remove all the belts and assemble them on the ground before installing on the draper.

1. Wrap new draper belt (A) around the rollers with slats facing outwards.

   **IMPORTANT:**
   Arrow on belt must point in direction of rotation.

2. Connect draper belt (D) using M6 x 15-1/2 pronged elevator bolts (A).

3. Attach edge protector (B) to pronged elevator bolts (A), and secure with M6 flange nuts (C) (if installing end belt). Do **NOT** tighten.

4. Torque M6 flange nuts (C) to 4–5.6 Nm (37–50 lbf-in).
5. Install connector bars (A) onto bolts, and secure with M6 flange nuts (B).

6. Torque M6 flange nuts (B) to 4–5.6 Nm (37–50 lbf-in).

7. Connect draper belt by installing M6 x 16 square neck elevator bolts (A) at center locations, and M6 x 23 square neck elevator bolts (B) at finger (D) locations.

8. Install straps (C) and fingers (D) onto bolts, and secure with M6 flange nuts (E).

9. Torque M6 flange nuts (E) to 4–5.6 Nm (37–50 lbf-in).

10. Tension draper belts. Refer to *Adjusting Front Draper Belt Tension, page 88*.

---

**Removing Rear Draper Belt**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the hold-down fully and engage lift cylinder safety props. Refer to *3.5 Engaging Hold-Down Lift Cylinder Safety Props, page 37*.

2. Raise the header fully, and engage the combine lift cylinder safety props.

3. Stop the engine and remove the key from the ignition.

4. Release draper belt tension fully. Refer to *Adjusting Rear Draper Belt Tension, page 90*.
5. Remove seven M6 flange nuts (A), belt edge protector (B), and pronged elevator bolts (C) from belt (D) (if removing end belt).

6. Remove M6 flange nuts (A), connector bar (B), and pronged elevator bolts (C) from belt (D).

7. Remove M6 flange nuts (A) and straps (B) connecting adjacent belts.

8. Remove elevator bolts (C).

9. Remove draper belt (D).
Installing Rear Draper Belt

NOTE:
If replacing more than one belt, it may be easier to remove all the belts and assemble them on the ground before installing on the draper.

1. Wrap new draper belt (A) around the rollers with slats facing outwards.

   IMPORTANT:
   Arrow on belt must point in direction of rotation.

2. Connect draper belt (D) using M6 x 15-1/2 pronged elevator bolts (A).

3. Attach edge protector (B) to pronged elevator bolts (A), and secure with M6 flange nuts (C) (if installing end belt). Do NOT tighten.

4. Torque M6 flange nuts (C) to 4–5.6 Nm (37–50 lbf∙in).

5. Install connector bars (A) onto bolts, and secure with M6 flange nuts (B).

6. Torque M6 flange nuts (B) to 4–5.6 Nm (37–50 lbf∙in).

7. Install two square neck elevator bolts (C) at each strap location.
MAINTENANCE AND SERVICING

8. Install straps (B) onto bolts, and secure with M6 flange nuts (A).
9. Torque M6 flange nuts (A) to 4–5.6 Nm (37–50 lbf-in).
10. Tension draper belts. Refer to Adjusting Rear Draper Belt Tension, page 90.

5.7.2 Draper Fingers and Guides

Replace any broken or worn fingers to maintain machine performance. Excessively worn fingers will reduce picking efficiency, resulting in losses that far exceed the cost of new fingers.

The guides, which maintain draper tracking, are located along the outboard edge on the inside of the right draper belt on both decks. If any guide is worn enough to cause large amounts of draper tracking/shifting, replace the guide. Check to make sure the guides are aligned perpendicular to the direction of draper travel. Excessively worn or misaligned guides can cause the drapers to shift and ride up on the frame causing premature draper edge wear and draper tearing.

NOTE:
It may be necessary to remove the draper belt when replacing the fingers/guides. Refer to Removing Front Draper Belt, page 206 or Removing Rear Draper Belt, page 208.

Replacing Draper Fingers

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Raise the hold-down fully, and engage lift cylinder safety props.
2. Raise the header fully, and engage the combine lift cylinder safety props.
3. Stop the engine, and remove the key from the ignition.
4. Remove M6 flange nut (A) securing finger (B) to the draper belt.
5. Remove finger (B) and replace with new finger.
7. Torque flange nut (A) to 4–5.6 Nm (37–50 lbf-in).

**NOTE:**
Hold finger to prevent turning while tightening nut.

---

**Replacing Draper Guide**

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the hold-down fully, and engage lift cylinder safety props.
2. Raise the header fully, and engage the combine lift cylinder safety props.
3. Stop the engine, and remove the key from the ignition.
4. Release draper belt (D) tension fully.
5. Pull the draper belt (D) away from the frame from under the deck to expose guide (C).
6. Remove the M6 flange nut (A) and washer (B) securing guide (C) to the draper belt (D). If guide is under a finger (E), remove the finger.
7. Remove guide (C) and elevator bolt (F). Discard the old guide.
8. Place a new guide (C) onto the M6 x 26 elevator bolt (F), and install onto the draper belt (D).
9. Install M6 washer (B) and flange nut (A).
10. Use an M6 x 30 elevator bolt (A) if guide (D) is in a finger location, and install the finger (B) before installing the flange nut (C).

11. Torque flange nut (C) to 4–5.6 Nm (37–50 lbf∙in). Hold the finger (B) or guide (D) to prevent turning while tightening flange nut.

**IMPORTANT:**
Ensure guides (D) are perpendicular to the direction of draper travel.

12. Rotate draper belt manually to access all the guides (D).

13. Tighten the draper belt. Refer to Adjusting Rear Draper Belt Tension, page 90 or Adjusting Front Draper Belt Tension, page 88.

### 5.7.3 Draper Deck Roller Bearings

Each draper deck roller is supported by two self-aligning, non-greasable roller bearings (A). Replace the roller bearings if they are worn or damaged.

**NOTE:**
Top image is the right side of header, and bottom image is the left side of header.
Replacing Drive Roller Bearing on Left Side of Rear Deck

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the hold-down fully.
2. Lower header to the ground until the two float springs are loose.
3. Stop the engine, and remove the key from the ignition.
4. Release draper belt tension fully. Refer to Adjusting Rear Draper Belt Tension, page 90.
5. Support the deck at both ends by placing a wooden block (A) under the frame close to the bearing.

6. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

8. Turn the roller manually until setscrew (A) in lock collar (B) lines up with the recess in bearing support (C).

9. Loosen setscrew (A) in lock collar (B) using a 6 mm hex key. Rotate collar counterclockwise to loosen and remove collar.

10. Ensure deck is fully supported, and check that the float spring assembly is loose. You may need to raise the deck slightly to loosen the assembly.

11. Remove the four nuts (A) attaching bearing support (B) to frame.

   **NOTE:**
   Ensure that height controller is not damaged when removing bolts.

12. Pull bearing support (B) off roller shaft.
13. Swivel bearing (A) 90 degrees in support until outer race lines up with slots in bearing support.

14. Push out the bearing (A).

15. Line up new bearing (A) with slots in bearing support, and push bearing into bearing support.

16. Swivel bearing 90 degrees and slide it into groove inside bearing support.

17. Remove and install new bushing (A) (if necessary).
18. Place bearing support (B) on roller shaft (A).
19. Position base of bearing assembly against frame, and align mounting holes.

20. Install two M12 x 30 carriage bolts (A) in the upper holes and two M12 x 40 carriage bolts (B) in the lower holes. Bolt heads must face aft. Secure with lock nuts.

**NOTE:**
Ensure height controller is not damaged when installing bolts.

21. Install lock collar (B) onto bearing, and rotate clockwise until tight.
22. Turn the roller manually until setscrew (A) in lock collar (B) lines up with the recess in bearing support (C).
23. Tighten setscrew (A) using a 6 mm hex key.
26. Tighten the draper belt. Refer to *Adjusting Rear Draper Belt Tension, page 90.*
Replacing Drive Roller Bearing on Right Side of Rear Deck

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the hold-down fully.
2. Lower header to the ground until the two float springs are loose.
3. Stop the engine, and remove the key from the ignition.
4. Release draper belt tension fully. Refer to Adjusting Rear Draper Belt Tension, page 90.
5. Support the deck at both ends by placing a wooden block (A) under the frame close to the bearing.
6. Check that the float springs are loose.
7. Loosen nuts (A) on bearing support (B) on the right side of the header, remove draper speed sensor assembly, and move it clear of work area.
8. Remove screws (A), and remove cover (B) from inboard side of right endsheet to access the bearing mounting bolts.

9. Remove bolt (A), and remove speed sensor disc (B).

10. Turn the roller manually until setscrew (A) in lock collar (B) lines up with the recess in bearing support (C).

11. Loosen setscrew (A) in lock collar (B) using a 6 mm hex key. Rotate collar clockwise to loosen and remove collar.
12. Ensure deck is fully supported, and check that the float spring assembly is loose. You may need to raise the deck slightly to loosen the assembly.

13. Remove the four nuts (A) attaching bearing support (B) to the frame.

**NOTE:**
Ensure that height controller is not damaged when removing bolts.

14. Pull bearing support (B) off roller shaft.

15. Swivel bearing (A) 90 degrees in support until outer race lines up with slots in bearing support.

16. Push out the bearing (A).

17. Line up new bearing (A) with slots in bearing support, and push bearing into bearing support.

18. Swivel bearing 90 degrees and slide it into groove inside bearing support.
19. Remove and install new bushing (A) (if necessary).

20. Place bearing support (B) on roller shaft (A).
21. Position base of bearing support against frame, and align mounting holes.
22. Install two M12 x 30 carriage bolts (C) in the upper holes and two M12 x 40 carriage bolts (D) in the lower holes. Secure with lock nuts.

**NOTE:**
Ensure height controller is not damaged when installing bolts.

23. Install lock collar (A) onto the bearing. Lock the collar in direction of shaft rotation, and tighten setscrew (B).

**CAUTION**
*Never start or move the machine until you are sure all bystanders have cleared the area.*

24. Start combine, and raise header fully. Shut down combine, and remove key from ignition.
25. Remove wooden block.
27. Align the draper deck rollers. Refer to *Aligning Rear Draper Deck Rollers, page 224.*
28. Tension the drapers. Refer to *Adjusting Rear Draper Belt Tension, page 90.*
Replacing Idler Roller Bearing on Left Side of Rear Deck

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the hold-down fully.
2. Lower header to the ground until the two float springs are loose.
3. Stop the engine, and remove the key from the ignition.
4. Open left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.
5. Fully release draper belt tension. Refer to Adjusting Rear Draper Belt Tension, page 90.
6. Loosen setscrew in lock collar (A) using a 6 mm hex key.
7. Loosen lock collar (A) by rotating collar counterclockwise.
8. Support the roller with a wooden block, and loosen bolts (B) and (C) securing bearing to frame.
9. Remove nuts on bolts (B) and (C).
10. Pull bearing off roller shaft.
11. Place new bearing on roller shaft, and align mounting holes.
12. Install the M12 x 45 carriage bolt (B) in the forward hole and the M12 x 40 carriage bolt (C) in the aft hole. Ensure bolt heads face inboard, secure with lock nuts, but do NOT fully tighten.
13. Install lock collar (A) onto bearing. Lock the collar in direction of shaft rotation.
14. Tighten the setscrew using a 6 mm hex key.
15. Tension the drapers. Refer to Adjusting Rear Draper Belt Tension, page 90.
16. Close the endshield. Refer to 3.3.2 Closing Left Endshield, page 30.
17. Align the draper deck rollers. Refer to Aligning Rear Draper Deck Rollers, page 224.
Replacing Idler Roller Bearing on Right Side of Rear Deck

DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the hold-down fully.
2. Lower header to the ground until the two float springs are loose.
3. Stop the engine, and remove the key from the ignition.
4. Remove right endshield if necessary. Refer to 3.3.5 Removing Right Endshield, page 34.
5. Fully release the draper belt tension. Refer to Adjusting Rear Draper Belt Tension, page 90.
6. Loosen setscrew in lock collar (A) using a 6 mm hex key.
7. Rotate lock collar (A) clockwise to loosen and remove collar.
8. Support the roller with a wooden block, and loosen bolts (B) and (C) securing bearing to frame.
9. Remove nuts on bolts (B) and (C).
10. Pull bearing off roller shaft.
11. Place new bearing on roller shaft and align mounting holes.
12. Install the M12 x 45 carriage bolt (B) in the forward hole and the M12 x 40 carriage bolt (C) in the aft hole. Ensure bolt heads face inboard, secure with lock nuts, but do NOT fully tighten.
13. Install lock collar (A) onto the bearing, and rotate lock collar counterclockwise until tight.
14. Tighten the setscrew using a 6 mm hex key.
15. Align the draper deck rollers. Refer to Aligning Rear Draper Deck Rollers, page 224.
16. Tension the drapers. Refer to Adjusting Rear Draper Belt Tension, page 90.
17. Replace right endshield if previously removed. Refer to 3.3.6 Installing Right Endshield, page 35.
Aligning Rear Draper Deck Rollers

Draper roller alignment is necessary for proper draper tracking. Perform this procedure after replacing a roller bearing.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Lower the header to the ground, shut down the combine, and remove the key from the ignition.
2. Open left endshield. Refer to 3.3.1 Opening Left Endshield, page 29.
4. Release the draper belt tension. Refer to Adjusting Front Draper Belt Tension, page 88.
5. Loosen the locking collar (A) and the three nuts (B) attaching the bearing flange to the frame on the left side of the header.
6. Loosen the locking collar (A) and the three nuts (B) attaching the bearing flange to the frame on the right side of the header.

7. Loosen locking bolt (C).

8. Turn adjuster nut (A) and draw the rear draper deck roller assembly into the header until the leading edge of the bearing support plate (B) lines up with the middle of the single cutout (C) on each side of the header.

9. Measure from the center of the rear drive roller to the center of the front driven roller. Set dimension (A) to 490 mm (19-5/16 in.) on each side of the header.
10. Tighten the locking collar (A) and the three nuts (B) attaching the bearing flange to the frame on the left side of the header.

11. Tighten the locking collar (A) and the three nuts (B) attaching the bearing flange to the frame on the right side of the header.

12. Tighten locking bolt (C).

13. Recheck measurement in Step 9, page 225 to ensure nothing moved while tightening the nuts on each side of the header.

14. Tension the draper belt. Refer to Adjusting Front Draper Belt Tension, page 88.


16. Close the left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.

Replacing Drive Roller Bearing on Left Side of Front Deck

DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the hold-down fully.

2. Lower header to the ground until the two float springs are loose.

3. Stop the engine, and remove the key from the ignition.

4. Open the left endshield. Refer to 3.3.1 Opening Left Endshield, page 29.

5. Release the draper belt tension fully. Refer to Adjusting Front Draper Belt Tension, page 88.

7. Turn roller manually until setscrew on lock collar (A) is accessible.

8. Loosen setscrew using a 6 mm hex key, and turn lock collar (A) counterclockwise to loosen and remove collar.

9. Support the roller with a wooden block, and use an 18 mm socket to remove four M12 nuts from bolts (B) securing bearing housing (C) to frame.

10. Pull bearing and housing (A) off the roller shaft.
11. Remove two M12 bolts (A) securing bearing (B) to housing (C), and remove bearing.
12. Install new bearing (B) into housing (C) using two M12 x 40 carriage bolts (A) and lock nuts (D).

13. Place bearing housing (A) onto roller shaft (B), and secure using four M12 x 35 bolts (C) (with bolt heads facing inboard) and lock nuts (D). Tighten lock nuts.

14. Install lock collar (A) onto roller shaft, and turn clockwise until tight.
15. Remove support from under drive roller.
16. Turn roller manually until setscrew in lock collar (A) is accessible.
17. Tighten setscrew using a 6 mm hex key.
18. Remove wooden block.
20. Align the draper deck rollers. Refer to Aligning Front Draper Deck Rollers, page 231.
21. Tension the drapers. Refer to Adjusting Front Draper Belt Tension, page 88.
22. Close the left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.
Replacing Drive Roller Bearing on Right Side of Front Deck

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the hold-down fully.
2. Lower header to the ground until the two float springs are loose.
3. Stop the engine, and remove the key from the ignition.
5. Loosen setscrew in lock collar (A) using a 6 mm hex key.
6. Rotate lock collar (A) clockwise to loosen and remove collar.
7. Support the roller with wooden blocks, and loosen two bolts (B) securing bearing (C) to frame.
8. Remove existing bearing (C) from roller shaft.
9. Place new bearing on roller shaft and align mounting holes.
10. Install M12 x 40 mounting bolts (B) (if previously removed) with heads facing inboard, and secure with lock nuts.
11. Install lock collar (A) onto the bearing (C), and rotate lock collar counterclockwise until tight.
12. Tighten the setscrew using a 6 mm hex key.
13. Remove wooden block.
15. Tension the drapers. Refer to 3.12.7 Draper Belt Tension, page 87.

Replacing Front Deck Idler Roller Bearings

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:
The following describes the bearing replacement procedure for the left side—the procedure for the right side is identical.

1. Stop the engine, and remove the key from the ignition.
2. Release draper belt tension fully. Refer to Adjusting Front Draper Belt Tension, page 88.
3. Loosen setscrew in lock collar (A) using a 6 mm hex key. Rotate lock collar (A) counterclockwise (clockwise for right side) to loosen and remove collar.

4. Support the roller with wooden blocks, and loosen two nuts on bolts (B) attaching bearing to frame.

5. Pull bearing assembly (A) off roller shaft and remove from frame.

6. Place new bearing assembly (A) onto roller shaft and bolts (B).

7. Position bearing against frame.

8. Install bolt (A) (if previously removed), and ensure shield (B) is in place.
9. Secure bearing (A) with lock nuts (B).

10. Install lock collar (C) onto bearing, and rotate lock collar clockwise (counterclockwise for right side) until tight.

11. Tighten the setscrew using a 6 mm hex key.

12. Remove wooden block.

13. Align the draper deck rollers. Refer to Aligning Front Draper Deck Rollers, page 231.

14. Tension the drapers. Refer to Adjusting Front Draper Belt Tension, page 88.

Aligning Front Draper Deck Rollers
Draper roller alignment is necessary for proper draper tracking. Perform this procedure after replacing a roller bearing.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground, shut down the combine, and remove the key from the ignition.

2. Open left endshield. Refer to 3.3.1 Opening Left Endshield, page 29.


4. Release the draper belt tension. Refer to Adjusting Front Draper Belt Tension, page 88.
MAINTENANCE AND SERVICING

5. Loosen the locking collar (A) and the two nuts (B) attaching the bearing flange to the frame on the driven roller on each side of the header.

6. Loosen the locking collar (A) and the two nuts (B) attaching the bearing flange to the frame.

7. Loosen the locking collar (A) and the two nuts (B) attaching the bearing flange to the frame.
8. Turn adjuster nut (A) and draw the front draper deck roller assembly into the header until the edge of the header frame lines up with the middle of the second slot (C) above the draper tension indicator cutout.

9. Tighten the three clamp bolts (B) on each side of the header.

10. Measure from the center of the rear drive roller to the center of the front driven roller. Set dimension (A) to 490 mm (19-5/16 in.) on each side of the header.

11. If unable to achieve 490 mm (19-5/16 in.) for dimension (A) with the frame in the middle of the second slot, adjust the frame as necessary to achieve correct measurement.
12. Measure the distance (A) between the frame and nearest slot, and make sure the opposite side of frame is equal distance to the same slot.

13. Tighten the locking collar (A) and the two nuts (B) attaching the bearing flange to the frame on the driven roller on each side of the header.
14. Tighten the locking collar (A) and the two nuts (B) attaching the bearing flange to the frame.

15. Tighten the locking collar (A) and the two nuts (B) attaching the bearing flange to the frame.

16. Recheck measurement in Step 10, page 233 to ensure nothing moved while tightening the nuts on each side of the header.

17. Tension the draper belt. Refer to Adjusting Front Draper Belt Tension, page 88.


19. Close the left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.
5.8 Header Spring Float Assembly

5.8.1 Removing Header Spring Float Assembly

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Attach the header to the combine feeder house and ensure it is latched securely. It is not necessary to hook up the driveline or hydraulics. Refer to the relevant combine attaching procedure:
   - Attaching to Case IH Combine, page 42
   - Attaching to John Deere 60, 70, S, and T Series Combine, page 49
   - Attaching to New Holland CR/CX Series Combine, page 56
   - Attaching to Versatile Combine, page 61

2. Lower combine feeder house so the front draper deck is rotated upwards to full floated-up position. Header frame will be close to the ground and coil spring will be fully collapsed.

   **NOTE:**
   Spring tension is factory-set to the second hole from the bottom on the float anchor.

3. Shut down the combine and remove the key from the ignition.

4. Open the left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

   **NOTE:**
   The right side spring float assembly can be removed or adjusted without removing the right endshield. For improved accessibility, however, remove four M12 carriage bolts and hex flange nuts from the endshield support (not shown), and remove the right endshield.

---

Figure 5.160: Left Endshield
5. Ensure all spring tension is released from the spring float assembly (A), remove cotter pin (B), clevis pin (C), and three flat washers (D).

**NOTE:**
When spring tension is fully released, spring coils should be fully collapsed and the spring float assembly should rock from side to side when moved by hand. If pressure on the clevis pin persists, slightly raise or lower the header.

**IMPORTANT:**
Note the spring float assembly position on the anchor, and ensure the left and right assemblies are set to the same anchor hole position during installation or draper deck damage could result.

7. Remove cotter pin (B), clevis pin (C), and three flat washers (D) from spring float assembly (A) at front anchor.

8. Remove spring float assembly (A).
5.8.2 Installing Header Spring Float Assembly

NOTE:
Spring tension is factory-set to the second hole from the bottom on the anchor.

1. Position rod end (D) of spring float assembly (A) onto anchor (B), and position opposite end of assembly onto front anchor (C).

   IMPORTANT:
The word ROD is stamped onto the casting to indicate which side of the spring float assembly (A) contains the rod end (D) of the shock. Ensure the rod end (D) of the shock is installed onto anchor (B) as shown.

2. Insert clevis pin (A) from the inboard side through spring float assembly (B), three flat washers (C), and front anchor (D) as shown. Secure with cotter pin (E).

3. Align spring float assembly (A) with float anchor hole (B). Refer to 3.12.4 Adjusting Header Float, page 82 to change the header float setting.

   IMPORTANT:
The left and right spring float assemblies must be set to the same anchor hole position or draper deck damage could result.

   NOTE:
If the spring float assembly (A) hole does not align with anchor hole (B), raise or lower header as necessary.
4. Insert clevis pin (A) from the inboard side through the rod end of spring float assembly (B), three flat washers (C), and anchor (D) as shown. Secure with cotter pin (E).

5. Repeat procedure for opposite side of header, ensuring that left and right spring float assemblies are set to the same anchor hole position on header.

6. Close the left endshield (A). Refer to 3.3.2 Closing Left Endshield, page 30, and replace right endshield if previously removed.
5.9 Hold-Downs

Hold-downs help crop to transition smoothly from the drapers to the auger and can be adjusted for crop conditions.

5.9.1 Replacing Fiberglass Rods

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower hold-down, and lower header to the ground.
2. Shut down the combine and remove the key from the ignition.
3. Loosen flange nuts (B) securing hold-down bar to hold-down arms on outer rod (A), and loosen nut (C) next to rod.

4. Slide out existing rod, and replace with new rod. Ensure new rod (A) extends 10 mm (3/8 in.) (B) beyond plastic sleeve (C).

Figure 5.168: Outer Fiberglass Rod

Figure 5.169: Outer Fiberglass Rod
5. Tighten nuts (A) and (B).

6. Loosen adjacent nuts (B) on remaining rods (A), and repeat Step 4, page 240.

7. Tighten nuts (B).

5.9.2 Replacing Master Hold-Down Cylinder

The hold-down is raised and lowered by a master and slave single-acting hydraulic cylinder. The master cylinder is located at the left end of the hold-down.

Cylinder operation is adversely affected by air in the system and cylinder seal failure. Remove, repair, or replace cylinders if either of these issues arise.

Removing Master Cylinder

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and hold-down completely. Continue pressing the hold-down lower switch for 5–10 seconds to remove any pressure in the system.

2. Stop the engine and remove the key from the ignition.

3. Open the left endshield. Refer to 3.3.1 Opening Left Endshield, page 29.
4. Remove cotter pins and washers from clevis pins (B) and (D).

5. Raise hold-down (C) by hand, and use a prop device to support hold-down and take the weight off the cylinder (A).

6. Remove clevis pin (D) at barrel end of cylinder. Cylinder will drop free from hold-down arm.

7. Insert a block of wood (A) between the hold-down arm (B) and the pick-up (C) to keep the hold-down elevated and clear of the work area.

8. Remove clevis pin (A) at rod end of cylinder, and remove cylinder and safety prop (B).
9. Cut cable ties on hoses (A) and (B), and disconnect hoses from cylinder. Install caps onto hose ends or wrap with plastic.

Installing Master Cylinder

1. Remove the two 90 degree elbows (A) and (B) from previously removed master cylinder. Refer to Removing Master Cylinder, page 241.

2. Remove plugs from new master cylinder ports.

3. Install elbows (A) and (B) onto new master cylinder as shown. Align elbow (B) as shown (C). Tighten jam nuts on elbows.

4. Connect hose (A) from slave cylinder to elbow (C) at rod (aft) end, and hose (B) from header to elbow (D) at barrel (forward) end. Tighten fittings ensuring hose (B) is routed parallel to the cylinder.
5. Position rod end of cylinder (A) and safety prop into cylinder support bracket, and secure with the shorter clevis pin (B). Ensure clevis pin head faces outboard.

6. Secure clevis pin (B) with washer and cotter pin (not shown).

7. Lift hold-down arm (C) until clevis pin (D) can be installed through lift arm and barrel end of cylinder. Ensure clevis pin head faces outboard.

8. Secure clevis pin (D) with washer and cotter pin (not shown).

9. Secure hoses with cable ties (not shown).

10. Remove previously inserted block of wood.


12. Close the left endshield. Refer to 3.3.2 Closing Left Endshield, page 30.

5.9.3 Replacing Slave Hold-Down Cylinder

The hold-down is raised and lowered by a master and slave single-acting hydraulic cylinder. The slave cylinder is located at the right end of the hold-down and is connected to the master cylinder by a hose that passes through the hold-down beam.

Cylinder operation is adversely affected by air in the system and cylinder seal failure. Remove, repair, or replace cylinders if either of these issues arise.

Removing Slave Cylinder

1. Lower the header and hold-down completely. Continue pressing the hold-down lower switch for 5–10 seconds to remove any pressure in the system.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

2. Stop the engine and remove the key from the ignition.

3. Remove cotter pins and washers from clevis pins (B) and (D).

4. Raise hold-down (C) by hand, use a prop device to support hold-down and take the weight off the cylinder (A), and remove clevis pin (D) at barrel end of cylinder. Cylinder will drop free from hold-down arm.
5. Use a lifting device to lift and support the hold-down arm (A) to allow removal of the cylinder.

6. Remove clevis pin (A) at rod end of cylinder, and remove cylinder and safety prop (B).

7. Disconnect hydraulic hose (A) from cylinder. Install cap onto hose end, or wrap with plastic.
Installing Slave Cylinder

1. Remove the 45 degree elbow (A) from the previously removed slave cylinder. Refer to Removing Slave Cylinder, page 244.

2. Remove plug from new slave cylinder port.

3. Install elbow (A) onto new slave cylinder as shown. Ensure fitting is in line with cylinder, and tighten jam nut on elbow.

4. Connect hose (A) from master cylinder to elbow (B), and tighten fitting.

5. Position rod end of cylinder (A) and safety prop into cylinder support bracket, and secure with the shorter clevis pin (B). Ensure clevis pin head faces outboard.

6. Secure clevis pin (B) with washer and cotter pin (not shown).

7. Lift hold-down arm (C) until clevis pin (D) can be installed through lift arm and barrel end of cylinder. Ensure clevis pin head faces outboard.

8. Secure clevis pin (D) with washer and cotter pin (not shown).

9. Remove block of wood inserted in Removing Slave Cylinder, page 244.

5.9.4 Bleeding Cylinders and Lines

Air must be removed from the system for the hydraulics to perform properly. The following procedure explains how to bleed hydraulic cylinders and lines. Bleed the hydraulics after initial installation, if the unit has been idle for a significant period of time, or if the hydraulic system requires adjustment.

⚠️ CAUTION

High-pressure hydraulic oil can cause serious injuries such as burns, cuts, and tissue damage. Always take precautions when working with hydraulic oil. Wear safety goggles, gloves, and thick clothing. Seek immediate medical attention if cut or burned.

1. Raise the hold-down fully using the combine reel lift control.

2. Engage the hold-down safety props (A) on both sides of header. Ensure safety props are fully rotated over center so they remain engaged.

3. Lower the hold-down onto the safety props (A) to relieve the hydraulic pressure in the lines.

4. Remove the bleed port plug (not shown) completely.

   **IMPORTANT:**
   Remove the bleed port plug completely before applying hydraulic pressure. If the bleed port plug is only loosened, the hydraulic oil pressure will damage the plug’s O-ring.

5. Hold a plastic container up to the bleed port to collect hydraulic oil.

6. Activate the combine reel lift control to apply hydraulic pressure to the system until the air bubbles disappear and a steady stream of oil flows from the bleed port. Release the lift control to relieve hydraulic pressure.

7. Replace the bleed port plug and torque to 0.8 Nm (7 lbf-in).

8. Raise the hold-down fully, and disengage the hold-down safety props.

9. Cycle the cylinder 5–10 times by fully extending and fully retracting the cylinder. Ensure the hold-down is level when raising and lowering, and the slave and master cylinders are in sync. Repeat the bleeding process if necessary.

10. Lower the hold-down.
5.9.5 Hydraulic Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks. Replace any leaking or damaged hoses.

For hold-down systems, refer to the following:

- Removing Master Cylinder Hose, page 249
- Installing Master Cylinder Hose, page 251

For draper drive systems, refer to the following:

- Removing Hydraulic Motor Hoses, page 184
- Installing Hydraulic Motor Hoses, page 186

**WARNING**

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.
- Relieve pressure before disconnecting hydraulic lines.
- Tighten all connections before applying pressure. Keep hands and body away from pin holes and nozzles which eject fluids under high pressure.
- If any fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

**WARNING**

Use a piece of cardboard or paper to search for leaks.

**IMPORTANT:**

Keep hydraulic coupler tips and connectors clean. Allowing dirt, dust, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do NOT attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.
Removing Master Cylinder Hose

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground.

2. Lower the hold-down completely to release all the hydraulic pressure in the system.

3. Stop the engine and remove the key from the ignition.

4. Open the left endshield (A). Refer to 3.3.1 Opening Left Endshield, page 29.

5. Disconnect hydraulic hose (A) from master lift cylinder (B). Install caps onto hose ends or wrap with plastic.

Figure 5.190: Left Endshield

Figure 5.191: Left Side Master Cylinder
6. Loosen or remove hose clips (A), and undo cinch straps (B).

7. Pull hose through grommet (C).

8. Disconnect hydraulic hose (A) from multicoupler.

9. Loosen three bolts (A) and remove cover (B).

10. Pull hose out of cover (B).

Figure 5.192: Left Side of Header

Figure 5.193: Left Backsheet

Figure 5.194: Bottom Beam Cover
MAINTENANCE AND SERVICING

11. Remove grommet (A) to remove hydraulic hose (if necessary).

12. Pull hose through grommet (A) in endsheet.

*Installing Master Cylinder Hose*

1. Feed hose (A) through grommet (B) in endsheet.
2. Feed hose through clips (C) and grommet (D) to master cylinder.
3. Feed hose (A) through grommet (B).
4. Connect hose (A) to multicoupler.

5. Connect hose (A) to master cylinder (B), and secure hose to master cylinder with cable tie (C).

6. Secure hose with clips (A) and cinch straps (B).
7. Install bottom beam cover (B) and tighten bolts (A).

8. Close endshield. Refer to 3.3.2 Closing Left Endshield, page 30.

5.10 Draper Speed Sensor

The draper speed sensor is mounted to a support on the right side of the header. It reads the speed of the driven roller on the rear deck. This section does **NOT** apply to Case IH and New Holland combines. For Case IH and New Holland combines, refer to your combine operator’s manual for further information.

5.10.1 Checking Draper Speed Sensor Position

The draper speed sensor position is factory-set, but it may require adjustment if problems occur with the draper speed system or when replacing sensor components. Check the draper speed sensor position prior to making any adjustments.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Stop the engine, and remove the key from the ignition.

2. Check clearance (A) between speed sensor and disc. The recommended clearance is 3 mm (1/8 in.). If clearance requires adjustment, refer to 5.10.2 Adjusting Draper Speed Sensor, page 255.

3. Check vertical alignment (A) of sensor (B) and sensor disc (C). If required, adjust support (D) inboard or outboard to adjust vertical alignment.
5.10.2 Adjusting Draper Speed Sensor

The draper speed sensor position is factory-set, but it may require adjustment if problems occur with the draper speed system or when replacing sensor components. Check the draper speed sensor position prior to making any adjustments. Refer to 5.10.1 Checking Draper Speed Sensor Position, page 254.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, and lower the hold-down completely.
2. Stop the engine, and remove the key from the ignition.
3. Hold sensor (B) with a wrench and loosen jam nut (C).
4. Turn jam nuts (C) and (A) to achieve the required sensor to disc clearance.
5. Tighten jam nuts (C) and (A).

Figure 5.204: Draper Speed Sensor
5.10.3  Replacing Draper Speed Sensor

The speed sensor may require replacement if it is malfunctioning or if service is being performed to adjacent components.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, and lower the hold-down completely.
2. Stop the engine, and remove the key from the ignition.
3. Remove lower jam nut (A), and pull sensor (B) from support (C).
4. Disconnect sensor (B) from harness, and remove top jam nut (D).
5. Attach new sensor (B) to harness, and install top jam nut (D) onto sensor.
6. Position sensor (B) in support (C), and secure with lower jam nut (A).
7. Adjust clearance between sensor and sensor disc. Refer to 5.10.2 Adjusting Draper Speed Sensor, page 255.

Figure 5.205: Draper Speed Sensor
5.11 Wheels and Tires

There are two wheels and tires on the PW8 Combine Pick-Up Header, one on each side of the header.

⚠️ DANGER

- Never install a tube in a cracked wheel rim.
- Never weld a wheel rim.
- Make sure all the air is removed from the tire before removing the tire from the rim.
- Never use force on an inflated or partially inflated tire. Make sure the tire is correctly seated before inflating to operating pressure.
- Do NOT remove, install, or repair a tire on a rim unless you have the proper equipment and experience to perform the job. Take the tire and rim to a qualified tire repair shop.
- If the tire is overinflated or is incorrectly positioned on the rim, the tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can propel the tire in any direction and endanger anyone in the area.
- Do NOT exceed the maximum inflation pressure indicated on the tire label.
- Replace the tire if it is worn or damaged beyond repair.

5.11.1 Removing Wheel

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header onto blocks with wheels raised slightly above the ground.
2. Stop the engine, and remove the key from the ignition.
3. Remove wheel nut (B) using a 30 mm socket wrench.
4. Pull wheel (A) off spindle.

Figure 5.206: Left Side Wheel
5.11.2 Installing Wheel

1. Ensure spacer (A) is installed onto spindle.

2. Install wheel (A) onto spindle and secure with wheel nut (B). Torque to 108 Nm (80 lbf-ft).

5.11.3 Inflating Tire

Maintain correct tire pressure to achieve desired cutting height. Check tire pressure daily.

Table 5.2 Tire (MD #152724)

<table>
<thead>
<tr>
<th>Tire</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.50 x 8.50-8</td>
<td>240–310 kPa (35–45 psi)1</td>
</tr>
</tbody>
</table>

1. Use the lower end of this range if operating on rough terrain.
5.12 Lights

The transport lights, located at each end of the header, are used when driving the combine on the road with the header attached.

- Use electrical tape and wire clips to prevent wires from dragging or rubbing.
- Keep lights clean, and replace defective bulbs.
- Replace the light housing if it is cracked or broken.

5.12.1 Adjusting Transport Lights

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut off combine, and remove key from ignition.
2. If repositioning is required, swivel the lights with hand force.
3. If the swivel is too loose or too tight, loosen jam nut (A) and turn nut (B) so the light maintains its position and can be moved with hand force. Do NOT overtighten.
4. Tighten jam nut (A).

Figure 5.209: Transport Light
5.12.2 Replacing Transport Light Bulb

Transport lights are an important safety feature. Keep lights clean, and replace defective bulbs.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut off combine, and remove key from ignition.
2. Remove two screws (A) using a Phillips screwdriver.
3. Pry off the lens (B).
4. Push in and slightly turn bulb counterclockwise. Remove the bulb.
5. Place the new bulb in the socket, push in, and turn clockwise until bulb stops.
6. Replace lens (B) and secure with two screws (A).

5.12.3 Replacing Lens

Transport lights are an important safety feature. Keep lenses clean, and replace if cracked or broken.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut off combine, and remove key from ignition.
2. Remove two screws (A) using a Phillips screwdriver.
3. Pry off the lens (B).
4. Install new lens (B), and secure with two screws (A).
5.12.4 Replacing Lamp Housing

Transport lights are an important safety feature. Replace housing if cracked or broken.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to the ground, shut off combine, and remove key from ignition.
2. Pull wiring harness (A) out of lamp bracket, and locate connectors inside the wiring harness.
3. Disconnect light wiring from harness.
4. Remove four nuts (B), and remove lamp (C) from bracket.
5. Install new lamp (C) on bracket, and secure with four nuts (B).
6. Connect lamp wiring to harness (A), and route wires inside plastic covering. Seal with black tape.
7. Ensure that wiring harness is not damaged, and secure harness inside lamp bracket.
8. Check operation of new lamp.

Figure 5.212: Transport Light
6 Options and Attachments

6.1 Hold-Down Performance Kit

The Hold-Down Performance kit assists with the delivery of light crop onto the pick-up, especially when the fingers have difficulty picking up the crop and have a tendency to throw the crop forward.

The kit attaches to the hold-down bar and consists of a series of spring wires that rotate or lock by moving the center nut and project forward and downward into the crop.

Attachment hardware and installation instructions are included in the kit.

MD #B5475

Instruction MD #169464

Figure 6.1: Hold-Down Performance Kit
6.2 Seed Saver Performance Kit

The Seed Saver kit can be installed on a MacDon PW8 header. This option is recommended for use with lighter grain crops, such as canola.

Attachment hardware and installation instructions are included in the kit.

MD #B6429

Instruction MD #214570

Figure 6.2: Seed Saver Performance Kit
6.3 Combine Completion Package Kits

PW8 Combine Pick-Up Headers are factory configured for particular combine makes, models, and feeder house sizes. If the header is being switched to a different make of combine or is not factory configured for any combine, a Combine Completion Package kit is required.

Combine Completion Package kits provide the necessary parts and hardware to modify headers to accommodate different combine models with various feeder house sizes. Refer to 3.9 Changing Header Opening, page 41 for a detailed list of supported combine models and feeder house sizes.

Attachment hardware and installation instructions are included in the kits.

<table>
<thead>
<tr>
<th>Combine Make</th>
<th>Bundle #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IH, New Holland</td>
<td>MD #B6374</td>
</tr>
<tr>
<td>Case IH, New Holland (Model Year 2016 and Prior)</td>
<td>MD #B5469</td>
</tr>
<tr>
<td>John Deere</td>
<td>MD #B5471</td>
</tr>
<tr>
<td>Versatile</td>
<td>MD #B6027</td>
</tr>
</tbody>
</table>

Figure 6.3: Combine Completion Package Kit – Case IH and New Holland

Figure 6.4: Combine Completion Package Kit – John Deere

Figure 6.5: Combine Completion Package Kit – Versatile
6.4 Auger Dent Repair Kit

This kit allows Operators to repair dents close to the finger/guide area that the feed auger may have sustained during regular use.

Attachment hardware and installation instructions are included in the kit.

MD #237563

Instruction MD #147606

Figure 6.6: Auger Dent Repair Kit
6.5 Pivoting Caster Wheels Kit

The Pivoting Caster Wheel kit will provide better tracking when towing the header.

Attachment hardware and installation instructions are included in the kit.

MD #B6315

Instruction MD #214233

Figure 6.7: Caster Wheel Kit
# Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material overshoots the table auger</td>
<td>Draper speed too high</td>
<td>Reduce draper speed until pick-up is just pushing the swath.</td>
<td>Adjusting Draper Speed, page 71</td>
</tr>
<tr>
<td>Material overshoots the table auger</td>
<td>Incorrect header height</td>
<td>Measure and adjust header height to 305 mm (12 in.) from the center of the rear draper roller to the ground.</td>
<td>Header Height, page 79</td>
</tr>
<tr>
<td>Material overshoots the table auger</td>
<td>Improperly adjusted hold-down rods</td>
<td>Adjust the rod tube so the tips of the rods are close enough to the draper belts to prevent overshoot.</td>
<td>Adjusting Hold-Down Rod Angle, page 85</td>
</tr>
<tr>
<td>Swath forms a ball and rolls to the right or left where it is eventually lost off the end of the pick-up</td>
<td>Draper speed too high</td>
<td>Reduce draper speed until pick-up is just pushing the swath.</td>
<td>Adjusting Draper Speed, page 71</td>
</tr>
</tbody>
</table>
| Swath forms a ball and rolls to the right or left where it is eventually lost off the end of the pick-up | Light crop flowing forward and fingers unable to move swath rearward | Add optional Hold-Down Performance kit MD #B5475. | • See your Dealer  
• 6.1 Hold-Down Performance Kit, page 263 |
<p>| Shelling in delicate crops                   | Draper speed too high          | Reduce draper speed until pick-up is just pushing the swath. | Adjusting Draper Speed, page 71 |
| Shelling in delicate crops                   | Improperly adjusted hold-down   | Raise the hold-down assembly high enough to clear the swath. | Hold-Down Position, page 84      |
| Header leaves material in the field          | Pick-up teeth are set too high | Raise wheels to lower the pick-up height.           | Pick-Up Height, page 80          |
| Header leaves material in the field          | Draper speed too low           | Increase draper speed.                             | Adjusting Draper Speed, page 71 |
| Header leaves material in the field          | Pick-up is running too fast (pulling swath apart) | Slow down the pick-up until it is just pushing the swath. | Adjusting Draper Speed, page 71 |
| Header is picking a large amount of dirt and stones | Draper speed too high          | Reduce draper speed until pick-up is just pushing the swath. | Adjusting Draper Speed, page 71 |
| Header is picking a large amount of dirt and stones | Pick-up height too low         | Lower wheels to raise the pick-up height.           | Pick-Up Height, page 80          |</p>
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material stalls on the header before the auger can pull it into the feeder house</td>
<td>Rough header pan surface</td>
<td>Polish the header pan with emery cloth or buffing wheel.</td>
<td>—</td>
</tr>
<tr>
<td>Material stalls on the header before the auger can pull it into the feeder house</td>
<td>Incorrect header height</td>
<td>Adjust header height.</td>
<td>Header Height, page 79</td>
</tr>
<tr>
<td>Material stalls on the header before the auger can pull it into the feeder house</td>
<td>Incorrect face plate angle</td>
<td>Header face plate can be adjusted on some combine headers. Adjust combine header tilt so when header is at operating height, the header floor pan and ground are parallel. (Note: Adjust header tilt to Corn Setting from Grain Setting.)</td>
<td>Refer to your combine operator’s manual.</td>
</tr>
</tbody>
</table>
| Draper belts tracking incorrectly | Incorrect tension | Tension draper belts. | • Adjusting Front Draper Belt Tension, page 88  
• Adjusting Rear Draper Belt Tension, page 90 |
| Draper belts tracking incorrectly | Dirt/crop buildup on rollers | Remove draper belts and remove dirt/crop buildup from roller surface and roller groove. | 5.7.1 Draper Belts, page 206 |
| Draper belts tracking incorrectly | Belts are sometimes tacky when new | Apply talcum or baby powder onto belts to reduce tackiness. Belts may also need to be run loose for the first few hours of break-in. | — |
| Belts stalling when loaded with crop material | Draper belts are too loose | Increase belt tension. | • Adjusting Front Draper Belt Tension, page 88  
• Adjusting Rear Draper Belt Tension, page 90 |
<p>| Hold-down slave cylinder lags behind master on lift | Air in system | Bleed cylinders. | 5.9.4 Bleeding Cylinders and Lines, page 247 |</p>
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold-down master cylinder lags behind slave on descent and ahead of slave on lift</td>
<td>Obstruction preventing cylinder movement</td>
<td>Check lift cylinder and lift arm attachments.</td>
<td></td>
</tr>
<tr>
<td>Hold-down master cylinder lags behind slave on descent and ahead of slave on lift</td>
<td>Air in system</td>
<td>Bleed cylinders.</td>
<td>5.9.4 Bleeding Cylinders and Lines, page 247</td>
</tr>
<tr>
<td>Hold-down master cylinder lags behind slave on descent and ahead of slave on lift</td>
<td>Flow is too restricted</td>
<td>Check hoses and lines.</td>
<td>5.9.5 Hydraulic Hoses and Lines, page 248</td>
</tr>
<tr>
<td>Slave cylinder remains extended more than 13 mm (1/2 in.) when hold-down is fully lowered</td>
<td>Air in system</td>
<td>Bleed cylinders.</td>
<td>5.9.4 Bleeding Cylinders and Lines, page 247</td>
</tr>
<tr>
<td>Hold-down remains raised and will not lower</td>
<td>Safety prop is engaged</td>
<td>Disengage safety prop.</td>
<td>3.5 Engaging Hold-Down Lift Cylinder Safety Props, page 37</td>
</tr>
<tr>
<td>Hold-down remains raised and will not lower</td>
<td>Hydraulics not connected properly</td>
<td>Ensure hydraulic lines are connected properly and not damaged.</td>
<td>5.9.5 Hydraulic Hoses and Lines, page 248</td>
</tr>
<tr>
<td>Driveline clutch is slipping</td>
<td>Clutch is worn</td>
<td>Replace clutch.</td>
<td>Replacing Driveline Clutch, page 175</td>
</tr>
<tr>
<td>Driveline clutch is slipping</td>
<td>Obstruction in auger</td>
<td>Shut off combine, remove key, and remove obstruction.</td>
<td>3.13 Unplugging the Header, page 92</td>
</tr>
<tr>
<td>Pick-up wheels bounce over bumps</td>
<td>Header height is too high</td>
<td>Lower header until rear pick-up roller is 305 mm (12 in.) above the ground.</td>
<td>Header Height, page 79, 3.12.4 Adjusting Header Float, page 82</td>
</tr>
</tbody>
</table>
8 Reference

8.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

**Jam nuts**

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

**Self-tapping screws**

Standard torque is to be used (NOT to be used on critical or structurally important joints).

8.1.1 Metric Bolt Specifications

**Table 8.1 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut**

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

*Figure 8.1: Bolt Grades*
Table 8.2 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8.3 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>
Table 8.4 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.5 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 (Cast Aluminum)</td>
</tr>
<tr>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
</tr>
</tbody>
</table>
8.1.3 Flare-Type Hydraulic Fittings

1. Check flare (A) and flare seat (B) for defects that might cause leakage.

2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.

3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 8.6, page 276.

4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.

5. Assess final condition of connection.

Table 8.6 Flare-Type Hydraulic Tube Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value2</th>
<th>Flats from Finger Tight (FFFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>Ibf·ft</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>4–5</td>
<td>3–4</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>7–8</td>
<td>5–6</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>18–19</td>
<td>13–14</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>19–21</td>
<td>14–15</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>30–33</td>
<td>22–24</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>57–63</td>
<td>42–46</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>81–89</td>
<td>60–66</td>
</tr>
<tr>
<td>-12</td>
<td>1–1/16–12</td>
<td>113–124</td>
<td>83–91</td>
</tr>
<tr>
<td>-14</td>
<td>1–3/16–12</td>
<td>136–149</td>
<td>100–110</td>
</tr>
<tr>
<td>-16</td>
<td>1–5/16–12</td>
<td>160–176</td>
<td>118–130</td>
</tr>
<tr>
<td>-20</td>
<td>1–5/8–12</td>
<td>228–250</td>
<td>168–184</td>
</tr>
<tr>
<td>-40</td>
<td>3–12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

2. Torque values shown are based on lubricated connections as in reassembly.
8.1.4 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.

3. Check that O-ring (A) is NOT on threads and adjust if necessary.

4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until back up washer (D) and O-ring (A) contact part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).

8. Check final condition of fitting.
### Table 8.7 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value$^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

---

$^3$ Torque values shown are based on lubricated connections as in reassembly.
8.1.5 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 8.8, page 279.
6. Check final condition of fitting.

Table 8.8 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

\(^4\) Torque values shown are based on lubricated connections as in reassembly.
8.1.6 O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 8.9, page 280.

   **NOTE:**
   If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

### Table 8.9 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note(^6)</td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note(^6)</td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1-3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
</tbody>
</table>

\(^5\) Torque values and angles shown are based on lubricated connection as in reassembly.

\(^6\) O-ring face seal type end not defined for this tube size.
Table 8.9  O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value$^7$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-14</td>
<td>Note$^6$</td>
<td>7/8</td>
<td>–</td>
</tr>
<tr>
<td>-16</td>
<td>1-7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1-11/16</td>
<td>1-1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1-2</td>
<td>1-1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

8.1.7  Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks and scratches, or any form of contamination.

2. Apply pipe thread sealant (paste type) to external pipe threads.

3. Thread fitting into port until hand-tight.

4. Torque connector to appropriate torque angle. The Turns From Finger Tight (TFFT) values are shown in Table 8.10, page 281. Make sure that tube end of a shaped connector (typically 45 degree or 90 degree) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.

5. Clean all residue and any excess thread conditioner with appropriate cleaner.

6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.

7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

**NOTE:**

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.10 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

$^7$ Torque values and angles shown are based on lubricated connection as in reassembly.
# 8.2 Conversion Chart

## Table 8.11 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>x 2.4710 =</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>x 0.2248 =</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>x 0.0394 =</td>
</tr>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>x 1.341 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>x 0.145 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>megapascal</td>
<td>MPa</td>
<td>x 145.038 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 0.7376 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 8.8507 =</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>ºC</td>
<td>(ºC x 1.8) + 32 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 =</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>ml</td>
<td>x 0.0338 =</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 =</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>x 2.2046 =</td>
</tr>
</tbody>
</table>
Index

A

attaching to combines
Case IH ......................................................... 42
John Deere 60/70, S, and T series ................. 49
New Holland ................................................. 56
Versatile ..................................................... 61
auger drive chains ....................................... 188
installing ..................................................... 189
lubricating .................................................... 169
removing ..................................................... 188
auger fingers
  replacing .................................................. 197
  replacing auger finger guides ....................... 198
  replacing auger finger holders ..................... 200
auger flighting extensions
  replacing .................................................. 204
auger float ................................................ 74
locking ...................................................... 74
unlocking .................................................. 76
augers
auger dent repair kit .................................... 266
auger drive sprockets .................................. 190
auger drives ............................................. 188
auger fingers ............................................. 197–198, 200
auger position
  adjusting .................................................. 73
  checking ................................................... 72
auger speed ............................................. 72
maintenance .............................................. 197
operation ................................................ 72
auto header height control (AHHC) ................. 95
Case IH 2300 combines
  calibrating
    maximum stubble height .................................. 147
  height sensor output voltage range – combine
    requirements ........................................... 102
  how AHHC works ........................................ 95
  sensor operation ........................................ 96
  sensor output voltage
    checking voltage range manually .................. 102
Case IH 2500 combines
  calibrating
    maximum stubble height .................................. 147
  height sensor output voltage range – combine
    requirements ........................................... 102
  how AHHC works ........................................ 95
  sensor operation ........................................ 96
  sensor output voltage
    checking voltage range manually .................. 102
Case IH 5088/6088/7088 combines
  calibrating
    maximum stubble height .................................. 147
  height sensor output voltage range – combine
    requirements ........................................... 102
  how AHHC works ........................................ 95
  sensor operation ........................................ 96
  sensor output voltage
    checking voltage range manually .................. 102
Case IH 5130/6130/7130 combines .................. 107
  adjusting
    preset cutting height ................................ 110
  calibrating
    AHHC ..................................................... 110
    maximum stubble height .................................. 147
  checking voltage range manually .................. 102
  height sensor output voltage range – combine
    requirements ........................................... 102
  how AHHC works ........................................ 95
  sensor operation ........................................ 96
  sensor output voltage
    checking voltage range from the cab ............... 108
    setting up header on combine display ............. 107
Case IH 5140/6140/7140 combines .................. 107
  adjusting
    preset cutting height ................................ 110
  sensor output voltage
    checking voltage range from the cab ............... 108
    setting up header on combine display ............. 107
Case IH 7010 combines ................................ 113
  adjusting
    preset cutting height ................................ 120
  calibrating
    AHHC ..................................................... 116
    maximum stubble height .................................. 147
  height sensor output voltage range – combine
    requirements ........................................... 102
  how AHHC works ........................................ 95
  sensor operation ........................................ 96
  sensor output voltage
    checking voltage range from the cab ............... 115
    checking voltage range manually .................. 102
Case IH 7120/8120/9120 combines .................. 113
  adjusting
    preset cutting height ................................ 120
  calibrating
    AHHC ..................................................... 116
    maximum stubble height .................................. 147
  height sensor output voltage range – combine
    requirements ........................................... 102
  how AHHC works ........................................ 95
  sensor operation ........................................ 96
  sensor output voltage
INDEX

checking voltage range from cab ............. 115
checking voltage range manually ............. 102
Case IH 7230/8230/9230 combines .......... 113
   adjusting........................................ 120
   calibrating
      AHHC ............................................ 116
      maximum stubble height ...................... 147
   height sensor output voltage range – combine
      requirements ..................................... 102
   how AHHC works ................................ 95
   sensor operation ................................ 96
   sensor output voltage
      checking voltage range from cab .......... 115
      checking voltage range manually .......... 102
Case IH 7240/8240/9240 combines .......... 113
   adjusting........................................ 120
   calibrating
      AHHC ............................................ 116
   sensor output voltage
      checking voltage range from cab .......... 115
      checking voltage range manually .......... 102
Case IH 8010 combines ......................... 113
   adjusting........................................ 120
   calibrating
      AHHC ............................................ 116
      maximum stubble height ...................... 147
   height sensor output voltage range – combine
      requirements ..................................... 102
   how AHHC works ................................ 95
   sensor operation ................................ 96
   sensor output voltage
      checking voltage range from cab .......... 115
      checking voltage range manually .......... 102
Case IH combines with version 28.00 software
   calibrating the AHHC ............................. 118
John Deere 60 series combines .................. 122
   adjusting
      drop rate valve threshold ..................... 127
      sensing grain header height ................. 126
      sensitivity ..................................... 127
   calibrating
      AHHC ............................................ 123
      maximum stubble height ...................... 147
   height sensor output voltage range – combine
      requirements ..................................... 102
   how AHHC works ................................ 95
   sensor operation ................................ 96
   sensor output voltage
      checking voltage range from the cab ....... 122
      checking voltage range manually .......... 102
      turning the accumulator off ................ 125
John Deere 70 series combines .................. 128
   adjusting
      raise/lower rate manually .................... 134
      sensitivity ..................................... 132
   calibrating
      AHHC ............................................ 130
      feeder house speed ............................. 129
      maximum stubble height ...................... 147
      height sensor output voltage range – combine
         requirements ..................................... 102
   how AHHC works ................................ 95
   sensor operation ................................ 96
   sensor output voltage
      checking voltage range from the cab ....... 128
      checking voltage range manually .......... 102
John Deere S and T series combines ............ 135
   adjusting
      preset cutting height ......................... 141
      raise/lower rate manually .................... 140
      sensitivity ..................................... 139
   calibrating
      AHHC ............................................ 138
      maximum stubble height ...................... 147
      height sensor output voltage range – combine
         requirements ..................................... 102
   how AHHC works ................................ 95
   sensor operation ................................ 96
   sensor output voltage
      checking voltage range from cab .......... 135
      checking voltage range manually .......... 102
New Holland 2015 CR series ....................... 153
   calibrating AHHC ............................. 157
   engaging AHHC ................................ 153
   sensor output voltage
      checking voltage range from the cab ....... 155
      setting auto height ............................ 159
New Holland CR series
   setting maximum work height ................. 161
New Holland CR/CX series combines ............ 144
   adjusting
      header lower rate ....................... 149
      header raise rate ....................... 148
      preset cutting height .................... 150
      sensitivity .................................... 150
   calibrating
      AHHC ............................................ 146
      maximum stubble height ...................... 147
      configuring header tilt ..................... 151
      configuring header type .................... 151
      configuring reel fore-aft .................... 151
      engaging AHHC ............................. 145
      height sensor output voltage range – combine
         requirements ..................................... 102
   how AHHC works ................................ 95
   sensor operation ................................ 96
INDEX

sensor output voltage
  checking voltage range from the cab ........................................ 144
  checking voltage range manually .............................................. 102

decks
  maintenance ........................................................................ 206

declaration of conformity ....................................................... i

definitions ............................................................................. 24
detaching from combines
  Case IH combines ................................................................ 42
  John Deere 60/70, S, and T series ........................................... 53
  New Holland ......................................................................... 59
  Versatile ............................................................................. 65
draper belts ............................................................................ 206
  belt tension ........................................................................... 87
  checking tension ..................................................................... 87
  front draper belts
    adjusting belt tension ......................................................... 88
    installing ........................................................................... 207
    removing ........................................................................... 206
  rear draper belts
    adjusting belt tension .......................................................... 90
    installing ........................................................................... 210
    removing ........................................................................... 208
draper fingers and guides ......................................................... 211
  replacing draper fingers .......................................................... 211
  replacing draper guides ............................................................ 212
  draper roller bearings ............................................................. 213
  drive roller bearings
    replacing front deck left side bearing ..................................... 226
    replacing front deck right side bearing ................................... 229
    replacing rear deck left side bearing ....................................... 224
    replacing rear deck right side bearing ..................................... 218
  idler roller bearings
    replacing front deck idler roller bearings .............................. 229
    replacing rear deck left side idler roll bearing ....................... 222
    replacing rear deck right side idler roll bearing ........................ 223
draper speed sensors ............................................................... 254
  adjusting sensor .................................................................... 255
  checking sensor position ........................................................ 254
  replacing sensor .................................................................... 256
drapers ................................................................................... 206
  See also draper belts
  See also draper speed sensors
  adjusting draper speed ............................................................ 71
drivelines .................................................................................. 91
  cleaning driveline splined shaft ............................................. 179
driveline clutch
  replacing ............................................................................... 175
driveline guard
  installing ............................................................................... 91
  removing ............................................................................... 175
header driveline ........................................................................ 171
  installing ............................................................................... 173
  removing ............................................................................... 171
header driveshaft ....................................................................... 171
drives
  auger drives .......................................................................... 188
draper drives ........................................................................... 180
header driveline ........................................................................ 171
  installing ............................................................................... 173
  removing ............................................................................... 171
maintenance ............................................................................. 171
electrical system ....................................................................... 259
  See also lights
  components
    header height sensor (MD #158069)
      adjusting left side .............................................................. 105
      adjusting right side .......................................................... 105
      installing left side ............................................................ 98
      installing right side ......................................................... 100
      removing left side ............................................................ 97
removing right side ..................................... 98
header height sensors .................................... 96
endshields .................................................. 29
left endshield
  closing .................................................. 30
  installing .............................................. 32
  opening ................................................ 29
  removing ............................................... 31
right endshield
  installing .............................................. 35
  removing ............................................... 34

F
fingers, See auger fingers
flighting extensions
  replacing ............................................... 204
front draper roller bearings
  aligning rollers ....................................... 231

G
greasing
  maintenance schedule/record ....................... 164

H
header dimensions ..................................... 22
header float
  adjusting ............................................... 82
header specifications .................................. 21
header spring float assemblies ....................... 236
  installing .............................................. 238
  removing ............................................... 236
headers
  attaching/detaching the header ..................... 42
  changing header opening ......................... 41
  maintenance and servicing ......................... 163
  operating the header ................................ 70
  See also operating heights
  See also operating speeds
  See also transporting the header
storing the header .................................... 94
transporting the header ................................ 69
hold-downs ............................................. 84, 240
hold-down performance kits (optional) ............. 263
hold-down position .................................... 84
lift cylinder safety props
  engaging ............................................... 37
  replacing fiberglass rods ......................... 240
  replacing hold-down hydraulic cylinders .......... 241, 244

INDEX

removing right side ..................................... 98
header height sensors .................................... 96
endshields .................................................. 29
left endshield
  closing .................................................. 30
  installing .............................................. 32
  opening ................................................ 29
  removing ............................................... 31
right endshield
  installing .............................................. 35
  removing ............................................... 34

F
fingers, See auger fingers
flighting extensions
  replacing ............................................... 204
front draper roller bearings
  aligning rollers ....................................... 231

G
greasing
  maintenance schedule/record ....................... 164

H
header dimensions ..................................... 22
header float
  adjusting ............................................... 82
header specifications .................................. 21
header spring float assemblies ....................... 236
  installing .............................................. 238
  removing ............................................... 236
headers
  attaching/detaching the header ..................... 42
  changing header opening ......................... 41
  maintenance and servicing ......................... 163
  operating the header ................................ 70
  See also operating heights
  See also operating speeds
  See also transporting the header
storing the header .................................... 94
transporting the header ................................ 69
hold-downs ............................................. 84, 240
hold-down performance kits (optional) ............. 263
hold-down position .................................... 84
lift cylinder safety props
  engaging ............................................... 37
  replacing fiberglass rods ......................... 240
  replacing hold-down hydraulic cylinders .......... 241, 244
rod angle .................................................. 85
hydraulic cylinders
  replacing hold-down hydraulic cylinders .......... 241, 244
  bleeding cylinders and lines ...................... 247
  slave cylinders
    installing ............................................ 246
    removing ............................................ 244
  hydraulic hoses and lines ......................... 248
  replacing cylinder hoses
    installing ............................................ 251
    removing ............................................ 249
hydraulic motors
  draper drives .......................................... 180
  front hydraulic motors
    installing ............................................ 181
    removing ............................................ 180
  hydraulic motor hoses
    installing ............................................ 186
    removing ............................................ 184
  rear hydraulic motors
    installing ............................................ 183
    removing ............................................ 182
hydraulics
  fittings
    flare-type ............................................ 276
    O-ring boss (ORB) adjustable ..................... 277
    O-ring boss (ORB) non-adjustable ............... 279
    O-ring face seal (ORFS) ......................... 280
    tapered pipe thread fittings ..................... 281
  hydraulic safety ....................................... 6
J
John Deere combines ..................................... 49
  attaching to 60/70, S, and T series ............... 49
  detaching from 60/70, S, T series .................. 53
L
lift cylinder safety props
  header .................................................. 36
lights .................................................... 69, 259
  transport lights
    adjusting lights ...................................... 259
    replacing lamp housing ............................ 261
    replacing lens ...................................... 260
    replacing light bulbs .............................. 260
lubricating headers .................................... 167
greasing points ........................................ 168
greasing procedure ..................................... 167
installing sealed bearing ................................ 170
### M

- Maintenance and servicing .................................. 163
- End of season service ...................................... 166
- Lubricating the header ...................................... 167
- Maintenance record ........................................ 164
- Maintenance requirements .............................. 164
- Maintenance schedule .................................... 164
- Preparing header for servicing.......................... 163
- Preseason/annual service................................165
- Safety................................................................. 5

**Master cylinders**
- Bleeding cylinders and lines ............................. 247
- Installing................................................................ 243
- Removing master cylinder ............................... 244
- Master cylinder hose
  - Installing..................................................... 251
  - Removing.................................................... 241
- Removing master cylinder hose......................... 249
- Replacing master cylinder................................ 241

**Metric bolts**
- Torque specifications ...................... 273

**Motors**
- Removing rear hydraulic................................... 182

### N

- New Holland combines......................................... 56
  - Attaching to..................................................... 56
  - Detaching from .................................................. 59

### O

- Operating heights.............................................. 79
  - Header height ................................................. 79
  - Pick-up height ................................................ 80
    - Adjusting pick-up height .................................. 80
  - Operating speeds ........................................... 70
  - Auger speed .................................................. 72
  - Draper speed ................................................ 71
- Operator responsibilities .................................. 27

**Options**
- Augers
  - Auger dent repair kit .................................. 266
- Combine completion package kits ..................... 265
- Hold-down performance kits ................................ 263

**Owner responsibilities .................................. 27

### P

- Pan seal assembly
  - Adjusting rubber seal .................................. 93
- Product overview ............................................. 21

- Component identification ...................................... 23
- Header dimensions............................................. 22
- Header specifications ......................................... 21

### R

- Rear draper roller bearings
  - Aligning rollers ........................................... 224
- Rods (fiberglass) .............................................. 240

### S

- Safety
  - Break-in period.............................................. 40
  - Daily start-up checks ...................................... 38
  - General safety ............................................... 3
  - Hydraulic safety ............................................. 6
  - Maintenance safety .......................................... 5
  - Safety alert symbols ....................................... 1
  - Safety sign decals .......................................... 7
    - Installing ................................................... 7
    - Interpreting ............................................... 7
    - Location ..................................................... 8
  - Shutdown procedures ....................................... 39
  - Signal words ................................................ 2

**Sensors**, See draper speed sensors

- Serial numbers
  - Locating ...................................................... vi

**Slave cylinders**
- Bleeding cylinders and lines ............................. 247
- Installing................................................................ 246
- Removing ....................................................... 244

**Specifications**
- Header dimensions............................................. 22
- Header specifications ......................................... 22
- Torque specifications ......................................... 273

- Sprockets ....................................................... 190
- Drive sprocket
  - Installing ................................................... 195
  - Removing ..................................................... 194
- Driven sprocket
  - Installing ................................................... 191
  - Removing ..................................................... 190

**Start-up procedures**
- Daily start-up check ........................................ 38

**Storing headers ............................................... 94

**Stripper plates**
- Replacing ...................................................... 203
- Stripper plate clearance ..................................... 77
- Adjusting ......................................................... 78
- Checking ......................................................... 78
INDEX

T

torque specifications ........................................... 273
flare-type hydraulic fittings ................................ 276
metric bolt specifications .................................. 273
  bolting into cast aluminum ............................ 275
O-ring boss (ORB) hydraulic fittings
  (adjustable).................................................. 277
O-ring boss (ORB) hydraulic fittings (non-
  adjustable).................................................... 279
O-ring face seal (ORFS) fittings ......................... 280
tapered pipe thread fittings ............................. 281
transporting the header .................................... 69
transport lights ............................................. 69
troubleshooting ............................................. 269

U

unplugging headers ......................................... 92

V

Versatile combines ........................................ 61
  attaching to .............................................. 61
  detaching from ......................................... 65

W

wheels and tires ............................................ 257
  inflating tires .......................................... 258
  installing wheels ...................................... 258
  removing wheels ...................................... 257
Recommended Fluids and Lubricants

Keep your machine operating at top efficiency by using only clean lubricants and by ensuring the following:

- Use clean containers to handle all lubricants.
- Store lubricants in an area protected from dust, moisture, and other contaminants.

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>SAE multi-purpose</td>
<td>High temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>As required, unless otherwise specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme pressure (EP) performance with 1.5–5% molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>Drive motor shaft</td>
</tr>
<tr>
<td>Oil</td>
<td>SAE 30</td>
<td>—</td>
<td>Auger drive chain</td>
</tr>
</tbody>
</table>