M205 Self-Propelled Windrower, featuring Dual Direction® and Ultra Glide® suspension.

California Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm. Battery posts, terminals, and related accessories contain lead and lead components. Wash hands after handling.

Whole Body and Hand-Arm Vibration Levels

The weighted root mean square acceleration, to which the whole body is subjected, ranges from 0.57 to 1.06 m/s² as measured on a representative machine during typical operations and analyzed in accordance with ISO 5008.

During the same operations, the weighted root mean square hand-arm vibration was less than 1.45 m/s² when analyzed in accordance with ISO 5349. These acceleration values depend on the roughness of the ground, the speeds at which the windrower is operated, the operator's experience, weight, and driving habits.

Noise Levels

The A-weighted sound pressure levels inside the operator's station ranged from 70.1 to 73.1 dB(A) as measured on several representative machines in accordance with ISO 5131. The sound pressure level depends upon the engine speed and load, field and crop conditions, and the type of platform used.
Declaration of Conformity

EC Declaration of Conformity

MacDon Industries Ltd.
680 Mory Street,
Winnipeg, Manitoba, Canada
R3J 3B3

[1] EN

With [1]

Declaration that the product:

Machine Type [2]

Name & Model [3]

Serial Number [4]

Harmonized standards used, as referred to in Article 7(2)

EN ISO 4254-1:2013
EN ISO 4254-7:2009

Flows and state of declaration [5]

Identity and signature of the person empowered to draw up the declaration [6]

Name and address of the person authorized to compile the technical file

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenuer Straße 59
63235 Wiesbaden (Germany)
bvreden@macdon.com

[4] As Per Shipping Document

[5] January 17, 2018

[6] Christoph Martens
Product Integrity

MacDon
The Harvesting Specialists

[1] DE

Klärt erklären, dass das Produkt:

Maschinentyp [2]

Name und Modell [3]

Reihennummer [4]

EN50160:1998 und all relevanten Bestimmungen der Richtlinie 2009/42/EC.

Harmonisierte Standards, wie in folgenden Artikeln genannt, verwendet [5]:

EN ISO 4254-1:2013
EN ISO 4254-7:2009

Stelle und Zuständigkeit der Erklärung [6]:

Name und Unterschrift der Person, die dazu befugt ist, die Erklärung auszustellen:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenuer Straße 59
63235 Wiesbaden (Germany)
bvreden@macdon.com

[2] ES

Vamos a declarar que el producto:

Tipo de máquina [2]

Nombre y modelo [3]

Número de serie [4]

cumple con todas las disposiciones pertinentes de la directiva 2009/42/EC.

Se utilizan normas armonizadas, según lo dispuesto en el artículo 7(2):

EN ISO 4254-1:2013
EN ISO 4254-7:2009

Lugar y fecha de la declaración [5]:

Identificados por firma de la persona autorizada para dar fe de la declaración [6]:

Nombre y firma de la persona autorizada para elaborar y expedir declaración:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenuer Straße 59
63235 Wiesbaden (Alemania)
bvreden@macdon.com

[3] ET

Meie, [1]

deklarimme, et toodet:

Tüüpi nimetus [2]

Nime ja mudel [3]

Numbriaar [4]

korrastab 2009/42/EC direktiivi eeskirjadele vastu.

Harmoniseeritud vastavust, mida seadistuse 7(2) artikkel näitab, kasutades:

EN ISO 4254-1:2013
EN ISO 4254-7:2009

Kohandamise tõlg ja koostajad [5]:

Deklaratsiooni koostamine võttelatud lõigu nimed ja andmed [6]:

Tehnilises dokumentis koostamiselt võttelatud lõigis ja andmetes:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenuer Straße 59
63235 Wiesbaden (Ameerika)
bvreden@macdon.com

[4] DA

Når [1]

kanes, at produktet:

Maskintype [2]

Navn og model [3]

Serienummer [4]

tilføjelse af de relevante bestemmelser i direktiv 2009/42/EC.

Harmoniserede standarder, som henvises til i artikel 7(2):

EN ISO 4254-1:2013
EN ISO 4254-7:2009

Sted og dato af erklæringen [5]:

Identifikation på underskrift fra den person, som er bevaret til at udbrede erklæringen [6]:

Navn og adresse på den person, som er bevaret til at udbrede den tekniske fællesprat:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenuer Straße 59
63235 Wiesbaden (Tyskland)
bvreden@macdon.com

[5] FR

Nous [1]

déclarons que le produit:

Type de machine [2]

Nom et modèle [3]

Numéro de série [4]

est conforme à toutes les dispositions pertinentes de la directive 2009/42/EC.

L'utilisation des normes harmonisées, comme indiqué dans l’article 7(2):

EN ISO 4254-1:2013
EN ISO 4254-7:2009

Lieu et date de la déclaration [5]:

Identification de la personne ayant fourni le produit et de l’endroit de cette déclaration [6]:

Nom et adresse de la personne autorisée à constater le dossier technique:

Benedikt von Reden
Directeur général, MacDon Europe GmbH
Hagenuer Straße 59
63235 Wiesbaden (Allemagne)
bvreden@macdon.com
EC Declaration of Conformity

PL

NL

DE

IT

FR

UK

UK

RO

SK

SV

NL

PL

DE

IT

FR

UK

UK

RO

SK

SV

NL

PL

DE

IT

FR

UK

UK

RO

SK

SV

This page contains an EC Declaration of Conformity. It includes detailed information about the product, its technical specifications, and the conformity assessment procedures. The declaration is signed by the authorized representative of the manufacturer, who confirms that the product meets the relevant EU directives and standards. The declaration is written in various languages, reflecting the international nature of the European market. The page also includes a table with specific technical details, ensuring compliance with regulatory requirements.

Note: The content is a representation of the EC Declaration of Conformity page, focusing on the technical and legal aspects related to product compliance with EU directives.
Introduction

This manual contains information on the MacDon M205 Self-Propelled Windrower which, when coupled with one of MacDon’s auger, rotary, or draper headers, provides a package designed to cut and lay in windrows a variety of grain, hay, and specialty crops.

The M205 Windrower features Dual Direction®, meaning that the windrower can be driven in cab-forward or engine-forward mode. Right and left designations are therefore determined by the operator’s position, facing the direction of travel. This manual uses the terms right cab-forward, left cab-forward, right engine-forward, and left engine-forward when referencing specific locations on the machine.

Use this manual as your first source of information about the machine. Use the Table of Contents and the Index to guide you to specific areas. Study the Table of Contents to familiarize yourself with how the material is organized.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise the machine function and machine life and may result in a hazardous situation.

If you follow the instructions given here, your M205 Windrower will work well for many years.

Use this manual in conjunction with your header operator’s manual.

A manual storage case is provided in the cab. Keep this manual handy for frequent reference and to pass on to new Operators or Owners. Call your Dealer if you need assistance, information, or additional copies of this manual.

CAREFULLY READ ALL THE MATERIAL PROVIDED BEFORE ATTEMPTING TO USE THE MACHINE.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

NOTE: Keep your MacDon publications up-to-date. The most current version can be downloaded from our website www.macdon.com or from our Dealer-only site (https://portal.macdon.com) (login required).
List of Revisions

At MacDon, we’re continuously making improvements: occasionally these improvements impact product documentation. The following list provides an account of major changes from the previous version of this document.

<table>
<thead>
<tr>
<th>Summary of Change</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed the publication part number from 147955 to 214603.</td>
<td></td>
</tr>
<tr>
<td>Added Declaration of Conformity.</td>
<td>Declaration of Conformity, page 3</td>
</tr>
<tr>
<td>Added D1 SP header compatibility.</td>
<td>Throughout.</td>
</tr>
<tr>
<td>Updated illustrations to show beacons and engine air precleaner.</td>
<td>2.4 Component Location, page 37</td>
</tr>
<tr>
<td>Added swath compressor information to the CDM display tables.</td>
<td>3.19.3 Operating Screens, page 78</td>
</tr>
<tr>
<td>• Updated illustrations of front wiper switch.</td>
<td>3.7 Exterior Lighting, page 49</td>
</tr>
<tr>
<td>• Added illustrations of beacon/clearance switch for Russian-configured windrower.</td>
<td></td>
</tr>
<tr>
<td>Revised note to say that the two front corner field lights remain on when the auto road light feature is activated.</td>
<td>3.7.1 Field Light: Cab-Forward, page 50, Driving on the Road, page 179</td>
</tr>
<tr>
<td>Changed swath roller to swath compressor.</td>
<td>Double Windrow Attachment (DWA) / Swath Compressor Switch (if installed), page 75</td>
</tr>
<tr>
<td>Added topic.</td>
<td>3.19.12 Calibrating the Swath Compressor Sensor, page 131</td>
</tr>
<tr>
<td>Added topic.</td>
<td>Converting from Transport Mode to Field Operation, page 189</td>
</tr>
<tr>
<td>Added illustration showing DWA crop delivery.</td>
<td>4.4.10 Using the Double Windrowing Attachment, page 213</td>
</tr>
<tr>
<td>Added swath compressor section.</td>
<td>4.4.11 Swath Compressor (Option), page 215</td>
</tr>
<tr>
<td>• Added reference to union fittings required to hard plumb R85 16-ft. header to M205.</td>
<td>4.8 Operating with an R Series Header, page 281</td>
</tr>
<tr>
<td>Updated engine interlock information.</td>
<td>Checking Engine Interlock, page 296</td>
</tr>
<tr>
<td>Updated air intake illustration and description.</td>
<td>5.8.4 Air Intake System, page 317</td>
</tr>
<tr>
<td>Changed H₂O level from 2.5 in. to 25 in.</td>
<td>Air Filter Restriction Indicator, page 317</td>
</tr>
<tr>
<td>Added topic.</td>
<td>Air Precleaner, page 323</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Removed swath roller topic.</td>
<td>—</td>
</tr>
<tr>
<td>Added replacement bulb part number and description.</td>
<td>• Replacing Headlight Bulb, page 358</td>
</tr>
<tr>
<td></td>
<td>• Replacing Field Light Bulb, page 363</td>
</tr>
<tr>
<td></td>
<td>• Replacing Bulb in Cab-Forward Flood Light, page 363</td>
</tr>
<tr>
<td></td>
<td>• Replacing Bulb in Rear Flood Light, page 369</td>
</tr>
<tr>
<td>Updated fuse box decal to MD #167962.</td>
<td>Fuse Box Decal, page 381</td>
</tr>
<tr>
<td>Changed wheel drive lubricant from 80W-140 to 75W-90.</td>
<td>8.2 Recommended Fuel, Fluids, and Lubricants, page 460</td>
</tr>
<tr>
<td>Added swath compressor to options and attachments chapter.</td>
<td>7.3.11 Swath Compressor, page 447</td>
</tr>
<tr>
<td>Added Recommended Fluids and Lubricants to the inside back cover.</td>
<td>—</td>
</tr>
<tr>
<td>Removed Pre-cleaner and Sweeps kit (B6422) from Options and Attachments chapter; the kit is not applicable to 2018 M205 Windrowers.</td>
<td>—</td>
</tr>
</tbody>
</table>
Serial Numbers

If you require MacDon technical assistance, please have the serial numbers recorded and ready before you call.

Record the model number, model year, and serial number of the windrower and engine on the lines below.

The windrower serial number plate (A) is located on the left side of the main frame near the walking beam.

Windrower model number
Windrower serial number
Year of manufacture

The engine serial number plate (A) is located on top of the engine cylinder head cover.

Engine serial number
Date of manufacture

Machine Serial Number Location

Engine Serial Number Location
TABLE OF CONTENTS

Introduction ... i
List of Revisions .. ii
Serial Numbers ... iv

Chapter 1: Safety .. 1
 1.1 Safety Alert Symbols ... 1
 1.2 Signal Words ... 2
 1.3 General Safety ... 3
 1.4 Maintenance Safety ... 5
 1.5 Hydraulic Safety ... 6
 1.6 Tire Safety ... 7
 1.7 Battery Safety .. 8
 1.8 Welding Precautions ... 9
 1.9 Engine Safety .. 10
 1.9.1 High Pressure Rail ... 10
 1.9.2 Engine Electronics ... 11
 1.10 Safety Signs .. 12
 1.10.1 Installing Safety Decals ... 12
 1.11 Safety Sign Locations ... 13
 1.12 Understanding Safety Signs .. 17

Chapter 2: Product Overview ... 27
 2.1 Definitions ... 27
 2.2 Specifications ... 30
 2.3 Windrower Dimensions ... 34
 2.4 Component Location ... 37

Chapter 3: Operator’s Station .. 39
 3.1 Operator Console ... 39
 3.2 Operator Presence System ... 41
 3.2.1 Header Drive ... 41
 3.2.2 Engine and Transmission ... 41
 3.3 Operator’s Seat Adjustments ... 42
 3.3.1 Adjusting Fore-Aft Position .. 42
 3.3.2 Adjusting Seat Suspension and Height ... 42
 3.3.3 Adjusting Vertical Dampener .. 43
 3.3.4 Adjusting the Armrest ... 43
 3.3.5 Adjusting Fore-Aft Isolator Lock .. 44
 3.3.6 Adjusting Seat Tilt ... 44
 3.3.7 Adjusting Armrest Angle ... 45
 3.3.8 Adjusting Lumbar Support ... 45

214603 V Revision A
TABLE OF CONTENTS

3.4 Training Seat .. 46
3.5 Using Seat Belts ... 47
3.6 Adjusting Steering Column .. 48

3.7 Exterior Lighting .. 49
 3.7.1 Field Light: Cab-Forward ... 50
 3.7.2 Road Light: Engine-Forward ... 51
 3.7.3 Road Light: Cab-Forward ... 52
 3.7.4 Hazard Light ... 53
 3.7.5 Beacon Light (Optional) ... 53
 3.7.6 Auto Road Light ... 54
 3.7.7 HID Auxiliary Lighting (Optional) ... 54

3.8 Windshield Wipers ... 56

3.9 Rear View Mirrors .. 57

3.10 Cab Temperature .. 58
 3.10.1 Heater Shut-Off ... 58
 3.10.2 Air Distribution ... 58
 3.10.3 Climate Controls .. 59
 Refrigerant Oil .. 59

3.11 Interior Lights .. 60

3.12 Emergency Exit ... 61

3.13 Operator Amenities ... 62

3.14 Radio ... 64
 3.14.1 AM/FM Radio ... 64
 3.14.2 Mounting the Antenna ... 64

3.15 Horn ... 66

3.16 Engine Controls and Gauges ... 67

3.17 Windrower Controls .. 68

3.18 Header Controls .. 70
 3.18.1 Header Drive Switch ... 70
 3.18.2 Header Drive Reverse Button .. 70
 3.18.3 Ground Speed Lever (GSL) Header Switches
 Display Selector Switch ... 71
 Reel Position Switches ... 72
 Header Position Switches .. 73
 Reel and Disc Speed Switches .. 73
 3.18.4 Console Header Switches
 Deck Shift / Float Preset Switch ... 74
 Double Windrow Attachment (DWA) / Swath Compressor Switch (if installed) 74

3.19 Cab Display Module (CDM) ... 76
 3.19.1 Engine and Windrower Functions ... 76
 3.19.2 Header Functions ... 77
 3.19.3 Operating Screens
 Ignition ON, Engine Not Running ... 78
TABLE OF CONTENTS

Stopping .. 177
4.3.7 Adjusting Caster Tread Width .. 177
4.3.8 Transporting .. 179
 Driving on the Road ... 179
 Towing Header with Windrower .. 181
 Towing the Windrower (Emergency) ... 192
 Disengaging Final Drives .. 192
4.3.9 Storing the Windrower .. 193
4.4 Operating with a Header ... 194
 4.4.1 Engaging and Disengaging Header Safety Props: M Series Self-Propelled Windrower 194
 4.4.2 Using Header Float ... 196
 Float Operating Guidelines .. 196
 Checking Float ... 197
 Float Options ... 199
 4.4.3 Levelling the Header .. 201
 4.4.4 Header Drive .. 204
 Engaging and Disengaging the Header .. 204
 Reversing the Header .. 205
 4.4.5 Adjusting Header Angle ... 205
 Checking Self-Locking Center-Link Hook ... 206
 4.4.6 Controlling Cutting Height .. 208
 4.4.7 Return to Cut ... 208
 Programming the Return to Cut Feature ... 209
 Using the Return to Cut Feature ... 210
 4.4.8 Auto Raise Height .. 211
 Programming the Auto Raise Height Feature ... 211
 Using the Auto Raise Height Feature ... 212
 4.4.9 Header Drop Rate .. 212
 4.4.10 Using the Double Windrowing Attachment ... 213
 Engaging and Disengaging the Double Windrow Attachment (DWA) 214
 Adjusting Double Windrow Attachment (DWA) Draper Speed .. 214
 4.4.11 Swath Compressor (Option) ... 215
 Using the Swath Compressor .. 215
4.5 Attaching and Detaching Headers ... 217
 4.5.1 Attaching Header Boots ... 217
 4.5.2 Attaching a D Series or D1 SP Series Header ... 218
 Attaching a D Series or D1 SP Series Header: Hydraulic Center-Link with Optional Self-Alignment .. 218
 Attaching a D Series or D1 SP Series Header: Hydraulic Center-Link without Self-Alignment .. 223
 4.5.3 Detaching a D Series or D1 SP Series Header ... 229
 Detaching a D Series or D1 SP Series Header: Hydraulic Center-Link 229
 4.5.4 Attaching an A Series Header ... 232
 Attaching an A Series Header: Hydraulic Center-Link with Optional Self-Alignment 233
 Attaching an A Series Header: Hydraulic Center-Link without Self-Alignment 238
 4.5.5 Detaching an A Series Header ... 244
 Detaching an A Series Header: Hydraulic Center-Link ... 244
 4.5.6 Attaching an R Series Header ... 248
Chapter 5: Maintenance and Servicing ... 283

5.1 Preparation for Servicing .. 283

5.2 Engine Compartment Hood .. 284
 5.2.1 Opening Hood (Lower Position) .. 284
 5.2.2 Closing Hood (Lower Position) ... 285
 5.2.3 Opening Hood (Highest Position) .. 286
 5.2.4 Closing Hood (Highest Position) ... 287

5.3 Maintenance Platforms .. 288
 5.3.1 Opening Platforms (Standard Position) .. 288
 5.3.2 Closing Platforms (Standard Position) .. 289
 5.3.3 Opening Platforms (Major Service Position) ... 290
 5.3.4 Closing Platforms (Major Service Position) .. 292

5.4 Windrower Lubrication .. 293
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1 Lubricating the Windrower</td>
<td>293</td>
</tr>
<tr>
<td>5.4.2 Lubrication Points</td>
<td>294</td>
</tr>
<tr>
<td>5.5 Operator’s Station</td>
<td></td>
</tr>
<tr>
<td>5.5.1 Seat Belts</td>
<td>295</td>
</tr>
<tr>
<td>5.5.2 Safety Systems</td>
<td>295</td>
</tr>
<tr>
<td>Checking Operator Presence System</td>
<td>295</td>
</tr>
<tr>
<td>Checking Engine Interlock</td>
<td>296</td>
</tr>
<tr>
<td>5.5.3 Ground Speed Lever (GSL) Adjustments</td>
<td>296</td>
</tr>
<tr>
<td>Adjusting Ground Speed Lever (GSL) Lateral Movement</td>
<td>296</td>
</tr>
<tr>
<td>Adjusting Ground Speed Lever (GSL) Fore-Aft Movement</td>
<td>298</td>
</tr>
<tr>
<td>5.5.4 Steering Adjustments</td>
<td>298</td>
</tr>
<tr>
<td>Checking Steering Link Pivots</td>
<td>298</td>
</tr>
<tr>
<td>Checking and Adjusting Steering Chain Tension</td>
<td>301</td>
</tr>
<tr>
<td>5.6 Cab Suspension Limit Straps</td>
<td>302</td>
</tr>
<tr>
<td>5.7 Heating, Ventilating, and Air Conditioning (HVAC) System</td>
<td>303</td>
</tr>
<tr>
<td>5.7.1 Fresh Air Intake Filter</td>
<td>303</td>
</tr>
<tr>
<td>Removing Fresh Air Filter</td>
<td>303</td>
</tr>
<tr>
<td>Inspecting and Cleaning Fresh Air Filter</td>
<td>304</td>
</tr>
<tr>
<td>Installing Fresh Air Filter</td>
<td>304</td>
</tr>
<tr>
<td>5.7.2 Servicing the Return Air Cleaner/Filter</td>
<td>305</td>
</tr>
<tr>
<td>Cleaning Return Air Cleaner/Filter</td>
<td>306</td>
</tr>
<tr>
<td>5.7.3 Air Conditioning Condenser</td>
<td>307</td>
</tr>
<tr>
<td>5.7.4 Air Conditioning (A/C) Evaporator Core</td>
<td>307</td>
</tr>
<tr>
<td>Removing Air Conditioning (A/C) Cover</td>
<td>307</td>
</tr>
<tr>
<td>Cleaning Air Conditioning (A/C) Evaporator Core</td>
<td>308</td>
</tr>
<tr>
<td>Installing Air Conditioning (A/C) Cover</td>
<td>309</td>
</tr>
<tr>
<td>5.7.5 Air Conditioning (A/C) Compressor</td>
<td>310</td>
</tr>
<tr>
<td>Servicing the Air Conditioning Compressor</td>
<td>310</td>
</tr>
<tr>
<td>5.8 Engine</td>
<td>311</td>
</tr>
<tr>
<td>5.8.1 General Engine Inspection</td>
<td>311</td>
</tr>
<tr>
<td>5.8.2 Turning the Engine Manually</td>
<td>311</td>
</tr>
<tr>
<td>5.8.3 Engine Oil</td>
<td>313</td>
</tr>
<tr>
<td>Checking Engine Oil Level</td>
<td>313</td>
</tr>
<tr>
<td>Changing Engine Oil</td>
<td>315</td>
</tr>
<tr>
<td>Draining Engine Oil</td>
<td>315</td>
</tr>
<tr>
<td>Replacing Engine Oil Filter</td>
<td>316</td>
</tr>
<tr>
<td>Adding Engine Oil</td>
<td>316</td>
</tr>
<tr>
<td>5.8.4 Air Intake System</td>
<td>317</td>
</tr>
<tr>
<td>Air Filter Restriction Indicator</td>
<td>317</td>
</tr>
<tr>
<td>Removing Primary Air Filter</td>
<td>318</td>
</tr>
<tr>
<td>Installing Primary Air Filter</td>
<td>320</td>
</tr>
<tr>
<td>Cleaning Engine Air Filter Primary Element</td>
<td>321</td>
</tr>
<tr>
<td>Removing and Installing Secondary Air Filter</td>
<td>322</td>
</tr>
<tr>
<td>Air Pre cleaner</td>
<td>323</td>
</tr>
<tr>
<td>5.8.5 Fuel System</td>
<td>323</td>
</tr>
<tr>
<td>Replacing Fuel Tank Vent Filter</td>
<td>323</td>
</tr>
<tr>
<td>Maintaining Fuel Filters</td>
<td>324</td>
</tr>
<tr>
<td>Removing Primary Fuel Filter</td>
<td>325</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

- Installing Primary Fuel Filter ... 326
- Removing Secondary Fuel Filter ... 326
- Installing Secondary Fuel Filter ... 327
- Draining Fuel Tank .. 328
- Fuel/Water Separator .. 329
- Removing Water from Fuel System ... 329
- System Priming .. 330
- Priming Fuel System ... 330
- **5.8.6 Engine Cooling System** .. 331
 - Inspecting Radiator Cap .. 331
 - Checking Engine Coolant Strength .. 332
 - Checking Coolant Level .. 333
 - Changing Coolant .. 333
 - Draining and Cleaning the Coolant Tank .. 333
 - Adding Coolant .. 336
 - Maintaining Engine Cooling Box .. 337
 - Opening Cooler Box Screen ... 337
 - Charge Air Cooling .. 338
 - Cleaning Screens and Coolers .. 338
 - Cleaning Cooler Box Components .. 339
 - Adjusting Screen Cleaner Rotor to Screen Clearance 341
 - Closing Cooler Box Screen ... 342
- **5.8.7 Gearbox** .. 343
 - Checking Lubricant Level and Adding Lubricant 343
 - Changing Lubricant .. 344
- **5.8.8 Exhaust System** .. 345
- **5.8.9 Belts** ... 345
 - Tensioning Alternator/Fan Belt .. 345
 - Replacing Fan Belt .. 345
 - Tensioning Air Conditioner (A/C) Compressor Belt 347
 - Replacing Air Conditioner (A/C) Compressor Belt 347
- **5.8.10 Engine Speed** .. 348
 - Throttle Adjustment ... 348
- **5.9 Electrical System** .. 349
- **5.9.1 Preventing Electrical System Damage** 349
- **5.9.2 Battery** .. 349
 - Maintaining Batteries .. 349
 - Battery Main Disconnect Switch .. 350
 - Charging the Batteries .. 350
 - Boosting the Batteries ... 352
 - Adding Electrolyte to the Battery ... 353
 - Removing Batteries .. 354
 - Installing Batteries .. 356
 - Connecting Batteries ... 357
- **5.9.3 Headlights: Engine-Forward** .. 358
 - Replacing Headlight Bulb ... 358
 - Aligning Headlights .. 360
- **5.9.4 Field Lights: Cab-Forward** ... 362
 - Adjusting Field Lights .. 362
 - Replacing Field Light Bulb ... 363
- **5.9.5 Floodlights: Forward** ... 363
TABLE OF CONTENTS

- Adjusting Forward Floodlights ... 363
- Replacing Bulb in Cab-Forward Flood Light ... 363

5.9.6 High-Intensity Discharge (HID) Auxiliary Lighting (Optional – MD #B5596) ... 365
- Adjusting High-Intensity Discharge (HID) Auxiliary Lights (if Installed) ... 365
- Replacing High-Intensity Discharge (HID) Auxiliary Lights (if Installed) ... 366

5.9.7 Floodlights: Rear
- Adjusting Rear Floodlights .. 369
- Replacing Bulb in Rear Flood Light .. 369

5.9.8 Replacing Bulbs in Red and Amber Lights .. 371

5.9.9 Replacing Red Taillights ... 372

5.9.10 Replacing the Bulbs in Beacon Lights (If installed) 372

5.9.11 Replacing a Console Gauge Light ... 376

5.9.12 Replacing the Cabin Dome Light .. 377

5.9.13 Replacing the Ambient Light Fixture ... 378

5.9.14 Turn Signal Indicators ... 378

5.9.15 Circuit Breakers and Fuses ... 378
- Accessing Circuit Breakers and Fuses .. 378
- Checking and Replacing Fuses .. 379
- Replacing Circuit Breakers and Relays ... 380
- Fuse Box Decal ... 381
- Inspecting and Replacing 125A Main Fuses ... 382

5.10 Hydraulic System .. 384

5.10.1 Checking and Filling Hydraulic Oil .. 385

5.10.2 Hydraulic Oil Cooler ... 386

5.10.3 Changing the Hydraulic Oil ... 386

5.10.4 Changing Hydraulic Oil Filters .. 387
- Charge Oil Filter ... 387
- Removing Charge Oil Filter .. 387
- Installing Charge Oil Filter .. 389
- Return Oil Filter ... 389
- Removing Return Oil Filter .. 389
- Installing Return Oil Filter .. 391
- Servicing the Lift Filter ... 392

5.10.5 Header and Reel Hydraulics .. 394
- Hoses and Lines ... 394
- Relief Valve and Overload Settings .. 394
- Flow Control Blocks .. 395
- Adjusting Header Drop Rate ... 396
- Adjusting Reel Drop Rate ... 396

5.10.6 Traction Drive Hydraulics .. 397
- Checking Transmission Oil Pressure .. 397
- Checking Charge Pump Pressure ... 398

5.11 Wheels and Tires .. 399

5.11.1 Drive Wheels .. 399
- Inflating Drive Wheel Tire .. 399
- Tightening Drive Wheel Nuts .. 400
- Lubricating Wheel Drive .. 400
- Checking Wheel Drive Lubricant Level ... 400
- Adding Wheel Drive Lubricant .. 401
Chapter 6: Troubleshooting

6.1 Engine Troubleshooting ... 421
6.2 Electrical Troubleshooting ... 427
6.3 Hydraulics Troubleshooting ... 429
6.4 Header Drive Troubleshooting .. 430
6.5 Traction Drive Troubleshooting ... 431
6.6 Steering and Ground Speed Control Troubleshooting 435
6.7 Cab Air Troubleshooting .. 436
6.8 Operator’s Station Troubleshooting .. 441

Chapter 7: Options and Attachments

7.1 Cab .. 443
 7.1.1 AM/FM Radio .. 443
 7.1.2 Automated Steering Systems ... 443
 7.1.3 High Intensity Discharge (HID) Auxiliary Lighting 443
 7.1.4 Lighting and Marking for Cab-Forward Road Travel 443
 7.1.5 Pressure Sensor Kit ... 443
 7.1.6 Warning Beacons .. 444
 7.1.7 Windshield Shades ... 444
7.2 Engine ... 445
 7.2.1 Engine Block Heater .. 445
 7.2.2 Engine Fan Air Baffle .. 445
 7.2.3 Reversible Fan ... 445
7.3 Header Operation .. 446
7.3.1 Spring with External Booster Spring .. 446
7.3.2 Spring with Internal Booster Spring .. 446
7.3.3 Completion Kit for Auger and Draper Header Drives 446
7.3.4 Completion Kit for Auger Header Drive and Conditioner Reverser 446
7.3.5 Completion Kit for Draper Header Reel Drive 446
7.3.6 Double Windrow Attachment (DWA) .. 447
7.3.7 Hydraulic Union Kit .. 447
7.3.8 Light Header Flotation .. 447
7.3.9 Quick Coupler Kit .. 447
7.3.10 Self-Aligning Center-Link ... 447
7.3.11 Swath Compressor ... 447

7.4 Transport .. 448
7.4.1 Towing Harness .. 448
7.4.2 Weight Box .. 448

Chapter 8: Reference .. 449

8.1 Recommended Torques .. 449
8.1.1 Torque Specifications ... 449
SAE Bolt Torque Specifications .. 449
Metric Bolt Specifications .. 451
Metric Bolt Specifications Bolting into Cast Aluminum 453
Flare-Type Hydraulic Fittings .. 454
O-Ring Boss (ORB) Hydraulic Fittings (Adjustable) .. 455
O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable) 457
O-Ring Face Seal (ORFS) Hydraulic Fittings .. 458
Tapered Pipe Thread Fittings ... 459

8.2 Recommended Fuel, Fluids, and Lubricants .. 460
8.2.1 Storing Lubricants and Fluids ... 460
8.2.2 Fuel Specifications .. 460
8.2.3 Lubricants, Fluids, and System Capacities .. 461
8.2.4 Filter Part Numbers .. 462

8.3 Conversion Chart ... 463

8.4 Engine Error Codes ... 464

8.5 Cab Display Module (CDM) Error Codes ... 478

Index ... 481

Lubricants, Fluids, and System Capacities .. Inside Back Cover
1 Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

• ATTENTION!
• BECOME ALERT!
• YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

• Accidents disable and kill
• Accidents cost
• Accidents can be avoided

Figure 1.1: Safety Symbol
1.2 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. Signal words are selected using the following guidelines:

⚠️ DANGER

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ CAUTION

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.
1.3 General Safety

CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do **NOT** take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. Never ignore warning signs of fatigue.
SAFETY

- Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.
- Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
- Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

- Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.
- Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.
- To avoid bodily injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

- Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
- Keep work area well lit.
- Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
- NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
- When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit

- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lube fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.

Figure 1.11: Testing for Hydraulic Leaks

Figure 1.12: Hydraulic Pressure Hazard

Figure 1.13: Safety around Equipment
1.6 Tire Safety

⚠️ WARNING

- Service tires safely.
- A tire can explode during inflation which could cause serious injury or death.
- Follow proper procedures when mounting a tire on a wheel or rim. Failure to do so can produce an explosion that may result in serious injury or death.

⚠️ WARNING

- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- Do NOT exceed maximum inflation pressure indicated on tire label.
- Replace tires that have defects.
- Replace wheel rims that are cracked, worn, or severely rusted.
- Never weld a wheel rim.
- Never use force on an inflated or partially inflated tire.
- Make sure tire is correctly seated before inflating to operating pressure.
- If tire is not correctly positioned on rim or is overinflated, tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can thrust tire in any direction endangering anyone in area.
- Make sure all air is removed from tire before removing tire from rim.
- Do NOT remove, install, or repair a tire on a rim unless you have proper equipment and experience to perform job.
- Take tire and rim to a qualified tire repair shop.
1.7 Battery Safety

WARNING

- Keep all sparks and flames away from batteries, as a gas given off by electrolyte is explosive.
- Ventilate when charging in enclosed space.

WARNING

- Wear safety glasses when working near batteries.
- Do NOT tip batteries more than 45° to avoid electrolyte loss.
- Battery electrolyte causes severe burns. Avoid contact with skin, eyes, or clothing.
- Electrolyte splashed into eyes is extremely dangerous. Should this occur, force eye open, and flood with cool, clean water for 5 minutes. Call a doctor immediately.
- If electrolyte is spilled or splashed on clothing or body, neutralize it immediately with a solution of baking soda and water, then rinse with clear water.

WARNING

- To avoid injury from spark or short circuit, disconnect battery ground cable before servicing any part of electrical system.
- Do NOT operate engine with alternator or battery disconnected. With battery cables disconnected and engine running, a high voltage can be built up if terminals touch frame. Anyone touching frame under these conditions would be severely shocked.
- When working around storage batteries, remember that all of the exposed metal parts are live. Never lay a metal object across terminals because a spark or short circuit will result.
- Keep batteries out of reach of children.
1.8 **Welding Precautions**

High currents and voltage spikes associated with welding can cause damage to electronic components. Before welding on any part of windrower or an attached header, disconnect all electronic module harness connections as well as battery cables. Refer to your Dealer for proper procedures.
1.9 Engine Safety

⚠️ WARNING
Do NOT use aerosol starting aids such as ether. Such use could result in an explosion and personal injury.

⚠️ CAUTION
- On initial start-up of a new, serviced, or repaired engine, always be ready to stop the engine in order to stop an overspeed. This may be accomplished by shutting off the air and/or fuel supply to the engine.
- Do NOT bypass or disable automatic shutoff circuits. The circuits are provided in order to help prevent personal injury. The circuits are also provided in order to help prevent engine damage. Refer to your Dealer for repairs and adjustments.
- Inspect the engine for potential hazards.
- Before starting the engine, ensure that no one is on, underneath, or close to the engine. Ensure that people clear the area.
- All protective guards and all protective covers must be installed if the engine must be started in order to perform service procedures.
- To help prevent an accident that is caused by parts in rotation, work around parts carefully.
- If a warning tag is attached to engine start switch or to controls, do NOT start engine or move controls. Consult with person who attached warning tag before engine is started.
- Start engine from operator’s compartment. Always start engine according to procedure that is described in Starting Engine section of operator’s manual. Knowing correct procedure will help to prevent major damage to engine components and prevent personal injury.
- To ensure that the jacket water heater (if equipped) and/or lube oil heater (if equipped) is working correctly, check the water temperature gauge and/or oil temperature gauge during heater operation.
- Engine exhaust contains products of combustion which can be harmful to your health. Always start the engine and operate the engine in a well ventilated area. If the engine is started in an enclosed area, vent the engine exhaust to the outside.

NOTE:
The engine may be equipped with a device for cold starting. If the engine will be operated in very cold conditions, then an additional cold starting aid may be required.

1.9.1 High Pressure Rail

⚠️ CAUTION
Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these instructions may cause personal injury or death.
1.9.2 Engine Electronics

⚠️ WARNING
Tampering with electronic system installation or original equipment manufacturer (OEM) wiring installation can be dangerous and could result in personal injury or death and/or engine damage.

⚠️ WARNING
Electrical Shock Hazard. The electronic unit injectors use DC voltage. The engine control module (ECM) sends this voltage to the electronic unit injectors. Do NOT come in contact with the harness connector for the electronic unit injectors while engine is operating. Failure to follow this instruction could result in personal injury or death.

This engine has a comprehensive, programmable engine monitoring system. The ECM has the ability to monitor engine operating conditions. If conditions exceed the allowable range, the ECM will initiate immediate action.

The following actions are available for engine monitoring control:

- Warning
- Derate
- Shut down

The following monitored engine operating conditions have the ability to limit engine speed and/or engine power:

- Engine coolant temperature
- Engine oil pressure
- Engine speed
- Intake manifold air temperature

The engine monitoring package can vary for different engine models and different engine applications. However, monitoring system and engine monitoring control will be similar for all engines. Together, two controls provide engine monitoring function for specific engine application.
1.10 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or become illegible.
- If original part on which a safety sign was installed is replaced, be sure repair part also bears current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.10.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.
1.11 Safety Sign Locations

Figure 1.20: Safety Sign Locations (Left Cab-Forward Side)

A - Hazard Sign (MD #135378)
B - Cab Door and Rim (MD #166454)
C - Oil Reservoir under Hood (MD #166466)
D - Exhaust Cover (MD #166450)
E - Close to Radiator Cap (MD #166461)
F - Fan Shroud (Top) (MD #166450)
G - Fan Shroud (Middle) (MD #166451)
H - Fan Shroud (Bottom) (MD #166452)
J - Frame Opening (MD #166233)
K - Platform (Left of Step) (MD #166425)
L - Platform (Right of Step) (MD #166441)
M - Frame at Multifunction Manifold (MD #166466)
N - Lift Linkage (MD #166438)
P - Inner Post (MD #166457)
Q - Inner Post (MD #166234)
R - Inner Post (MD #166463)
S - Neutral Interlock (MD #166425)
T - Frame (MD #166425)
U - Trainer’s Seat (MD #167502)

Figure 1.21: Safety Signs (Left Cab-Forward Side)
Figure 1.22: Safety Sign Locations (Right Cab-Forward Side)

A - Hazard Sign on Seat (MD #115148)
B - Lift Linkage (MD #166439)
C - Frame (MD #166455)
D - Frame (MD #166456)
E - Cab Frame (MD #184372)
F - Platform (MD #166425)
G - Shroud (MD #166451)
H - Shroud (MD #166452)
J - Hydraulic Reservoir (MD #174436)
K - Wiper Cover (MD #166465)
L - Rim (MD #166454)
M - Window (MD #167504)
Figure 1.23: Safety Signs (Right Cab-Forward Side)
1.12 Understanding Safety Signs

MD #166233

Run-over hazard

DANGER

- Do not start engine by shorting across starter or starter relay terminals. Machine will start with drive engaged and move if starting circuitry is bypassed.
- Start engine only from operator’s seat. Do not try to start engine with someone under or near machine.

MD #166234

Run-over hazard

WARNING

- The training seat is provided for an experienced Operator of the machine when a new Operator is being trained.
- The training seat is not intended as a passenger seat or for use by children.
- Use the seat belt whenever operating the machine or riding as a trainer.
- Keep all other riders off the machine.

MD #166425

Run-over hazard

WARNING

- Remove the key from the ignition.
- Read the windrower and header manuals for inspection and maintenance instructions.
MD #166438
Crushing hazard

DANGER

- Rest header on ground or engage safety props before going under unit.

MD #166439
Crushing hazard

DANGER

- Rest header on ground or engage safety props before going under unit.
MD #166441
Loss of control hazard

CAUTION
- To prevent machine damage and/or loss of control, it is essential that the machine be equipped such that weights are within the specified limits.

MD #166450
Hot surface hazard

WARNING
- To avoid injury, keep a safe distance from hot surface.

MD #166451
Rotating fan hazard

WARNING
- To avoid injury, stop the engine and remove the key before opening engine hood.
SAFETY

MD #166454

General hazard pertaining to machine operation and servicing

CAUTION

- Read the operator’s manual and follow all safety instructions.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #166455

Explosion hazard

WARNING

- Prevent serious bodily injury caused by explosive battery gases.
- Keep sparks and flames away from the battery.
- Refer to operator’s manual for battery boosting and charging procedures.

Figure 1.32: MD #166454

Figure 1.33: MD #166455
Figure 1.34: MD #166456

MD #166456

Battery acid hazard

WARNING

- Corrosive and poisonous battery acid. Acid can severely burn your body and clothing.
General hazard pertaining to machine operation and servicing

CAUTION
To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

Run-over hazard

WARNING

- Machine will move if steering wheel is turned while engine is running.
- Steering response is opposite to what is normally expected when backing up. Turn bottom of steering wheel in direction you want to go.
- Always move ground speed lever to slow end of range before shifting high-low speed control.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging the machine.
MD #166461
Hot fluid under pressure hazard

CAUTION

- Coolant is under pressure and may be hot. Never remove radiator cap when engine is hot.

MD #166463
Collision hazard in transport

WARNING

- Collision between windrower and other vehicles may result in injury or death.

When driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles front and rear of windrower if required by law.
- Use slow moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install MacDon approved weight box. Refer to operator’s manual for safe procedure to tow header.

MD #166465
Loss of control hazard

WARNING

To avoid serious injury or death from loss of control:

- Do not make abrupt changes in steering direction.
- Anticipate turns by slowing down well in advance.
- Do not rapidly accelerate or decelerate while turning.
- Limit speed to maximum 32 km/h (20 mph) when towing a header. To ensure steering control, refer to operator’s manual for adding weight to drive wheels.

When travelling on steep slopes:

- Reduce speed and lower header.
- Move ground speed lever to slow end of range.
• Shift high-low speed control to low range.

With header removed, steering control is reduced if weight is not added to drive wheels. If you must drive the windrower without header or MacDon weight system:

• Operate in low-speed range.
• Avoid slopes.
• Do not tow a header. **If control of machine is lost, immediately pull ground speed lever to neutral.**

MD #166466

High pressure oil hazard

WARNING

• Do not go near leaks.
• High pressure oil easily punctures skin causing serious injury, gangrene, or death.
• If injured, seek emergency medical help. Immediate surgery is required to remove oil.
• Do not use finger or skin to check for leaks.
• Lower load or relieve hydraulic pressure before loosening fittings.

MD #166843

Steering control

WARNING

To avoid serious injury or death from loss of control:

• Do not make abrupt changes in steering direction.
• Anticipate turns by slowing down well in advance.
• Do not rapidly accelerate or decelerate while turning.
• Limit speed to maximum 32 km/h (20 mph) when towing a header. To ensure steering control, refer to operator’s manual for adding weight to drive wheels.
SAFETY

MD #167502
Pinch point hazard

WARNING
• To avoid injury, be cautious when opening/closing the training seat to avoid getting pinched.
• Failure to comply could result in death or serious injury.

Figure 1.41: MD #167502

MD #167504
Emergency exit

ATTENTION
• To exit the machine via the secondary door, follow the arrow on the running man sign.

Figure 1.42: MD #167504

MD #174436
High pressure oil hazard

WARNING
• Do not go near leaks.
• High pressure oil easily punctures skin causing serious injury, gangrene, or death.
• If injured, seek emergency medical help. Immediate surgery is required to remove oil.
• Do not use finger or skin to check for leaks.
• Lower load or relieve hydraulic pressure before loosening fittings.

Figure 1.43: MD #174436
SAFETY

MD #190546
Slippery surface

WARNING

- Do not use this area as a step or platform.
- Failure to comply could result in serious injury or death.

Figure 1.44: MD #190546
2 Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Series header</td>
<td>MacDon A30D and A40D auger headers</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with Operator and cab facing in direction of travel</td>
</tr>
<tr>
<td>CDM</td>
<td>Cab display module on a windrower</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>D Series header</td>
<td>MacDon D50, D60, and D65 rigid draper headers</td>
</tr>
<tr>
<td>D1 SP Series header</td>
<td>MacDon D115, D120, D125, D130, D135, or D140 rigid draper headers for M Series Windrower</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DKD</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>DDD</td>
<td>Double-drapers drive</td>
</tr>
<tr>
<td>DWA</td>
<td>Double Windrow Attachment</td>
</tr>
<tr>
<td>ECM</td>
<td>Engine control module</td>
</tr>
<tr>
<td>Engine-forward</td>
<td>Windrower operation with Operator and engine facing in direction of travel</td>
</tr>
<tr>
<td>FFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>GSL</td>
<td>Ground speed lever</td>
</tr>
<tr>
<td>GSS</td>
<td>Grass Seed</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>HDS</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC</td>
<td>Intermediate Speed Control</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>MDS</td>
<td>Mechanical deck shift</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>N-DETENT</td>
<td>The slot opposite the NEUTRAL position on operator’s console of M Series SP Windrowers</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port opening on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>R Series header</td>
<td>MacDon R80 and R85 rotary disc headers</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>SDD</td>
<td>Single-draper drive</td>
</tr>
<tr>
<td>Self-Propelled (SP) Windrower</td>
<td>Self-propelled machine consisting of a power unit with a header</td>
</tr>
<tr>
<td>SK</td>
<td>Single knife</td>
</tr>
<tr>
<td>SKD</td>
<td>Single-knife drive</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>UCA</td>
<td>Upper cross auger</td>
</tr>
<tr>
<td>ULSD</td>
<td>Ultra low sulphur diesel</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or a locking mechanism</td>
</tr>
<tr>
<td>WCM</td>
<td>Windrower control module</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit of a self-propelled header</td>
</tr>
</tbody>
</table>
2.2 Specifications

<table>
<thead>
<tr>
<th>Engine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cummins QSB-6.7L 6 cylinder turbo diesel (B20 bio-diesel approved), control module CM2250</td>
</tr>
<tr>
<td>Displacement</td>
<td>6.7 L (409 cu. in.)</td>
</tr>
<tr>
<td>Power Rated</td>
<td>164 kW (220 hp) @ 2200 rpm</td>
</tr>
<tr>
<td>Power Peak</td>
<td>172 kW (230 hp) @ 2000 rpm</td>
</tr>
<tr>
<td>Bore</td>
<td>107 mm (4.21 in.)</td>
</tr>
<tr>
<td>Stroke</td>
<td>124 mm (4.88 in.)</td>
</tr>
<tr>
<td>Maximum rpm (no load)</td>
<td>2250–2340</td>
</tr>
<tr>
<td>Idle rpm</td>
<td>1075–1150</td>
</tr>
</tbody>
</table>

Electrical System

Battery (2)	12 Volt, maximum dimension – 334 x 188 x 232 mm (13 x 6.81 x 9.43 in.). Group rating 29H or 31A, heavy duty/off road/vibration resistant
Minimum CCA per battery	750
Alternator	130 amp
Egress lighting	Standard
Starter	Wet type
Working lights	11

Traction Drive

<p>| Type | Hydrostatic, 3-speed electric shift |
| Speed | |
| Speed Field | Low range 0–18 km/h (11 mph), mid range 0–26 km/h (16 mph) |
| Speed Reverse | 9.6 km/h (6 mph) |
| Speed Transport | High range 0–37 km/h (23 mph) |
| Transmission | 2 piston pumps – 1 per drive wheel |
| Transmission | 44 cc (2.65 cu. in.) |
| Transmission | 167 L/min (40 US gpm) |
| Final drive | Planetary gearbox |
| Final drive | 30.06:1 |</p>
<table>
<thead>
<tr>
<th>Product Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel motor displacement</td>
</tr>
<tr>
<td>Low-range</td>
</tr>
<tr>
<td>68 cc (4.15 cu. in.)</td>
</tr>
<tr>
<td>Mid-range</td>
</tr>
<tr>
<td>50 cc (3.01 cu. in.)</td>
</tr>
<tr>
<td>High-range</td>
</tr>
<tr>
<td>32 cc (1.93 cu. in.)</td>
</tr>
<tr>
<td>System Capacities</td>
</tr>
<tr>
<td>Fuel tank</td>
</tr>
<tr>
<td>367 L (97 US gallons)</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
<tr>
<td>30 L (7.9 US gallons)</td>
</tr>
<tr>
<td>Hydraulic reservoir</td>
</tr>
<tr>
<td>65 L (17.2 US gallons)</td>
</tr>
<tr>
<td>Header Drive</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Hydraulic, electrical displacement control</td>
</tr>
<tr>
<td>Displacement</td>
</tr>
<tr>
<td>Piston pump A – 105.5 cc (6.44 cu. in.)</td>
</tr>
<tr>
<td>Gear pumps C and D – 16.7 cc (1.02 cu. in.)</td>
</tr>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>Piston pump A – 0–273 L/min (0–72 gpm)</td>
</tr>
<tr>
<td>Gear pumps C and D – 45 L/min (12 gpm)</td>
</tr>
<tr>
<td>Piston Pump (A)</td>
</tr>
<tr>
<td>Gear Pump (C)</td>
</tr>
<tr>
<td>Gear Pump (D)</td>
</tr>
<tr>
<td>Maximum pressure¹</td>
</tr>
<tr>
<td>Disc drive (no header)</td>
</tr>
<tr>
<td>41,369 kPa (6000 psi)²</td>
</tr>
<tr>
<td>Maximum pressure¹</td>
</tr>
<tr>
<td>Knife drive (differential)</td>
</tr>
<tr>
<td>27,579–31,026 kPa (4000–4500 psi)²</td>
</tr>
<tr>
<td>Maximum pressure¹</td>
</tr>
<tr>
<td>Reel (draper) drive (differential)</td>
</tr>
<tr>
<td>22,063–24,132 kPa (3200–3500 psi)²</td>
</tr>
<tr>
<td>Maximum pressure¹</td>
</tr>
<tr>
<td>Double Windrow Attachment (DWA) drive</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>Maximum pressure¹</td>
</tr>
<tr>
<td>Conveyor (draper) Reel/Auger (A40)</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>Maximum pressure¹</td>
</tr>
<tr>
<td>Supercharge</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>Header Lift/Tilt</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Hydraulic double acting cylinders: tilt – hydraulic positioning</td>
</tr>
<tr>
<td>Gear pump (B)¹</td>
</tr>
<tr>
<td>Displacement</td>
</tr>
<tr>
<td>16.7 cc (1.02 cu. in.)</td>
</tr>
<tr>
<td>Gear pump (B)¹</td>
</tr>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>45 L/min (12 US gpm)</td>
</tr>
<tr>
<td>Gear pump (B)¹</td>
</tr>
<tr>
<td>System pressure (relief/max)</td>
</tr>
<tr>
<td>17,237–19,305 kPa (2500–2800 psi)</td>
</tr>
</tbody>
</table>

1. Refer to Figure 2.1, page 33 for pump reference.
2. Measured at 38°C (100°F) minimum.
3. Measured at 54°C (130°F) minimum.
<table>
<thead>
<tr>
<th>Header Flotation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary adjustment</td>
<td>Manual, external, drawbolt with springs (1 per side) One inner booster spring on left side</td>
</tr>
<tr>
<td>Fine adjustment</td>
<td>Hydraulic, in-cab switch</td>
</tr>
<tr>
<td>Automatic</td>
<td>Hydraulic, 3 programmable settings for all headers (deck shift compensation on draper headers)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cab</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Spring/shock suspension</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>1600 mm (63 in.)</td>
</tr>
<tr>
<td>Depth</td>
<td>1735 mm (68.3 in.) (at top of window)</td>
</tr>
<tr>
<td>Height</td>
<td>1640 mm (64.6 in.)</td>
</tr>
<tr>
<td>Volume</td>
<td>3540 L (125 cu. ft.)</td>
</tr>
<tr>
<td>Seat</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>Adjustable air-ride suspension, seat belt</td>
</tr>
<tr>
<td>Training</td>
<td>Folding, cab mounted, seat belt</td>
</tr>
<tr>
<td>Windshield wiper</td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>800 mm (31.5 in.) blade</td>
</tr>
<tr>
<td>Rear</td>
<td>560 mm (22 in.) blade</td>
</tr>
<tr>
<td>Heater</td>
<td>7038 W (24,000 Btu/h)</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>8288 W (28,280 Btu/h)</td>
</tr>
<tr>
<td>Electrical outlets</td>
<td>One live, two on ignition, one live/keyed</td>
</tr>
<tr>
<td>Mirrors</td>
<td>One inside (transport), two outside (field)</td>
</tr>
<tr>
<td>Radio</td>
<td>Two speakers and antenna factory installed: radio Dealer installed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Monitoring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeds</td>
<td>Ground (mph or km/h), engine (rpm), knife (spm), disc (rpm), reel (rpm or mph / km/h), conveyor (Ref. No.)</td>
</tr>
<tr>
<td>Header</td>
<td>Height, angle, float, header drive load gauge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tire Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td>18.4 – 26 bar, 18.4 – 26 turf, 600-65 R28 bar, 23.1 – 26 turf, 580/70R26 turf</td>
</tr>
<tr>
<td>Rear</td>
<td>7.5 – 16SL single rib, 10 – 16 front steer tire 16.5L – 16.1 rib implement flotation, forked caster</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td>Refer to Inflating Drive Wheel Tire, page 399</td>
</tr>
<tr>
<td>Rear</td>
<td>Refer to Inflating Caster Tire, page 406</td>
</tr>
</tbody>
</table>
Frame and Structure

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Refer to 2.3 Windrower Dimensions, page 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame to ground (crop clearance)</td>
<td>1160 mm (45.7 in.)</td>
</tr>
<tr>
<td>Weight Base</td>
<td>4500 kg (9920 lb.)</td>
</tr>
<tr>
<td>Weight Max GVW</td>
<td>9750 kg (2,1500 lb.)</td>
</tr>
<tr>
<td>Weight Max CGVW</td>
<td>10480 kg (2,3100 lb.)</td>
</tr>
</tbody>
</table>

Header compatibility

- A40D Auger
- D50 Harvest Header
- D60 Harvest Header/D65 Draper up to 12.2 m (40 ft.)
- D1 SP Draper Header up to 12.2 m (40 ft.)
- R80/R85 Rotary Disc

NOTE:

- Specifications and design are subject to change without notice or obligation to revise previously sold units.
- Weights do not include options.

Figure 2.1: Hydraulic Pumps (Orientation)

- **A** - Piston Pump: Disc Drive, Knife Drive, Reel (Draper) Drive
- **B** - Gear Pump (Outboard): Lift, Tilt, and Reel Fore-Aft Circuits
- **C** - Gear Pump (Middle): Draper Control D Series / D1 Series, Reel/Auger Control A Series
- **D** - Gear Pump (Inboard): DWA (Double Windrow Attachment)

4. Pump (C) and (D) combine for supercharge.
2.3 Windrower Dimensions

Figure 2.2: Windrower Dimensions – Cab-Forward

Table 2.1 Drive Tires

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Wheel Position</th>
<th>Tread (A) mm (in.)</th>
<th>Hubs (B) mm (in.)</th>
<th>Tires (C) mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4 x 26 bar and turf narrow track5</td>
<td>Inner/outer (shipping)</td>
<td>3144 (123-3/4)</td>
<td>3571 (140-9/16)</td>
<td>3644 (143-7/16)</td>
</tr>
<tr>
<td>18.4 x 26 bar and turf narrow track5</td>
<td>Outer/outer</td>
<td>3324 (130-7/8)</td>
<td>3751 (147-11/16)</td>
<td>3824 (150-5/8)</td>
</tr>
<tr>
<td>18.4 x 26 bar and turf narrow track5</td>
<td>Inner/inner</td>
<td>2964 (116-11/16)</td>
<td>3391 (133-1/2)</td>
<td>3464 (136-3/8)</td>
</tr>
<tr>
<td>18.4 x 26 bar and turf wide track6</td>
<td>Inner/outer (shipping)</td>
<td>3319 (130-11/16)</td>
<td>3571 (140-9/16)</td>
<td>3819 (150-3/8)</td>
</tr>
<tr>
<td>18.4 x 26 bar and turf wide track6</td>
<td>Outer/outer</td>
<td>3499 (137-3/4)</td>
<td>3751 (147-11/16)</td>
<td>3999 (157-7/16)</td>
</tr>
</tbody>
</table>

5. Only 18.4 x 26 tires are compatible with the 13-foot R80 and R85.
Table 2.1 Drive Tires (continued)

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Wheel Position</th>
<th>Tread (A) mm (in.)</th>
<th>Hubs (B) mm (in.)</th>
<th>Tires (C) mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4 x 26 bar and turf wide track<sup>5</sup></td>
<td>Inner/inner</td>
<td>3139 (123-9/16)</td>
<td>3391 (133-1/2)</td>
<td>3639 (143-1/4)</td>
</tr>
<tr>
<td>600/65R28 radial tire</td>
<td>Inner/outer (shipping)</td>
<td>3139 (123-9/16)</td>
<td>3571 (140-9/16)</td>
<td>3758 (147-15/16)</td>
</tr>
<tr>
<td>600/65R28 radial tire</td>
<td>Outer/outer</td>
<td>3319 (130-11/16)</td>
<td>3751 (147-11/16)</td>
<td>3938 (155-1/16)</td>
</tr>
<tr>
<td>600/65R28 radial tire</td>
<td>Inner/inner</td>
<td>2959 (116-1/2)</td>
<td>3391 (133-1/2)</td>
<td>3578 (140-7/8)</td>
</tr>
<tr>
<td>23.1-26 and 580/70R26 turf tires</td>
<td>Inner/outer (shipping)</td>
<td>3203 (126-1/8)</td>
<td>3571 (140-9/16)</td>
<td>3793 (149-5/16)</td>
</tr>
<tr>
<td>23.1-26 and 580/70R26 turf tires</td>
<td>Outer/outer</td>
<td>3383 (133-3/16)</td>
<td>3751 (147-11/16)</td>
<td>3973 (156-7/16)</td>
</tr>
<tr>
<td>23.1-26 and 580/70R26 turf tires</td>
<td>Inner/inner</td>
<td>3023 (119)</td>
<td>3391 (133-1/2)</td>
<td>3613 (142-1/4)</td>
</tr>
</tbody>
</table>
Figure 2.3: Windrower Dimensions – Engine-Forward

Table 2.2 Caster Tires

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Wheel Position</th>
<th>Tread (D) mm (in.)</th>
<th>Casters (E) mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5-16SL</td>
<td>Minimum</td>
<td>2448 (96-7/16)</td>
<td>3032 (118-15/16)</td>
</tr>
<tr>
<td>7.5-16SL</td>
<td>Maximum</td>
<td>3448 (135-11/16)</td>
<td>4032 (158-3/4)</td>
</tr>
<tr>
<td>10-16 formed caster</td>
<td>Minimum</td>
<td>2448 (96-7/16)</td>
<td>3032 (118-15/16)</td>
</tr>
<tr>
<td>10-16 formed caster</td>
<td>Maximum</td>
<td>3448 (135-11/16)</td>
<td>4032 (158-3/4)</td>
</tr>
<tr>
<td>10-16 forked caster</td>
<td>Minimum</td>
<td>2448 (96-7/16)</td>
<td>3014 (118-11/16)</td>
</tr>
<tr>
<td>10-16 forked caster</td>
<td>Maximum</td>
<td>3448 (135-11/16)</td>
<td>4014 (158)</td>
</tr>
<tr>
<td>16.5 x 16.1</td>
<td>Minimum</td>
<td>2448 (96-7/16)</td>
<td>3014 (118-11/16)</td>
</tr>
<tr>
<td>16.5 x 16.1</td>
<td>Maximum</td>
<td>3448 (135-11/16)</td>
<td>4014 (158)</td>
</tr>
</tbody>
</table>
2.4 Component Location

Figure 2.4: Front Cab-Forward View

A - Header Lift Leg
B - Header Float Springs
C - Operator's Station
D - Windshield Wiper
E - Turn Signal/Hazard Lights
F - Taillight Engine-Forward
G - Field/Road Lights
H - Handholds
J - Beacon
K - Mirror
L - Door
M - Maintenance Platform
N - Center-Link
Figure 2.5: Rear Cab-Forward View

A - Caster Wheel
B - Walking Beam
C - Taillights - Cab-Forward (Option)
D - Engine Compartment Hood
E - Windshield Wiper
F - Field Lights
G - Horn
H - Turn Signal/Hazard Lights
J - Mirror
K - Door
L - Drive Wheel
M - Maintenance Platform
N - Engine Air Precleaner (Export)
P - Headlights
3 Operator’s Station

The operator’s station is designed for operating the windrower in cab-forward mode (working mode) or in engine-forward mode (transport mode). The operator’s station—which includes the seat, console, and steering column—pivots 180° to provide access to controls and gauges regardless of the direction of travel.

3.1 Operator Console

The console contains controls to operate the windrower, as well as amenities for the Operator. The console position is adjustable to suit each Operator.

1. Adjusting fore-aft and height:
 a. Pull lever (A) and slide console fore or aft to the desired position.
 b. Release lever to lock console.
2. **Adjusting only fore-aft:**

a. Loosen nuts (A) under console.

b. Move console as required.

c. Tighten nuts (A).
3.2 Operator Presence System

The operator presence system is a safety feature designed to deactivate or alert selected systems when the Operator is not seated at the operator's station.

These systems include:

- Header drive
- Engine and transmission

3.2.1 Header Drive

- To engage the header drive, the Operator must be seated in the operator’s seat.
- If the Operator leaves the seat, power to the header drive is maintained for 5 seconds, then the header shuts down automatically.
- To restart the header after an automatic shut down, move the HEADER DRIVE switch to the OFF position and then to the ON position.

3.2.2 Engine and Transmission

- If the HEADER DRIVE switch is engaged, the engine will not start.
- If the windrower is moving 8 km/h (5 mph) or slower and the Operator leaves the seat, the CDM will flash NO OPERATOR on the upper line and ENGINE SHUT DOWN 5...4...3...2...1...0 on the lower line accompanied by a steady tone. When the countdown reaches 0, the engine shuts down.
- If the windrower is moving 8 km/h (5 mph) or faster, and the Operator leaves the seat for more than 5 seconds, an alarm will sound and the lower display line will flash NO OPERATOR.
- If the operator’s seat is in between cab-forward and engine-forward positions and the transmission is not locked in the NEUTRAL position, the engine shuts off. The lower display will flash LOCK SEAT BASE until the seat base is locked into position.
3.3 Operator’s Seat Adjustments

The operator’s seat has several adjustments. Refer to the following for the location and description of each adjustment.

3.3.1 Adjusting Fore-Aft Position

1. Pull lever (A) up to release.
2. Move seat forward or rearward.

[Figure 3.4: Fore-Aft Position]

3.3.2 Adjusting Seat Suspension and Height

Controls suspension stiffness and seat height.

INCREASE: Press upper switch (A).

DECREASE: Press lower switch (B).

[Figure 3.5: Seat Suspension and Height]
3.3.3 Adjusting Vertical Dampener
Controls suspension dampening.
INCREASE: Turn knob (A) counterclockwise.
DECREASE: Turn knob (A) clockwise.

3.3.4 Adjusting the Armrest
Raise armrest (A) for easier access to seat.
Lower armrest (A) after seat belt is buckled.
3.3.5 Adjusting Fore-Aft Isolator Lock

Locks seat fore-aft isolator.

LOCK: Push lever (A) down.
UNLOCK: Pull lever (A) up.

Figure 3.8: Fore-Aft Isolator Lock

3.3.6 Adjusting Seat Tilt

1. Pull lever (A) up to release.
2. Position seat back as desired.

Figure 3.9: Seat Tilt
3.3.7 Adjusting Armrest Angle

INCREASE: Rotate knob (A) clockwise.
DECREASE: Rotate knob (A) counterclockwise.

3.3.8 Adjusting Lumbar Support

Adjusts the stiffness of seat back.
INCREASE: Rotate knob (A) upward.
DECREASE: Rotate knob (A) downward.
3.4 Training Seat

A wall-mounted fold-up training seat complete with seat belt is provided.

WARNING

- The training seat is provided for use by an experienced machine Operator while training a new Operator.
- The training seat is NOT intended as a passenger seat or for use by children. Use the seat belt whenever operating the machine or riding as a Trainer.
- Keep all other riders off the machine.

For storage, lift seat (B) and secure with latch (A).

To lower seat, lift latch (A) and lower seat (B).
3.5 Using Seat Belts

The windrower is equipped with seat belts on the operator’s and trainer’s seats.

⚠️ WARNING

The seat belts can help ensure your safety when properly used and maintained.

- Before starting the engine, fasten your seat belt, and ensure that the training seat occupant’s seat belt is securely fastened.
- Never wear a seat belt loosely or with slack in the belt system. Never wear the belt in a twisted condition or pinched between the seat structural members.

To fasten seat belt:

1. Pull belt with metal eye (A) at right side completely across your body.
2. Push metal eye (A) into buckle (B) until it locks.
3. Adjust the position of the belt as low on your body as possible.

To release seat belt:

4. Push red button (C) in the end of the buckle.
5. Separate buckle (B) and metal eye (A).
3.6 Adjusting Steering Column

The steering column can be adjusted to suit each particular Operator and to make it easier to get in and out of the seat.

1. Hold onto the steering wheel, lift handle (A), and move the steering wheel up or down to desired position.
2. Release handle (A) to lock the steering wheel position.

Figure 3.15: Steering Column
3.7 Exterior Lighting

The field/road (A), high/low beam (B), and beacon light (C) switches are located on a panel in the cab headliner. The hazard/turn signal switch is located on the cab display module (CDM).

The position of the operator’s station (cab-forward mode or engine-forward mode) automatically determines the lighting.

IMPORTANT:
Red and amber reflector tape is positioned so as to be visible in both engine-forward and cab-forward modes.
3.7.1 Field Light: Cab-Forward

The following lights are ON when the light switch is in FIELD position with the windrower in cab-forward mode:

- Field lights in cab roof (front and rear)
- Swath lights in hood
- HID lights (if installed) on mirror supports

NOTE:
If the auto-road light feature is activated (i.e., windrower is in engine- or cab-forward mode, out of park, high range switch position, and header off), only the two front corner field lights will turn on; the remaining field lights are disabled.

The two innermost lights in the field light group (A) at the front of the cab are adjustable. Refer to *Adjusting Field Lights, page 362.*

The two field lights (A) at the rear of the cab are adjustable. Refer to *Adjusting Rear Floodlights, page 369.*

NOTE:
When the engine is shut down, rear field lights (A) turn on for 60 seconds to illuminate the platform and stairs.

The two swath lights (B) in the hood are adjustable, but because they are used as road lights in engine-forward mode and adjusted accordingly, they should **NOT** be adjusted for field operation.
3.7.2 Road Light: Engine-Forward

The following lights are ON when the light switch (A) is in ROAD position with the windrower in engine-forward mode:

- Red taillights (A) on the mirror supports
- Amber turn signals and hazard lights (B) on mirror supports rear view

- Amber turn signals and hazard lights (A) on mirror supports front view
- Headlights (B) in hood with low/high switch

The two headlights in the hood are adjustable. Refer to Aligning Headlights, page 360.
3.7.3 Road Light: Cab-Forward

If equipped, the following lights are functional with switch (A) in the ROAD position:

- Four lights (A) in cab roof
- Amber turn signals and hazard lights (B) on mirror supports visible from both front and rear

- Red lights (C) in hood (optional)

NOTE:
The hazard lights must be activated with the switch on the cab display module (CDM) when driving on the road.

IMPORTANT:
Optional red tail lighting and marking kit must be installed so that road travel in the cab-forward mode complies with regulations. Refer to 7.1.4 Lighting and Marking for Cab-Forward Road Travel, page 443 or see your MacDon Dealer.

NOTE:
If the red tail lighting kit is not installed, travelling in cab-forward mode and activating the turn indicator will trigger a stop lamp error (E134 or E135).

IMPORTANT:
If red tail lighting kit is installed and stop lamp errors still occur, contact your MacDon Dealer.
3.7.4 Hazard Light

The hazard lights can be switched on or off manually by pressing the HAZARD switch (A) on the cab display module (CDM).

These lights will also turn on automatically when the auto-road light feature is activated (i.e., engine running, header off, and transmission in either mid or high range), and can only be turned off by engaging the header drive.

3.7.5 Beacon Light (Optional)

MD #B5582

The beacon lights (A) are functional when the ignition and the beacon switch (B) are ON.

The beacons MUST be used when driving on the road where required by law.

The beacons will also turn on automatically when the auto-road light feature is activated (i.e., engine running, header off, and transmission in either mid or high range), and can only be turned off by engaging the header drive.
3.7.6 Auto Road Light

The beacon and hazard lights are included in the auto road light feature. The beacon and hazard lights will turn on when this feature is activated, and can only be turned off by engaging the header drive.

This feature will activate when:

- Windrower is in cab- or engine-forward mode
- Engine is running
- Header is disengaged
- Transmission is in either mid or high range

Moving the ground speed lever (GSL) out of neutral (brake off) will switch the white lights from field/work lights to road lights, if the switch is in the field/road lights position.

3.7.7 HID Auxiliary Lighting (Optional)

Two optional high intensity discharge (HID) lights (MD #B5596) provide additional lighting during field operation.

If installed, HID auxiliary lighting is located on the mirror supports (A) and operates in cab-forward mode only.
Optional HID auxiliary lighting is activated with the light switch (B) in the FIELD position.

Figure 3.31: Field Light Switch (except Russia)

Figure 3.32: Field Light Switch (Russia)
3.8 Windshield Wipers

The windshield wiper controls are located in the cab headliner. The illustration shows the controls in cab-forward mode.

Figure 3.33: Wiper Controls
A - Rear Wiper
B - Front Wiper
3.9 Rear View Mirrors

Two outside-mounted, adjustable mirrors (A) provide a rear view when the windrower is in cab-forward mode.

A single interior-mounted mirror (B) provides a rear view in the engine-forward mode.

The mirror/light assembly (A) is designed to fold back if accidentally struck. A detent-type lock keeps it in place.

Figure 3.34: Mirrors
3.10 Cab Temperature

The cab environment is controlled by a climate control system that provides clean air-conditioned or heated air.

The heater/evaporator/blower assembly is located under the cab floor and is accessible from beneath the windrower.

3.10.1 Heater Shut-Off

A shut-off valve (A) at the engine allows the cab heater to be isolated from the engine coolant.

The valve must be OPEN to provide heat to the cab, but can be CLOSED for maximum cooling.

![Figure 3.35: Heater Shut-Off Valve](image)

3.10.2 Air Distribution

Cab air distribution is controlled through adjustable air vents (A) located in the cab posts. The vents provide Operator ventilation.

![Figure 3.36: Adjustable Air Vents](image)

A - Vent B - Open/Close C - Direction
3.10.3 Climate Controls

A – BLOWER Switch controls the blower speed
- OFF / LOW / MEDIUM / HIGH

B – Air Conditioning (A/C) Switch controls A/C system
- OFF: A/C does not operate
- ON: A/C operates with blower switch ON

C – Outside Air Switch controls the air source
- FRESH AIR: Starts booster fan and filtered outside air is drawn into cab
- RECIRCULATE: Stops booster fan and cab air is recirculated

D – TEMPERATURE Control Dial controls cab temperature
- Turning the dial clockwise increases temperature
- Turning the dial counterclockwise decreases temperature

IMPORTANT:
To distribute the refrigerant oil throughout the A/C system, perform the following steps when starting the windrower after more than one week of storage:

1. Ensure heater shut-off valve at engine is OPEN. Refer to 3.10.1 Heater Shut-Off, page 58.
2. Turn blower switch to the first position, turn temperature control switch to MAXIMUM heating, and A/C control to OFF.
3. Start the engine and operate at low idle until the engine is warm.
4. Click A/C switch from OFF to ON for 1 second, then back to OFF for 5 to 10 seconds. Repeat this step ten times.

Refrigerant Oil
Perform the following steps when starting the windrower after more than one week of storage to distribute the refrigerant oil throughout the A/C system:

1. Ensure heater shut-off valve at engine is OPEN. Refer to 3.10.1 Heater Shut-Off, page 58.
2. Turn blower switch to the first position, turn temperature control switch to MAXIMUM heating, and A/C control to OFF.
3. Start the engine and operate at low idle until the engine is warm.
4. Click A/C switch from OFF to ON for 1 second, then back to OFF for 5 to 10 seconds. Repeat this step ten times.
3.11 Interior Lights

Two interior lights are installed in the cab headliner.

A low intensity LED light (A) is located directly overhead to provide ambient lighting if desired. It functions only when the key is in the RUN position. An ON/OFF switch is located on the light.

The other interior light (B) is located on the headliner switch panel and the push-ON, push-OFF button is located on the light. It functions at any time.

Figure 3.38: Interior Lights
3.12 Emergency Exit

The emergency exit window (indicated by the emergency exit decal [A]) is located beside the operator’s station.

To open the emergency exit window, follow these steps:
1. Release the window latch (A).
2. Remove the latch pin (B).
3. Push window open (C).
3.13 Operator Amenities

The operator’s station includes the following amenities:

Operator’s Console

- A - Auxiliary power outlet
- B - Utility tray (under armrest)
- C - Cigarette lighter
- D - Ashtray/cup holder
- E - Utility tray

![Figure 3.41: Console](image)

Windshield Shades (Optional)

Retractable window shades (A) can be installed for the front and rear windows. Refer to **7.1.7 Windshield Shades, page 444** for ordering information.

![Figure 3.42: Windshield Shades](image)

Auxiliary Outlets

Two auxiliary power outlets are located on either side of the wiper motor cover/storage tray behind the Operator (cab-forward mode).

![Figure 3.43: Auxiliary Power Outlets](image)
OPERATOR’S STATION

Manual Storage
A manual storage case (A) is located under the training seat.

Figure 3.44: Operator’s Manual Storage

Coat Hook
A coat hook (A) is located above the training seat, left of the Operator.

Figure 3.45: Coat Hook
3.14 Radio

A radio is available as optional equipment from your Dealer.

3.14.1 AM/FM Radio

A space (B) is provided in the cab headliner to accommodate the installation of an AM/FM radio that is available as optional equipment from your Dealer. In order to retain radio settings and preset memory with the battery disconnect turned off, select a radio with non-volatile settings memory.

Two pre-wired speakers (A) have been factory-installed in the headliner.

For radio installation procedures, refer to the M155 and M205 Self-Propelled Windrower Unloading and Assembly Instructions: North American Shipments or M Series Self-Propelled Windrower Unloading and Assembly Instructions for Container Shipments.

Operating instructions are supplied with the radio.

3.14.2 Mounting the Antenna

An optional base for a magnetic roof-mounted antenna is available from your Dealer.

IMPORTANT:
Antenna base can only be installed on the left cab-forward and right rear cab roof bolts.

Order antenna mount (MD #160288 [B]) or refer to 3.49, page 65 for part dimensions to make an improvised version. A knockout (C) for the antenna lead is provided on the cab post.

1. Remove existing bolt (A).
2. Install antenna mount (B) and secure with bolt (A).
The knockout (A) is located on the exterior right cab-forward rear corner post of the cab, under the roof, between the horn and the light.

To make your own mount, refer to dimensions template. Use 11 GA. or 3.0 mm steel sheet.
3.15 Horn

The horn is activated by pushing button (A) located on the panel in the headliner.

Sound the horn three times prior to starting the engine.

The horn (A) is located outside the cab on the rear right cab-forward corner of the cab, under the roof.

Figure 3.50: Horn Button Location

Figure 3.51: Horn Location
3.16 Engine Controls and Gauges

The following engine controls and gauges are conveniently located on the operator’s console.

Ignition Switch (A)
- ACC (Accessory): Fully counterclockwise
- OFF: All electrical systems OFF
- RUN: Clockwise
- START: Fully clockwise to crank engine: Release and switch returns to RUN

NOTE:
Remove key when windrower is not in use; the key also locks doors.

Engine Coolant Temperature Gauge (B)
- Normal Running: 82°–104°C (180°–220°F)

NOTE:
For information about temperature warnings and alarms, refer to Display Warnings and Alarms, page 87.

Fuel Gauge (C)
- E: Empty
- F: Full

Throttle (D) controls engine speed
- FULL: Push lever forward
- OPERATING: Refer to Driving Forward in Cab-Forward Mode, page 172
- CLOSED: Pull lever back
3.17 Windrower Controls

Console Controls:

A – TURN SIGNALS activate turn signals on windrower and header

- Push-ON/Push-OFF

B – GROUND SPEED LEVER (GSL) controls speed and direction of movement

- F: Forward
- N: NEUTRAL
- N-DETENT: Engages neutral interlock, and applies park brake when steering locked in center
- R: Reverse

C – HAZARD WARNING LIGHTS activate signals on windrower and header

- Push-ON/Push-OFF

D – GROUND SPEED RANGE SWITCH shifts transmission speed range

- High range: 0–37 km/h (23 mph) ENGINE-FORWARD ONLY
- Mid range: 0–25.7 km/h (16 mph) CAB-FORWARD ONLY
- Low range: 0–17.7 km/h (11 mph)

E – N-Detent

Autosteer Control:

A – AUTOSTEER ENGAGEMENT SWITCH engages/disengages the automated steering system (if compatible system is installed)

- ENGAGE: Click to engage
- DISENGAGE: Turn steering wheel or click to disengage
The autosteer engagement switch harness has two connectors and is located as follows:

GSL SW1 (A) is located in the cab, beneath the floor mat at the engine-end seat position switch.

GSL SW2 (A) is located beneath the cab, between the fuel tank and evaporator box.
3.18 Header Controls

All header controls are conveniently located on the operator's console and on the ground speed lever (GSL) handle.

NOTE:
Some controls are optional equipment and may not be present in your unit. Some controls may be installed but nonfunctional for certain headers.

Refer to specific header sections in this manual for detailed operating procedures of all header controls.

3.18.1 Header Drive Switch

The HEADER DRIVE switch (A) engages and disengages the header drive.

To engage the header drive, pull up on collar (B) and push down on switch (A).

To disengage the header drive, push the switch down.

IMPORTANT:
Always move throttle lever back to IDLE before engaging header drive. Do **NOT** engage header with engine at full rpm.

![Figure 3.57: Header Drive Switch](image)

3.18.2 Header Drive Reverse Button

NOTE:
The hydraulic reversing kit must be installed on auger headers. Rotary disc headers are factory-equipped with the ability to reverse.

- **ENGAGE:** Push and hold REVERSER button (B) and engage header with switch (A)
- **DISENGAGE:** Release REVERSER Button (B)

NOTE:
To engage forward operation, push switch (A) down and then up again.

![Figure 3.58: Header Drive Switches](image)
3.18.3 Ground Speed Lever (GSL) Header Switches

The switches on the GSL (A) control the most common header functions.

NOTE:
A decal (B) identifying switch functions is located on the cab post above the operator’s console.

Figure 3.59: GSL

Figure 3.60: GSL Function Groups

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Speed</td>
<td>Reel Position</td>
<td>Autosteer Engagement</td>
<td>Display Selector</td>
<td>Header Position</td>
</tr>
</tbody>
</table>
Display Selector Switch

Pressing the display selector switch (A) selects and displays the settings on the cab display module (CDM) top line read-out for each of the header controls.

Press switch (A) to scroll through settings.

![Figure 3.61: Ground Speed Lever](image)

Reel Position Switches

The functions performed by the reel position switches depend on which header is attached and the cab display module (CDM) programming.

- For functions related to double windrow attachment (DWA) position, refer to:
 - 4.4.10 Using the Double Windrowing Attachment, page 213
- For functions related to reel fore-aft position and height on draper headers, refer to:
 - 4.6.2 Adjusting the Reel Fore-Aft Position, page 264
 - 4.6.3 Adjusting the Reel Height, page 264
- For the center-link assist cylinder, refer to the section appropriate for your header:
 - 4.5.4 Attaching an A Series Header, page 232
 - 4.5.2 Attaching a D Series or D1 SP Series Header, page 218
 - 4.5.6 Attaching an R Series Header, page 248

NOTE:

For detailed switch operating modes, refer to the section in this manual, specific to your header.
Header Position Switches

Use the header position switches on the ground speed lever (GSL) to adjust the position of the header relative to the ground.

- To lower the header, press switch (A)
- To raise the header, press switch (C)
- To tilt the header down, press switch (B)
- To tilt the header up, press switch (D)

Release switch at desired position.

NOTE:
Refer to the section in this manual that is specific to your header for detailed switch operating modes.

Reel and Disc Speed Switches

Press and hold switch (A) to increase the reel or disc speed. Press and hold switch (B) to decrease the reel or disc speed. Release switch at desired speed.

Auger Header
- A30 header: Not applicable
- A40 header: Auger speed is automatically maintained when reel speed is changed

IMPORTANT:
Reel speed on auger header **MUST NOT EXCEED** 85 rpm. Auger speed **MUST NOT EXCEED** 320 rpm.

Draper Header
- Reel speed is limited in INDEX HEADER SPEED mode

Rotary Disc Header
- Conditioner speed automatically adjusts when DISC SPEED is changed
3.18.4 Console Header Switches

The operator’s console contains switches for the following header functions:

Deck Shift / Float Preset Switch

Draper Header with Deck Shift Option

Controls deck shifting and float settings for double windrowing options with a draper header.

![Figure 3.65: Header Switches](image)

A - Deck Shift / Float Preset Switch
B - Left-Side Delivery
C - Center Delivery
D - Right-Side Delivery

Draper Header with Fixed Decks / Auger Header / Rotary Header

Selects preprogrammed header float settings. Refer to *Float Options, page 199* to learn how to preset the float.

NOTE:

Refer to the section in this manual that is specific to your header for detailed switch operating modes.

![Figure 3.66: Header Switches](image)

A - Deck Shift / Float Preset Switch
B - Float Preset 1
C - Float Preset 2
D - Float Preset 3
Double Windrow Attachment (DWA) / Swath Compressor Switch (if installed)

The functions performed by the DWA/swath compressor switch depend on how the windrower is equipped.

If the windrower is equipped with a double windrow attachment:

- The DWA deck is raised with switch (A) in position (C)
- The DWA deck is lowered with switch (A) in position (B)

The cab display module (CDM) must be programmed for this configuration. Refer to Activating the Double Windrow Attachment (DWA), page 98.

Switch (A) may be used instead of the DWA switches on the ground speed lever (GSL).

The DWA draper speed is controlled with the rotary switch (D) next to the rocker switch on the operator’s console.

For more information on the DWA attachment and controls, refer to 4.4.10 Using the Double Windrowing Attachment, page 213.

If the windrower is equipped with a swath roller attachment:

- The swath compressor is raised by pressing switch (A) to position (C)
- The swath compressor is lowered by pressing switch (A) to position (B)
3.19 Cab Display Module (CDM)

3.19.1 Engine and Windrower Functions

Figure 3.68: Cab Display Module (CDM) Engine and Windrower Functions

- (A) ENGINE RPM
- (B) GROUND SPEED – mph or km/h
- (C) DISPLAY – Engine/windrower functions
- (D) HAZARD WARNING LIGHTS SWITCH – Activates hazard warning lights, cancels turn signal
- (E) SELECT SWITCH – Allows Operator to select display item on lower line. Push to SELECT
- (F) TURN SIGNAL SWITCHES – Activates turn signals on windrower and header. Push-ON/Push-OFF
- (G) IGNITION SWITCH POSITIONS – Accessory / Stop / Run / Start
- (H) ENGINE WARNING LIGHTS – Engine Pre-Heat / Water In Fuel / CAUTION / Stop Engine
3.19.2 Header Functions

Figure 3.69: Cab Display Module (CDM)

- (A) DISPLAY – Header functions.
- (B) SELECT SWITCH – Allows Operator to select display item on lower line. Push to SELECT.
- (C) FLOAT SWITCH – Header Right Side: Changes header float. The system remembers setting with deck shift option if activated with float setting switch. Push + to Increase. Push – to Decrease.
- (D) FLOAT SWITCH – Header Left Side: Changes header float. The system remembers setting with deck shift option if activated with float setting switch. Push + to Increase. Push – to Decrease.
- (E) AUGER/DRAPER SPEED ADJUST: Changes auger/draper speed INDEX with INDEX SWITCH ON. Changes auger/draper SPEED with INDEX SWITCH OFF. Push upper switch to increase. Push lower switch to decrease.
- (F) HEADER INDEX SWITCH: Links reel and conveyor speed to ground speed. Push-ON/Push-OFF.

NOTE:
Illuminates in ON position. (Header must be engaged)

- (G) RETURN TO CUT HEIGHT SWITCH: Allows cutting height preset. Push-ON/Push-OFF.

NOTE:
Illuminates in ON position (Header must be engaged).
3.19.3 Operating Screens

The cab display module (CDM) and the windrower control module (WCM) provide information on several functions for the engine, header, and windrower. The information displayed in various operating modes is described in the following sections.

Figure 3.70: CDM Operating Screen

<table>
<thead>
<tr>
<th>Display (Upper Line) (2–3 Seconds)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER DISENGAGED</td>
<td>Indicates HEADER DRIVE switch is OFF</td>
</tr>
<tr>
<td>IN PARK</td>
<td>Indicates ground speed lever (GSL) is in N-DETENT</td>
</tr>
</tbody>
</table>

Ignition ON, Engine Not Running

Engine Running – At Initial Start Up

<table>
<thead>
<tr>
<th>Display (Upper Line) (2–3 seconds)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER TYPE AND SIZE</td>
<td>Ignition start, engine running.</td>
</tr>
<tr>
<td>IN PARK</td>
<td>Indicates ground speed lever (GSL) in N-DETENT. On startup.</td>
</tr>
</tbody>
</table>
Engine-Forward, Engine Running

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROAD GEAR (upper line)</td>
<td>low-speed range in HIGH range</td>
</tr>
<tr>
<td>#######.# ENGINE HRS (upper or lower line)</td>
<td>Total engine operating time</td>
</tr>
<tr>
<td>#######.# UNIT HRS (upper or lower line)</td>
<td>Total windrower operating time</td>
</tr>
<tr>
<td>#######.# HEADER HRS (upper or lower line)</td>
<td>Total header operating time</td>
</tr>
<tr>
<td>####### TOTAL ACRES (upper or lower line)</td>
<td>Total area cut by machine</td>
</tr>
<tr>
<td>####### TOTAL HECT (if metric)</td>
<td></td>
</tr>
<tr>
<td>####. HEADER HEIGHT (upper or lower line)</td>
<td>Distance setting (00.0–10.0) between cutterbar and ground</td>
</tr>
<tr>
<td>####. HEADER ANGLE (upper or lower line)</td>
<td>Angle setting (00.0–10.0) header relative to ground</td>
</tr>
<tr>
<td>#### °C or F HYD OIL TEMP</td>
<td>Hydraulic oil temperature</td>
</tr>
<tr>
<td>####. VOLTS (upper or lower line)</td>
<td>Engine electrical system operating voltage</td>
</tr>
<tr>
<td>####. SWATH COMPR HT</td>
<td>Swath compressor height (00.0–10.0); fully raised is 0.</td>
</tr>
<tr>
<td>SCROLL (lower line)</td>
<td>Displays above items after 2 to 3 seconds; press SELECT to cancel</td>
</tr>
</tbody>
</table>

Cab-Forward, Engine Running, Header Disengaged

Scroll through display with cab display module (CDM) switch or ground speed lever (GSL) switch.

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#######.# ENGINE HRS</td>
<td>Total engine operating time</td>
</tr>
<tr>
<td>#######.# UNIT HRS</td>
<td>Total windrower operating time</td>
</tr>
<tr>
<td>#######.# HEADER HRS</td>
<td>Total header operating time</td>
</tr>
<tr>
<td>####. SUB ACRES</td>
<td>Area cut since last reset. To reset, display SUB ACRES on lower line, and hold down PROGRAM switch until display resets (five to seven seconds)</td>
</tr>
<tr>
<td>####. SUB HECTARES (if metric)</td>
<td></td>
</tr>
<tr>
<td>####### TOTAL ACRES</td>
<td>Total area cut by machine</td>
</tr>
<tr>
<td>####### TOTAL HECT (if metric)</td>
<td></td>
</tr>
<tr>
<td>####. HEADER HEIGHT</td>
<td>Distance setting (00.0–10.0) between cutterbar and ground</td>
</tr>
<tr>
<td>####. HEADER ANGLE</td>
<td>Angle setting (00.0–10.0) header relative to ground</td>
</tr>
<tr>
<td>####. L FLOAT R ####.</td>
<td>Float setting (0.0–10.0)</td>
</tr>
<tr>
<td>#### °C or F HYD OIL TEMP</td>
<td>Hydraulic oil temperature</td>
</tr>
<tr>
<td>####. VOLTS</td>
<td>Engine electrical system operating voltage</td>
</tr>
<tr>
<td>####. SWATH COMPR HT</td>
<td>Swath compressor height (00.0–10.0); fully raised is 0.</td>
</tr>
<tr>
<td>SCROLL (lower line)</td>
<td>Displays above items after two to three seconds; press SELECT to cancel</td>
</tr>
</tbody>
</table>
Display (Lower or Upper Line) Description

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#######.# ENGINE HRS</td>
<td>Total engine operating time</td>
</tr>
<tr>
<td>#######.# UNIT HRS</td>
<td>Total windrower operating time</td>
</tr>
<tr>
<td>#######.# HEADER HRS</td>
<td>Total header operating time</td>
</tr>
<tr>
<td>###.# ACRES/HOUR</td>
<td>Actual cutting rate in acres (hectares)/hour</td>
</tr>
<tr>
<td>###.# HECTARES/HOUR (if Metric)</td>
<td></td>
</tr>
<tr>
<td>#######.# SUB ACRES</td>
<td>Area cut since last reset; to reset, display SUB ACRES on lower line, and hold down PROGRAM switch until display resets (5 to 7 seconds)</td>
</tr>
<tr>
<td>#######.# SUB HECTARES (if Metric)</td>
<td></td>
</tr>
<tr>
<td>#######.# TOTAL ACRES</td>
<td>Total area cut by machine</td>
</tr>
<tr>
<td>#######.# TOTAL HECT (if Metric)</td>
<td></td>
</tr>
<tr>
<td>###.# REEL RPM</td>
<td>Reel rotational speed</td>
</tr>
<tr>
<td>###.# REEL SENSOR</td>
<td>Sensor disabled. RPM and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>###.# AUGER SPEED</td>
<td>Auger rotational speed (4.7–9.9)</td>
</tr>
<tr>
<td>###.# AUGER SENSOR</td>
<td></td>
</tr>
<tr>
<td>###.# KNIFE SPEED</td>
<td>Knife speed in strokes per minute</td>
</tr>
<tr>
<td>###.# KNIFE SENSOR</td>
<td>Sensor disabled. SPEED and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>###.# HEADER HEIGHT</td>
<td>Distance setting (00.0–10.0) between cutterbar and ground</td>
</tr>
<tr>
<td>###.# HEADER SENSOR</td>
<td>Sensor disabled. HEIGHT and SENSOR alternate at 1 second intervals.</td>
</tr>
<tr>
<td>###.# HEADER ANGLE</td>
<td>Angle setting (00.0–10.0) header relative to ground</td>
</tr>
<tr>
<td>###.# HEADER SENSOR</td>
<td>Sensor disabled. ANGLE and SENSOR alternate at 1 second intervals.</td>
</tr>
<tr>
<td>###.# L FLOAT R ###.# FLOAT SEN S DISABLED</td>
<td>Left and right float setting (0.0–10.0)</td>
</tr>
<tr>
<td>LOAD</td>
<td>■■■■</td>
</tr>
<tr>
<td>###.# VOLTS</td>
<td>Engine electrical system operating voltage</td>
</tr>
</tbody>
</table>

6. The LOAD sensor to monitor knife/conditioner circuit pressure is optional. To monitor reel/auger circuit pressure, relocate sensor as per kit instruction MD #169031, which is available through your Dealer.
Display (Lower or Upper Line) Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Display (Lower or Upper Line)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swath compressor height (00.0–10.0); fully raised is 0</td>
<td>###.# SWATH COMPR HT</td>
</tr>
<tr>
<td>Sensor disabled</td>
<td>SWATH CO SENSOR</td>
</tr>
<tr>
<td>Displays sub-menu after 2 to 3 seconds. Press SELECT to cancel. Scroll</td>
<td>SCROLL</td>
</tr>
<tr>
<td>through sub-menu display with CDM switch</td>
<td>SUB-MENU (lower line only)</td>
</tr>
<tr>
<td>Knife speed In strokes per minute</td>
<td>#### KnIFE SPEED</td>
</tr>
<tr>
<td>Sensor disabled. IND and SENSOR alternate at 1 second intervals</td>
<td>#####.# HEADER HEIGHT</td>
</tr>
<tr>
<td>Area cut since last reset; to reset, display SUB ACRES on lower line, and</td>
<td>LOAD[#####]#####</td>
</tr>
<tr>
<td>hold down PROGRAM switch until display resets 5 to 7 seconds)</td>
<td></td>
</tr>
<tr>
<td>Total area cut by machine</td>
<td>###### TOTAL ACRES</td>
</tr>
<tr>
<td>Reel peripheral speed along with ground speed in mph or km/h</td>
<td>#######.# REEL IND.</td>
</tr>
<tr>
<td>Sensor disabled. IND and SENSOR alternate at 1 second intervals</td>
<td>###### REEL SENSOR</td>
</tr>
<tr>
<td>Auger rotational speed (4.7–9.9)</td>
<td>###.# AUGER SPEED</td>
</tr>
<tr>
<td>Sensor disabled. SPEED and SENSOR alternate at 1 second intervals</td>
<td>###.# AUGER SENSOR</td>
</tr>
<tr>
<td>Knife speed In strokes per minute</td>
<td>##### KNIFE SPEED</td>
</tr>
<tr>
<td>Sensor disabled. SPEED and SENSOR alternate at 1 second intervals</td>
<td>##### KNIFE SENSOR</td>
</tr>
<tr>
<td>Distance setting (00.0–10.0) between cutterbar and ground</td>
<td>###.# HEADER HEIGHT</td>
</tr>
<tr>
<td>Sensor disabled. HEIGHT and SENSOR alternate at 1 second intervals</td>
<td>###.# HEADER SENSOR</td>
</tr>
<tr>
<td>Angle setting (00.0–10.0) header relative to ground.</td>
<td>###.# HEADER ANGLE</td>
</tr>
<tr>
<td>Sensor disabled. ANGLE and SENSOR alternate at 1 second intervals</td>
<td>###.# TILT SENSOR</td>
</tr>
<tr>
<td>Left and right float setting (0.0–10.0)</td>
<td>###.# L FLOAT R ###.#</td>
</tr>
<tr>
<td>Sensor disabled</td>
<td>FLOAT SENS DISABLED (if sensor disabled)</td>
</tr>
</tbody>
</table>

Cab-Forward, Engine Running, Header Engaged, Auger Header Index Switch ON

Scroll through display with cab display module (CDM) switch or ground speed lever (GSL) switch.
Display (Lower or Upper Line) Description

LOAD: Bar graph representing hydraulic operating pressure. Full scale is preprogrammed overload pressure (2500–5000 psi). If sensor disabled, LOAD does not display.

°C or F HYD OIL TEMP
°C or F HYD TEMP
Hydraulic oil temperature
Sensor disabled. TEMP and SENSOR alternate at 1 second intervals

VOLTS
Engine electrical system operating voltage

SWATH COMPR HT
SWATH CO SENSOR
Swath compressor height (00.0–10.0); fully raised is 0
Sensor disabled

SCROLL
Displays sub-menu after two to three seconds. Press SELECT to cancel. Scroll through sub-menu display with CDM switch.

Display (Lower or Upper Line) Description

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#####.# ENGINE HRS</td>
<td>Total engine operating time</td>
</tr>
<tr>
<td>#####.# UNIT HRS</td>
<td>Total windrower operating time</td>
</tr>
<tr>
<td>#####.# HEADER HRS</td>
<td>Total header operating time</td>
</tr>
</tbody>
</table>
| ### ACRES/HOUR
HECTARES/HOUR (if metric) | Actual cutting rate in acres (hectares)/hour |
| ##### SUB ACRES
SUB HECTARES (if metric) | Area cut since last reset. To reset, display SUB ACRES on lower line, and hold down PROGRAM switch until display resets (5 to 7 seconds) |
| ##### TOTAL ACRES
TOTAL HECT (if metric) | Total area cut by machine |
| ###.# REEL MPH
###.# REEL KPH (if metric)
###.# REEL SENSOR (flashing) | Reel peripheral speed
Sensor disabled. MPH or KPH and SENSOR alternate at 1 second intervals |
| ###.# DRAPER SPEED | Draper speed (0.0–11.0) |
| #####.# KNIFE SPEED
#####.# KNIFE SENSOR | Knife speed In strokes per minute
Sensor disabled. SPEED and SENSOR alternate at 1 second intervals |
| ###.# HEADER HEIGHT
###.# HEADER SENSOR | Distance setting (00.0–10.0) between cutterbar and ground
Sensor disabled. HEIGHT and SENSOR alternate at 1 second intervals |
| ###.# HEADER ANGLE
###.# HEADER SENSOR | Angle setting (00.0–10.0). Header relative to ground
Sensor disabled. ANGLE and SENSOR alternate at 1 second intervals |

7. The LOAD sensor to monitor knife/conditioner circuit pressure is optional. To monitor reel/auger circuit pressure, relocate sensor as per kit instruction MD #169031, which is available through your Dealer.
Display (Lower or Upper Line) Description

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>###.# L FLOAT R ###.# FLOAT SENS DISABLED</td>
<td>Left and right float setting (0.0–10.0) Sensor disabled</td>
</tr>
<tr>
<td>###.# °C or F HYD OIL TEMP ###.# °C or F HYD SENSOR</td>
<td>Hydraulic oil temperature Sensor disabled. TEMP and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>LOAD</td>
<td>###.##</td>
</tr>
<tr>
<td>###.# VOLTS</td>
<td>Engine electrical system operating voltage</td>
</tr>
<tr>
<td>###.# SWATH COMPR HT SWATH CO SENSOR</td>
<td>Swath compressor height (00.0–10.0); fully raised is 0 Sensor disabled</td>
</tr>
<tr>
<td>SCROLL SUB-MENU (lower line only)</td>
<td>Displays sub-menu after 2 to 3 seconds. Press SELECT to cancel. Scroll through sub-menu display with CDM switch</td>
</tr>
<tr>
<td>#### KNIFE SPEED</td>
<td>Knife or disc speed drops below programmed value</td>
</tr>
<tr>
<td>#### HEADER HEIGHT</td>
<td>Distance setting (00.0–10.0) between cutterbar and ground Sensor disabled. HEIGHT and SENSOR alternate at 1 second intervals</td>
</tr>
</tbody>
</table>

Cab-Forward, Engine Running, Header Engaged, Draper Header Index Switch ON

Scroll through display with cab display module (CDM) switch or ground speed lever (GSL) switch.

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#######.# ENGINE HRS</td>
<td>Total engine operating time</td>
</tr>
<tr>
<td>#######.# UNIT HRS</td>
<td>Total windrower operating time</td>
</tr>
<tr>
<td>#######.# HEADER HRS</td>
<td>Total header operating time</td>
</tr>
<tr>
<td>###.# ACRES/HOUR ###.# HECTARES/HOUR (if metric)</td>
<td>Actual cutting rate in acres (hectares)/hour</td>
</tr>
<tr>
<td>###.# SUB ACRES ###.# SUB HECTARES (if metric)</td>
<td>Area cut since last reset. To reset, display SUB ACRES on lower line and hold down PROGRAM switch until display resets (5 to 7 seconds)</td>
</tr>
<tr>
<td>####### TOTAL ACRES ####### TOTAL HECT (if metric)</td>
<td>Total area cut by machine</td>
</tr>
<tr>
<td>###.# ###.# REEL IND REEL SENSOR</td>
<td>Reel peripheral speed along with ground speed in mph or km/h Sensor disabled. IND and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>###.# ###.# DRAP INDX</td>
<td>Draper speed along with ground speed in mph or km/h</td>
</tr>
<tr>
<td>####### KNIFE SPEED ####### KNIFE SENSOR</td>
<td>Knife speed in strokes per minute. Sensor disabled SPEED and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>###.# HEADER HEIGHT ###.# HEADER SENSOR</td>
<td>Distance setting (00.0–10.0) between cutterbar and ground Sensor disabled. HEIGHT and SENSOR alternate at 1 second intervals</td>
</tr>
</tbody>
</table>

^8. The LOAD sensor to monitor knife/conditioner circuit pressure is optional. To monitor reel/auger circuit pressure, relocate sensor as per kit instruction MD #169031, which is available through your Dealer.
Display (Lower or Upper Line) Description

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>###.## HEADER ANGLE
###.## HEADER SENSOR</td>
<td>Angle setting (00.0–10.0) header relative to ground
Sensor disabled. ANGLE and SENSOR alternate at 1 second intervals.</td>
</tr>
<tr>
<td>###.## L FLOAT R ###.
FLOAT SENS DISABLED</td>
<td>Left and right float setting (0.0–10.0)
Sensor disabled</td>
</tr>
<tr>
<td>#### °C or F HYD OIL TEMP
°C or F HYD SENSOR</td>
<td>Hydraulic oil temperature
Sensor disabled. TEMP and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>LOAD</td>
<td>###</td>
</tr>
<tr>
<td>###.## VOLTS</td>
<td>Engine electrical system operating voltage</td>
</tr>
<tr>
<td>###.## SWATH COMPR HT
SWATH CO SENSOR</td>
<td>Swath compressor height (00.0–10.0); fully raised is 0.
Sensor disabled.</td>
</tr>
<tr>
<td>SCROLL
SUB-MENU (lower line only)
KNIFE SPEED
###.## HEADER HEIGHT
LOAD</td>
<td>###</td>
</tr>
<tr>
<td>###.## REEL IND
###.## DRAP INDX</td>
<td>Reel speed drops below programmed set-point</td>
</tr>
<tr>
<td>###.## REEL MIN RPM (lower line)</td>
<td>Reel speed at zero ground speed</td>
</tr>
<tr>
<td>MINIMUM (lower line)</td>
<td>Reel speed at zero ground speed</td>
</tr>
</tbody>
</table>

Cab-Forward, Engine Running, Header Engaged, Rotary Header Installed

Scroll through display with cab display module (CDM) switch or ground speed lever (GSL) switch.

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#######.## ENGINE HRS</td>
<td>Total engine operating time</td>
</tr>
<tr>
<td>#######.## UNIT HRS</td>
<td>Total windrower operating time</td>
</tr>
<tr>
<td>#######.## HEADER HRS</td>
<td>Total header operating time</td>
</tr>
<tr>
<td>###.## ACRES/HOUR
###.## HECTARES/HOUR (if metric)</td>
<td>Actual cutting rate in acres (hectares)/hour</td>
</tr>
<tr>
<td>###### SUB ACRES
SUB HECTARES (if metric)</td>
<td>Area cut since last reset; to reset, display SUB ACRES on lower line,
and hold down PROGRAM switch until display resets (5 to 7 seconds)</td>
</tr>
<tr>
<td>###### TOTAL ACRES
TOTAL HECT (if metric)</td>
<td>Total area cut by machine</td>
</tr>
<tr>
<td>###### DISC RPM
DISC SENSOR</td>
<td>Disc rotational speed
Sensor disabled. RPM and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>###.## HEADER HEIGHT
###.## HEIGHT SENSOR</td>
<td>Distance setting (00.0–10.0) between cutterbar and ground
Sensor disabled. HEIGHT and SENSOR alternate at 1 second intervals</td>
</tr>
</tbody>
</table>

9. The LOAD sensor to monitor knife/conditioner circuit pressure is optional. To monitor reel/auger circuit pressure, relocate sensor as per kit instruction MD #169031, which is available through your Dealer.
Display (Lower or Upper Line) Description

<table>
<thead>
<tr>
<th>Display (Lower or Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#.# HEADER ANGLE</td>
<td>Angle setting (00.0–10.0) header relative to ground</td>
</tr>
<tr>
<td>#.# HEADER SENSOR</td>
<td>Sensor disabled. ANGLE and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>#.# L FLOAT R #.# FLOAT SENS DISABLED</td>
<td>Left and right float setting (0.0–10.0)</td>
</tr>
<tr>
<td></td>
<td>Sensor disabled</td>
</tr>
<tr>
<td>LOAD</td>
<td>■■■■</td>
</tr>
<tr>
<td>#.# C° or F HYD OIL TEMP</td>
<td>Hydraulic oil temperature</td>
</tr>
<tr>
<td>#.# C° or F HYD TEMP</td>
<td>Sensor disabled. TEMP and SENSOR alternate at 1 second intervals</td>
</tr>
<tr>
<td>#.# VOLTS</td>
<td>Engine electrical system operating voltage</td>
</tr>
<tr>
<td>#.# SWATH COMPR HT SWATH CO SENSOR</td>
<td>Swath compressor height (00.0–10.0); fully raised is 0</td>
</tr>
<tr>
<td></td>
<td>Sensor disabled</td>
</tr>
<tr>
<td>SCROLL SUB-MENU (lower line only)</td>
<td>Displays sub-menu after 2 to 3 seconds. Press SELECT to cancel.</td>
</tr>
<tr>
<td>#.# DISC RPM</td>
<td>Scroll through sub-menu display with CDM switch</td>
</tr>
<tr>
<td>#.# HEADER HEIGHT</td>
<td></td>
</tr>
<tr>
<td>LOAD</td>
<td>■■■■</td>
</tr>
</tbody>
</table>

Miscellaneous Operational Information

Scroll through display with cab display module (CDM) switch or ground speed lever (GSL) switch.

<table>
<thead>
<tr>
<th>Display (Upper Line)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER DISENGAGED</td>
<td>Header drive is disengaged</td>
</tr>
<tr>
<td>#.# FOOT DISK</td>
<td>AUGER or DRAPER will appear in place of DISK, depending on type of header attached</td>
</tr>
<tr>
<td>IN PARK</td>
<td>GSL in N-DETENT position</td>
</tr>
<tr>
<td>< LEFT TURN ■</td>
<td>Indicates left turn when left arrow is pressed on CDM (engine-forward mode only)</td>
</tr>
<tr>
<td>■ RIGHT TURN ></td>
<td>Indicates right turn when right arrow is pressed on CDM (engine-forward mode only)</td>
</tr>
<tr>
<td>■ HAZARD ■</td>
<td>Indicates hazard warning lights are on when hazard button is pressed on CDM</td>
</tr>
<tr>
<td>HEADER REVERSE</td>
<td>Header drive running in reverse</td>
</tr>
<tr>
<td>HEADER ENGAGED</td>
<td>Header drive engaged</td>
</tr>
<tr>
<td>ROAD GEAR</td>
<td>With HIGH RANGE selected on console switch (engine-forward only)</td>
</tr>
</tbody>
</table>

10. The LOAD sensor to monitor knife/conditioner circuit pressure is optional-installed. To monitor reel/auger circuit pressure, relocate sensor as per kit instruction MD #169031, which is available through your Dealer.
11. If road light kit is not installed, CDM will display E135 LEFT STOP LAMP as a malfunction in cab-forward mode.
12. If road light kit is not installed, CDM will display E134 RIGHT STOP LAMP as a malfunction in cab-forward mode.
3.19.4 Cab Display Module (CDM) Warning and Alarms

The CDM displays warnings and sounds alarms to notify of abnormal windrower status at startup when the ignition is turned ON, and at engine operating speeds above 500 rpm.

Engine Warning Lights

Figure 3.71: CDM Engine Warning Lights

- **ENGINE PRE-HEAT:** Illuminates yellow. Wait to start engine.
- **WATER IN FUEL:** Illuminates yellow. Service recommended.
- **CAUTION:** Illuminates yellow. Prompt attention is required. Refer to display code.
- **STOP:** Illuminates red. Stop engine immediately. Refer to display code.
- **DISPLAY:** Displays malfunction code. Refer to 8.4 *Engine Error Codes, page 464* or your Dealer.
Display Warnings and Alarms
The cab display module (CDM) warnings and alarms indicate abnormal windrower conditions.

Figure 3.72: CDM Display Warnings and Alarms

<table>
<thead>
<tr>
<th>Display (A)</th>
<th>Flashing</th>
<th>Alarm Tone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAKE OFF</td>
<td></td>
<td></td>
<td>Engine running, GSL in N-DETENT, brake pressure switch or brake switch relay fault.</td>
</tr>
<tr>
<td>BRAKE ON</td>
<td>X</td>
<td>Short beep with each flash</td>
<td>Ground speed lever (GSL) out of N-DETENT, but interlock switch remains closed to apply brake</td>
</tr>
<tr>
<td>BRAKE SW FAILURE</td>
<td>X</td>
<td>Short beep with each flash</td>
<td>Ignition ON/engine not running, brake switch and relay closed</td>
</tr>
<tr>
<td>CAB-FORWARD SW ON/ENG-FORWARD SW ON</td>
<td>X</td>
<td>Messages flash alternately</td>
<td>Both seat switches activated</td>
</tr>
<tr>
<td>CENTER STEERING</td>
<td></td>
<td>Two beeps per second</td>
<td>GSL or interlock switches not closed with key ON/engine OFF</td>
</tr>
<tr>
<td>DISENGAGE HEADER RE-ENGAGE <1800 RPM></td>
<td>X</td>
<td>None</td>
<td>R80/R85 - Engine rpm above 1800 rpm when engaging header</td>
</tr>
<tr>
<td>ENGINE AIR FILTER</td>
<td>X</td>
<td>Single loud tone for 10 seconds, Repeats every 30 minutes until condition is corrected</td>
<td>Engine air filter requires servicing</td>
</tr>
<tr>
<td>Display (A)</td>
<td>Flashing</td>
<td>Alarm Tone</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ENGINE OIL PRESSURE</td>
<td>X</td>
<td>Continuous loud tone until oil pressure is regained</td>
<td>Low engine oil pressure</td>
</tr>
<tr>
<td>ENGINE TEMPERATURE</td>
<td>X</td>
<td>Ongoing intermittent moderate tone until temperature is below 102°C (215°F)</td>
<td>Engine temperature over 104°C (220°F)</td>
</tr>
<tr>
<td>HEADER DISENGAGED</td>
<td>None</td>
<td>None</td>
<td>Header switch is in the ON position when ignition switch is turned ON</td>
</tr>
<tr>
<td>DISENGAGE HEADER</td>
<td>X</td>
<td>None</td>
<td>Low header charge oil pressure causes header to shut down: header ON switch must be moved to OFF position and then to ON position to restart the header</td>
</tr>
<tr>
<td>HEADER OIL PRESS</td>
<td>X</td>
<td>Continuous loud tone until oil pressure is regained</td>
<td>Low header charge oil pressure causes header to shut down: header ON switch must be moved to OFF position and then to ON position to restart the header</td>
</tr>
<tr>
<td>HYDRAULIC FILTER</td>
<td>X</td>
<td>Single loud tone for 10 seconds, Repeats every 15 minutes until condition is corrected</td>
<td>Excessive pressure increase across hydraulic oil filter</td>
</tr>
<tr>
<td>### °C or F HYD OIL COLD</td>
<td>X</td>
<td>Tone sounds with each flash for 5 seconds and then stops for 1 minute, flashing continues if oil still cold after 1 minute, tone sounds again</td>
<td>Hydraulic oil temp <10°C (50°F)</td>
</tr>
<tr>
<td>### °C or F HYD OIL HOT</td>
<td>X</td>
<td>Tone with each flash for 5 seconds at 104°C (220°F) then tone stops for 1 minute while flashing continues. If oil still hot after 1 minute, tone sounds again. Flashing and steady tone at temperatures of 110°C (230°F) and higher</td>
<td>Hydraulic oil temp >104°C (220°F) but <110°C (230°F)</td>
</tr>
<tr>
<td>IN PARK</td>
<td>X</td>
<td>One short beep</td>
<td>GSL in N-DETENT, steering wheel centered, and brakes are engaged</td>
</tr>
<tr>
<td>KNIFE SPEED OVERLOAD</td>
<td>X</td>
<td>Short beep with each flash until condition is corrected</td>
<td>Machine overload: knife or disc speed drops below programmed value</td>
</tr>
<tr>
<td>LOCK SEAT BASE</td>
<td>None</td>
<td>None</td>
<td>Seat base not detected in cab or engine-forward position</td>
</tr>
<tr>
<td>LOW HYDRAULIC OIL</td>
<td>X</td>
<td>Continuous loud tone for 5 seconds. If condition is not rectified, single loud tone every 5 minutes</td>
<td>Low hydraulic oil level, header shuts down automatically if engaged: Header ON switch must be moved to OFF position and then to ON position to restart the header</td>
</tr>
</tbody>
</table>
Display (A) Flashing Alarm Tone Description

<table>
<thead>
<tr>
<th>Display (A)</th>
<th>Flashing</th>
<th>Alarm Tone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO HEADER</td>
<td>None</td>
<td>None</td>
<td>Header is not detected</td>
</tr>
<tr>
<td>NO OPERATOR ENGINE SHUTDOWN</td>
<td></td>
<td>Continuous tone</td>
<td>Operator not detected in seat with header engaged or out of N-DETENT with machine moving at <8 km/h (5 mph); engine shutdown after 5 seconds</td>
</tr>
<tr>
<td>NO OPERATOR</td>
<td></td>
<td>Continuous tone</td>
<td>Operator not detected in seat with machine moving >8 km/h (5 mph)</td>
</tr>
<tr>
<td>NOT IN PARK</td>
<td>X</td>
<td>Short beep with each flash</td>
<td>GSL or interlock switches not closed with key ON/engine OFF</td>
</tr>
<tr>
<td>PLACE GSL INTO N</td>
<td></td>
<td>Two beeps per second</td>
<td>GSL or interlock switches not closed with key ON/engine OFF</td>
</tr>
<tr>
<td>SLOW DOWN</td>
<td>X</td>
<td>Short beep with each flash</td>
<td>Ground speed is greater than or equal to 40 km/h (25 mph): Operator should pull back on the GSL to reduce ground speed</td>
</tr>
<tr>
<td>TRANS OIL PRESS</td>
<td>X</td>
<td>Continuous loud tone until oil pressure is regained</td>
<td>Low transmission charge oil pressure</td>
</tr>
<tr>
<td>###.# LOW VOLTS</td>
<td>X</td>
<td>Single loud tone for 10 seconds</td>
<td>Voltage below 11.5</td>
</tr>
<tr>
<td>###.# HIGH VOLTS</td>
<td>X</td>
<td>Single loud tone for 10 seconds</td>
<td>Voltage above 15.5</td>
</tr>
</tbody>
</table>

3.19.5 Configuration Guidelines

Use the following guidelines when configuring the cab display module (CDM):

- The monitoring system requires configuration for each header.
- The **HEADER MUST BE ATTACHED TO THE WINDROWER** so the CDM recognizes the header type.
- The transmission must be in Neutral (GSL in N-DETENT) to configure the system with the engine running.
- The ignition switch must be in the RUN position to configure the system when the engine is not running.
- The system only needs to be configured once for each header. Most functions are factory preset, but the Operator can make changes to suit windrowing conditions or modifications to the machine.
- The windrower input values are provided in this manual. Header function values are in the header operator’s manual.
- The CDM must be in programming mode to view the program menus. Press PROGRAM and SELECT simultaneously on the CDM to enter programming mode. Exit programming mode at any time by pressing PROGRAM or by turning ignition to OFF.
- Refer to [3.19.6 Cab Display Module (CDM) Configuration, page 90](#) for a detailed list of menu items.

NOTE:
Contact your MacDon Dealer for information about software updates to the electronic modules. Your Dealer will have the necessary interface tools and access to the latest software upgrades.
3.19.6 Cab Display Module (CDM) Configuration

Figure 3.73: CDM

A - Side Display B - Main Display C - Select Switch
D - Menu Item Scroll Forward E - Menu Item Scroll Backward F - Program Switch

Side Display: Displays software revision status.
- Upper line – C### (CDM)
- Lower line – or X### (WCM)

NOTE:
M### is for M155 and X### is for M205.

Main Display: Displays menu item and selection\(^{13}\).
- Upper line – Menu item
- Lower line – Selection

Select Switch: Places monitor into Program Mode with PROGRAM switch. Press to accept menu item and advance to next item.

Menu Item Scroll Forward: Displays value under menu item.
- Push to scroll forward
- Hold down for fast scroll\(^{14}\)

\(^{13}\) The current selection is flashing.
\(^{14}\) Fast scroll applies only when changing KNIFE SPEED, OVERLOAD PRESSURE, and TIRE SIZE.
Menu Item Scroll Backward:Displays value under menu item.

- Push to scroll backward
- Hold down for fast scroll

Program Switch: Places monitor into Program Mode. Press while pressing select switch.

NOTE:
Contact your MacDon Dealer for information regarding software updates to the electronic modules. Your Dealer will have the necessary interface tools and access to the latest software upgrades.

NOTE:
The following menus are available when ignition key is set to RUN:

- WINDROWER SETUP
- CAB DISPLAY SETUP
- DIAGNOSTIC MODE

The CALIBRATE SENSORS menu is available only when engine is running.

3.19.7 Configuring the Windrower

The windrower can be configured to meet changing crop conditions, activate newly added options, indicate a change of header type, or increase your comfort level.

Setting the Header Knife Speed

NOTE:
The header MUST be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed.
 - The current knife speed is displayed on the lower line.

Figure 3.74: M205 CDM Programming Buttons
4. Press left (B) or right (C) arrows to select knife speed. Press SELECT (D).

5. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Figure 3.75: Knife Speed
Setting the Knife Overload Speed

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- The recommended knife overload speed is 75% of knife speed.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed.
4. Press SELECT (D) until KNIFE OVERLOAD SPD? is displayed on the upper line.
 - Current overload speed is displayed on the lower line.

NOTE:
Default setting is -300 spm. Range is -500 to -100 spm.

5. Press left (B) or right (C) arrows to set knife overload speed. Press SELECT (D).
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Figure 3.76: M205 CDM Programming Buttons

Figure 3.77: M205 Knife Overload Speed
Setting the Rotary Disc Overload Speed

NOTE:

- The header MUST be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

- The recommended disc overload speed is 75% of disc speed. For more information refer to the rotary disc header operator’s manual to determine proper overload speed.

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line. NO/YES is displayed on the lower line.

3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed.

4. Press SELECT (D) until DISC OVERLOAD SPD? is displayed on the upper line.
 - The current overload speed is displayed on the lower line.

 NOTE:
 Default setting is -300 rpm. Range is -500 to -100 rpm.

5. Press left (B) or right (C) arrows to set disc overload speed. Press SELECT (D).

6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.
Setting the Hydraulic Overload Pressure

NOTE:
- This procedure requires installation of the optional pressure sensor (MD #B5574). For overload pressure values, refer to pressure sensor installation instructions (MD #169031).
- To enable sensor, refer to Switching the Installed Header Sensors ON or OFF, page 134.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed.

4. Press SELECT (D) until OVERLOAD PRESSURE? is displayed on the upper line.
 - The current overload pressure is displayed on lower line.
 NOTE: Pressure range is 17,237–34,474 kPa (2500–5000 psi).
5. Press left (B) or right (C) arrows to set hydraulic overload pressure. Press SELECT (D).
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Figure 3.80: M205 CDM Programming Buttons

Figure 3.81: M205 Hydraulic Overload Pressure
Setting the Header Index Mode

Header Index feature is not applicable to rotary headers.

For more information on the Header Index feature, refer to 4.6.4 Reel Speed, page 264 and 4.6.5 Draper Speed, page 268.

NOTE:
The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (D) until HEADER INDEX MODE? is displayed on the upper line.
 - REEL & CONVEYOR or REEL ONLY is displayed on the lower line.
5. Press left (B) or right (C) arrows to set HEADER INDEX mode. Press SELECT (D).
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Figure 3.82: M205 CDM Programming Buttons

Figure 3.83: M205 Header Index Mode
Setting the Return to Cut Mode

For more information on the Return to Cut feature, refer to 4.4.7 Return to Cut, page 208.

NOTE:
The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed.
4. Press SELECT (D) until RETURN TO CUT MODE? is displayed on the upper line.
 - HEIGHT & TILT or HEIGHT ONLY will be displayed on the lower line.
5. Press left (B) or right (C) arrows to select RETURN TO CUT MODE. Press SELECT (D).
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.
Setting the Auto Raise Height

For more information on the Auto Raise Height feature, refer to 4.4.8 Auto Raise Height, page 211.

NOTE:
The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter Programming Mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (D) until AUTO RAISE HEIGHT? is displayed on the upper line.
 - Last measurement is displayed on the lower line.

NOTE:
The auto raise height ranges from 4.0 (minimum) to 9.5 (maximum), in 0.5 increments. A setting of 10 disables the auto raise function.

5. Press left arrow (B) or right arrow (C) to change auto raise height.
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Activating the Double Windrow Attachment (DWA)

NOTE:
- Follow this procedure if installing the DWA; however, refer to the DWA manual if you require additional installation instructions.
- The DWA cannot be activated if the swath compressor is enabled.
- Follow this procedure if installing a drive manifold (MD #139508).

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.
1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until DWA INSTALLED? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
6. SWAP DWA CONTROLS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

NOTE:
This step swaps the DWA controls from the console switch to the ground speed lever (GSL) reel fore-aft buttons.
7. Press right arrow (C) to select YES. Press SELECT (D).
 • DWA AUTO UP/DOWN? is displayed on the upper line.
 • NO/YES is displayed on the lower line.

 NOTE:
 If the Operator selects YES, the DWA Auto-Up function will be activated by the GSL Reel Fore-Aft button.

8. Press right arrow (C) to select YES. Press SELECT (D).
9. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next windrower setup action.

Figure 3.91: M205 DWA Auto Up/Down
Setting the Header Cut Width

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

- Header cut width is less than actual header width to accurately measure number of acres cut.

- The header sends an electrical signal to the windrower to produce a header ID; however, the cut width will always default to the smallest header size available for each header type. For example, A Series Auger Headers come in 4.3, 4.9, and 5.5 m (14, 16, and 18 ft.) sizes, but the cut width will automatically default to the smallest (4 m [14 ft.] size) and will need to be changed to your specific header’s size.

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed.

4. Press SELECT (D) until HDR CUT WIDTH? #### is displayed on the upper line.
 - Previous cutting width is displayed on the lower line.

5. Press left (B) or right (C) arrows to change the header cut width. Press SELECT (D).

6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.
Activating the Swath Compressor

NOTE:
- All cab display module images in this procedure apply to an M155 Self-Propelled Windrower. Other M Series models are similar.
- CDM5 (version 512 or later) and WCM2 (version 237 or later) are required to operate the swath compressor.
- The DWA must be disabled in the CDM when setting up the swath compressor.
- Users can activate and set up the swath compressor via in-cab controls without a header attached to an M205 windrower.
- Use the following procedure when installing and setting up the swath compressor (MD #C2061).

CAUTION

Check to be sure all bystanders have cleared the area.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until SWATH COMPR INSTALL? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
6. Press SELECT (B) until CALIBRATE SENSORS is displayed on upper line. NO/YES is displayed on lower line.
7. Press right arrow (A) to select YES. Press SELECT (B).
 - TO CALIBRATE SELECT is displayed on upper line.
 - HEADER HEIGHT is displayed on lower line.
8. Press right arrow (A) to scroll through choices until SWATH COMPR HT is displayed. Press SELECT (B).
 - SWATH SENSOR CAL is displayed on upper line.
 - SWATH UP TO START is displayed on lower line.
9. Press switch (B) on console to raise swath compressor.
 - CALIBRATING SWATH is displayed on upper line.
 - FORM UP and flashing HOLD is displayed on lower line until system has completed reading signal with swath compressor fully raised.
 - SWATH FORM UP and DONE (with buzzer) is displayed on lower line when complete.
 - SWATH SENSOR CAL is displayed on upper line.
 - PRESS SWATH DOWN is displayed on lower line.

10. Press switch (A) on console to lower swath compressor.
 - CALIBRATING SWATH is displayed on upper line.
 - FORM DOWN and HOLD is displayed on lower line.
 - SWATH FORM COMPLETE flashes for 2 seconds on lower line (with buzzer) when calibration is finished.

11. Press PROGRAM (A) to exit programming mode or press SELECT (C) to proceed to next windrower setup action.
Displaying Reel Speed

NOTE:

- This procedure is for draper and auger headers. It does not apply to rotary disc headers.
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on CDM to enter programming mode.
 - **WINDROWER SETUP?** is displayed on the upper line.
 - **NO/YES** is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - **SET KNIFE SPEED?** is displayed on the upper line.
4. Press SELECT (D) until **HEADER REEL SPEED?** is displayed on the upper line.
 - **RPM/MPH** or **RPM/KPH** is displayed on the lower line.
5. Press left (B) or right (C) arrow to select either **IMPERIAL** or **METRIC** units. Press SELECT (D).
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.
Setting the Windrower’s Tire Size

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (D) until SET TIRE SIZE? is displayed on the upper line.
 - Currently installed tire size is displayed on the lower line.

NOTE:
The following tire sizes are available:
- 18.4 x 26 TURF
- 18.4 x 26 BAR
- 23.1 x 26 TURF
- 600 – 65 R28
5. Press left (B) or right (C) arrow and select tire size. Press SELECT (D).
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.
Setting the Engine Intermediate Speed Control (ISC) RPM

NOTE:
The ISC sets the engine speed when the header is engaged. For more information, refer to *Engine Intermediate Speed Control (ISC), page 166.*

The engine **MUST** be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until SET ENGINE ISC RPM? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
 - PRESS HAZARD TO SET is displayed on the upper line.
 - ISC RPM #### is displayed on the lower line.

Table 3.1 ISC Settings

<table>
<thead>
<tr>
<th>ISC and RPM</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off(^1)</td>
<td>15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>High Idle</td>
<td>2000</td>
<td>1800</td>
<td>1600</td>
</tr>
</tbody>
</table>

NOTE:
The previously selected ISC rpm will be flashing.

\(^{15}\) Off is always used when the header is not engaged.
6. Press right arrow (C) to cycle between rpm options. Press HAZARD (B) to set.

7. Press Select (D).
 - EXIT ENGINE ISC? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

8. Press right arrow (C) to select YES. Press SELECT (D).

9. Press PROGRAM (A) to exit programming mode.

Clearing Sub-Acres

The windrower has two counters for acres: one counter tracks a total count of acres harvested for the machine’s lifetime, and the other counter tracks sub-acres harvested for smaller harvesting instances (instances like harvesting a particular field, or for a particular day). The total acres can’t be cleared from the windrower’s tracking, but the sub-acres can be cleared between smaller harvesting instances.

1. With the key in the ON position, and the operator’s station in cab-forward mode, press SELECT until the cab display module (CDM) displays sub-acres on the bottom line. Then press and hold the PROGRAM (A) button on the CDM until the sub-acres are cleared.

3.19.8 Activating Cab Display Lockouts

You can lock some of the header functions controlled by the cab display module (CDM) to prevent accidental changes to header settings. You can use this feature to keep header settings constant when several different Operators use the windrower.

NOTE:

FUNCTION LOCKED flashes on CDM when locked header function switch is pressed.
Activating the Header Tilt Control Lockout

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
6. Press SELECT (D) until HEADER TILT is displayed on the upper line.
 • ENABLED/LOCKED is displayed on the lower line.
7. Press left arrow (B) to enable HEADER TILT control switch.
 Press right arrow (C) to lock HEADER TILT control switch.
8. Press PROGRAM (A) to exit programming mode, or press SELECT (D) to proceed to next WINDROWER SETUP action.

Activating the Header Float Control Lockout

NOTE:
The header MUST be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header.
For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 • WINDROWER SETUP? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 • SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
6. Press SELECT (D) until HEADER FLOAT is displayed on the upper line.
 - ENABLED/LOCKED is displayed on the lower line.
7. Press left arrow (B) to enable HEADER FLOAT control switch, or press right arrow (C) to lock HEADER FLOAT control switch.
8. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

![Figure 3.111: M205 Header Float Control Lock](image1)

Activating the Reel Fore-Aft Control Lockout

NOTE:
- This procedure is for draper headers only.
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.

![Figure 3.112: M205 CDM Programming Buttons](image2)
4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).

6. Press SELECT (D) until REEL FORE/AFT is displayed on the upper line.
 • ENABLED/LOCKED is displayed on the lower line.
7. Press left arrow (B) to enable REEL FORE/AFT control switch.
 Press right arrow (C) to lock REEL FORE/AFT control switch.
8. Press PROGRAM (A) to exit programming mode, or press SELECT (D) to proceed to next WINDROWER SETUP action.
Activating the Draper Speed Control Lockout

NOTE:

- This procedure is for draper headers only.
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to *4.5 Attaching and Detaching Headers, page 217*.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
6. Press SELECT (D) until DRAPER SPEED is displayed on the upper line.
 - ENABLED/LOCKED is displayed on the lower line.

7. Press left arrow (B) to enable DRAPER SPEED control switch, or press right arrow (C) to lock DRAPER SPEED control switch.

8. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Activating the Auger Speed Control Lockout

NOTE:
- This procedure is for A40D headers only.
- An auger header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).

6. Press SELECT (D) until AUGER SPEED is displayed on the upper line.
 • ENABLED/LOCKED is displayed on the lower line.
7. Press left arrow (B) to enable AUGER SPEED control switch.
 Press right arrow (C) to lock AUGER SPEED control switch.
8. Press PROGRAM (A) to exit programming mode, or press SELECT (D) to proceed to next WINDROWER SETUP action.

Activating Knife Speed Control Lockout

NOTE: The header MUST be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.

4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

5. Press right arrow (A) to select YES. Press SELECT (B).

6. Press SELECT (D) until KNIFE SPEED is displayed on the upper line.
 - ENABLED/LOCKED is displayed on the lower line.

7. Press left arrow (B) to enable KNIFE SPEED control switch, or press right arrow (C) to lock KNIFE SPEED control switch.

8. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.
Activating Rotary Disc Speed Control Lockout

NOTE:

- This procedure is for rotary disc headers only.
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.

4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

5. Press right arrow (A) to select YES. Press SELECT (B).
6. Press SELECT (D) until DISK SPEED is displayed on the upper line.
 - ENABLED/LOCKED is displayed on the lower line.

7. Press left arrow (B) to enable DISK SPEED control switch, or press right arrow (C) to lock DISK SPEED control switch.

8. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

Activating the Reel Speed Control Lockout

NOTE:
The header MUST be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header.
For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.

4. Press SELECT (B) until SET CONTROL LOCKS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

5. Press right arrow (A) to select YES. Press SELECT (B).
6. Press SELECT (D) until REEL SPEED is displayed on the upper line.
 - ENABLED/LOCKED is displayed on the lower line.
7. Press left arrow (B) to enable REEL SPEED control switch.
 Press right arrow (C) to lock REEL SPEED control switch.
8. Press PROGRAM (A) to exit programming mode, or press SELECT (D) to proceed to next WINDROWER SETUP action.

3.19.9 Displaying Activated Cab Display Lockouts

Displaying the activated control locks allows you to quickly determine which controls are locked on the cab display module (CDM).

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press right arrow (B) to select YES. Press SELECT (C).
 - SET KNIFE SPEED? is displayed on the upper line.
4. Press SELECT (B) until VIEW CONTROL LOCKS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
5. Press right arrow (A) to select YES. Press SELECT (B).
 HEADER TILT is displayed on the upper line.
 - The control switch status is displayed on the upper line. The hours displayed indicate when a switch was enabled or locked.
6. Press left (B) or right (C) arrow to cycle between control switch lockouts. The displayed control switches are as follows:

- HEADER TILT
- HEADER FLOAT
- REEL FORE/AFT
- DRAPER SPEED
- AUGER SPEED
- KNIFE SPEED
- DISK SPEED
- REEL SPEED

NOTE:
Not all control locks apply to every header.

7. Press SELECT (D).

- EXIT VIEW LOCKOUTS? is displayed on the upper line.
- NO/YES is displayed on the lower line.

8. Press right (C) to select YES.

9. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next WINDROWER SETUP action.

3.19.10 Cab Display Options

The display and sound features of the cab display module (CDM) can be adjusted to suit each particular Operator.

NOTE:
The procedures listed in this section are current for cab display module (CDM) software version C512 and windrower control module (WCM) X116. The WCM is supplied preloaded with the latest released version of the operating software. Any subsequent updates will be made available via internet download from the MacDon Dealer Portal (https://portal.macdon.com).

NOTE:
Pages may appear differently if running newer or older versions of software, and not all features are available on every machine.
Setting the Cab Display Language

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - **WINDROWER SETUP?** is displayed on the upper line.
 - **NO/YES** is displayed on the lower line.
3. Press SELECT (A) until **CAB DISPLAY SETUP?** is displayed on the upper line.
 - **NO/YES** is displayed on the lower line.
4. Press right arrow (C) to select YES. Press SELECT (D).
 - **DISPLAY LANGUAGE?** is displayed on the upper line.
 - Default language is displayed on the lower line.
5. Press left (B) or right (C) arrow to select preferred language.

 NOTE:
 English, Russian, and Spanish language options are available on windrowers. Not all language options are available on all windrowers.
6. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next **CAB DISPLAY SETUP?** action.

Figure 3.133: M205 Windrower Setup Display

Figure 3.134: M205 Cab Setup Display

Figure 3.135: M205 Language Display
Changing the Windrower Display Units

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press SELECT (B) until CAB DISPLAY SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

4. Press right arrow (A) to select YES. Press SELECT (B).
 - DISPLAY LANGUAGE? is displayed on the upper line.

5. Press SELECT (D) until DISPLAY UNITS? is displayed on the upper line.
 - Default setting is displayed on the lower line.

6. Press left (B) or right (C) arrow to select either METRIC or IMPERIAL speed display.

7. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next CAB DISPLAY SETUP? action.
Adjusting the Cab Display Buzzer Volume

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 * WINDROWER SETUP? is displayed on the upper line.
 * NO/YES is displayed on the lower line.

3. Press SELECT (B) until CAB DISPLAY SETUP? is displayed on the upper line.
 * NO/YES is displayed on the lower line.

4. Press right arrow (A) to select YES. Press SELECT (B).
 * DISPLAY LANGUAGE? is displayed on the upper line.

5. Press SELECT (D) until BUZZER VOLUME is displayed on the upper line.
 * Previous setting is displayed on the lower line.

6. Press left (B) or right (C) arrows to adjust buzzer volume.

7. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next CAB DISPLAY SETUP? action.
Adjusting the Cab Display Backlighting

The backlighting feature brightens the display screen helping you read the cab display module (CDM) in low light situations.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press SELECT (B) until CAB DISPLAY SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).
 - DISPLAY LANGUAGE? is displayed on the upper line.
5. Press SELECT (D) until BACKLIGHTING is displayed on the upper line.
 - Default setting is displayed on the lower line.
6. Press left (B) or right (C) arrows to adjust display backlighting.
7. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next CAB DISPLAY SETUP? action.
Adjusting the Cab Display Contrast

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press SELECT (B) until CAB DISPLAY SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

4. Press right arrow (A) to select YES. Press SELECT (B).
 - DISPLAY LANGUAGE? is displayed on the upper line.

5. Press SELECT (D) until DISPLAY CONTRAST is displayed on the upper line.
 - Default setting is displayed on the lower line.

6. Press left (B) or right (C) arrows to adjust display contrast.

7. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next CAB DISPLAY SETUP? action.
3.19.11 Calibrating the Header Sensors

Sensor calibration programs the windrower control module (WCM) with settings for the attached header.

Calibrating the Header Height Sensor

NOTE:
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its configuration for each header type. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- The engine **MUST** be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until CALIBRATE SENSORS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (B) to select YES. Press SELECT (C).
 - TO CALIBRATE SELECT is displayed in upper line.
5. Press left (A) or right (B) arrow until HEADER HEIGHT is displayed on the lower line. Press SELECT (C).
 - CALIBRATING HEIGHT is displayed on the upper line.
 - RAISE HEADER HOLD is displayed on the lower line.
CAUTION
Check to be sure all bystanders have cleared the area.

6. Press and hold the HEADER UP button (A) on the ground speed lever (GSL).
 - CALIBRATING HEIGHT is displayed on the upper line.
 - RAISE HEADER HOLD is displayed on the lower line.

NOTE:
The word HOLD will flash during calibration. RAISE HEADER DONE will display on the lower line once calibration is complete.

7. Release the HEADER UP button (A).
 - HEIGHT SENSOR CAL is displayed on the upper line.
 - PRESS LOWER HEADER is displayed on the lower line.

8. Press and hold HEADER DOWN button (A) on the GSL.

NOTE:
The word HOLD will flash during calibration. HT SENSOR COMPLETE will display on the lower line once calibration is complete.

 - TO CALIBRATE SELECT is displayed on the upper line.
 - HEADER HEIGHT is displayed on the lower line.

10. Press right arrow to select next header sensor calibration or STOP & EXIT. Press SELECT.

 Refer to Calibrating the Header Tilt Sensor, page 127 or Calibrating the Header Float Sensors, page 129.

11. Press PROGRAM to exit programming mode.
Calibrating the Header Tilt Sensor

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. Refer to 4.5 Attaching and Detaching Headers, page 217.
- The engine **MUST** be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until CALIBRATE SENSORS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (B) to select YES. Press SELECT (C).
 - TO CALIBRATE SELECT is displayed in upper line.
5. Press left (A) or right (B) arrow until HEADER TILT is displayed on the lower line. Press SELECT (C).
 - HDR TILT SENSOR CAL is displayed on the upper line.
 - EXTEND TILT TO START is displayed on the lower line.
CAUTION

Check to be sure all bystanders have cleared the area.

6. Press and hold the HEADER TILT EXTEND button (A) on the ground speed lever (GSL).
 - CALIBRATING TILT is displayed on the upper line.
 - EXTEND TILT HOLD is displayed on the lower line.

 NOTE:
 The word HOLD will flash during calibration. HEADER TILT DONE will display on the lower line once calibration is complete.

7. Release the HEADER TILT EXTEND button (A).
 - HEADER TILT SENSOR CAL is displayed on upper line.
 - PRESS RETRACT TILT is displayed on the lower line.

8. Press and hold HEADER TILT RETRACT button (A) on GSL.
 - CALIBRATING TILT is displayed on the upper line.
 - RETRACT TILT HOLD is displayed on the lower line.

 NOTE:
 The word HOLD will flash during calibration. HEADER TILT COMPLETE will display on the lower line once calibration is complete.

 - TO CALIBRATE SELECT is displayed on the upper line.
 - HEADER TILT is displayed on the lower line.

10. Press right arrow to select next header sensor calibration or STOP & EXIT. Press SELECT.

 Refer to Calibrating the Header Height Sensor, page 125 or Calibrating the Header Float Sensors, page 129.

11. Press PROGRAM to exit programming mode.
Calibrating the Header Float Sensors

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to *4.5 Attaching and Detaching Headers, page 217*.

- The Operator can use the left or right FLOAT buttons on the cab display module (CDM) to perform this procedure.

IMPORTANT:

Ensure float pins (A) are installed in the working position.

1. Start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.

3. Press SELECT (B) until CALIBRATE SENSORS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (B) to select YES. Press SELECT (C).
 • TO CALIBRATE SELECT is displayed in upper line.
5. Press left (A) or right (B) arrow until HEADER FLOAT is displayed on the lower line. Press SELECT (C).
 • CALIBRATING FLOAT is displayed on the upper line.
 • PRESS FLOAT + TO START is displayed on the lower line.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

6. Press and hold FLOAT + button (A) on the CDM.
 • CALIBRATING FLOAT is displayed on the upper line.
 • FLOAT (+) HOLD is displayed on the lower line.

NOTE:
The word HOLD will flash during calibration. FLOAT (+) DONE will display on the lower line once calibration is complete.

7. Release the FLOAT + button (A).
 • CALIBRATING FLOAT is displayed on the upper line.
 • FLOAT (–) HOLD is displayed on the lower line.

8. Press and hold FLOAT – button (A) on CDM.
 • CALIBRATING FLOAT is displayed on the upper line.
 • FLOAT (–) HOLD is displayed on the lower line.

NOTE:
The word HOLD will flash during calibration. HDR FLOAT COMPLETE will display on the lower line once calibration is complete.

 • TO CALIBRATE SELECT is displayed on the upper line.
 • HEADER FLOAT is displayed on the lower line.

10. Press right arrow to select next header sensor calibration or STOP & EXIT. Press SELECT. Refer to *Calibrating the Header Height Sensor, page 125* or *Calibrating the Header Tilt Sensor, page 127*.

11. Press PROGRAM to exit programming mode.
3.19.12 Calibrating the Swath Compressor Sensor

To calibrate the swath compressor sensor, follow these steps:

NOTE:
To calibrate the swath compressor sensor, the DWA must be disabled, and the swath compressor must be enabled in WINDROWER SETUP on the CDM.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until CALIBRATE SENSORS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).
 - TO CALIBRATE SELECT is displayed in upper line.
5. Press right arrow (A) to scroll through the choices until SWATH COMPR HT is displayed on the lower line. Press SELECT (B).
 - SWATH SENSOR CAL is displayed on the upper line.
 - SWATH UP TO START is displayed on the lower line.
6. Press and hold button (B) to raise the swath compressor.
 • CALIBRATING SWATH is displayed on the upper line.
 • FORM UP and flashing HOLD is displayed on the lower line until the system has completed reading signal with swath compressor fully raised.
 • SWATH FORM UP DONE (with buzzer) is displayed on the lower line when complete.

7. Press and hold button (A) to lower the swath compressor.
 • CALIBRATING SWATH is displayed on the upper line.
 • FORM DOWN and flashing HOLD is displayed on the lower line.
 • SWATH FORM COMPLETE flashes for 2 seconds on the lower line (with buzzer) when the calibration is complete.

8. Press PROGRAM to exit programming mode.
3.19.13 Troubleshooting Windrower Problems

Displaying the Windrower and Engine Error Codes

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode. Press SELECT (B).
 - WINDROWER SETUP? is displayed on the upper line.

3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.

4. Press right arrow (A) to select YES. Press SELECT (B).

5. VIEW ERROR CODES? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

6. Press right arrow (A) to select YES. Press SELECT (B).
 - VIEW WINDRWR CODES? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

7. Press right arrow (A) to select YES. Press SELECT (C).
 - The most recent error code will be displayed.
 - Refer to 8.5 Cab Display Module (CDM) Error Codes, page 478.

8. Press and left (A) or right (B) arrow to cycle through the last ten recorded windrower error codes until EXIT WINDROWER CODES is displayed.

9. Press right arrow (B) to select YES. Press SELECT (C).
 - VIEW ENGINE CODES is displayed on the upper line.
 - NO/YES is displayed on the lower line.
10. Press right arrow (C) to select YES. Press SELECT (D).

11. Press left (B) or right (C) arrow to cycle through the last ten recorded engine error codes until EXIT ENGINE CODES is displayed.
 - Refer to 8.4 Engine Error Codes, page 464.

12. Press right arrow (C) to select YES. Press SELECT (D).

13. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next diagnostic mode.

Switching the Installed Header Sensors ON or OFF

You can selectively enable or disable header sensors in the event of a malfunction or as part of a troubleshooting routine.

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.

- Disabled sensors flash the word SENSOR on CDM during regular operation.

1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (C) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

3. Press SELECT (C) until DIAGNOSTIC MODE? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

4. Press right arrow (B) to select YES. Press SELECT (C).
 - VIEW ERROR CODES? is displayed on the upper line.
5. Press SELECT (B) until ENTER SENSOR SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

6. Press right arrow (A) to select YES. Press SELECT (B).
 - KNIFE SPEED SENSOR is displayed on the lower line.
 - ENABLE/DISABLE is displayed on the lower line.

7. Press left arrow (B) to enable a sensor. Press right arrow (C) to disable sensor. Press SELECT (D) to confirm selection and move on to next sensor.

 The following sensors are available:
 - HEADER HT SENSOR
 - HEADER TILT SENSOR
 - KNIFE SPEED SENSOR
 - REEL SPEED SENSOR
 - HEADER FLOAT SENSOR
 - OVERLOAD PRESSURE
 - HYD OIL TEMP SENSOR

 When sensors have been modified, press SELECT (D) to display the EXIT SENSOR SETUP? selection.

8. Press right arrow (C) to select YES. Press SELECT.

9. Press PROGRAM (A) to exit programming mode or press SELECT to proceed to next diagnostic mode.

16. Requires installation of optional pressure sensor (MD #B5574).
Displaying Header Sensor Input Signals

You can display individual sensor input signals in the event of a malfunction or as part of a troubleshooting routine.

NOTE:
The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to **4.5 Attaching and Detaching Headers, page 217**.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).
 - VIEW ERROR CODES? is displayed on the upper line.
5. Press SELECT (B) until READ SENSOR SETUP? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
6. Press right arrow (C) to select YES. Press SELECT (D).
 • SENSOR INPUT is displayed on the upper line.
 • HDR HEIGHT 1.23 V is displayed on the lower line.
7. Press left (B) or right (C) arrow to cycle between individual sensor readers.
8. Press SELECT (D) to skip to EXIT READ SENSORS? selection.
9. Press right arrow (C) to select YES. Press SELECT.
10. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next diagnostic mode.

Forcing a Header ID

The header must be attached to the windrower to troubleshoot certain issues. If damage has occurred to the header wiring or no header is available, you can force the windrower control module (WCM) to read a header ID. The WCM reverts to reading NO HEADER each time the engine ignition is cycled.

IMPORTANT:
Forcing a Header ID that is different from the attached header can damage the windrower and header. Doing so can lead to vibration, belt failures, and other overspeeding related problems.

1. Turn ignition key to RUN, or start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 • WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 • NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until FORCE HEADER TYPE? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).
 • SELECT HEADER TYPE is displayed on the upper line.
 • DISK HEADER is displayed on the lower line.

7. Press left (A) or right (B) arrow to cycle through list of header types.
8. When desired header type is displayed, press SELECT (C).
 • EXIT FORCE HEADER? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
9. Press right arrow (B) to select YES. Press SELECT (C).
 Proceed to next diagnostic mode, or press PROGRAM to exit programming mode.
3.19.14 Troubleshooting Header Problems

You can test individual parts of the header as part of a troubleshooting routine.

Testing the Header Up/Down Activate Function Using the Cab Display Module (CDM)

NOTE:

- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- The engine **MUST** be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode. Press SELECT (B).
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).
5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).

CAUTION
Check to be sure all bystanders have cleared the area.

7. Press SELECT (D) until ACTIVATE HEADER HT is displayed on the upper line.
 • DOWN/UP is displayed on the lower line.
8. Press and hold left arrow (B) to lower header, or press and hold right arrow (C) to raise header. Verify header is functioning properly.
9. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next ACTIVATE FUNCTION.

Testing the Reel Up/Down Activate Function Using the Cab Display Module (CDM)

NOTE:
- This procedure is for draper headers only.
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
1. Turn ignition key to RUN, or start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode. Press SELECT (B).
 - WINDROWER SETUP? is displayed on the upper line.

3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.

4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

6. Press right arrow (A) to select YES. Press SELECT (B).
7. Press SELECT (D) until ACTIVATE REEL HT is displayed on the upper line.
 - DOWN/UP is displayed on the lower line.

CAUTION
Check to be sure all bystanders have cleared the area.

8. Press and hold left arrow (B) to **lower** reel. Press and hold right arrow (C) to **raise** reel.

IMPORTANT:
Verify reel is functioning properly.

9. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next ACTIVATE FUNCTION.

Testing the Header Tilt Activate Function Using the Cab Display Module (CDM)

NOTE:
- The header **MUST** be attached to the windrower to perform this procedure. The cab display module (CDM) automatically adjusts its programming for each header. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- The engine **MUST** be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 • NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).

7. Press SELECT (D) until ACTIVATE HDR TILT is displayed on the upper line.
 • IN/OUT is displayed on the lower line.
8. Press and hold left arrow (B) to decrease header tilt. Press and hold right arrow (C) to increase header tilt.

 IMPORTANT:
 Verify header is functioning properly.
9. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next ACTIVATE FUNCTION.
Testing the Knife Drive Circuit Using the Cab Display Module (CDM)

IMPORTANT:
Do not overspeed a drive. Overspeeding can lead to vibration, belt failures, or other overspeeding related problems.

NOTE:
- The header MUST be attached to windrower to follow this procedure. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- The engine MUST be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode. Press SELECT (B).
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).
5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).
 - ACTIVATE HEADER HT is displayed on the upper line.

![Figure 3.194: M205 Functions](image)

CAUTION

Check to be sure all bystanders have cleared the area.

7. Press SELECT (E) until KNIFE DRIVE SPD XXXX is displayed on the upper line.

IMPORTANT:

Do NOT overspeed the knife drive.

8. Press and hold HAZARD (C) button.
 - Press left arrow (B) to decrease knife speed.
 - Press right arrow (D) to increase knife speed.

IMPORTANT:

Verify the knife drive is functioning properly.

9. Release the HAZARD (C) button. The knife will stop.

10. Press PROGRAM (A) to exit programming mode or press SELECT (E) to proceed to next ACTIVATE FUNCTION.

Testing the Draper Drive Circuit Activate Function Using the Cab Display Module (CDM)

IMPORTANT:

Do not overspeed a drive. Overspeeding can lead to vibration, belt failures, or other overspeeding related problems.

NOTE:

- A draper header MUST be attached to windrower to follow this procedure. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- The engine MUST be running to perform this procedure.
1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.

3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).
 - ACTIVATE HEADER HT is displayed on the upper line.
CAUTION

Check to be sure all bystanders have cleared the area.

7. Press SELECT (B) until DRAPER DRV SPD XXXX is displayed on the upper line.

IMPORTANT:
Do NOT overspeed the drapers.

8. Press and hold HAZARD (C) button.
 - Press left arrow (B) to decrease draper speed.
 - Press right arrow (D) to increase draper speed.

IMPORTANT:
Verify the draper drive is functioning properly.

9. Release the HAZARD (C) button. The drapers will stop.

10. Press PROGRAM (A) to exit programming mode or press SELECT (E) to proceed to next ACTIVATE FUNCTION.

Testing the Reel Drive Circuit Activate Function Using the Cab Display Module (CDM)

IMPORTANT:
Do not overspeed a drive. Overspeeding can lead to vibration, belt failures, or other overspeeding related problems.

NOTE:
- The header MUST be attached to windrower to follow this procedure. For more information, refer to 4.5 Attaching and Detaching Headers, page 217.
- This procedure does not apply to rotary disc headers.
- The engine MUST be running to perform this procedure.

1. Start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).
 - ACTIVATE HEADER HT is displayed on the upper line.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

7. Press SELECT (E) until REEL DRV SPD XXXX is displayed on the upper line.

 IMPORTANT:
 Do NOT overspeed the reel.

8. Press and hold HAZARD (C) button.
 - Press left arrow (B) to decrease reel speed.
 - Press right arrow (D) to increase reel speed.

 IMPORTANT:
 Verify the reel drive is functioning properly.

9. Release the HAZARD (C) button. The reel will stop.
10. Press PROGRAM (A) to exit programming mode or press SELECT (E) to proceed to next ACTIVATE FUNCTION.
Testing the Rotary Disc Drive Circuit Activate Function Using the Cab Display Module (CDM)

IMPORTANT:
Do not overspeed a drive. Overspeeding can lead to vibration, belt failures, or other overspeeding related problems.

NOTE:
- A rotary disc header **MUST** be attached to windrower to follow this procedure.
- The engine **MUST** be running to perform this procedure.

1. Start the engine.
2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).
5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.

6. Press right arrow (A) to select YES. Press SELECT (B).
 • ACTIVATE HEADER HT is displayed on the upper line.

![Figure 3.206: M205 Functions]

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

7. Press SELECT (E) until DISC DRV SPD XXXX is displayed on the upper line.

 IMPORTANT:
 Do NOT overspeed the disc drive.

8. Press and hold HAZARD (C) button.
 • Press left arrow (B) to decrease disc speed.
 • Press right arrow (D) to increase disc speed.

 IMPORTANT:
 Verify the disc drive is functioning properly.

9. Release the HAZARD (C) button. The disc drive will stop.

10. Press PROGRAM (A) to exit programming mode or press SELECT to proceed to next ACTIVATE FUNCTION.

 Testing the Double Windrower Attachment (DWA) Drive Activate Function Using the Cab Display Module (CDM)

 IMPORTANT:
 Do not overspeed a drive. Overspeeding can lead to vibration, belt failures, or other overspeeding related problems.

 NOTE:
 • DWA must be attached to windrower and activated under the WINDROWER SETUP menu. For more information, refer to Activating the Double Windrow Attachment (DWA), page 98.
 • Engine MUST be running to perform this procedure.
1. Start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode. Press SELECT (B).
 - **WINDROWER SETUP?** is displayed on the upper line.

3. Press SELECT (B) until **DIAGNOSTIC MODE?** is displayed in upper line.
 - **NO/YES** is displayed on the lower line.

4. Press right arrow (A) to select **YES**. Press SELECT (B).

5. Press SELECT (B) until **ACTIVATE FUNCTIONS?** is displayed on the upper line.
 - **NO/YES** is displayed on the lower line.

6. Press right arrow (A) to select **YES**. Press SELECT (B).
 - **ACTIVATE HEADER HT** is displayed on the upper line.
7. Press SELECT (E) until ACTIVATE DWA DRV is displayed on the upper line.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

IMPORTANT:

Do **NOT** overspeed the DWA drive.

- Press and hold HAZARD (C) button.
 - Press left arrow (B) to **decrease** DWA drive speed.
 - Press right arrow (D) to **increase** DWA drive speed.

IMPORTANT:

Verify the DWA drive is functioning properly.

8. Release the HAZARD (C) button. The DWA drive will stop.

9. Press PROGRAM (A) to exit programming mode or press SELECT (E) to proceed to next ACTIVATE FUNCTION.

Testing the Reel Fore-Aft Activate Function Using the Cab Display Module (CDM)

NOTE:

- The reel fore-aft function requires the completion kit for draper header reel drive (MD #B5496). For more information refer to **7.3.5 Completion Kit for Draper Header Reel Drive, page 446**.
- The header **MUST** be attached to windrower to perform this procedure. For more information, refer to **4.5 Attaching and Detaching Headers, page 217**.
- The engine **MUST** be running to perform this procedure.

1. Start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - **WINDROWER SETUP?** is displayed on the upper line.
3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 • NO/YES is displayed on the lower line.
4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 • NO/YES is displayed on the lower line.
6. Press right arrow (A) to select YES. Press SELECT (B).

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

7. Press SELECT (D) until ACTIVATE REEL F/A is displayed on the upper line.
 • FORE/AFT is displayed on the lower line.
8. Verify reel fore-aft is functioning properly.
 a. Press and hold left arrow (B) to move reel forward. Press and hold right arrow (C) to move reel backward.
 b. Press PROGRAM (A) to exit programming mode or press SELECT (D) to proceed to next ACTIVATE FUNCTION.
Activating the Hydraulic Purge Using the Cab Display Module (CDM)

The hydraulic purge removes air from the hydraulic pump system after it has been repaired or changed.

NOTE:
Engine **MUST** be running to perform this procedure.

1. Start the engine.

2. Press PROGRAM (A) and SELECT (B) on cab display module (CDM) to enter programming mode.
 - WINDROWER SETUP? is displayed on the upper line.

3. Press SELECT (B) until DIAGNOSTIC MODE? is displayed in upper line.
 - NO/YES is displayed on the lower line.

4. Press right arrow (A) to select YES. Press SELECT (B).

5. Press SELECT (B) until ACTIVATE FUNCTIONS? is displayed on the upper line.
 - NO/YES is displayed on the lower line.

6. Press right arrow (A) to select YES. Press SELECT (B).
 - ACTIVATE HEADER HT is displayed on the upper line.
 - DOWN/UP is displayed on the lower line.
7. Press SELECT (B) until ACTIVATE HYD PURGE? is displayed on the upper line.
 - NO/YES is displayed on the lower line.
8. Press right arrow (A) to select YES. Press SELECT (B).
 - TO ACTIVATE PURGE is displayed on the upper line.
 - PRESS AND HOLD is displayed on the lower line.

NOTE:
Holding the right arrow (A) activates a timed purge cycle. The CDM will jump to the exit menu if the arrow is released before the end of the timed cycle.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

9. Press and hold right arrow (A) to activate purge cycle.
 - PURGE CYCLE STARTED will display on the upper line.
10. When PURGE CYCLE ENDED is displayed release right arrow (A).
 - NO EXIT YES is displayed on the lower line.
11. Press right arrow to select YES. Press SELECT.
12. Press PROGRAM to exit programming mode or press SELECT to proceed to next ACTIVATE FUNCTION.
3.19.15 Engine Error Codes

The cab display module (CDM) displays error codes when there is a fault with one of the several sensors that monitor and control engine operation, to assist the Operator or Technician in locating a specific problem with engine operation. Refer to 8.4 Engine Error Codes, page 464.

3.19.16 Cab Display Module (CDM) and Windrower Control Module (WCM) Fault Codes

The CDM displays fault codes when there is a fault with one of the sensors that monitor and control windrower operation, to assist the Operator or Technician in locating a specific problem with the windrower. Refer to 8.5 Cab Display Module (CDM) Error Codes, page 478.
4 Operation

4.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the windrower. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety signs on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the windrower, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators every year.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do NOT modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.
- The safety information given in this manual does NOT replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
4.2 Symbol Definitions

The following symbols are used to depict functions or reactions of the various instruments and controls. Learn the meaning of these symbols before operating the windrower.

4.2.1 Engine Functions

These are the symbols that are used on the console.

Figure 4.1: Engine Function Symbols

A - Electrical Power – Accessories
B - Engine Coolant Temperature
C - Engine Glow Plugs
D - Engine Malfunction
E - Engine rpm
F - Engine Run
G - Engine Start
H - Engine Stop
J - Engine Throttle
K - Engine Urgent Stop
L - Fast
M - Slow
N - Water in Fuel
4.2.2 Windrower Operating Symbols

These are the symbols used on the console for windrower operation.

Figure 4.2: Windrower Operating Symbols

A - Turn Signals B - Hazard Warning Lights C - Forward
D - Neutral E - Reverse F - Headlights Low Beam
G - Headlights High Beam H - Work Light J - Lighter
K - Fresh Air L - Blower M - Windshield Wiper
N - Seat Height Up P - Seat Height Down Q - Seat Fore and Aft
R - Seat Fore Aft Isolator S - Seat Back Fore and Aft T - Seat Ride Damping
U - Cab Temperature Control V - Air Conditioning W - Recirculate
4.2.3 Header Functions

Figure 4.3: Header Function Symbols

A	Program
B	Header Index
C	Return to Cut
D	Conveyor/Auger Speed
E	Float Left
F	Float Right
G	Reel Speed
H	Disc Speed
J	Reel Down
K	Reel Forward
L	Reel Up
M	Reel Rearward
N	Display Select
O	DWA Down
P	DWA Up
Q	DWA Draper Speed
R	Header Tilt Up
S	Header Down
T	Header Tilt Down
U	Header Up
V	Header Disengage
W	Increase
X	Decrease
Y	Deck Shift
Z	Float

AA - Header Engage
AD - Pull Up Header Engage
AB - Header Disengage
AE - Header Reverse
AC - Push Down Header Disengage
4.3 Operating the Windrower

4.3.1 Operational Safety

⚠️ CAUTION

Follow these safety precautions:

- Wear close fitting clothing and protective shoes with slip resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that COULD be necessary through the day. Don’t take chances.
- You may need:
 - a hard hat
 - protective glasses or goggles
 - heavy gloves
 - respirator or filter mask
 - wet weather gear
- Protect against noise. Wear a suitable hearing protective device such as ear muffs or ear plugs to protect against objectionable or uncomfortable loud noises.
- Follow all safety and operational instructions given in your operator’s manuals. If you do not have a header manual, get one from your Dealer and read it thoroughly.
- Never attempt to start the engine or operate the machine except from the operator’s seat.
- Check the operation of all controls in a safe clear area before starting work.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure. Refer to Shutting down the Engine, page 166.
- Operate only in daylight or good artificial light.
4.3.2 Break-In Period

The windrower is ready for normal operation. However, there are several items to check and watch out for during the first 150 hours.

IMPORTANT:
Until you become familiar with the sound and feel of your new windrower, be extra alert and attentive.

⚠️ DANGER
Before investigating an unusual sound or attempting to correct a problem, place ground speed lever (GSL) in N-DETENT, shut off engine, and remove key.

In addition to the following, check the items specified in 5.12.1 Maintenance Schedule/Record, page 415:

• Operate engine at moderate load and avoid extremely heavy or light loading for longer than five minutes.
• Avoid unnecessary idling. If engine will be idling longer than five minutes after reaching operating temperature, turn key OFF to stop engine.
• Check engine oil level frequently. Watch for any signs of leakage. If oil must be added, refer to Checking Engine Oil Level, page 313.

NOTE:
During the break-in period, a higher than usual oil consumption should be considered normal.

NOTE:
If windrower must be driven in cold weather (below freezing), let engine idle for three minutes, and then operate at moderate speed until oil has warmed up.

• Watch coolant gauge in cab for temperature rising beyond normal operating range. Check that coolant level at reserve tank (mounted next to radiator) stays between HOT and COLD marks on tank. Refer to 5.8.6 Engine Cooling System, page 331. If over-heating problems occur, check for coolant leaks.

4.3.3 Preseason Checks / Annual Service

⚠️ CAUTION

• Review the this operator’s manual to refresh your memory on safety and operating recommendations.
• Review all safety signs and other decals on the windrower and note hazard areas.
• Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
• Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
• Store a properly stocked first aid kit and charged fire extinguisher on the windrower.
1. Perform the following checks:
 a. Drain off excess hydraulic oil added for storage. Refer to 5.10.3 Changing the Hydraulic Oil, page 386.
 b. Remove plastic bags and/or tape from all sealed openings (air cleaner intake, exhaust pipe, fuel tank).
 c. Charge battery and install. Be sure terminals are clean and cables are connected securely.
 d. Adjust tension on air conditioning (A/C) compressor belt. Refer to Tensioning Air Conditioner (A/C) Compressor Belt, page 347.
 e. Distribute A/C refrigerant by cycling A/C switch. Refer to Air Conditioning (A/C) Compressor Coolant Cycling, page 163.
 f. Check the entire A/C system for leakage at the beginning of each season.

Air Conditioning (A/C) Compressor Coolant Cycling

IMPORTANT:
Perform the following steps whenever the machine is first started after storage for more than one week:

1. Turn blower switch (A) to the first position, turn TEMPERATURE control switch (D) to maximum heating, and A/C control switch (B) to OFF.
2. Start the engine, and operate at low idle until the engine is warm.
3. Click A/C switch (B) from OFF to ON for one second, then back to OFF for 5–10 seconds. Repeat this step ten times.

![Figure 4.6: Climate Control](image)

4.3.4 Daily Checks and Maintenance
Perform the following checks and recommended maintenance before operating the windrower every day:

1. Check the machine for leaks.
 NOTE:
 Use proper procedure when searching for pressurized fluid leaks. Refer to Hoses and Lines, page 394.
2. Check for missing or broken parts.
3. Clean the windows and mirrors to ensure good visibility in all directions. Stand on the platform to access the rear window. Hold onto the handholds on the cab front corners and stand on the header anti-slip strips to wash the front window.
4. Clean all lights and reflective surfaces to maintain visibility to others.
4.3.5 Engine Operation

Starting the Engine

Carefully review the following topic before attempting to start the engine. It contains important information about Operator safety and the engine ignition system.

⚠️ DANGER

- Avoid possible injury or death from a runaway machine.
- This machine has safety devices which allow the engine to start only when the ground speed lever is in N-DETENT, the steering wheel is locked in the NEUTRAL position, and the header drive switch is in the OFF position. Under no circumstances are these devices to be deliberately rewired or misadjusted so that the engine can be started with controls out of NEUTRAL.
- Do NOT start engine by shorting across starter or starter relay terminals. Machine will start with drive engaged and move if normal starting circuitry is bypassed.
- Start engine only from operator’s seat with controls in NEUTRAL. NEVER start engine while standing on ground. Never try to start engine with someone under or near machine.
- Before starting engine, be sure there is plenty of ventilation to avoid asphyxiation.

⚠️ WARNING

If starter engages with steering wheel unlocked, ground speed lever out of NEUTRAL, or header clutch engaged, DO NOT START ENGINE. Contact your Dealer.

IMPORTANT:

Do NOT tow machine to start the engine. Damage to hydrostatic drives will result.

1. The battery main disconnect switch (A) is located on the right frame rail, behind the maintenance platform, and can be accessed by moving the platform. Ensure switch is in the POWER ON position.

⚠️ WARNING

Before starting engine, fasten your seat belt and ensure trainer’s seat belt is used if seat is occupied. Seat belts improve safety if used and maintained properly.
2. Ensure lock (A) at the base of the steering column is engaged at cab-forward or engine-forward position.

3. Move ground speed lever (GSL) (B) into N-DETENT.

4. Turn steering wheel until it locks. It may be possible to move the steering wheel slightly in the locked position.

IMPORTANT:
Do **NOT** attempt to force the wheel out of locked position as damage to the traction system may occur.

5. Fasten seat belt.

6. Push HEADER DRIVE switch (C) to ensure it is OFF.

CAUTION
Check to be sure all bystanders have cleared the area.

7. Set throttle (A) to START position—fully back.

8. Sound horn three times.

9. Turn ignition key (B) to RUN position. A single loud tone sounds, engine warning lights illuminate as a self-test, and cab display module (CDM) displays HEADER DISENGAGED and IN PARK.

10. Turn ignition key (B) to START position until engine starts, and then release key. CDM displays programmed header data for five seconds if attached, and then returns to previous display.

IMPORTANT:
The machine gauges and instruments provide important information about machine operation and condition. Familiarize yourself with the gauges and monitor them carefully during start-up operation. Refer to 3.16 Engine Controls and Gauges, page 67.

IMPORTANT:
- Do **NOT** operate starter for longer than 15 seconds at a time.
- If engine does not start, wait at least 2 minutes before trying again.
- After the third 15 second crank attempt, allow solenoid to cool for 10 minutes before further cranking attempts. If engine still does not start, refer to 6.1 Engine Troubleshooting, page 421.
- Do **NOT** operate engine above 1500 rpm until engine temperature gauge is above 40°C (100°F).

NOTE:
When the engine temperature is below 5°C (40°F), follow the procedure for a normal start. The engine will cycle through a period where it appears to labor until the engine warms up. The throttle is nonresponsive during this time as the engine is in WARM UP mode. This mode will last from 30 seconds to 3 minutes depending on the temperature. After the engine has stabilized and is idling normally, the throttle becomes active.
Engine Warm-Up

Allow engine to run with throttle lever (A) at or near low-idle position until temperature gauge (B) reaches approximately 40°C (100°F).

NOTE:
Scroll through cab display module (CDM) for engine temperature. Refer to *Engine Temperature, page 168.*

Engine Intermediate Speed Control (ISC)

The engine operating speed can be programmed to enable the windrower to operate at reduced engine rpm, that is, 1600, 1800, 2000 rpm, or OFF (full throttle) without significantly affecting the ground or header speeds.

Engine ISC is useful when operating loads are reduced such as in light crop conditions that do not require the maximum engine rpm. Reduced engine speed lowers fuel consumption, noise levels, and exhaust emissions in addition to reducing engine wear.

The programmed engine speed is activated when the header is engaged.

Programming instructions are provided in *3.19.6 Cab Display Module (CDM) Configuration, page 90.*

Shutting down the Engine

⚠️ **CAUTION**

Park on a flat, level surface with the header on the ground and the ground speed lever in N-DETENT position with the steering wheel locked.

IMPORTANT:
Before stopping engine, run at low idle for approximately 5 minutes to cool hot engine parts (and allow turbocharger to slow down while engine oil pressure is available).
1. Lower header.
2. Place ground speed lever (GSL) (B) into N-DETENT.
3. Lock steering wheel.
4. Turn ignition key (A) counterclockwise to OFF position.

Figure 4.11: Operator Console

Filling the Fuel Tank

Fill the fuel tank daily, preferably at the end of the day’s operation to help prevent condensation in the tank.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **WARNING**

- To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.
- NEVER refuel the windrower when the engine is hot or running.

⚠️ **CAUTION**

Do NOT allow tank to empty. Running out of fuel can cause air locks and/or contamination of the fuel system. Refer to System Priming, page 330.

1. Stop windrower and remove key.
2. Stand on either platform to access the fuel tank filler pipe.
3. Clean the area around filler cap (A).

4. Turn cap handle (B) counterclockwise until loose and then remove cap.

5. Fill tank with approved fuel. Refer to inside back cover for recommended fuel.

IMPORTANT:
Do NOT fill tank completely—space is required for expansion. A filled tank could overflow if exposed to a rise in temperature, such as direct sunlight.

6. Replace fuel tank cap (A) and turn cap handle (B) clockwise until snug.

Engine Temperature

The normal engine operating temperature range is 82–104°C (180–220°F). Engine temperature is indicated by gauge (B) on the operator’s console.

If the temperature exceeds 104°C (220°F), an ongoing intermittent tone will be heard and the cab display module (CDM) will flash ENGINE TEMP. Stop the engine immediately and determine cause. The tone will stop and the CDM will return to normal when the temperature drops below 102°C (215°F).

Engine Oil Pressure

The nominal engine oil pressure is 69 kPa (10 psi) at low idle and 380 kPa (55.1 psi) at maximum rated speed.

If the oil pressure drops below the preset level of 52 kPa (7.5 psi), the cab display module (CDM) flashes an error code and error message.

If the STOP ENGINE light illuminates, stop the engine IMMEDIATELY and investigate.

If the yellow CAUTION light illuminates, you may continue operations and investigate later, but you are STRONGLY advised to monitor the situation carefully.
Cab Display Module (CDM) Voltage Display

The electrical system voltage is displayed on the cab display module (CDM) when selected with the SELECT button on the ground speed lever (GSL) handle or the SELECT switch on the CDM. The display indicates the condition of the battery and alternator.

<table>
<thead>
<tr>
<th>Ignition</th>
<th>Engine</th>
<th>Reading</th>
<th>Indicated Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Running</td>
<td>13.8–15.0</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 16.0(^{17})</td>
<td>Regulator out of adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 12.5(^{17})</td>
<td>Alternator not working or regulator out of adjustment</td>
</tr>
<tr>
<td></td>
<td>Shut down</td>
<td>12.0</td>
<td>Battery normal</td>
</tr>
</tbody>
</table>

Engine Warning Lights

There are four engine warning lights that illuminate if abnormal conditions occur while the engine is running. The engine warning lights should **NOT** be illuminated under normal operating conditions. For more information, refer to *Engine Warning Lights, page 86*.

4.3.6 Driving the Windrower

Review the following list of dangers, warnings, and cautions before operating the windrower for the first time, or when training new operators.

DANGER

- NEVER move the ground speed lever or steering wheel until you are sure all bystanders have cleared the area.
- Make sure area is clear before making turns, as the ends of a header travel in a large arc.
- Check the operation of all controls in a safe, clear area before starting work.
- Understand the capacity and operating characteristics of your machine.
- Do NOT allow riders in or on the machine.
- Do NOT operate unless seated in the operator's position.
- Do NOT attempt to get on or off a moving windrower.
- AVOID sudden starts and stops.
- AVOID inclines, ditches, and fences.
- Do NOT rapidly accelerate or decelerate when turning.
- REDUCE your speed before turning, crossing slopes, or travelling over rough ground.
- Do NOT allow anyone to stand behind the machine while operating. Foreign objects may be forcibly ejected.

\(^{17}\) Display flashes voltage reading with single loud tone. Repeats every 30 minutes until condition is fixed.
WARNING

The seat belts can help ensure your safety when properly used and maintained.

- Before starting the engine, fasten your seat belt, and ensure that the training seat occupant’s seat belt is securely fastened.
- Never wear a seat belt loosely or with slack in the belt system. Never wear the belt in a twisted condition or pinched between the seat structural members.

WARNING

Avoid driving the machine with header removed. Removing header decreases the weight on drive wheels, reducing steering control. If you must drive the machine with header removed, or without a MacDon weight system

- Use transmission low speed range, do NOT exceed 1500 rpm engine speed, and avoid loose gravel and slopes.
- Never use windrower as a towing vehicle when header is removed, except as instructed in . There is insufficient weight on the drive wheels to provide steering control.
- If control of machine is lost, immediately pull ground speed lever (GSL) to NEUTRAL.
- Be aware that cab structure will NOT withstand a roll-over. Because of windrower shape characteristics, a roll-over protected (ROPS) cab is not required.

WARNING

When travelling on steep slopes:

- Lower header and reduce speed.
- Move GROUND SPEED RANGE switch to L – low range.
- If the ground speed is greater than or equal to 40 km/h (25 mph), the CDM will display a warning message (SLOW DOWN) with an audible alert. Move GSL closer to NEUTRAL to reduce speed.

CAUTION

Hydrostatic Steering control is different from conventional steering mechanisms

- Hydrostatic steering is more sensitive than mechanical steering. Do NOT make abrupt changes in steering direction.
- Steering is opposite to normal when driving in reverse.
- With the engine running, moving the ground speed lever out of PARK unlocks steering. Any movement of steering wheel will then cause the machine to move, even if the ground speed lever has not been moved forward or rearward from the NEUTRAL position.
- The brakes are only on when the ground speed lever (GSL) is in PARK and the steering wheel is centered and locked.
Entering and Exiting the Windrower

CAUTION

To prevent slipping and possible injury, ALWAYS face the windrower and use the hand rail when dismounting (or mounting). NEVER attempt to get on or off a moving windrower. Before leaving the operator’s seat for any reason:

- Park on level ground if possible.
- Be sure ground speed lever is in PARK and steering wheel is locked in the straight-ahead position.
- Fully lower header and reel.
- Disengage header drives.
- To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition.
- Turn off lights unless required for inspection purposes.
- Release seat belt.
- Turn off wipers.
- Raise armrest and steering wheel for easier exit and re-entry.
- Lock the cab door when leaving the windrower unattended. (When the door is locked, it can still be opened from inside the cab.)

Swing-away platforms and stairs (A) are provided on both sides of the windrower to accommodate cab-forward and engine-forward access to the operator’s station, as well as several maintenance tasks.

The left cab-forward side platform is shown in the rearward (cab-forward) position.

Two doors (B) are provided for cab entry and exit in either cab-forward mode or engine-forward mode. Enter the cab using the door opposite the operator’s console.

NOTE:

When the engine is shut down, rear field lights turn on for 60 seconds to illuminate the platform and stairs.

Figure 4.14: Platforms and Doors
Driving Forward in Cab-Forward Mode

⚠️ CAUTION
Operate both steering wheel and ground speed lever (GSL) slowly for familiarization. Avoid the common tendency of new Operators to oversteer.

⚠️ WARNING
Do NOT drive windrower on road in cab-forward configuration, unless it is equipped with the proper lighting and markings for cab-forward road travel.

In cab-forward mode, the operator’s station is facing away from the engine. If necessary, swivel operator’s seat to cab-forward position as follows:

1. Place ground speed lever (GSL) (A) in N-DETENT. Engine can be running.
 IMPORTANT: If GSL is NOT in N-DETENT, damage to the GSL cable may result when swivelling operator’s station.
2. Pull up on knob (B) and hold to release latch (C) at base of steering column.
3. Turn steering wheel counterclockwise to pivot operator’s station clockwise 180° until pin engages latch to secure operator’s station in new position.
4. Ensure seat belt is fastened.
5. Start the engine if not running. Refer to *Starting the Engine, page 164.*
6. There are two cab-forward speed ranges. Set GROUND SPEED RANGE switch (A) to either H (0–25.7 km/h [16 mph]), or L (0–17.7 km/h [11 mph]).
7. Slowly push throttle (B) to full forward (operating speed). The cab display module (CDM) should display 2320–2350 rpm at (C).

⚠️ CAUTION
Check again to be sure all bystanders have cleared the area.

8. Move the GSL (E) out of N-DETENT and slowly forward to desired speed which will be displayed at location (D).
Driving Reverse in Cab-Forward Mode

WARNING
Back up slowly. Steering is opposite to normal when reversing. Hold steering wheel at the bottom and turn wheel in direction you want the rear (cab-forward) of the machine to travel.

1. Set GROUND SPEED RANGE switch (A) to 1 (field speed).
2. Move SPEED RANGE switch (A) to L (low-range position).
3. Move throttle lever (B) to a mid-range position.

NOTE:
Steering will be less sensitive in low-speed range; reduced engine speed.

CAUTION
Check again to be sure all bystanders have cleared the area.

4. Move the ground speed lever (GSL) rearward to desired speed.
5. Steer as shown.
Driving Forward in Engine-Forward Mode

In the engine-forward mode, the operator’s station is facing toward the engine. If necessary, swivel operator’s station to engine-forward position as follows:

1. Place ground speed lever (GSL) (A) in N-DETENT and lock steering wheel. Engine can be running.

IMPORTANT:
If GSL is **NOT** in N-DETENT, damage to the GSL cable may result when swivelling operator’s station.

2. Pull up on knob (B) and hold to release latch (C) at base of steering column.

3. Turn steering wheel clockwise to pivot operator’s station counterclockwise 180° until pin engages latch to secure operator’s station in new position.

4. Start the engine if not running.

5. Set GROUND SPEED RANGE switch (A) to H for road speed (0–37 km/h [23 mph]). Cab display module (CDM) will display ROAD GEAR at (F) and an alarm will briefly sound.

6. Slowly push throttle (B) to full forward (operating speed). CDM should display 2320–2350 rpm at location (C).

CAUTION
Check to be sure all bystanders have cleared the area.

7. Slowly move the GSL (E) forward to desired speed which will be displayed at (D).
CAUTION

Operate both steering wheel and ground speed lever slowly while becoming familiar with the machine. Remember that steering is more sensitive when speed-range control is in high road speed position. Avoid the common tendency of new Operators to oversteer.

8. If more tractive (lugging) power is required (for example, when driving up a ramp, up a hill, or up out of a ditch):
 a. Move the GSL (E) closer to NEUTRAL.
 b. Switch speed-range control (B) to L (low range).

9. Once the lugging condition no longer exists:
 a. Set GSL (E) to NOT MORE THAN HALF maximum forward speed.
 b. Move speed-range control (B) to H (high-range). Steering is more sensitive in this speed range.

Driving in Reverse in Engine-Forward Mode

WARNING

Back up slowly. Steering is opposite to normal when reversing. Hold steering wheel at the bottom and turn wheel in direction you want the rear (cab-forward) of the machine to travel.

1. Move speed-range switch (A) to L (low-range position).
2. Move throttle lever (B) to a mid-range position.

NOTE:
Reversing in low-speed range and at reduced engine speed is recommended since steering will be less sensitive than at higher speed settings.

CAUTION

Check to be sure all bystanders have cleared the area.

3. Move the ground speed lever (GSL) (C) rearward to desired speed.
4. Steer as shown.

Figure 4.25: Steering the Windrower

Spin Turning

Hydrostatic steering provides significantly more maneuverability than mechanical steering.

⚠️ CAUTION

Be sure area is clear before making turns. Although windrower pivots on the spot, the ends of the header travel faster and in a large arc.

1. Move the ground speed lever (GSL) (A) out of N-DETENT towards the seat and hold.

2. Slowly turn the steering wheel in the desired direction of turn. The windrower will pivot between the drive wheels.

3. To increase the turn radius, slowly move the GSL away from NEUTRAL. Remember that this will increase ground speed as well.

4. To stop the turn, slowly turn the steering wheel back to its centered position.

Figure 4.26: Operator Console
Stopping

WARNING

Do NOT move ground speed lever rapidly back to NEUTRAL. You may be thrown forward by a sudden stop and wheels may skid, reducing steering control. Always wear a seat belt when operating windrower.

To stop the windrower:

1. **SLOWLY** return the ground speed lever (GSL) (A) to NEUTRAL and into N-DETENT.
2. Turn steering wheel until it locks.
3. Move throttle lever (B) to low-idle position.

NOTE:
Avoid unnecessary idling. Stop engine if it will be idling for longer than 5 minutes.

NOTE:
Brakes are automatically engaged when steering wheel is locked in NEUTRAL position.

IMPORTANT:

Before stopping engine, run at low idle for approximately 5 minutes to cool hot engine parts (and allow turbocharger to slow down while engine oil pressure is available).

4. Turn ignition key counterclockwise to OFF position.

4.3.7 Adjusting Caster Tread Width

The rear casters can be adjusted to a narrow tread width to allow loading and shipping without having to remove them.

A narrow tread width also suits smaller headers by allowing more space to the uncut crop and provides more maneuverability around poles, irrigation inlets, or other obstacles.

A wider tread width is useful in heavy crops that produce large windrows so that runover is reduced.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION

Park on a flat, level surface with the header on the ground and the ground speed lever in N-DETENT position with the steering wheel locked.

Adjust the caster tread width as follows:
OPERATION

1. Raise rear of windrower slightly so that most of the weight is off the casters, using a jack or other lifting device under the frame at location (A).

 NOTE:
 Lifting device should have a lifting capacity of at least 2270 kg (5000 lb.).

2. Remove six bolts (B) (four on backside, two on underside) and washers from left and right side of walking beam.

3. Slide extensions inboard or outboard equal amounts and align holes at desired location.

 NOTE:
 Use the caster wheels to assist in moving the extensions by rotating the caster until the wheel is parallel to the walking beam.

IMPORTANT:
Caster wheels must be equidistant from center of windrower.
4. Line up holes then install shorter bottom bolts (B).

5. Position bracket (A) and install back bolts (C).

 NOTE:
 The two shorter bolts are installed at the back inboard locations.

6. Install bottom bolts (B).

7. Tighten bolts as follows:
 a. Snug bottom bolts (B), then snug back bolts (C).
 b. Tighten and torque back bolts (C) to 447 Nm (330 lbf·ft).
 c. Tighten and torque bottom bolts (B) to 447 Nm (330 lbf·ft).

8. Lower windrower to ground.

 IMPORTANT:
 Torque bolts after first 5 and 10 hours of operation.

4.3.8 Transporting

Driving on the Road

The M205 Self-Propelled Windrower is designed to be driven on the road with the engine facing forward to provide better visibility for the Operator and improved stability for the machine. The windrower can also be driven on the road in cab-forward mode, but at a reduced speed and under restricted conditions.

WARNING

Collision between windrower and other vehicles may result in injury or death.

WARNING

When driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles in front and rear of windrower if required by law.
- Use slow-moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box.

WARNING

- Do NOT drive windrower on the road in the cab-forward mode, unless the optional lighting marking kit is installed, as lighting/reflector visibility will not be compliant with road regulations. Refer to **7.1.4 Lighting and Marking for Cab-Forward Road Travel, page 443**.
- Do NOT drive windrower on a road or highway at night or in conditions that reduce visibility, such as fog or rain. The width of the windrower may not be apparent under these conditions.
CAUTION

Operate both steering wheel and ground speed lever slowly while becoming familiar with the machine. Remember that steering is more sensitive when speed-range control is in high road speed position. Avoid the common tendency of new Operators to oversteer.

CAUTION

Check local laws for width regulations and lighting and marking requirements before transporting on roads.

Before driving windrower on a roadway:

1. Ensure HEADER DRIVE switch (A) is pushed to OFF position (down).
2. Clean flashing amber lamps, red tail and head lamps, and check that they work properly.
3. Clean all reflective surfaces and slow moving vehicle emblems.
4. Adjust interior rear view mirror and clean windows.

5. Push LIGHT switch (A) to ROAD position to activate lamps. Always use these lamps on roads to provide warning to other vehicles. Refer to 3.7 Exterior Lighting, page 49.

NOTE:
If the auto-road light feature is activated (i.e., windrower is in engine- or cab-forward mode, out of park, high range switch position, and header off), only the two front corner field lights will turn on; the remaining field lights are disabled.

6. Use HIGH/LOW LIGHTS (B) as required when other vehicles are approaching.
7. Push BEACON switch (C) ON to activate beacons.
8. Press switch (A) on cab display module (CDM) to activate hazard lights.

IMPORTANT:
Switch ON the beacon and hazard lights when travelling on the road with the transmission in low range.

9. Set GROUND SPEED RANGE switch (A) for ROAD speed. CDM will display ROAD GEAR at location (F) if windrower is in engine-forward mode.

NOTE:
Windrower can be moving, but speed must be less than 8 km/h (5 mph) for road gear to engage.

10. Slowly push throttle (B) to full forward (operating speed). CDM should display 2320–2350 rpm (C).

11. Slowly move the ground speed lever (GSL) (E) forward to desired speed which will be displayed at location (F).

12. If towing a header, refer to *Towing Header with Windrower, page 181.*

Towing Header with Windrower

The windrower can be used to tow a MacDon draper header that has the slow speed transport option installed. Ensure the optional weight box or an approved header transporter is installed on the windrower to transfer weight to the lift arms.

⚠️ **WARNING**

- A windrower without a header or weight box must NOT be used to tow headers due to reduced traction and possible loss of control.
- For towed equipment without brakes, do NOT exceed 32 km/h (20 mph).
CAUTION

- To tow a header with an M205 Self-Propelled Windrower, the header must be equipped with the appropriate equipment to comply with local regulations.
- Before towing, conduct a pretrip inspection to verify signal lighting and safety equipment is installed and functioning properly.
- Do NOT exceed the Combined Gross Vehicle Weight (CGVW) specified in table 4.1, page 182.
- To prevent damage and/or loss of control, ensure the machine and attached equipment are within the following weight limits:

<table>
<thead>
<tr>
<th>Table 4.1 Maximum Weight</th>
<th>kg</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum GVW (includes mounted implements)</td>
<td>9750</td>
<td>21,500</td>
</tr>
<tr>
<td>Maximum CGVW (includes towed and mounted implements)</td>
<td>10,480</td>
<td>23,100</td>
</tr>
<tr>
<td>Weight (A) on both drive wheels</td>
<td>Maximum</td>
<td>8500</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>4570</td>
</tr>
<tr>
<td>Maximum weight (B) on both caster tires</td>
<td>2750</td>
<td>6050</td>
</tr>
</tbody>
</table>

Converting from Field to Transport Mode

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

DANGER

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

1. Set header on the ground (field position).
2. Disconnect the following hydraulic and electrical connections:
 a. Left Side – Store hydraulic hoses and electrical cable into the storage position. Refer to header operator’s manual.
 b. Right Side – Release the multi-link and place into storage on windrower. Refer to header operator’s manual.
OPERATION

3. Retrieve temporary lift pin from storage location on weight box and install into rear hole (A) at the top of the lift arms. This provides additional lift height for transport wheel deployment.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

4. Start the engine and raise the header to full height.

5. Stop the engine and engage safety props on the lift cylinders.

7. Remove float pin from engaged position (A) and insert in storage location (B). Secure with lynch pin.
8. Remove pins (A) from lower end of lift linkages.

NOTE:

Pins (A) are also used to secure weight box to windrower linkage.

10. Start the engine and lower header down onto the transport wheels.

11. Use the HEADER TILT switches to release load on the center-link if necessary.

12. Shut down the engine and remove the key from ignition.

Disconnect the center-link as follows:

13. If using hydraulic link, disconnect the center-link as follows:

 a. Pull up on latch (A), and position latch into notch (B) on top of hook.

 c. Lower the header down onto the transport wheels.

 d. Disengage top-link from the header. If necessary, use the HEADER TILT switch to release load on the cylinder.
14. To unlock the center-link, pull up on latch (A) and position latch into notch (B) on top of hook.

15. Lift center-link off header pin.

NOTE:
If center-link self-alignment kit is installed, start engine and raise center-link with the REEL UP switch on the ground speed lever (GSL).

16. Slowly back the windrower away from the header, shut the engine OFF, and remove the key from the ignition.

Attaching Header Transport Hitch to Header

Attach header transport hitch to header as follows:

1. Position end (A) of the aft section onto front wheel hook (B).
2. Push down until latch (C) captures the end (A).
3. Secure latch (C) with clevis pin (D).

4. Remove the L-pin from end (A) of aft section (if installed).
5. Position end (B) of the forward section into end (A) of the aft section. Lower forward section into aft section.

6. Fully insert L-pin (A) in upper hole and turn pin to lock it. Secure with ring pin (B).

7. Make electrical connection at the joint (C).

8. Make the electrical connection at the header wheel (A).
IMPORTANT:
To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to windrower, ensure that float engagement pin is installed in storage location (B) and **NOT** installed at hole location (A).

9. Drive windrower so that windrower lift arms are positioned into the weight box pockets.

10. Raise lift arms slightly, install locking pins (A) into pockets, and through windrower header lift linkages. Secure with hairpin.

NOTE:
Pins (A) were previously removed from the header lift linkage lower end.

11. Route the weight box harness (A) to the electrical connector at the left side lift linkage and connect harness to connector on windrower (B).

12. Raise lift arms fully, shut engine OFF, and remove key from ignition.
13. Move float pins from storage location (A) to engaged position (B).

14. Start engine and press HEADER DOWN switch (A) on ground speed lever (GSL) to lower lift arms until the rear of the arms lift away from the linkage.

15. Attach slow speed transport hitch to the weight box tongue with drawbar pin. Secure using lynch pin (A). Attach safety chain (B).

16. Connect hitch harness (C) to electrical socket at front of weight box.
17. Remove the temporary lift pins (A) (should be loose in lift arm) and place into storage holes on weight box.

Figure 4.55: Lift Arms

Converting from Transport Mode to Field Operation

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key from the ignition.
2. Disconnect electrical harness at connector (B) from the windrower and store harness (A) on weight box.

Figure 4.56: Electrical Harness
3. Disconnect wiring connector (A) at front wheel.

4. Remove clevis pin (D).

5. Push latch (C) and lift tow-bar (A) from hook. Release latch and replace clevis pin.

6. Unhook tow-bar from weight box.

CAUTION

Check to be sure all bystanders have cleared the area.

7. Start the engine and lower lift arms until rear of lift arms floats up and away from the lift arm mechanism.

8. Stop the engine and remove the key from the ignition.

9. Remove temporary lift pins (A) from weight box and install pins (F) into holes at rear of lift arms.

10. Start the engine and fully raise lift arms. Stop the engine and remove the key from the ignition.

12. Move float pins from working hole location (A) to disengage the float and store pins at storage hole location (B).

IMPORTANT:
To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to windrower, ensure that float engagement pin is installed in storage hole location and **NOT** installed in working hole location.

14. Start the engine, lower weight box onto blocks, and back away.

15. Attach the header to the windrower. Refer to 4.5 Attaching and Detaching Headers, page 217.

16. Convert header into field position. Refer to header operator’s manual for procedure.

17. Before operating the machine, double-check that all pins are secure and that all safety equipment is installed and fully functional.

18. Proceed with operation of the header.
Towing the Windrower (Emergency)

Towing the windrower is **NOT** recommended. If the windrower gets stuck, or must be towed onto a truck or trailer, follow these steps:

IMPORTANT:
- **NEVER** attempt to start the windrower by towing it. Serious damage to the final drives may occur.
- Failure to disengage final drives before towing will result in serious transmission damage.
- Only tow the windrower for a short distance, on level ground, and at slow speed.

⚠️ **DANGER**

Uncontrolled heavy equipment. With final drives disengaged (turned inward), brakes and steering do **NOT** work. After towing, place blocks under front and rear wheels to prevent uncontrolled movement.

1. Before towing the vehicle, disengage the final drives. Refer to [Disengaging Final Drives, page 192](#).
2. Use attachment point (A) to tow if windrower gets stuck, or when pulling onto a truck or trailer for transport.
3. When towing is complete, place blocks under front and rear wheels to prevent uncontrolled movement.
4. Engage final drives. Refer to [Disengaging Final Drives, page 192](#).

Disengaging Final Drives

Disengage and engage final drives as follows:

1. Remove the two bolts (A) at the center of drive wheel.
2. Remove cap (B) and flip over so that dished side faces in. The cap presses a pin that disengages the gearbox.
3. Repeat for the other drive wheel.
4. After towing, reverse cover (B) to engage final drives. Be sure plunger at center of wheel pops out to engage drive.

NOTE:

Engaging the final drives may require rocking the wheels slightly.
4.3.9 Storing the Windrower

At the end of each operating season, you need to store your windrower properly.

⚠️ WARNING

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials are toxic and can be flammable.

⚠️ CAUTION

Never operate engine in a closed building. Proper ventilation is required to avoid exhaust gas hazards.

⚠️ CAUTION

Remember when working around storage batteries that all of the exposed metal parts are live. Never lay a metal object across the terminals because a spark and short circuit will result.

1. Clean the windrower thoroughly.
2. Store windrower in a dry protected place.
4. Charge batteries, store in a cool, dry area in an upright position. Do NOT stack batteries on top of each other unless they are in cartons.
5. If stored outside, cover windrower with a waterproof tarpaulin or other protective material. This will protect the switches, instruments, tires, etc. from inclement weather.
6. If no cover is available, seal air cleaner intake and exhaust pipe with plastic bags and/or waterproof tape.
7. If possible, store the windrower on blocks to take weight off tires. If blocking up the machine is not possible, increase tire pressure by 25% for storage. Adjust to recommended operating pressure before next use.
8. Repaint all worn or chipped painted surfaces to prevent rust.
9. Lubricate the windrower thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads and sliding surfaces of components.
10. Check for worn components and repair. Tighten loose hardware and replace any missing hardware. Refer to 8.1 Recommended Torques, page 449.
11. Check for broken components and order replacements from your Dealer. Attention to these items right away will save time and effort at beginning of next season.
12. Add approved rust inhibitor to the engine oil in accordance with the manufacturer’s instructions. Run engine to operating temperature to mix inhibitor with oil, unless otherwise specified.
13. To prevent condensation, fill hydraulic oil reservoir to filler neck with approved hydraulic system oil. Refer to 5.10.1 Checking and Filling Hydraulic Oil, page 385.
14. Test engine coolant antifreeze concentration to ensure it is sufficient to protect engine against lowest expected temperature.
4.4 Operating with a Header

The M205 Self-Propelled Windrower is designed to use the MacDon R Series Rotary Header, A Series Auger Header, D Series Draper Header, and D1 SP Series Draper Header.

This section describes the attachment and detachment procedures and operating instructions for these header types.

4.4.1 Engaging and Disengaging Header Safety Props: M Series Self-Propelled Windrower

Safety props are located on both header lift cylinders on the windrower. Follow these steps to engage or disengage the header safety props:

DANGER

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

Engage safety props as follows:

1. Start engine and press HEADER UP switch (A) to raise header to maximum height.

2. Rephase cylinders if one end of the header does not raise fully. If rephasing is required, proceed as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.
3. Pull lever (A) and rotate toward header to lower safety prop (B) onto cylinder. Repeat for opposite cylinder.

Disengage safety props as follows:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Turn lever (A) away from header to raise safety prop until lever locks into vertical position. Repeat for opposite cylinder.
2. Start the engine, choose a level area, and lower the header to the ground.
3. Stop the engine, and remove the key.
4.4.2 Using Header Float

The header float feature allows the header to closely follow ground contours and to respond quickly to sudden changes or obstacles. The float setting is ideal when the cutterbar is on the ground with minimal bouncing, or scooping, or pushing soil.

IMPORTANT:

- Set header float as light as possible—without excessive bouncing—to avoid frequent breakage of knife components, scooping soil, or soil build-up at the cutterbar in wet conditions.
- Avoid excessive bouncing (resulting in a ragged cut) by operating at a slower ground speed when the float setting is light.
- Install header options (upper cross auger, skid shoes, transport kit, etc.) before setting header float. If the Slow Speed Transport (SST) tow bar will be stored on the header during operation, set float with tow bar in place.
- Adjust the float when adding or removing optional attachments that affect the weight of the header.

Float Operating Guidelines

When working with the cutterbar on the ground:

- Set center-link to mid-range position (5.0 on cab display module [CDM]). Refer to 4.4.5 Adjusting Header Angle, page 205.
- When operating at the flattest header angle, minimize scooping rocks by adjusting the header skid shoes downward to raise guards.
- To minimize pushing soil, adjust header height or adjust header angle.

When working with the cutterbar off the ground (draper header only):

- Set center-link to mid-range position (5.0 on CDM). Refer to 4.4.5 Adjusting Header Angle, page 205.
- Balance the amount of header weight carried by the float and stabilizer wheels. Refer to your draper header operator’s manual.
- Use the CDM controls to automatically maintain cutting height. Refer to 4.4.6 Controlling Cutting Height, page 208.
Checking Float

M Series windrows are equipped with primary (coarse) and secondary (fine) float adjustment systems. The primary adjustment uses drawbolts to change the tension on the springs in the lift linkages. The secondary adjustment uses hydraulic cylinders to change the spring tension.

Figure 4.67: Cab Display Module (CDM) Float Adjustment

Check header float as follows:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Start the engine.
2. Lower header to ground.
3. Using HEADER TILT switches (D) and (F), set center-link to mid-range position (5.0 on CDM [A]).

NOTE:

If equipped with the optional draper header reel drive (MD #B5496), adjust reel fore-aft to your normal operating position.

4. Using HEADER DOWN switch (E), lower header fully with lift cylinders fully retracted.
5. Set left (B) and right (C) float fine adjustments on CDM to approximately 5.0 as follows:
a. Using FLOAT SELECTOR switch (B), push + to increase float or – to decrease float on left side of header. CDM display (A) will indicate selected float for left side, for example, (5.0 L FLOAT R XX.X).

b. Repeat for right side float with switch (C). Display will indicate float for both sides, for example, (5.0 L FLOAT R 5.0).

6. Shut down engine, and remove key.

7. Grasp the end of the header and lift. The force to lift should be as noted in the following table and should be approximately the same at both ends.

<table>
<thead>
<tr>
<th>Header</th>
<th>Force Required to Lift Header at the Ends with Lift Cylinder Fully Retracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auger</td>
<td>335–380 N (75–85 lbf)</td>
</tr>
<tr>
<td>Rotary disc</td>
<td>426–471 N (95–105 lbf)</td>
</tr>
<tr>
<td>Draper</td>
<td>335–380 N (75–85 lbf) with stabilizer/transport wheels raised (if equipped)</td>
</tr>
</tbody>
</table>

Adjusting Float Using Drawbolts

Coarse float adjustment is done using the drawbolts located on either side of the windrower. If necessary, coarse adjust the float with the drawbolts as follows:

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Start the engine.

2. Using HEADER UP (A) switch on the ground speed lever (GSL), raise the header fully, shut down the engine, and remove the key.
3. Turn drawbolt (A) clockwise to increase float (makes header lighter) or counterclockwise to decrease float (makes header heavier).

4. Recheck the header float.

Float Options

For draper headers without the deck shift option, auger headers, and rotary headers, the float disc can be preprogrammed for three types of windrowing conditions.

Example:

- Position 1: Border
- Position 2: Normal
- Position 3: Rocky

Set float presets as follows:

1. Engage header.

2. Push FLOAT PRESET SWITCH (A) to Position 1 (B).
3. Using HEADER TILT switches (D) and (F), set center-link to mid-range position (5.0 on CDM [A]).

NOTE:
If equipped with the optional draper header reel drive (MD #B5496), adjust reel fore-aft to your normal operating position.

4. Using HEADER DOWN switch (E), lower header fully with lift cylinders fully retracted.

5. Set left (B) and right (C) float fine adjustments on CDM to approximately 5.0 as follows:

 a. Using FLOAT SELECTOR switch (B), push + to increase float or – to decrease float on left side of header. CDM display (A) will indicate selected float for left side, for example, (5.0 L FLOAT R XX.X).

 b. Repeat for right side float with switch (C). Display will indicate float for both sides, for example, (5.0 L FLOAT R 5.0).
6. Select a second preset with the FLOAT PRESET 2 SWITCH (C).

7. Repeat Steps 1, page 199 and 2, page 199 to set the float.

8. Select a third preset with the FLOAT PRESET 3 SWITCH (D).

9. Repeat steps 1, page 199 and 2, page 199 to set the float.

NOTE:
For draper headers with the deck shift option, the float can be preprogrammed to compensate for weight distribution when the decks are shifted. Refer to Setting Float Options with Deck Shift, page 273.

4.4.3 Levelling the Header

The windrower linkages are factory-set to provide the proper level for the header and should not normally require adjustment.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

If the header is not level, check the windrower tire pressures before adjusting the levelling linkages.

NOTE:
The float springs are NOT used to level the header.

To level the header, follow these steps:

1. Place float pins in locked out location (A).
2. Park windrower on level ground.
3. Raise header fully with HEADER UP button (A) and hold momentarily to allow lift cylinders to rephase.

4. Set header approximately 150 mm (6 in.) off ground and check that member (A) is against link (B). Stop engine and remove key from ignition.
5. Measure distance to ground at both ends of header and determine the end that is higher.
6. If adjustment is necessary, start the engine and raise the header fully. Turn off the engine and remove the key from the ignition.
7. Move float pins to engaged position (A).
8. Start the engine and lower the header onto the ground until member (A) lifts off link (B) on both sides.

9. Stop the engine and remove the key.

10. On high side, remove nut, washer, and bolt (A) that attaches shims (B) to link.

11. Remove one or both shims (B), and reinstall the hardware (A).

12. Start the engine and raise the header fully.

13. Stop the engine and remove the key from the ignition.

14. Move float pins to disengaged position.

15. Start the engine and set the header approximately 150 mm (6 in.) off ground and check that member (A) is against link (B). Stop the engine and remove the key from the ignition.

16. Measure distance to ground at both ends of the header.

17. If additional levelling is required, repeat Steps 6, page 202 to 9, page 203 and install the removed shim on the opposite linkage.

NOTE:
If required, additional shims are available from your Dealer.
18. Once the header is level, return float pins to their engaged position (A).

NOTE:
Float does **NOT** require adjustment after levelling the header.

4.4.4 Header Drive

The headers are hydraulically driven and controlled from the windrower with no mechanical drive shafts. Refer to **2.2 Specifications, page 30**.

NOTE:
Some controls are optional equipment and may not be present in your unit. Some controls may be installed, but will be nonfunctional for certain headers.

Engaging and Disengaging the Header

IMPORTANT:
Always move throttle lever back to idle before engaging header drive. Do **NOT** engage header with engine at full rpm.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

1. **To Engage Header:**
 a. Move throttle (A) to adjust engine speed to idle.
 b. Push the center down and pull up the HEADER DRIVE switch (B) to engage header drive. A slight delay between switch ON and operating speed is normal.

2. **To Disengage Header:**
 a. Push HEADER DRIVE switch (B) down to disengage header drive.

Figure 4.80: Float Pins – Engaged

Figure 4.81: Operator Console
Reversing the Header

NOTE:
The optional hydraulic reversing kit must be installed for auger headers. It is standard for rotary disc headers.
The optional hydraulic reversing kit allows the following:

- Reverses reel, auger, knife, and conditioner drives on A Series auger headers
- Reverses the entire header drive on R Series rotary disc headers

Reverse the header as follows:

1. Push down and hold HEADER DRIVE REVERSE button (A) and pull up the HEADER DRIVE switch (B).
2. CDM will display HEADER REVERSE.
3. Release REVERSE button (A) to stop header.
4. Push down the HEADER DRIVE switch (B) to OFF, so that it can be restarted.

NOTE:
To engage header drive, push down, and pull up HEADER DRIVE knob.

4.4.5 Adjusting Header Angle

Header angle is defined as the angle between the ground and the drapers/cutterbar. It is adjustable to accommodate crop conditions and/or soil type.

Refer to the appropriate header operator’s manual for the range of adjustment and recommended settings for your particular header.

The header angle can be hydraulically adjusted from the cab without shutting down the windrower when the windrower is equipped with the hydraulic center-link. A readout on the cab display module (CDM) allows you to establish settings for each crop condition.

IMPORTANT:
- Changing header angle will affect float slightly because it has the effect of making the header lighter or heavier.
- To prevent excessive guard breakage when conditions are not suited to heavier float (e.g., rocky or wet), do NOT use the TILT CONTROL. Instead, use the HEADER HEIGHT switch.
Adjust the header angle as follows:

- To decrease (flatten) header angle, operate HEADER TILT UP switch (D) on ground speed lever (GSL) handle so that cylinder retracts. The CDM display will show a reading on the lower line of decreasing value between 00.0 and 10.0.
- To increase (steepen) header angle, operate HEADER TILT DOWN switch (C) on the GSL handle so the cylinder extends. The CDM display will show a reading on the lower line of increasing value between 00.0 and 10.0.

NOTE:
The HEADER TILT switch can be locked out to prevent inadvertent header angle changes when pressing the HEADER HEIGHT control switches. Refer to *Activating the Header Tilt Control Lockout, page 108.*

Checking Self-Locking Center-Link Hook
Periodically check the operation of the hook locking mechanism and ensure that it is working properly as follows:
1. If header is attached to windrower, disconnect center-link hook from header by pulling up on handle (A) to release the locking device and then lifting the hook off the header pin.

2. Lower the handle (A) into the **LOCK** position.

3. Push up on lock pin (B) only. Handle should catch on casting and pin should **NOT** lift.

4. Push up on actuator rod and lock pin should lift with the handle.
4.4.6 Controlling Cutting Height

Cutting height is adjusted by raising or lowering the header with the HEADER UP (B) or HEADER DOWN (C) switches on the ground speed lever (GSL).

The cab display module (CDM) indicates header height with a reading on the DISPLAY (A) lower line between 00.0 and 10.0, with 00.0 being on the ground.

Use DISPLAY SELECTOR switch (D) to display the current setting.

4.4.7 Return to Cut

The monitoring system will assist you in maintaining the desired cutting height with the RETURN TO CUT feature. This feature can be turned OFF or ON with a switch on the cab display module (CDM).

The return to cut (RTC) feature provides preset cutting height and tilt angle settings for the header.

If desired, the CDM can be programmed so that only the cutting height feature is active.

The AUTO RAISE HEIGHT feature allows you to raise the header to a preselected height while in the RETURN TO CUT mode. Refer to Programming the Auto Raise Height Feature, page 211.

Refer to the following for RTC programming and operating procedures:

- Programming the Return to Cut Feature, page 209
- Using the Return to Cut Feature, page 210
Program the return to cut (RTC) feature as follows:

CAUTION

Check to be sure all bystanders have cleared the area.

1. Start and windrower and engage the header.
2. Set RETURN TO CUT switch (A) to OFF (indicator light is OFF).
3. Adjust the header to the desired cutting height with the HEADER UP (B) or HEADER DOWN (C) switches on the ground speed lever (GSL). The cab display module (CDM) displays between **00.0 and 10.0** at (D).
4. Adjust the header angle with the HEADER TILT UP (E) or HEADER TILT DOWN (F) switches on the GSL. The CDM displays between **00.0 and 10.0**. This step is not required when height only has been preselected.
5. Press the RETURN TO CUT switch (A) on the CDM. The indicator light will illuminate and the settings are now programmed into the windrower control module (WCM).
Using the Return to Cut Feature

Figure 4.89: Operator Console

A - Return to Cut B - Header Up C - Header Down
D - Display E - Header Tilt Up F - Header Tilt Down

Use the return to cut feature as follows:

IMPORTANT:
Ensure the header is engaged and the RETURN TO CUT switch (A) is illuminated.

NOTE:
The header can be raised or lowered by **pressing and holding** the HEADER UP (B) or HEADER DOWN (C) switches on the ground speed lever (GSL).

1. If header is above the preset cutting height, **momentarily press** HEADER DOWN switch (C) and the header will return to preset height.
2. If the header is below the preset height, **press and hold** the HEADER UP (B) switch to raise the header. Release switch to stop header. Alarm will sound when header rises past the preset height.
3. If the header angle changes, **double-click** (two clicks within 0.5 seconds) the HEADER TILT UP (E) or HEADER TILT DOWN switch (F) and the header will return to the preset angle.

NOTE:
If the header cannot return to the preset height or angle within 30 seconds, the return to cut feature will deactivate to prevent the hydraulic oil from overheating. Push the RETURN TO CUT switch (A) to reactivate.
4.4.8 Auto Raise Height

The header can be raised to a preset height by enabling the auto raise height feature in the cab display module (CDM).

Refer to the following topics:

- Programming the Auto Raise Height Feature, page 211
- Using the Auto Raise Height Feature, page 212

Programming the Auto Raise Height Feature

Figure 4.90: Operator Console

Program the auto raise height feature as follows:

NOTE:
RETURN TO CUT switch (A) can be OFF or ON.

1. Turn ignition ON or run engine.
2. Press PROGRAM (B) and SELECT (C) on cab display module (CDM) to enter programming mode.
3. Press SELECT (C). WINDROWER SETUP? is displayed on upper line (B).
4. Press right arrow (D), then SELECT. SET KNIFE SPEED? is displayed.
5. Press SELECT (C) until AUTO RAISE HEIGHT is displayed.
6. Press left arrow (E) or right arrow (D) to change value on lower line. Working range is 4.0 to 9.5. At 10.0, the feature is disabled and OFF is displayed.
7. When finished entering desired values, press PROGRAM to exit programming mode.

Using the Auto Raise Height Feature

IMPORTANT:
The windrower must be running with the header engaged at the cutting height and the RETURN TO CUT switch (A) activated.

Use the auto raise height feature as follows:

1. To raise the header to the auto raise height set point, double-click (two clicks within 0.5 seconds) the HEADER UP switch (B) on the ground speed lever (GSL).

 NOTE:
 With AUTO RAISE HEIGHT turned ON, the ACRE counter will be disabled when header height greater than preset cutting height.

2. If desired, press HEADER UP switch while header is being raised to disable auto raise height and maintain current height.

 NOTE:
 With AUTO RAISE HEIGHT turned OFF, the ACRE counter will be disabled when header height value is greater than 9.5. OFF is displayed on the cab display module (CDM).

3. To return the header to the preset cutting height, momentarily press HEADER DOWN switch (C).

4.4.9 Header Drop Rate

The header should lower gradually when the HEADER DOWN switch is pressed. From full height to ground should take 3–4 seconds.

If the drop rate requires adjustment, refer to Adjusting Header Drop Rate, page 396.
4.4.10 Using the Double Windrowing Attachment

The double windrow attachment (DWA) deposits two windrows of conditioned material close together to be picked up by a forage chopper.

1. The system is for use with the A Series Auger Headers and R Series Rotary Disc Headers.
 Raising the side delivery system shuts off the draper and allows the crop to be deposited between the windrower wheels as it would be without the side delivery system.
 Refer to MacDon M Series Windrower Double Windrow Attachment Manual for complete operating and maintenance instructions. The manual is shipped with the DWA kit.

2. The conditioned crop is deposited onto the side delivery system draper and delivered to the side of the windrower when required. Cutting up and down shown.
Engaging and Disengaging the Double Windrow Attachment (DWA)

The DWA system is engaged with controls in the cab.

The deck is lowered and raised with the DWA DOWN (B) and DWA UP (A) switches on the ground speed lever (GSL) or with the rocker switch on the operator’s console, depending on operator preference. The windrower cab display module (CDM) is programmed during the installation of the double windrow attachment (DWA) but the controls can be swapped at any time. Refer to Activating the Double Windrow Attachment (DWA), page 98. The draper is activated during deck lowering and deactivated during raising.

NOTE:
The same switch is used for raising and lowering a swath compressor (if installed).

Adjusting Double Windrow Attachment (DWA) Draper Speed

The DWA draper speed is controlled with the rotary switch (A) on the operator’s console.

Figure 4.94: Ground Speed Lever (GSL)

Figure 4.95: Operator’s Console

Figure 4.96: Operator’s Console
4.4.11 Swath Compressor (Option)

The swath compressor is designed to shape the windrow and anchor it into the stubble behind the header to minimize shelling in ripe conditions. It is available as an attachment for M155, M155E4, and M205 self-propelled windrowers.

The system is used with MacDon D Series, D1 Series, and D1XL draper headers for cutting canola and replaces the conventional roller-type system. The swath compressor has adjustments for shaping the windrow for optimal drying and protection from wind damage according to crop conditions. The amount of windrow compression is monitored and controlled from the cab with the MacDon Harvest Manager Pro control and monitoring system.

Refer to MacDon M Series Windrower Swath Compressor Attachment Manual for complete operating and maintenance instructions. The manual is shipped with the swath compressor kit.

Using the Swath Compressor

The following topic explains how to use the swath compressor, and describes the automated raise/lower functions.

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Rotate handle (A) on the left rear support counterclockwise to disengage lock.

 IMPORTANT:
 - Lock prevents swath compressor from lowering inadvertently when not in use, either due to operator error or loss of hydraulic pressure.
 - Engage lock when operating in engine-forward mode.
 - Disengage lock before using swath compressor.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.
2. Start the windrower in cab-forward mode.

3. Press SELECT switch (B) on CDM to show SWATH COMPR HT (A) on display. Height is displayed using an arbitrary scale from 0 to 10. Fully raised is 0.

4. Lower swath compressor by pressing button (A) on the operator’s console, and raise it by pressing button (B). The CDM display indicates the position of the swath compressor. Release the switch to stop movement at the desired height.

NOTE:
The last position set with the console buttons becomes the target height. When an adjustment is made, the display shows the target value. The system immediately adjusts to attain the target position. After the last adjustment, the display shows target value for 5 seconds then the display reverts to the previous screen.

Swath compressor automated functions: header engaged, cab-forward

- When ground speed higher than 2.5 km/h (1.6 mph) is detected, the swath compressor lowers to target height.
- When ground speed transitions through 1.6 km/h (1 mph) during deceleration, the swath compressor is fully raised.
- When ground speed is faster than 1.6 km/h (1 mph) and the HEADER ENGAGE switch is OFF, the swath compressor will fully raise.
- The swath compressor remains inactive in engine-forward mode.
4.5 Attaching and Detaching Headers

4.5.1 Attaching Header Boots

Header boots are required to attach a D Series or D1 SP Series Draper Header to the windrower. Attach header boots (supplied with header) to windrower lift linkage if not already installed.

⚠️ CAUTION

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

1. Remove pin (B) from boot (A).

2. Position boot (B) onto lift linkage (A) and reinstall pin (C). Pin may be installed from either side of boot.

3. Secure pin (C) with hairpin (D).

4. Repeat for opposite side.
4.5.2 Attaching a D Series or D1 SP Series Header

D50, D60, D65, and D1 SP headers can be attached to an M205 Self-Propelled Windrower.

Refer to the following instructions based on the type of center-link installed on your windrower:

- Attaching a D Series or D1 SP Series Header: Hydraulic Center-Link with Optional Self-Alignment, page 218
- Attaching a D Series or D1 SP Series Header: Hydraulic Center-Link without Self-Alignment, page 223

NOTE:

Draper header boots must be installed onto the windrower lift linkage before starting this procedure. Refer to 4.5.1 Attaching Header Boots, page 217.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Remove hairpin (A) from pins (B), and remove pins from both header legs.

CAUTION

Check to be sure all bystanders have cleared the area.

IMPORTANT:

Before starting engine, remove protective cover from exhaust stack.

2. Start the engine and activate the HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.
3. Activate the REEL UP switch (A) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

4. Drive the windrower slowly forward until the boots (A) enter the header legs (B). Continue driving slowly forward until lift linkages contact the support plates in the header legs and the header nudges forward.

5. Ensure the lift linkages are properly engaged in the header legs and are contacting the support plates.

6. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - REEL UP (A) to raise the center-link
 - REEL DOWN (B) to lower the center-link
 - HEADER TILT UP (C) to retract the center-link
 - HEADER TILT DOWN (D) to extend the center-link
7. Adjust position of the center-link cylinder (A) with the REEL UP, REEL DOWN, AND HEADER TILT switches on the GSL until the hook is above the header attachment pin.

IMPORTANT:
Hook release must be down to enable self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

8. Lower center-link (A) onto the header with the REEL DOWN switch on the GSL until it locks into position (hook release [B] is down).

9. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

10. Press HEADER UP switch (A) to raise the header to maximum height.

11. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:

 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

NOTE:
It may be necessary to repeat this procedure if there is air in the system.
12. Engage the safety props on both lift cylinders as follows:
 a. Stop engine and remove key from ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

13. Install pin (B) through the header leg (engaging U-bracket in lift linkage) on both sides and secure with hairpin (A).

14. Raise header stand (D) to storage position by pulling spring pin (C) and lifting stand into uppermost position. Release spring pin.
15. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

16. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

17. Repeat for opposite safety prop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

18. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

19. Stop engine and remove key from ignition.
20. Connect header drive hoses (A) and electrical harness (B) to header. Refer to the draper header operator’s manual.

21. Connect reel hydraulics (A) at right cab-forward side of windrower. Refer to the draper header operator’s manual.

Attaching a D Series or D1 SP Series Header: Hydraulic Center-Link without Self-Alignment

NOTE:
Draper header boots must be installed onto the windrower lift linkage before starting this procedure. Refer to 4.5.1 Attaching Header Boots, page 217.

DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Remove hairpin (A) from pins (B), and remove pins from both header legs.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

IMPORTANT:
Before starting engine, remove protective cover from exhaust stack.

2. Start the engine and activate the HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

3. Remove pin (A) pin in frame linkage and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
4. Drive the windrower slowly forward until the boots (A) enter the header legs (B). Continue driving slowly forward until lift linkages contact the support plates in the header legs and the header nudges forward.

5. Ensure the lift linkages are properly engaged in the header legs and are contacting the support plates.

6. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - HEADER TILT UP (A) to retract the center-link
 - HEADER TILT DOWN (B) to extend the center-link

7. Stop engine and remove key from ignition.

8. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

IMPORTANT:
The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

9. Check that center-link (A) is locked onto the header by pulling upward on rod end (B) of cylinder.
OPERATION

CAUTION
Check to be sure all bystanders have cleared the area.

10. Start the engine.

11. Press the HEADER UP switch (A) to raise the header to maximum height.

12. If one end of the header does NOT fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:
 It may be necessary to repeat this procedure if there is air in the system.

13. Engage the safety props on both lift cylinders as follows:
 a. Stop engine and remove key from ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

Figure 4.124: Ground Speed Lever

Figure 4.125: Safety Prop
14. Install pin (B) through the header leg (engaging U-bracket in lift linkage) on both sides and secure with hairpin (A).

15. Raise header stand (D) to storage position by pulling spring pin (C) and lifting stand into uppermost position. Release spring pin.

16. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

17. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

18. Repeat for opposite safety prop.
CAUTION

Check to be sure all bystanders have cleared the area.

19. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.
20. Stop engine and remove key from ignition.

21. Connect header drive hoses (A) and electrical harness (B) to header. Refer to the draper header operator's manual.

22. Connect reel hydraulics (A) at right cab-forward side of windrower. Refer to the draper header operator's manual.
4.5.3 Detaching a D Series or D1 SP Series Header

Detaching a D Series or D1 SP Series Header: Hydraulic Center-Link

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Start engine and press HEADER UP switch (A) to raise header to maximum height.
2. Rephase cylinders if one end of the header does not raise fully. If rephasing is required, proceed as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.
3. Stop engine, and remove key.

4. Pull lever (A) and rotate toward header to lower safety prop (B) onto cylinder. Repeat for opposite cylinder.

Figure 4.132: Ground Speed Lever (GSL)

Figure 4.133: Safety Prop
5. Remove the pin (B) by removing the hairpin (A) from header leg on both sides.

6. Lower header stand (D) by pulling spring loaded pin (C). Release spring pin to lock stand.

7. Remove clevis pin from location (A) to disengage float springs and insert in storage hole (B). Secure with lynch pin.

⚠️ CAUTION

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

8. Turn lever (A) away from header to raise safety prop until lever locks into vertical position. Repeat for opposite cylinder.

9. Start the engine, choose a level area, and lower the header to the ground.

10. Stop the engine, and remove the key.
11. Disconnect header drive hydraulics (A) and electrical harness (B) from header and store in support on windrower left cab-forward side. Refer to the draper header operator’s manual for further information.

12. Disconnect reel hydraulics (A) from header and store on bracket at windrower left cab-forward side. Refer to the draper header operator’s manual for further information.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

13. Start the engine, and activate HEADER TILT UP (A) and HEADER TILT DOWN (B) cylinder switches on the ground speed lever (GSL) to release load on the center-link cylinder.
14. Disconnect center-link by lifting release (B) and lift hook (A) off header.

NOTE:
If optional center-link self-alignment kit is installed, lift release (B) and then operate the link lift cylinder with REEL UP switch on the GSL to disengage the center-link from the header.

15. Reinstall pin (A) into header leg and secure with a hairpin (B).

4.5.4 Attaching an A Series Header

A30D, A30S, and A40D headers can be attached to an M205 Self-Propelled Windrower. Refer to the following instructions based on the type of center-link installed on your windrower:

- **Attaching an A Series Header: Hydraulic Center-Link with Optional Self-Alignment, page 233**
- **Attaching an A Series Header: Hydraulic Center-Link without Self-Alignment, page 238**
OPERATION

Attaching an A Series Header: Hydraulic Center-Link with Optional Self-Alignment

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Remove hairpin (A) from clevis pin (B) and remove clevis pin from the header boots (C) on both sides of the header.

CAUTION

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

CAUTION

Check to be sure all bystanders have cleared the area.

IMPORTANT:

Before starting engine, remove protective cover from exhaust stack.

2. Start the engine and activate the HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.
3. Activate the REEL UP switch (A) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

4. Drive the windrower slowly forward until the windrower feet (A) enter the header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.

5. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - REEL UP (A) to raise the center-link
 - REEL DOWN (B) to lower the center-link
 - HEADER TILT UP (C) to retract the center-link
 - HEADER TILT DOWN (D) to extend the center-link
6. Adjust center-link cylinder (A) position with the REEL UP and REEL DOWN switches on the GSL until the hook is positioned above the header attachment pin.

IMPORTANT:
The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

7. Lower center-link (A) onto the header with the REEL DOWN switch until the center-link locks into position and the hook release (B) is down.

8. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

9. Press HEADER UP switch (A) to raise the header to maximum height.

10. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

NOTE:
It may be necessary to repeat this procedure if there is air in the system.
11. Engage the safety props on both lift cylinders as follows:
 a. Stop engine and remove key from ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

12. Install clevis pin (A) through support and foot and secure with hairpin. Repeat for opposite support.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
13. Remove lynch pin from clevis pin (A) in stand (B).
14. Hold stand (B) and remove pin (A).
15. Move stand (B) to storage position by inverting and relocating onto bracket as shown. Reinsert clevis pin (A) and secure with lynch pin.

16. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

17. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.
18. Repeat for opposite safety prop.
CAUTION
Check to be sure all bystanders have cleared the area.

19. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

20. Stop engine and remove key from ignition.

21. Connect header drive hoses (A) and electrical harness (B) to header. Refer to the draper header operator’s manual.

Attaching an A Series Header: Hydraulic Center-Link without Self-Alignment

DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Remove hairpin (A) from clevis pin (B) and remove clevis pin from the header boots (C) on both sides of the header.
CAUTION
To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the winrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

CAUTION
Check to be sure all bystanders have cleared the area.

IMPORTANT:
Before starting engine, remove protective cover from exhaust stack.

2. Start the engine and activate the HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

3. Remove pin (A) pin in frame linkage and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
4. Drive the windrower slowly forward until the windrower feet (A) enter the header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.

5. Use the following ground speed lever functions to position the center-link hook above the header attachment pin:
 - HEADER TILT UP (A) to retract center-link
 - HEADER TILT DOWN (B) to extend center-link

6. Stop engine and remove key from ignition.

7. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:
 The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

8. Check that center-link (A) is locked onto the header by pulling upward on rod end (B) of cylinder.
CAUTION
Check to be sure all bystanders have cleared the area.

9. Start the engine.

10. Press the HEADER UP switch (A) to raise header to maximum height.

11. If one end of the header does NOT fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

NOTE:
It may be necessary to repeat this procedure if there is air in the system.

12. Engage the safety props on both lift cylinders as follows:
 a. Stop engine and remove key from ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.
13. Install clevis pin (A) through support and foot and secure with hairpin. Repeat for opposite support.

IMPORTANT:
Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.

14. Remove lynch pin from clevis pin (A) in stand (B).
15. Hold stand (B) and remove pin (A).
16. Move stand (B) to storage position by inverting and relocating onto bracket as shown. Reinsert clevis pin (A) and secure with lynch pin.

17. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.
18. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

19. Repeat for opposite safety prop.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

20. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

21. Stop engine and remove key from ignition.

22. Connect header drive hoses (A) and electrical harness (B) to header. Refer to the draper header operator’s manual.
4.5.5 Detaching an A Series Header

Detaching an A Series Header: Hydraulic Center-Link

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Start the engine and press HEADER UP switch (A) on the ground speed lever (GSL) to raise the header to maximum height.
2. If one end of the header does **NOT** raise fully, rephase the cylinders as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.
3. Stop the engine and remove the key.

⚠️ **DANGER**

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.
4. Pull lever (A) and rotate toward header to lower safety prop (B) onto cylinder. Repeat for opposite cylinder.

5. Remove the hairpin from clevis pin (A), and remove clevis pin from header boots (B) on both sides.
6. Lower stand (A) by pulling clevis pin (B), inverting stand, and relocating on bracket. Reinsert pin (B) and secure with hairpin.

![Figure 4.175: Header Stand](image)

CAUTION

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

7. Remove the lynch pin from the clevis pin, and remove the clevis pin from linkage (A) to disengage float springs, and insert clevis pin into storage hole (B). Secure with lynch pin. Repeat for opposite linkage.

CAUTION

Check to be sure all bystanders have cleared the area.

8. Disengage safety props by turning lever (A) away from header to raise safety prop until lever locks into vertical position. Repeat for opposite cylinder.

9. Start the engine, choose a level area, and lower the header to the ground.

![Figure 4.176: Header Float Linkage](image)

![Figure 4.177: Safety Props](image)
10. Activate HEADER TILT UP (A) and HEADER TILT DOWN (B) cylinder switches on the GSL to release load on center-link cylinder.

11. Stop the engine and remove the key from the ignition.

12. Lift hook release (C) and lift hook (B) off header pin.

NOTE:
If optional center-link self-alignment kit is installed, lift release (C) and then operate the link lift cylinder with REEL UP switch on the GSL to disengage the center-link from the header.

13. Disconnect header drive hydraulics (A) and electrical harness (B). Refer to the auger header operator’s manual.

14. Back the windrower slowly away from the header.
15. Reinstall clevis pin (B) into header boot (C) and secure with hairpin (A). Repeat for opposite side.

4.5.6 Attaching an R Series Header

4.0 and 4.9 m (13 and 16 ft.) R Series Disc Headers can be attached to an M205 Self-Propelled Windrower. R80 headers and R85 4.0 m (13 ft.) headers require Hydraulic Drive kit (MD #B5456); R85 4.9 m (16 ft.) headers are factory-equipped with the required hydraulic connections.

NOTE:
The 18.4 x 26 drive tire (MD #B5447) is recommended on the M205 Self-Propelled Windrower when operated with a 4 m (13 ft.) R Series Disc Header. These drive tires are reversible and should be mounted inset at 3792 mm (149.3 in.) to provide maximum clearance to uncut crop. Mounting these tires outset or mounting all other drive tire options will result in windrower tires slightly wider than the header width. This may cause some uncut crop to be trampled by tires in turns and corners during windrower operation, and may leave some uncut strips of crop in the windrower’s next pass.

Refer to the procedure that is appropriate for the center-link installed on the windrower:

- Attaching an R Series Header: Hydraulic Center-Link and Optional Self-Alignment, page 249
- Attaching an R Series Header: Hydraulic Center-Link without Optional Self-Alignment, page 254
OPERATION

Attaching an R Series Header: Hydraulic Center-Link and Optional Self-Alignment

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove hairpin (B) from clevis pin (A) and remove clevis pin from the header supports (C) on both sides of the header.

⚠️ CAUTION

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

2. Remove the clevis pin from linkage (A) to disengage float springs, and insert clevis pin into storage hole (B). Secure with lynch pin. Repeat for opposite linkage.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

3. Start the engine and press the HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
4. Press the REEL UP switch (A) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

5. Drive the windrower slowly forward until the windrower feet (A) enter the header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.

6. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - REEL UP (A) to raise the center-link
 - REEL DOWN (B) to lower the center-link
 - HEADER TILT UP (C) to retract the center-link
 - HEADER TILT DOWN (D) to extend the center-link
7. Adjust center-link cylinder (A) position with the REEL UP and REEL DOWN switches on the GSL until the hook is positioned above the header attachment pin.

IMPORTANT:
The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

8. Lower center-link (A) onto the header with the REEL DOWN switch until the center-link locks into position and the hook release (B) is down.

9. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

10. Press HEADER UP switch (A) to raise the header to maximum height.

11. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

NOTE:
It may be necessary to repeat this procedure if there is air in the system.
12. Engage the safety props on both lift cylinders as follows:
 a. Stop engine and remove key from ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

13. Install clevis pin (A) through support and windrower lift member, and secure with hairpin (B). Repeat for opposite side.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
14. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

15. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

16. Repeat for opposite safety prop.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

17. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

18. Stop engine and remove key from ignition.
19. Connect the header drive hoses and electrical harness (A) to the header. For instructions, refer to the disc header operator’s manual.

Attaching an R Series Header: Hydraulic Center-Link without Optional Self-Alignment

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Remove hairpin (B) from clevis pin (A), and then remove clevis pin from header supports (C) on both sides of the header.

⚠️ CAUTION
To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

2. Remove the clevis pin from linkage (A) to disengage float springs, and insert clevis pin into storage hole (B). Secure with lynch pin. Repeat for opposite linkage.
CAUTION

Check to be sure all bystanders have cleared the area.

3. Start the engine, and press HEADER DOWN button (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

4. Remove pin (A) pin in frame linkage and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

5. Drive the windrower slowly forward until the windrower feet (A) enter the header supports (B). Continue driving slowly forward until the feet engage the supports and the header nudges forward.
6. Use the following GSL functions to position the center-link hook above the header attachment pin:
 - HEADER TILT UP (A) to retract the center-link
 - HEADER TILT DOWN (B) to extend the center-link
7. Stop engine, and remove key from ignition.

8. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:
 The hook release must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

9. Check that center-link (A) is locked onto the header by pulling upward on rod end (B) of cylinder.

 CAUTION
 Check to be sure all bystanders have cleared the area.

10. Start the engine.

11. Press HEADER UP switch (A) to raise the header to maximum height.

12. If one end of the header does NOT fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:
 It may be necessary to repeat this procedure if there is air in the system.
13. Engage the safety props on both lift cylinders as follows:
 a. Stop engine and remove key from ignition.
 b. Pull lever (A) and rotate towards the header to release and lower safety prop (B) onto the lift cylinder.
 c. Repeat for opposite lift cylinder.

14. Install clevis pin (A) through the support and windrower lift member, and secure with hairpin (B). Repeat for opposite side.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
15. Remove the clevis pin from storage position (B) in linkage and insert into hole (A) to engage the float springs. Secure with hairpin.

16. Disengage the safety prop by turning lever (A) downwards until lever locks into vertical position.

17. Repeat for opposite safety prop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

18. Start the engine and press HEADER DOWN switch (A) on the GSL to fully lower the header.

19. Stop engine and remove key from ignition.
20. Connect the header drive hoses and electrical harness (A) to the header. For instructions, refer to the disc header operator’s manual.

4.5.7 Detaching an R Series Header

Detaching an R Series Header: Hydraulic Center-Link

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Start engine and press HEADER UP switch (A) to raise header to maximum height.

2. Rephase cylinders if one end of the header does not raise fully. If rephasing is required, proceed as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.
3. Stop engine and remove key from ignition.

4. Pull lever (A) and rotate toward header to lower safety prop (B) onto cylinder. Repeat for opposite cylinder.

5. Remove hairpin from clevis pin (A) and remove clevis pin from header boot (B) on both sides of header.

Figure 4.211: Safety Prop

Figure 4.212: Header Boots
CAUTION

To prevent damage to the lift system when lowering header lift linkages without a header or weight box attached to the windrower, ensure the float engagement pin is installed in storage position (B) and NOT in engaged position (A).

6. Remove hairpin and clevis pin from location (A) to disengage float springs, and insert into storage hole (B). Secure with hairpin.

CAUTION

Check to be sure all bystanders have cleared the area.

7. Disengage safety props by turning lever (A) away from header to raise safety prop until lever locks into vertical position. Repeat for opposite cylinder.

8. Start the engine, choose a level area, and lower the header to the ground.

9. Press HEADER TILT UP (A) and HEADER TILT DOWN (B) cylinder switches on the GSL to release load on center-link cylinder.
10. Stop the engine and remove the key from the ignition.

11. Lift hook release (C) and lift hook (B) off header pin.

NOTE:
If optional center-link lift cylinder is installed, lift release (C) and then operate the link lift cylinder from the cab to disengage the center-link from the header.

13. Back the windrower slowly away from the header.

14. Reinstall clevis pin (A) through boot (C) and secure with hairpin (B). Repeat for opposite side.
4.6 Operating with a D Series or D1 SP Series Header

To operate a D Series or D1 SP Series header, the M205 must be equipped with a draper driver basic kit and a completion kit as shown.

If necessary, obtain the following kits from your MacDon Dealer and install them in accordance with the instructions supplied with the kits.

<table>
<thead>
<tr>
<th>Kit Description</th>
<th>Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base draper/auger drive kit</td>
<td>MD #B5491</td>
</tr>
<tr>
<td>Draper header reel drive completion kit</td>
<td>MD #B5496</td>
</tr>
<tr>
<td>Hydraulic couplers kit</td>
<td>MD #B5497</td>
</tr>
<tr>
<td>Hydraulic union kit</td>
<td>MD #166844</td>
</tr>
</tbody>
</table>

Figure 4.219: Draper Header Drive Hydraulics

Figure 4.220: Draper Header Reel Hydraulics
4.6.1 Header Position

Refer to 4.4 Operating with a Header, page 194 for procedures for controlling header height, header tilt, and float.

4.6.2 Adjusting the Reel Fore-Aft Position

The reel fore-aft position can be hydraulically adjusted with the optional reel position system and is controlled with multi-function switches on the ground speed lever (GSL).

Press and hold the switch for the desired FORWARD (A) or AFT (B) movement of the reel.

NOTE:
The switches also control adjustments to the optional double windrow attachment (DWA) conveyor and can be activated when programming the cab display module (CDM).

Figure 4.221: Ground Speed Lever

4.6.3 Adjusting the Reel Height

Press and hold the switch for the desired movement of the reel REEL UP (A) or REEL DOWN (B).

IMPORTANT:
Under certain conditions, with the reel raised to full height, the reel tines may contact the cab roof. Exercise care to avoid damage to the machine.

Figure 4.222: Ground Speed Lever (GSL)

4.6.4 Reel Speed

Reel speed is controlled with switches on the ground speed lever (GSL) in the cab. On draper headers, reel speed can run independently, or be set relative to the ground speed of the windrower using the header index feature. Refer to your header’s operator manual for specific windrowing guidelines and recommended speeds.

Setting Reel to Ground Speed

Setting the speed of the reel relative to ground speed (using the header index function) allows you to run the engine at lower rpm while maintaining the desired ground and reel speed. Reducing engine speed saves fuel and reduces noise in the cab.

Setting the reel to ground speed requires setting the minimum reel speed and the reel index.
CAUTION

Check to be sure all bystanders have cleared the area.

1. Set the minimum reel speed as follows:

 IMPORTANT:
 Set the minimum reel speed while stationary with the ground speed lever (GSL) in the N-DETENT position.
 a. Engage header.
 b. Set HEADER INDEX switch (B) to ON.
 c. Press the DISPLAY SELECTOR button (E) on the GSL to display ##.## MIN REEL at (A) or press the FAST (C) or SLOW (D) switch.
 The displayed value (##.##) = rpm or mph or km/h
 d. Press FAST (C) or SLOW (D) until the desired minimum reel speed is achieved.

2. Set the reel index as follows:

 IMPORTANT:
 Reel index can only be adjusted while operating at a ground speed faster than minimum reel speed plus header index value.
 a. Set HEADER INDEX switch (B) to ON.

18. Depending on CDM programming.
b. Press the DISPLAY SELECTOR button (E) on the GSL to display **##.## ##.# REEL IND** or press FAST (C) or SLOW (D) switch.
 - The displayed value (##.##) = reel speed (rpm or mph or km/h)
 - The displayed value (#.##) = reel index value

 c. Press FAST (C) or SLOW (D) until the desired reel index is achieved.

NOTE:

The reel will continue operating at the minimum reel speed setting when the ground speed drops below the set value.

The cab display module (CDM) display (A) will flash **##.## MIN REEL (RPM or MPH or KPH)** prompting you to change the minimum set-point or increase your ground speed if the total of the ground speed, plus the index value is **LESS THAN** the minimum reel speed set-point.

Examples:

- Windrower is operating at 13 km/h (8 mph) with header index ON and set at 5.5.
 Display shows **13.5 5.5 REEL IND** where 13.5 (8 + 5.5) is the reel speed in mph and 5.5 is the header index setting.

- Windrower speed drops to 12 km/h (7.5 mph) at the same header index setting.
 Display shows **13.0 5.5 REEL IND** where 13.0 (7.5 + 5.5) is the reel speed in mph and 5.5 is the header index setting.

- Windrower is operating at 13 km/h (8 mph) with header index ON and set at 1.0.
 Display shows **9.0 1.0 REEL IND** where 9.0 (8 + 1.0) is the reel speed in mph and 1.0 is the header index setting.

19. **REEL IND** will only be displayed when operating at a ground speed faster than minimum reel speed plus header index value.
Setting the Reel Only Speed

Figure 4.224: Operator Console

CAUTION
Check to be sure all bystanders have cleared the area.

Set the speed of the reel independently of ground speed as follows while operating the windrower:

NOTE:
This procedure is similar to changing the draper speed using the draper speed control switch while in motion. Refer to Setting Draper Speed Independent of Ground Speed, page 270. These changes become the new set points.

1. Set HEADER INDEX (B) to OFF.
2. Press REEL FAST (C) or REEL SLOW (D) on the ground speed lever (GSL) until display (A) shows ##.## REEL MPH with desired reel speed.

 The displayed value (##.##) = reel speed (rpm or mph or km/h)

20. Depending on cab display module (CDM) programming.
4.6.5 Draper Speed

Draper speed affects the orientation of stalks in the windrow. For information on draper speed guidelines and windrow types, refer to your header operator’s manual. The draper speed can be set to run independently, or relative to the ground speed of the windrower with the header index function.

Setting Draper to Ground Speed

Setting the speed of the draper relative to ground speed (using the header index function) allows you to run the engine at lower rpm while maintaining the desired ground and draper speed. Reducing engine speed saves fuel and reduces noise in the cab.

Setting draper to ground speed requires setting both the minimum draper speed and the draper index.

Refer to the following:

- Setting Minimum Draper Speed, page 268
- Setting Draper Index, page 269

Setting Minimum Draper Speed

Figure 4.225: Operator Console

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

Set draper minimum speed as follows:

IMPORTANT:
Set the minimum draper speed while stationary with the ground speed lever (GSL) in the N-DETENT position.
1. Engage header.
2. Set HEADER INDEX (B) switch to ON.
3. Press DISPLAY SELECTOR button (E) until display (A) shows **##.## DRAPER MIN**.
 The displayed value (**##.##**) = draper speed (mph or km/h²¹).
4. Use the FAST (C) and SLOW (D) buttons to set the desired minimum draper speed.

Setting Draper Index

Figure 4.226: Operator Console

![Operator Console Diagram]

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

Set draper index as follows:

IMPORTANT:
Draper Index can only be adjusted while operating at a ground speed faster than minimum draper speed plus header index value.

1. Engage header.
2. Set HEADER INDEX switch (B) to ON.

²¹ Depending on cab display module (CDM) programming.
3. Press DISPLAY SELECTOR (E) on the ground speed lever (GSL) to display **DRAPER INDX** at (A) on the cab display module (CDM).

4. Press DRAPER FAST (C) or SLOW (D) on the CDM until display (A) shows **##.# ##.# DRAP IND** with the desired index value.
 - The displayed value (##.#) = draper speed (mph or km/h)
 - The displayed value (##.#) = the index value

Examples:

- Windrower is operating at 13 km/h (8 mph) with header index ON and set at 1.5.
 Display shows: **9.5 1.5 DRAP INDX** where 9.5 (8 + 1.5) is the draper speed in mph and 1.5 is the header index setting.

- Windrower speed drops to 12 km/h (7.5 mph) at same header index setting.
 Display shows: **9.0 1.5 DRAP INDX** where 9.0 (7.5 + 1.5) is the draper speed in mph and 1.5 is the header index setting.

- Windrower is operating at 13 km/h (8 mph) with header index ON and set at 0.9.
 Display shows: **8.9 0.9 DRAP INDX** where 8.9 (8 + 0.9) is the draper speed in mph and 0.9 is the header index setting.

Setting Draper Speed Independent of Ground Speed

Figure 4.227: Operator Console

22. DRAPER INDX will only be displayed when operating at a ground speed faster than minimum draper speed plus the header index value.
23. Depending on CDM programming.
Set the speed of the draper independent of ground speed as follows:

NOTE:
This procedure can also be used to change the draper speed while in motion.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

1. Engage header.
2. Set HEADER INDEX switch (B) to **OFF**.
3. Press DISPLAY SELECTOR button (E) to show **##.# DRAPER SPEED** on the cab display module (CDM) (A).

 Displayed value (##.#) = draper speed (mph or km/h^24).
4. Press FAST (C) or SLOW (D) on the CDM until desired draper speed is displayed at (A).

4.6.6 Knife Speed

The ideal knife speed should achieve a clean cut. Crop types and conditions usually influence the knife and ground speeds.

Table 4.2 Knife Speed Table

<table>
<thead>
<tr>
<th>Header Description</th>
<th>Size</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rpm^{25}</td>
<td>spm^{26}</td>
</tr>
<tr>
<td>Draper with</td>
<td>4.6 m (15 ft.)</td>
<td>750</td>
<td>1500</td>
</tr>
<tr>
<td>double knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>6.1 and 7.6 m (20 and 25 ft.)</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>double knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>9.1 m (30 ft.)</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>double knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>10.6 m (35 ft.)</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>double knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>12.2 m (40 ft.)</td>
<td>550</td>
<td>1100</td>
</tr>
<tr>
<td>double knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>6.1 and 7.6 m (20 and 25 ft.)</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>single knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>9.1 m (30 ft.)</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>single knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>10.6 m (35 ft.)</td>
<td>550</td>
<td>1100</td>
</tr>
<tr>
<td>single knife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper with</td>
<td>12.2 m (40 ft.)</td>
<td>525</td>
<td>1050</td>
</tr>
<tr>
<td>single knife</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24. Depending on CDM programming.
25. Revolutions per minute is the speed of knife drive box pulley.
26. Strokes per minute of knife (rpm x 2).
When the header is first attached to the windrower, the windrower control module (WCM) receives a code from the header that determines the knife speed range and the minimum speed.

The desired speed can be programmed on the cab display module (CDM) and stored in the WCM memory so the knife will operate at the original set-point after the header is detached and reattached to the windrower.

If no header code is detected, the CDM displays NO HEADER and the knife speed reverts to the operator’s selection from a range of 800–1000 strokes per minute.

Refer to Header Settings in the header operator’s manual for the suggested knife speed for a variety of crops and conditions.

NOTE:
Knife speed cannot be programmed outside the range specified for each header.

NOTE:
Knife speed can be adjusted without shutting down the machine; however, the windrower should be stopped before adjusting CDM settings.

To adjust the knife speed, refer to *Setting the Header Knife Speed, page 91.*

4.6.7 Deck Shift Control

When connected to a draper header with the deck shift option, hydraulic deck shift control allows you to select the deck position and draper rotation of the header from the operator’s station. Deck shift allows you to select crop delivery from the left side, center, or right side of the header.

Deck Shift

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

Shift decks as follows:

1. Engage header by pushing down on the yellow HEADER DRIVE button (A) while pulling up on the black ring at the base of the switch (B).

![Figure 4.228: Header Drive Button](image)
2. Push switch (A) to desired delivery position. Deck(s) will move and direction of drapers will change accordingly.

3. Operate windrower.

Setting Float Options with Deck Shift

For draper headers equipped with the deck shift option, the header float can be set for each deck position. Float is maintained when the decks are shifted.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

Program the float as follows:

1. Engage header.

2. Using HEADER TILT SWITCHES (A) and (B) on the ground speed lever (GSL), set center-link to mid-range position (05.0 on display [C]).
3. Select a deck position with DECK SHIFT switch (A) from one of the following delivery options:
 - B - Left-side delivery
 - C - Center delivery
 - D - Right-side delivery

4. Using HEADER DOWN switch (A) on the GSL, lower header fully with lift cylinders fully retracted.

5. Using LEFT FLOAT SWITCH (B), push + to increase float or – to decrease float on left side of header. Display (D) will indicate selected float value for left side, for example (8.0 L FLOAT R ##.#).

6. Repeat for right side float with RIGHT switch (C). Display (D) will indicate float value for both sides, for example (8.0 L FLOAT R 3.0).

7. Select a second deck position with the DECK SHIFT switch (A).

8. Repeat Step 5, page 274 and Step 6, page 274 to set the float for the second deck position.

9. Select a third deck position with the DECK SHIFT switch (A).

10. Repeat Step 5, page 274 and Step 6, page 274 to set the float for the third deck position.
4.7 Operating with an A Series Header

To operate with an auger header, the M205 requires an auger drive basic kit and a completion kit as shown. If necessary, obtain the following kits from your MacDon Dealer, and install them in accordance with the instructions supplied with the kits.

<table>
<thead>
<tr>
<th>Kit Description</th>
<th>Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base draper/auger drive kit</td>
<td>MD #B5491</td>
</tr>
<tr>
<td>Draper conditioner/auger header reverser completion kit</td>
<td>MD #B5492</td>
</tr>
<tr>
<td>Hydraulic coupler kit</td>
<td>MD #B5497</td>
</tr>
<tr>
<td>Hydraulic union kit</td>
<td>MD #166844</td>
</tr>
</tbody>
</table>

Figure 4.234: Hydraulic Connections
4.7.1 Auger Speed

Auger Speed on A30D Headers

On A30D and A30S Auger Headers, the auger speed is fixed to the knife speed. The auger speed is NOT monitored and cannot be displayed.

Setting the Auger Speed on A40D Headers

To set the auger speed, follow these steps:

1. Engage header.
2. Set the HEADER INDEX switch (B) to **OFF**.
3. Set the REEL SPEED to the minimum setting. For instructions, refer to *Reel and Disc Speed Switches, page 73*.
4. Press DISPLAY SELECTOR switch (E) on the ground speed lever (GSL) or press FAST (C) or SLOW (D) on the cab display module (CDM) until **##.# AUGER SPEED** is displayed at (A).

 The displayed value (**##.#**) = auger speed setting.

 NOTE:
 Changes to reel speed will affect the auger speed directly. However, when adjusting reel speed, the auger speed value displayed on the CDM will not change.

5. Press FAST (C) or SLOW (D) on the CDM until the desired auger speed is achieved.
4.7.2 Reel Speed

Refer to your header operator’s manual for recommended reel speed settings for your particular crop.

Reel Speed on A30D Headers

The reel is driven by the auger and both are dependent on the main header drive speed. The auger and reel speed can only be changed by installing a different size auger drive sprocket, or by varying the windrower engine rpm. A30D headers do NOT have a reel speed sensor, therefore no reel/auger speed information is displayed on the cab display module.

Reel Speed on A40D Headers

The A40D Auger Header features a hydraulic direct drive reel with an operating speed range of 50–85 rpm. Reel speed is controlled by the cab display module (CDM) and the ground speed lever (GSL) in the operator’s station.

The reel drive motor and the auger drive motor are connected in series so changing reel speed also changes auger speed. The reel cannot be controlled separately. Refer to the following two methods to adjust reel speed:

- To adjust reel speed with the windrower in motion, refer to Adjusting Reel Speed: Windrower in Motion, page 277.
- To set reel speed according to ground speed, refer to Setting Reel to Ground Speed, page 278.

Adjusting Reel Speed: Windrower in Motion

Figure 4.236: Operator Console
The reel speed adjustment range is from 50 to 85 rpm. Adjust the reel speed while the machine is in operation as follows:

NOTE:
Any change to the reel speed will result in a change to auger speed.
1. Set HEADER INDEX switch (B) to OFF.
2. Press REEL SLOW (F) or REEL FAST (E) on the ground speed lever (GSL) until display (A) shows **##.## REEL RPM** with desired reel speed.

 The displayed value (##.##) = reel speed (rpm or mph or km/h).

Setting Reel to Ground Speed

Setting the speed of the reel relative to ground speed (using the header index function) automatically adjusts the reel speed with changes to ground speed. Benefits may include improved crop flow and reduced operator fatigue.

Setting the reel to ground speed requires setting the minimum reel speed and the reel index.

Figure 4.237: Operator Console

![Operator Console Image]

CAUTION
Check to be sure all bystanders have cleared the area.

1. Set the minimum reel speed as follows:

 IMPORTANT:
 Set the minimum reel speed while stationary with the ground speed lever (GSL) in the N-DETENT position.

27. Depending on CDM programming.
OPERATION

a. Engage header.

b. Set HEADER INDEX switch (B) to **ON**.

c. Press the DISPLAY SELECTOR button (E) on the GSL to display **##.## MIN REEL** at (A) or press the FAST (C) or SLOW (D) switch.

 The displayed value (##.##) = reel speed (rpm or mph or km/h28).

d. Press FAST (C) or SLOW (D) until the desired minimum reel speed is achieved.

2. Set the reel index as follows:

 IMPORTANT:
 Reel index can only be adjusted while operating at a ground speed faster than minimum reel speed plus header index value.

Figure 4.238: Operator Console

28. Depending on CDM programming.

29. **REEL IND** will only be displayed when operating at a ground speed faster than minimum reel speed plus header index value.
c. Press FAST (C) or SLOW (D) until the desired reel index value is achieved.

NOTE:
The reel will continue operating at the minimum reel speed setting when ground speed drops below the set value. The cab display module (CDM) display (A) will flash ##.## MIN REEL (RPM or MPH or KPH) prompting you to change the minimum set-point or increase ground speed if the total of ground speed, plus the index value is **LESS THAN** the minimum reel speed set-point.

Examples:
- Windrower is operating at 8 mph with HEADER INDEX ON, and set at -1.0.
 Display shows: **7.0 -1.0 REEL IND** where **7.0** (8.0-1.0) is the reel speed in mph and **-1.0** is the header index setting.
- Windrower speed drops to 7.5 mph at same HEADER INDEX setting.
 Display shows: **6.5 -1.0 REEL IND** where **6.5** (7.5-1.0) is the reel speed in mph and **-1.0** is the header index setting.
- Windrower is operating at 8 mph with HEADER INDEX ON, and set at 2.0.
 Display shows: **10.0 2.0 REEL IND** where **10.0** (8+2.0) is the reel speed in mph and **2.0** is the header index setting.

4.7.3 Knife Speed

The ideal cutting speed should achieve a clean cut. Crop types and conditions usually influence the knife and ground speeds.

When the header is first attached to the windrower, the windrower control module (WCM) receives a code from the header that determines the knife speed range and the minimum speed. The desired speed can be programmed on the cab display module (CDM) and stored in the WCM memory so the knife will operate at the original set-point after the header is detached and reattached to the windrower. If no header code is detected, the CDM displays NO HEADER and the knife speed reverts to the operator’s selection from a range of 800–1000 strokes per minute. Refer to the header operator’s manual for the suggested knife speed for a variety of crops and conditions.

NOTE:
The knife speed cannot be programmed outside the range specified for each header.

NOTE:
The knife speed can be adjusted without shutting down the machine; however, the windrower should be stopped before adjusting CDM settings.

To adjust the knife speed, refer to *Setting the Header Knife Speed, page 91.*
4.8 Operating with an R Series Header

The M205 is equipped with the hydraulics and connections to run R Series Rotary Disc headers.

R85 4.9 m (16 ft.) header

The R85 4.9 m (16 ft.) header is factory-equipped with the hydraulic connections for attachment to an M205 windrower. The two union fittings (A) (MD #135708) shipped with the header are required to hard plumb to the windrower.

R85 4.0 m (13 ft.), R80 (4.0 and 4.9 m) 13 and 16 ft. headers

The R85 4.0 m (13 ft.) header and the R80 4.0 and 4.9 m (13 and 16 ft.) headers are shipped without the motor and hoses installed. The installation of a separate motor and hose bundle is necessary.

If required, obtain kit MD #B5456 from your MacDon Dealer, and install it in accordance with the instructions supplied with the kit.

NOTE:

Hydraulic Coupler kit (MD #B5497) is also available for quick attachment and removal of multiple header types.
4.8.1 Disc Speed

The ideal disc speed should achieve a clean cut. Crop types and conditions affect disc and ground speeds. Refer to the header operator’s manual for the suggested disc speed for a variety of crops and conditions.

Setting Disc Speed

Figure 4.241: Operator Console

![Operator Console Diagram]

A - Display B - Header Index C - Fast
D - Slow E - Display Selector

CAUTION

Check to be sure all bystanders have cleared the area.

Follow these steps to set the disc speed:

1. Engage header.
2. Set HEADER INDEX switch (B) to **OFF**.
3. Press FAST (C) or SLOW (D) on ground speed lever (GSL) until display (A) shows #### DISC RPM with desired disc speed.

 Displayed value (####) = disc speed (rpm).
5 Maintenance and Servicing

The following section will guide you through some of the windrower’s basic maintenance and service requirements. More detailed maintenance, service, and parts information is available from your MacDon Dealer.

5.1 Preparation for Servicing

⚠️ WARNING

To avoid personal injury, before servicing adapter/header or opening drive covers:

• Fully lower the header. If necessary to service in the raised position, always engage lift safety props.
• Disengage drives.
• Stop engine, and remove key.
• Wait for all moving parts to stop.
5.2 Engine Compartment Hood

The engine compartment hood has two open positions. The lowest is for general maintenance such as checking and adding fluid, servicing the cooling box, etc. The highest position provides full access to the engine compartment.

5.2.1 Opening Hood (Lower Position)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Locate latch (A) behind the grill and lift to release the hood.
3. Raise hood until strap (B), which should be looped under hooks (C) and (D), stops at approximately a 40° angle.
4. Remove strap (B) from hook (C) and allow the hood to rise slightly farther.

Figure 5.1: Hood Open (Lower Position)
5.2.2 Closing Hood (Lower Position)

1. Grasp the strap at location (B) and loop under upper hook (C).

 IMPORTANT:
 Failure to hook strap may result in it becoming entangled with the screen cleaners or the latch.

2. Pull down on strap, grasp the hood when within reach, and lower until hood engages latch (A).

Figure 5.2: Hood Open (Lower Position)
5.2.3 Opening Hood (Highest Position)

⚠ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Locate latch (A) behind the grill and lift to release the hood.
3. Raise hood until strap (B), which should be looped under hooks (C) and (D), stops at approximately a 40° angle.
4. Remove strap (B) from hook (C) and allow hood to rise slightly farther.
5. Remove the strap from hook (D) and allow the hood to rise fully to approximately 65°.

Figure 5.3: Hood Open (Highest Position)
5.2.4 Closing Hood (Highest Position)

1. Pull down on strap (B) and loop under lower hook (D).
2. Grasp strap (B) and loop under upper hook (C).

IMPORTANT:
Failure to hook strap may result in it becoming entangled with the screen cleaners or the latch.

3. Pull down on strap (B), grasp the hood when within reach, and lower until hood engages latch (A).

![Figure 5.4: Hood Open (Highest Position)](image)
5.3 Maintenance Platforms

Swing-away platforms and stairs are provided on both sides of the windrower for access to the operator’s station and engine bay. The platforms can be swung away from the windrower to allow access to the hydraulics plumbing or battery.

The maintenance platforms have three positions:

- Closed position
- Open standard position
- Open major servicing position

5.3.1 Opening Platforms (Standard Position)

⚠️ CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

This procedure describes how to open the cab-forward left platform (A). The same procedure is used for the right platform (B).

Figure 5.5: Platforms
1. Push latch (A) and pull platform (B) toward walking beam until it stops and latch engages in open position.

NOTE:
Ensure the platform is latched before using.

5.3.2 Closing Platforms (Standard Position)

⚠️ **CAUTION**

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

This procedure describes how to close the cab-forward left platform (A). The same procedure is used for the right platform (B).
1. If platform is latched in the open position, push latch (A) to unlock it.

2. Grasp handle (B) on platform and push forward until it stops and latch (A) engages.

 NOTE:
 Ensure the platform is latched properly before using.

5.3.3 Opening Platforms (Major Service Position)

To improve access to the hydraulics plumbing or battery, the platforms can be swung away from the windrower.

CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

This procedure describes how to open the cab-forward left platform (A). The same procedure is used for the right platform (B).

1. Open the hood. Refer to **5.2.1 Opening Hood (Lower Position), page 284.**

 IMPORTANT:
 Failure to open hood will result in damage to the hood when the platform is moved.
2. Unlock latch (A) and move platform (B) toward open position. Do **NOT** lock in full aft position.

3. Remove the nut and bolt that secure link (A) to the frame. Swing link (A) out of the way.

4. Pull the front (cab-forward) end of platform away from frame while moving it towards the walking beam. The aft corner of platform (B) should project slightly into the engine bay when the opening is optimum.
5.3.4 Closing Platforms (Major Service Position)

CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

NOTE:
This procedure is applicable to both platforms. Left side is shown.

1. Swing link (A) all the way forward.
2. Push the front (cab-forward) end of platform towards the frame while moving the platform forward (cab-forward).
3. Position link (A) on bracket and install bolt and nut. Tighten enough so that link can still swivel on bracket.

4. Move platform (B) forward (cab-forward) until it stops and latch (A) engages.
5. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.
5.4 Windrower Lubrication

⚠️ WARNING

To avoid personal injury, before servicing windrower or opening drive covers, follow procedures in the SAFETY chapter.

The greasing points are marked on the machine by decals showing a grease gun and grease interval in hours of operation.

Log hours of operation and use the Maintenance Checklist provided to keep a record of scheduled maintenance. Refer to 5.12.1 Maintenance Schedule/Record, page 415.

![Figure 5.14: Lubrication Interval Decal](image)

5.4.1 Lubricating the Windrower

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. To avoid injecting dirt and grit, wipe grease fitting with a clean cloth before greasing.
2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted. Refer to 8.2.3 Lubricants, Fluids, and System Capacities, page 461.
3. Leave excess grease on fitting to keep out dirt.
4. Replace any loose or broken fittings immediately.
5. If fitting will NOT take grease, remove and clean thoroughly. Also clean lubricant passageway. Replace fitting if necessary.
5.4.2 Lubrication Points

Figure 5.15: Lubrication Points

A - Forked Caster Wheel Bearing (Two Places) (Outer – Both Wheels)
B - Top-Link (Two Places) (Both Sides)
C - Lubrication Decal (MD #183411)
D - Caster Pivot (Both Sides)
E - Forked/Formed Caster Wheel Bearing (Two Places) (Inner – Both Wheels) (50 Hrs/250 Hrs)
5.5 Operator’s Station

5.5.1 Seat Belts
Seat belts are an important component of the windrower’s operator safety system. The following checks and service points will ensure that seat belts are functioning properly.
- Keep sharp edges and items that can cause damage away from the belts.
- Check belts, buckles, retractors, tethers, slack take-up system, and mounting bolts for damage.
- Check that bolts are tight on the seat bracket or mounting.
- Replace all parts that have damage or wear.
- Replace belts that have cuts that can weaken the belt.
- Keep seat belts clean and dry. Clean only with a soap solution and warm water. Do NOT use bleach or dye on the belts, as this may weaken the material.

5.5.2 Safety Systems
Perform the following checks on the operator’s presence and engine lock-out systems every year or every 500 hours—whichever occurs first.

Checking Operator Presence System
The operator presence system is a safety feature designed to deactivate or alert selected systems when the Operator is not seated at the operator’s station.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. With the windrower engine running, place the ground speed lever (GSL) in NEUTRAL and turn the steering wheel until it locks.
2. With everyone clear of the machine, engage header drive. Refer to 3.18.1 Header Drive Switch, page 70.
3. With header drive running, stand up out of the seat. In approximately 5 seconds, the header should shut off. If NOT, the Operator Presence System requires adjustment. See your MacDon Dealer.
4. To restart the header, move the HEADER DRIVE switch to OFF position and back to the ON position again.
5. With the engine running, position the GSL in NEUTRAL and in N-DETENT. Refer to 3.17 Windrower Controls, page 68.
6. Swivel the operator’s station, but do NOT lock into position.
7. Move GSL out of N-DETENT. The engine should shut down and the display will flash LOCK SEAT BASE → CENTER STEERING WHEEL → NOT IN NEUTRAL.
8. Swivel and lock the operator’s station and the display should return to normal. If the engine does NOT shut down, the seat position switches require adjustment. See your MacDon Dealer.
9. With the windrower moving at less than 8 km/h (5 mph), stand up out of the seat. The cab display module (CDM) will flash NO OPERATOR on the upper line and ENGINE SHUT DOWN 5…4…3…2…1…0 on the lower line accompanied by a steady tone. At 0, the engine shuts down. If the engine does NOT shut down, the Operator Presence System requires adjustment. See your MacDon Dealer.
MAINTENANCE AND SERVICING

10. With the windrower moving at more than 8 km/h (5 mph), stand up out of the seat. The CDM should beep once and display NO OPERATOR on the lower line. If NOT, the Operator Presence System requires adjustment. See your MacDon Dealer.

Checking Engine Interlock

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. With the engine shut down and the header drive switch engaged, try to start the engine. If the engine turns over, the system requires adjustment. See your MacDon Dealer.

2. With the engine shut down, steering wheel NOT centered, and the ground speed lever (GSL) in NEUTRAL, but NOT in N-DETENT, try to start the engine. The cab display module (CDM) will flash NOT IN NEUTRAL on the display upper line and CENTER STEERING WHEEL on the lower line, accompanied by a short beep with each flash and the engine should NOT start. If the engine starts, the system requires adjustment. See your MacDon Dealer.

A properly functioning system should operate as follows:

- The engine should start ONLY when the GSL is in N-DETENT, steering wheel is locked in the CENTER position, seat base is latched in either engine-forward or cab-forward direction, and header drive switch is in the OFF position.
- The brake should engage and the machine should NOT move after engine start-up, under the above conditions.
- The steering wheel should NOT lock with the engine running and the GSL out of the N-DETENT.
- The machine should NOT move with the engine running and with the steering wheel still centered, when the GSL is pulled straight out of N-DETENT (NOT in forward or reverse).

5.5.3 Ground Speed Lever (GSL) Adjustments

Adjusting Ground Speed Lever (GSL) Lateral Movement

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

The ground speed lever (GSL) should easily move into the N-DETENT by itself.

In the cab, adjust the lateral pivot resistance as follows:
1. Remove the five screws (A) securing control panel (B) to console, remove panel, and store in the tray.

2. Back off the jam nut (A) and turn nut (B) to either tighten or loosen the pivot. The nut should be tightened to snug and then backed off 1/2 turn.

3. Tighten jam nut (A).

4. Check movement of GSL.

5. Reinstall control panel (B) with five screws (A).
Adjusting Ground Speed Lever (GSL) Fore-Aft Movement

The GSL should remain as positioned by the Operator yet be movable without excessive force. The spring is set at the factory to 32 mm (1-1/4 in.).

Adjust as follows:

1. Pull handle (A) toward the operator's seat and move the console fully forward to ease accessibility from the underside of the console.

2. Set spring dimension (B) to 32 mm (1-1/4 in.).

3. To increase the pivot resistance, turn the nut (A) clockwise to compress the spring.

4. To decrease the resistance, turn the nut (A) counterclockwise to release the spring tension.

5.5.4 Steering Adjustments

Checking Steering Link Pivots

The following checks should be performed every year:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.
MAINTENANCE AND SERVICING

1. Place ground speed lever (GSL) (A) in N-DETENT.
2. Shut down the engine, and remove the key.

3. Check steering rod bolts (A) for looseness and ball joints (B) for any perceptible movement.
4. Check steering link bolts (A) for looseness and ball joints (B) for any perceptible movement.

5. If bolts are loose:
 a. Back off jam nut (A).
 b. Tighten inside nut (B) to 95–108 Nm (70–80 lbf·ft).
 c. Hold inside nut (B) and tighten jam nut (A) to 81–95 Nm (60–70 lbf·ft).

6. To replace loose steering link ball joints or steering rod ball joints, contact your MacDon Dealer.

7. After replacing parts or making adjustments, perform checks for Neutral Interlock and steering lock. Refer to 5.5.2 Safety Systems, page 295.
Checking and Adjusting Steering Chain Tension

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Check steering for binding or excessive play which may be the result of the steering chain being too tight or too loose. If the steering chain does NOT require adjustment, skip the following steps.

2. If the chain tension requires adjustment, swivel the operator’s station to position steering column close to the door.

3. At the base of the steering column, check dimension (C) at spring. It should be 16 mm (5/8 in.).

4. Adjust dimension as follows:
 a. Loosen nut (A) and turn nut (B) to achieve 16 mm (5/8 in.) dimension (C).
 b. Tighten nut (A) against nut (B) to secure position.
 c. Check that steering chain is taut and steering shaft is free to rotate.

Figure 5.26: Steering Tension Adjuster
5.6 Cab Suspension Limit Straps

The cab suspension limit straps are located next to the front suspension on both sides of the cab. These straps protect cab suspension components by preventing the cab shocks from fully extending. The straps do not require regular maintenance, but they should be inspected every 100 hours.

1. Inspect the material on straps (A) for fraying or tearing.
2. If material is torn or frayed, contact your MacDon Dealer for replacement straps.

Figure 5.27: Cab Suspension
5.7 Heating, Ventilating, and Air Conditioning (HVAC) System

5.7.1 Fresh Air Intake Filter

The fresh air filter is located outside the right rear of the cab and should be serviced every 50 hours under normal conditions and more frequently in severe conditions.

Removing Fresh Air Filter

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Open the right cab-forward platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
2. Rotate latch (A) and slide filter tray (B) out of the housing.
3. Remove filter (A) from tray (B).

Figure 5.28: Filter Tray

Figure 5.29: Fresh Air Filter
Inspecting and Cleaning Fresh Air Filter Element

1. Tap the sides of filter element (A) gently to loosen dirt. Do **NOT** tap element against a hard surface.

2. Using a dry element cleaner gun, clean element with compressed air.

IMPORTANT:
Air pressure must **NOT** exceed 414 kPa (60 psi). Do **NOT** direct air against outside of element, as dirt might be forced through to inside.

3. Hold the air nozzle next to the filter element’s inner surface and move up and down pleats.

4. Repeat Steps 1, page 304 to 3, page 304 to remove remaining dirt as required.

5. Hold a bright light inside the element and check carefully for holes. Discard any element that shows the slightest hole.

6. Check outer screen for dents. Vibration would quickly wear a hole in the filter.

7. Check filter gasket for cracks, tears, or other signs of damage. If gasket is damaged or missing, replace element.

Installing Fresh Air Filter

Refer to 8.2.4 Filter Part Numbers, page 462 for part number.

1. Clean tray (B) and interior of filter housing.

2. Place filter (A) onto tray (B).
3. Slide filter tray (B) into housing.

NOTE:
If necessary, move the Global Positioning System (GPS) wiring harnesses to the left (engine side) of the housing before inserting the filter tray.

5.7.2 Servicing the Return Air Cleaner/Filter

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

If replacing the return air filter, refer to 8.2.4 Filter Part Numbers, page 462 for the part number.

1. Unscrew the two knobs (A) attaching cover and filter to cab wall, and remove the cover and filter assembly (B).
2. Separate the filter (B) from the cover (A).

3. Clean or replace the filter. If cleaning filter, refer to *Cleaning Return Air Cleaner/Filter, page 306.*

4. Assemble the cleaner (B) and cover (A), and position on cab wall over opening.

5. Secure filter assembly (B) to cab wall with knobs (A).

Cleaning Return Air Cleaner/Filter

Clean the electrostatic filter as follows:

1. Mix a solution of warm water and detergent in a suitable container and soak the filter (A) for a few minutes.
2. Agitate to flush out the dirt.
3. Rinse with clean water, and then dry with compressed air.
4. Inspect filter for damage, separation, and holes. Replace if damaged.

![Figure 5.34: Return Air Filter](image-url)

![Figure 5.35: Return Air Filter](image-url)

![Figure 5.36: Return Air Filter](image-url)
5.7.3 Air Conditioning Condenser

The air conditioning condenser should be cleaned daily with compressed air. More frequent cleaning may be necessary in severe conditions.

Cleaning the condenser can be done at the same time as the radiator, oil cooler, and charge air cooler. Refer to Maintaining Engine Cooling Box, page 337.

5.7.4 Air Conditioning (A/C) Evaporator Core

The A/C evaporator should be checked annually for cleanliness. If the A/C system produces insufficient cooling, a possible cause is clogged evaporator fins. Fins will clog up from the side opposite the blowers. The evaporator is located inside the heating air conditioning unit under the cab.

Removing Air Conditioning (A/C) Cover

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine, and remove the key.
2. Loosen clamps (A) on the two drain hoses connected to the A/C drain tubes, and pull the hoses off the A/C drain tubes.
3. Remove the ten fasteners (A) that attach the cover to the housing. Remove the cover.
Cleaning Air Conditioning (A/C) Evaporator Core

WARNING

To avoid cuts from evaporator fins, do NOT use bare hands to brush away clogs.

1. Use a vacuum cleaner or compressed air to remove dirt from inside the A/C unit.

2. Blow compressed air through the evaporator fins from blower side (A) first. Direct the air straight into the evaporator to prevent fin damage. A nozzle extension makes this procedure easier.

3. Repeat Step 2, page 308 at the side (B) opposite the blowers.

4. If you cannot feel the compressed air blowing through the evaporator core, proceed as follows:
 a. Protect blower motor (A) from water.
 b. Soak evaporator core (B) with warm water using a low pressure hose. Let soak for several minutes.
 c. Blow compressed air through the core from blower side (C).
 d. Repeat the soaking procedure until air blows through the evaporator freely.
Installing Air Conditioning (A/C) Cover

1. Straighten any bent fins.
2. Position cover (B) onto A/C unit, and attach with eight screws (A).
3. Reattach drain hoses to drain tubes and secure with hose clamps (A).
5.7.5 Air Conditioning (A/C) Compressor

The compressor is protected from excessively low suction and high discharge pressures by two switches that shut down the compressor to prevent damage to the system. These switches do not require regular maintenance. Contact your MacDon Dealer if you suspect a problem with the switches.

The low pressure switch

The low pressure switch is closed when there is sufficient refrigerant in the system and the pressure is above 234 kPa (34 psi). The system remains pressurized at about 414–483 kPa (60–70 psi) with the compressor off.

When the A/C system is turned on, the compressor starts because the system pressure is above 234 kPa (34 psi). As the system gets colder, the suction pressure (low side) drops. At 24–86 kPa (3.5–12.5 psi) (for 2014 and prior: 14–55 kPa [2–8 psi]), the switch opens and shuts down the compressor.

When the pressure rises above 172 kPa (25 psi), the switch closes and the compressor restarts. The low pressure switch is located at the outlet of the evaporator (under cab in the A/C box).

The high pressure switch

The high pressure switch is closed when there is sufficient refrigerant in the system. The system remains pressurized at about 414–483 kPa (60–70 psi) with the compressor off.

If the pressure exceeds 2482–2620 kPa (360–380 psi) during operation, the valve opens. It will close when pressure falls below 1517–1931 kPa (220–280 psi). The high pressure switch is located on the receiver drier (right cab-forward frame rail, behind the fuse panel).

If the compressor cycles rapidly due to rapid pressure changes, the cab display module (CDM) displays a warning CHECK A/C SYSTEM. Contact your Dealer.

Servicing the Air Conditioning Compressor

Refer to Replacing Air Conditioner (A/C) Compressor Belt, page 347 for belt replacement procedure.

See your MacDon Dealer for all other servicing procedures.
5.8 Engine

⚠️ CAUTION

- NEVER operate engine in a closed building. Proper ventilation is required to avoid exhaust gas hazards.
- Keep the engine clean. Straw and chaff on a hot engine are a fire hazard.
- NEVER use gasoline, naphtha, or any other volatile material for cleaning purposes. These materials are toxic and/or flammable.

5.8.1 General Engine Inspection

Engine inspection should be performed by your MacDon Dealer.

Refer to your engine manual for further information. (Owner’s Manual QSB 4.5 and QSB 6.7 Engine Cummins #4021531 are supplied with your machine).

5.8.2 Turning the Engine Manually

To manually turn the engine with the flywheel, an access hole is provided on the left cab-forward side for a barring tool that is available from Cummins.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop engine and remove ignition key.
2. Open the hood to the lowest position. For instructions, refer to 5.2.1 Opening Hood (Lower Position), page 284.
3. Open left cab-forward side platform. For instructions, refer to 5.3.1 Opening Platforms (Standard Position), page 288.
MAINTENANCE AND SERVICING

4. Remove positive (red) cables (A) from battery posts first, then remove negative (black) cables (B) from both battery posts.

5. Clean the area around the plastic cap on access hole (A). Remove the cap.

IMPORTANT:
Ensure nothing falls into gearbox oil reservoir.

6. Insert barring tool (B) into the flywheel housing until it engages the ring gear.

7. Attach a 1/2 in. square drive ratchet or breaker bar and turn.

8. Remove barring tool (B), and then clean oil from around access hole (A).

9. Clean plastic cap and reinstall in access hole (A) with silicone sealant.

Figure 5.43: Battery Terminal Location

Figure 5.44: Access Hole Location for Barring Tool
IMPORTANT:

Batteries are negative grounded. Always connect starter cable to the positive (+) terminal of battery and battery ground cable to negative (−) terminal of battery. Reversed polarity in battery or alternator may result in permanent damage to electrical system.

10. Attach negative (black) cables (B) to negative posts on batteries, and tighten clamps. Then attach positive (red) cables (A) to positive post on batteries and tighten clamps.

11. Position plastic covers onto clamps.

12. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

13. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

5.8.3 Engine Oil

Checking Engine Oil Level

Check engine oil level daily (every 10 hours) and watch for any signs of leakage.

⚠️ **CAUTION**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:

During the break-in period, a higher than usual oil consumption should be considered normal.

1. Open the hood to the lowest position. Refer to 5.2.1 Opening Hood (Lower Position), page 284.

2. Operate the engine at low idle and check for leaks at the filter and drain plug.

3. Stop the engine and remove the key. Wait about 5 minutes.
4. Remove dipstick (A) by turning it counterclockwise to unlock.
5. Wipe the dipstick clean and reinsert it into the engine.
6. Remove the dipstick again and check the oil level.

7. Add oil if level is below low (L) mark. Refer to Adding Engine Oil, page 316.

 IMPORTANT:
 Oil level should be maintained between low (L) and high (H) mark on the dipstick.

8. Replace dipstick (A) and turn it clockwise to lock.
9. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.
Changing Engine Oil

Refer to the following procedures:

- Checking Engine Oil Level, page 313
- Draining Engine Oil, page 315
- Replacing Engine Oil Filter, page 316
- Adding Engine Oil, page 316

Draining Engine Oil

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
The engine should be warm when you change the oil.

1. Stop the engine and remove the key.
2. Place a drain pan with a capacity of about 24 liters (6 US gallons) under the engine oil drain.
3. Remove oil drain plug (A) and allow the oil to drain.
4. When all of the oil has drained out of the tank, replace drain plug (A).
5. Check the condition of the used oil. If either of the following is evident, have your Dealer correct the problem before starting the engine:
 - Thin black oil indicates fuel dilution.
 - Milky discoloration indicates coolant dilution.
6. Properly dispose of used oil.

NOTE:
Replace oil filter each time engine oil is changed. Refer to Replacing Engine Oil Filter, page 316

IMPORTANT:
Do NOT run engine without oil in the crankcase. Refer to Adding Engine Oil, page 316.
Replacing Engine Oil Filter

NOTE:
Replace oil filter each time engine oil is changed. Refer to 8.2.4 Filter Part Numbers, page 462 for recommended oil filter to use.
1. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.
2. Clean around filter head (A).
3. Remove filter (B).
4. Clean gasket mating surface.
5. Apply a thin film of clean oil to the gasket on the new filter.
6. Screw the new filter onto the filter mount until the gasket contacts the filter head.
7. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the oil filter. Overtightening can damage the gasket and filter.
8. Properly dispose of used filter.

Adding Engine Oil

Refer to inside back cover for recommended lubricants.

DANGER
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.
1. Stop the engine and remove the key. Wait about 5 minutes.
2. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.
3. Remove filler cap (A) by turning it counterclockwise.
4. Carefully pour in the new oil. Use a funnel to avoid spillage.

CAUTION
Do NOT fill above the HIGH mark.
5. Replace oil filler cap (A) and turn it clockwise until snug.
6. Check the oil level. Refer to Checking Engine Oil Level, page 313.
7. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.
5.8.4 Air Intake System

IMPORTANT:
Do NOT run engine with air cleaner disconnected or disassembled.

Engine intake air is drawn through a duct (A) from the hood mounted pre-cleaner that pre-cleans the air, and then through a dual element filter (B). The air cleaner canister is equipped with an aspirator (C) that continuously removes dust from the air cleaner housing. The air cleaner is also equipped with a restriction switch (D) which activates a warning light on the cab display module (CDM) with an alarm when the primary filter element requires cleaning.

If you need to replace filters, refer to 8.2.4 Filter Part Numbers, page 462.

IMPORTANT:
- Do NOT run engine with air cleaner disconnected or disassembled.
- Over-servicing the filter element increases the risk of dirt being ingested by the engine and severely damaging the engine.
- Filter servicing should only be performed when the CDM indicates ENGINE AIR FILTER or at the specified interval. Refer to 5.12.1 Maintenance Schedule/Record, page 415.

Air Filter Restriction Indicator

During engine operation, the indicator shows the vacuum in inches of H₂O and kPa. As dirt accumulates in the filter, the restriction increases.

When the indicator gauge reaches the CHANGE FILTER mark (A), 25 in. of H₂O (6.20 kPa), a warning tone will sound and the cab display module (CDM) will indicate the filter requires servicing.

IMPORTANT:
Over-servicing the filter element increases the risk of dirt being ingested by the engine, causing severe damage.

Service air filter ONLY IF indicator reaches the CHANGE FILTER mark (A) or 25 in. H₂O (6.20 kPa).

IMPORTANT:
After servicing filters, press the RESET button on the end of the indicator (B).
Removing Primary Air Filter

1. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.

2. Open the maintenance platform on right cab-forward side. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

3. Slightly lift catch (A) at side of end cap (B) and rotate end cap counterclockwise until it stops.

4. Make sure arrow (A) lines up with UNLOCK symbol on end cap.

5. Pull off the end cap.

6. Check the aspirator duct opening (A) for obstructions or damage. Clean if necessary.
7. Pull out the primary filter element (A).

IMPORTANT:
Be extremely careful with the dirty element until it is completely out of the housing. If you accidentally bump the element while it is still inside the filter housing, dirt and dust may contaminate the clean side of the housing.

8. If the secondary air filter is dirty, inspect the primary filter and the filter canister as follows to determine the reason for contamination:

- Examine the filter canister for cracks, and replace if necessary.
- Ensure filter sealing surfaces are soft, flexible, and sealing properly. Hard seals may allow debris through to the secondary filter.
- Ensure canister retaining latches are secure.

IMPORTANT:
- Do NOT remove the secondary filter element unless it needs replacing.
- Do NOT attempt to clean the secondary element (A). The secondary element is to be replaced only.

9. If required, replace the secondary filter. Refer to *Removing and Installing Secondary Air Filter, page 322*.

10. Clean the inside of the canister housing and end cap carefully. Dirt left in the air cleaner housing may be harmful to your engine.

- Remove hardened dirt ridges wherever filter gaskets contact the cleaner housing.
- Clean the gasket sealing surfaces of the housing. An improper gasket seal is one of the most common causes of engine contamination.
- Wipe every surface with a clean, water-dampened cloth.
- Check the housing visually to make sure it is clean before putting in a new filter element.

11. Check for uneven dirt patterns on old element. They are a valuable clue to potential dust leakage or gasket sealing problems. A pattern on the element clean side is a sign that the old element was **NOT** firmly sealed or that a dust leak exists.
MAINTENANCE AND SERVICING

- Press on the fresh gasket to see if it springs back.
- Check the gasket for correct sizing. On a radial seal element, the gasket surface is the inside diameter of the open end cap.
- Make sure the gasket is seating evenly. If the gasket is not forming a perfect seal, you will NOT have protection.
- Ensure the sealing surface in the housing is clean, and the filter element is the correct model number. It may be too short for the housing.
- Identify and rectify the cause of any leaks before replacing the filter element.

Installing Primary Air Filter

NOTE:

If replacing air filter, refer to 8.2.4 Filter Part Numbers, page 462.

1. Insert new primary filter element (A) into canister over secondary element, and push into place, ensuring that element is firmly seated in canister.

2. Align arrow (A) with UNLOCK symbol on end cap, and push end cap fully onto housing.

3. Rotate end cap clockwise until catch (A) engages housing to prevent end cap from turning.
4. Position end cap (B) onto filter housing with aspirator pointing approximately down.

5. Secure end cap onto filter housing by closing catch (A).

6. After servicing the filter, reset the restriction switch (A) by pushing the button on the end.

7. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

8. Close the maintenance platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

Cleaning Engine Air Filter Primary Element

IMPORTANT:
The secondary (inner) element should NEVER be cleaned, only replaced.

IMPORTANT:
Air filter element cleaning is NOT recommended due to the possible degradation of the element material. If cleaning is performed, there are several risks involved and the following procedure should be followed. If any of the following conditions are found, the filter element MUST be replaced.

1. Hold a bright light inside element, and check carefully for holes.

2. Check outer screen for dents. Vibration will quickly wear a hole in the filter.
3. Check filter gasket for cracks, tears, or other signs of damage.

4. Check element for oil or soot contamination.

5. Check the secondary element for cleanliness. If there is visible dirt on the secondary element, replace both primary and secondary elements. Do NOT clean.

IMPORTANT:
The air cleaner’s primary (outer) filter element should be replaced after three cleanings or at the specified interval. The secondary (inner) element should be replaced every third time the primary element is changed. Refer to 5.12 Maintenance Schedule, page 415 for the required interval.

6. If secondary element passes inspection, clean primary element as follows:
 a. Use compressed air **NOT** exceeding 400 kPa (60 psi), and a dry element cleaner gun.
 b. Hold nozzle next to inner surface only, and move up and down on pleats.
 c. After three cleanings (or at the specified interval), replace the primary element.

7. Repeat inspection before reinstalling filter element.

Removing and Installing Secondary Air Filter

NOTE:
Refer to 8.2.4 Filter Part Numbers, page 462 for replacement filter part number.

Replace the secondary air filter (A) every year or after every third primary filter change, even if it appears clean.

If the secondary air filter is dirty, inspect the primary filter and the filter canister to determine the reason for contamination.

- Examine the filter canister for cracks and replace if necessary.
- Ensure filter sealing surfaces are soft, flexible, and sealing properly. Hard seals may allow debris through to the secondary filter.
- Ensure canister retaining latches are secure.

NOTE:
- Do **NOT** remove the secondary filter element unless it needs replacing. For secondary filter part number, refer to 8.2.4 Filter Part Numbers, page 462.
- Do **NOT** attempt to clean the secondary element (A). The secondary element is replace only.

1. Remove the primary filter. Refer to Removing Primary Air Filter, page 318.

IMPORTANT:
When replacing secondary filter, reinsert new filter as soon as possible to prevent dirt from entering engine intake. Do **NOT** remove secondary filter unless a replacement is available for installation.
2. Remove secondary element (A) from canister.

3. Insert new secondary filter element (A) into canister, seal first, and push until seal is seated inside canister.

4. Reinstall the primary filter. Refer to Installing Primary Air Filter, page 320.

Air Precleaner

The engine air precleaner (A) is attached to the engine compartment hood, and in the closed position, it is sealed to the engine air intake duct in the engine compartment. There are no scheduled servicing requirements other than to ensure the intake is not blocked.

5.8.5 Fuel System

Replacing Fuel Tank Vent Filter

The fuel tank is vented by a hose that is connected to the filler tube. The hose is connected to a filter that should be changed every year.

For fuel tank vent filter replacement part number, refer to 8.2.4 Filter Part Numbers, page 462.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near windrower when servicing.
1. Stop the engine and remove the key.

2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.

3. Open the right cab-forward side maintenance platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

4. Locate filter (A) on vent line against hydraulic oil reservoir.

5. Release hose tension clamps (B) and slide away from filter. Pull hoses off filter.

6. Position new filter through hole in frame and attach top hose onto filter. The IN marking on the filter should face down.

 NOTE:
 If filter has an arrow instead of an IN marking, arrow should point up.

7. Attach lower hose to filter and secure both hoses with tension clamps (B).

8. Close hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.

9. Close the maintenance platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

Maintaining Fuel Filters

The windrower fuel system is equipped with primary (A) and secondary (B) screw-on cartridge type filters. The primary filter (A) is equipped with a separator that separates sediment and water from the fuel.

Replace both filters every 500 hours of operation.

Refer to the following procedures:

- Removing Primary Fuel Filter, page 325
- Installing Primary Fuel Filter, page 326
- Removing Secondary Fuel Filter, page 326
- Installing Secondary Fuel Filter, page 327
Removing Primary Fuel Filter

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. On the bottom of the fuel tank, locate fuel supply valve (A) and move it to the closed position.

4. Locate primary fuel filter (A) on the right cab-forward side of the windrower.

Figure 5.68: Fuel Shut-off Valve

Figure 5.69: Primary Fuel Filter Location
5. Clean around primary filter (A) head.
6. Disconnect the water in fuel (WIF) sensor (B) from the bottom of the filter.
7. Turn valve (C) by hand counterclockwise and drain filter into a container.
8. Remove filter (A) with a filter wrench.
9. Clean gasket mating surface.

![Figure 5.70: Primary Fuel Filter](image)

Installing Primary Fuel Filter

For primary fuel filter replacement part number, refer to 8.2.4 Filter Part Numbers, page 462.

IMPORTANT:

Do **NOT** prefill filter with fuel. Prefilling can contaminate the fuel system.

1. Lubricate the fuel filter O-ring with clean oil.
2. Screw the new filter (A) onto the filter mount until the gasket contacts the filter head.
3. Tighten the filter an additional 3/4 turn by hand. Use a 25.4 mm (1 in.) wrench and torque it to 38 Nm (28 lbf·ft).
4. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:

Do **NOT** use a filter wrench to install the filter. Overtightening can damage the gasket and filter.

5. Reconnect water in fuel (WIF) sensor (B).

![Figure 5.71: Primary Fuel Filter](image)

Removing Secondary Fuel Filter

![Danger symbol]

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. Clean around secondary filter head (A).
4. Place a container under the filter to catch spilled fluid.
5. Remove filter (B) with a filter wrench.
6. Clean gasket mating surface.

Installing Secondary Fuel Filter

For secondary fuel filter replacement part number, refer to 8.2.4 Filter Part Numbers, page 462.

1. Screw the new secondary filter (A) onto the filter mount until the gasket contacts the filter head.
2. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the filter. Overtightening can damage the gasket and filter.

3. Open fuel valve (A) under fuel tank.
Draining Fuel Tank

Draining the fuel tank is necessary to remove old or contaminated fuel.

![Image of Fuel Shut-off Valve](image1.png) **Figure 5.75: Fuel Shut-off Valve**

- **WARNING**
 - To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.
 - **NEVER** refuel the windrower when the engine is hot or running.

- **DANGER**
 - To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to *5.2.1 Opening Hood (Lower Position), page 284.*
3. Close fuel supply valve (A) located on the bottom of the fuel tank.

![Image of Fuel System](image2.png) **Figure 5.76: Fuel System**

4. Place a 20 liter (5 US gallon) drain pan under the fuel supply hose (A) at the primary filter.
5. Loosen clamp (B) and pull fuel supply hose (A) off fitting.
6. Route hose to drain pan and open valve (A) to drain tank.

7. Add some clean fuel to the tank to flush out any remaining contaminants.

8. Reattach fuel supply hose (A) to fitting. Install clamp (B) and tighten.

NOTE:
Do **NOT** refill the fuel tank if performing additional maintenance on fuel system. Refill it once work is completed. Refer to *Filling the Fuel Tank, page 167.*

Fuel/Water Separator

A fuel/water separator is incorporated into the primary fuel filter. The separator is equipped with a drain and a sensor that triggers a warning on the cab display module (CDM) if water is detected in the fuel. Drain the water and sediment from the separator daily or at any time the CDM water (WIF) light illuminates.

To remove water from the fuel system, refer to *Removing Water from Fuel System, page 329.*

Removing Water from Fuel System

Drain the water and sediment from the separator daily, or at any time the cab display module (CDM) water in fuel (WIF) light illuminates.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.

2. Open the hood. Refer to *5.2.1 Opening Hood (Lower Position), page 284.*
3. Place a container under filter (A) to catch spilled fluid.

4. Turn drain valve (B) by hand 1-1/2 to 2 turns counterclockwise until fluid drains out of the filter.

5. Drain the filter sump of water and sediment until clear fuel is visible.

6. Turn the valve clockwise to close the drain.

7. Dispose of fluid safely.

8. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

Figure 5.79: Primary Fuel Filter

System Priming

Controlled venting of air is provided at the injection pump through the fuel drain manifold. Small amounts of air, introduced by changing filters or injection pump supply line, will be vented automatically if the fuel filters are changed in accordance with instructions.

IMPORTANT:

Bleeding the fuel system is **NOT** recommended or required. Manual priming will be required if:

- Fuel filter is replaced
- Injection pump is replaced
- High-pressure fuel lines are replaced
- Engine is run until fuel tank is empty

Priming Fuel System

To prime the fuel system, follow these steps:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **WARNING**

The fuel pump high-pressure fuel lines and fuel rail contain extremely high pressure fuel. Never loosen any fittings. Personal injury and property damage can result.

1. Stop the engine and remove the key.

2. Open the hood to lowest position. Refer to 5.2.1 Opening Hood (Lower Position), page 284.
3. Turn priming knob (A) counterclockwise to unlock the plunger on the primary filter head.

4. Pump approximately 120 times to pressurize the fuel system.

5. Lock the plunger by turning knob (A) clockwise until snug.

6. Try starting engine. If engine does NOT start, repeat priming.

7. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

5.8.6 Engine Cooling System

The engine cooling system is designed to maintain the engine operating temperature within the recommended operating range.

NOTE:
Antifreeze is essential in any climate. It broadens the operating temperature range by lowering the coolant freezing point and by raising its boiling point. Antifreeze also contains rust inhibitors and other additives to prolong engine life.

IMPORTANT:
If antifreeze strength is not adequate, do NOT drain cooling system to protect against freezing. The system may not drain completely, and damage from freezing could still result.

Refer to 8.2 Recommended Fuel, Fluids, and Lubricants, page 460 for detailed information.

Inspecting Radiator Cap

The radiator cap must fit tightly and the cap gasket must be in good condition to maintain the 97–124 kPa (14–18 psi) pressure in the cooling system. Check the condition of the cap every year when checking the engine coolant strength.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
To avoid personal injury from hot coolant, do NOT turn radiator cap until engine cools.

1. Stop the engine and remove the key.

2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.

3. Open the platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
MAINTENANCE AND SERVICING

4. Turn cap (A) counterclockwise to the first notch to relieve pressure before removing cap completely.
5. Turn cap (A) again and remove.
6. Check the gasket for cracks or deterioration and replace the cap if necessary.
7. Check that the spring in the cap moves freely.
8. Replace cap if spring is stuck.
9. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.
10. Close the hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.

Checking Engine Coolant Strength

Check the anti-freeze in the radiator with a tester every year, preferably before off-season storage.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

⚠️ **CAUTION**

To avoid personal injury from hot coolant, do NOT turn radiator cap until engine cools.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. Open the platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
4. Turn radiator cap (A) counterclockwise to the first notch to relieve pressure before removing cap completely.
5. Turn cap (A) again and remove.
6. Check the coolant in the radiator using an antifreeze tester. Tester should indicate protection to temperatures of -34°C (-30°F).
7. Inspect the radiator cap before reinstalling. Refer to Inspecting Radiator Cap, page 331.
8. Reinstall radiator cap (A).
9. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.
10. Close the hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.
Checking Coolant Level

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Check coolant level in the coolant recovery tank daily.

1. Stop the engine, and remove the key.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. Open the platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
4. Ensure coolant recovery tank (A) is one-half full. To add coolant, refer to Adding Coolant, page 336.
5. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.
6. Close the hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.

Figure 5.83: Engine Coolant Tank

Changing Coolant

Coolant should be drained and the system flushed and filled with new coolant every 2000 hours or 2 years. Refer to the following procedures:

- Draining and Cleaning the Coolant Tank, page 333
- Adding Coolant, page 336

Draining and Cleaning the Coolant Tank

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

To avoid personal injury from hot coolant, do NOT turn radiator cap until engine cools.

1. Stop the engine and remove the key. Let the engine cool.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. Open the platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
4. Turn radiator cap (A) to the first notch to relieve pressure before removing cap completely.

IMPORTANT:
Place a drain pan (about 30 liters [8 US gallons] capacity) under the engine and radiator, and use a deflector or hose to prevent coolant running onto frame.

5. Remove the radiator cap and open radiator drain valve (A), located at the bottom of the engine side of the radiator lower tank.

NOTE:
Frame has been removed from illustration for clarity.

6. Close the heater shut-off valve (A) and disconnect hose on heater side of valve.

7. Open valve to drain the block.

8. When system is drained, reattach hose on valve (A).
9. Close radiator drain valve (A) at the bottom of the engine side of the radiator lower tank.

 NOTE:
 Frame has been removed from illustration for clarity.

10. Fill system with clean water through the radiator and replace the radiator cap.

11. Open heater shut-off valve (A).

12. Start engine and turn temperature control knob to HIGH. Run engine until normal operating temperature is reached.

13. Stop the engine and drain water out before rust or sediment settles. Repeat coolant removal procedure.

14. Close drain valves and fill system with a solution of clean water and a heavy duty radiator cleaner. Follow instructions provided with cleaner.

15. After using the cleaner solution, flush system with clean water again. Inspect radiator, hoses, and fittings for leaks.

17. Replace cap (A) on coolant recovery tank (B).

18. Close the platform. Refer to *5.3.2 Closing Platforms (Standard Position), page 289*.

19. Close the hood. Refer to *5.2.4 Closing Hood (Highest Position), page 287*.

Figure 5.87: Radiator Drain Valve

Figure 5.88: Heater Shut-Off Valve

Figure 5.89: Coolant Recovery Tank
Adding Coolant

Check the coolant level in the coolant recovery tank daily. Add coolant if the tank is less than one-half full.

NOTE:
For coolant specifications, refer to the inside back cover of this manual.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION

To avoid personal injury from hot coolant, do NOT turn radiator cap until engine cools.

NOTE:
Do NOT add coolant directly into the radiator except when changing coolant.

To add coolant to the coolant recovery tank, follow these steps:

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. Open the platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
4. Remove cap (A) from coolant recovery tank (B).
5. Add coolant at a rate not exceeding 3 gallons per minute until the recovery tank is one-half full.

CAUTION

Before starting the machine, check to be sure all bystanders have cleared the area.

6. Start engine and run at high idle for approximately 20 minutes or until the engine temperature reaches 85°C (185°F).
7. Check the coolant level again and add coolant until the recovery tank is one-half full.
8. Replace cap (A).
9. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.
10. Close the hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.

![Figure 5.90: Coolant Recovery Tank](image)
Maintaining Engine Cooling Box

The engine cooling box components should be cleaned daily—more frequently in severe dust conditions. Refer to the following list of procedures before attempting to service the engine cooling box components:

- Opening Cooler Box Screen, page 337
- Charge Air Cooling, page 338
- Cleaning Screens and Coolers, page 338
- Cleaning Cooler Box Components, page 339
- Adjusting Screen Cleaner Rotor to Screen Clearance, page 341
- Closing Cooler Box Screen, page 342

Opening Cooler Box Screen

1. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.

2. Push latch (A) and open screen assembly access door (B). Secure with rod, stored inside screen door.

Figure 5.91: Engine Cooling System
Charge Air Cooling

Charge air is routed through a cooler that is located in the cooling box (C), prior to entering the engine intake. The cooler should be cleaned daily with compressed air. Refer to Cleaning Screens and Coolers, page 338 and Cleaning Cooler Box Components, page 339.

Cleaning Screens and Coolers

When the engine is running, two electrically driven rotors and suction from the engine’s cooling fan sweep and vacuum debris away from the cooling box screen. If the screen is not being cleaned, the rotors or ducts may be plugged. Follow these steps to clear plugged rotors:

NOTE:
The following procedure is performed on one side, procedure also applies to the other side.

1. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
2. Remove nuts (B).
3. Pivot screen cleaner assembly (C) away from screen.
4. Blow out debris from cleaner duct (A) with compressed air.
5. If duct is plugged, open the cooler box screen. Refer to Opening Cooler Box Screen, page 337.
6. Blow debris out of duct (A) with compressed air.
7. Clean screen with compressed air.

8. Move screen cleaner assembly (C) back into position and secure with bolts and nuts (B).
9. Check duct (A) clearance to screen. Refer to Adjusting Screen Cleaner Rotor to Screen Clearance, page 341.
10. Close the cooler box screen. Refer to Closing Cooler Box Screen, page 342.
11. Close the hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.

Cleaning Cooler Box Components

The radiator and oil cooler should be cleaned daily with compressed air. More frequent cleaning may be necessary in severe conditions. The charge air cooler and air conditioning (A/C) condenser may also be cleaned at the same time.

To clean these components, proceed as follows:

1. Open cooler box screen. Refer to Opening Cooler Box Screen, page 337.
2. Lift latch (A) and open right access door (B).

3. Slide out the oil cooler / air conditioning (A/C) condenser assembly (A).

4. Lift latch (A) and open left access door (B).
5. Remove wing nut (A) and open access door (B) at top of cooling box.

NOTE:
Fins on coolers can be very easily bent which may interfere with its function. Exercise caution when cleaning.

6. Clean radiator (A) through access hole in cooling box with compressed air.

7. Clean oil cooler / air conditioning condenser (B), charge air cooler (C), cooling box (D), and fuel cooler (E) with compressed air.

8. Inspect all lines and coolers for evidence of leaks and damage.

9. Slide oil cooler / air conditioning condenser (B) back into cooling box (D).

10. Close side access door and lock with lever.

11. Close access door on top of the cooling box and secure with wing nut.

Adjusting Screen Cleaner Rotor to Screen Clearance

The clearance between trailing edge of screen cleaner rotor and screen should be 1–8 mm (0.039–0.314 in.) at all locations when rotating.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine and remove the key.

2. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.
NOTE:
Screen cleaner rotors rotate counterclockwise and may touch screen as long as they continue to rotate.

3. Loosen nut (B) on motor support (C).
4. Move support in or out until duct is 2–6 mm (0.079–0.236 in.) from screen near the center.
5. Tighten nut (B).
6. Loosen the two motor mount bolts (D).
7. Move motor/duct assembly (E) to obtain 1–8 mm (0.039–0.314 in.) gap to screen at full rotation of the rotor.
8. Tighten nuts (D) on motor mount.
9. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

Closing Cooler Box Screen
1. Unhook the support rod and store it in the screen door. Close screen access door (B) and engage latch (A).
2. Close the hood. Refer to 5.2.4 Closing Hood (Highest Position), page 287.
5.8.7 Gearbox

Checking Lubricant Level and Adding Lubricant

⚠️ CAUTION

Park on a flat, level surface with the header on the ground and the ground speed lever in N-DETENT position with the steering wheel locked.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Check the lubricant level every 50 hours as follows:

1. Park the windrower on level ground, shut down engine, and remove key.

2. Remove check plug (A). The lubricant should be visible through the hole or slightly running out.

3. Add lubricant as follows:
 a. Remove breather cap (A) and add lubricant until it runs out the check port. If refilling, add approximately 2.1 liters (2.2 US quarts).
 b. Replace check plug and breather cap and tighten.
 c. Operate the engine at low idle and check for leaks at the check plug and drain plug.
Changing Lubricant

Change gearbox lubricant after the first 50 hours, and then every 500 hours as follows:

![Image of gearbox lubricant drain plug](image1)

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:

The engine should be warm when changing the oil.

1. Stop engine and remove key.
2. Place a 4 liter (1 US gallon) drain pan under the gearbox.
3. Remove drain plug (B) and allow oil to completely finish draining.
4. Install drain plug (B) and remove check plug (A).

5. Add lubricant as follows:
 a. Remove breather cap (A) and add lubricant until it runs out the check port. If refilling, add approximately 2.1 liters (2.2 US quarts).
 b. Replace check plug and breather cap and tighten.
 c. Operate the engine at low idle and check for leaks at the check plug and drain plug.

![Image of gearbox breather cap](image2)
5.8.8 Exhaust System

CAUTION

Engine exhaust stack may be hot. To avoid burns, do NOT touch exhaust canister when engine is running. Allow sufficient cooling time after shut-down.

The exhaust system requires no regular maintenance, but it should be inspected periodically as follows:

1. Open the hood to its highest position. For instructions, refer to 5.2.3 Opening Hood (Highest Position), page 286.

2. Inspect the area around clamps (A) for breakage, cracks, and rust-through. In addition to excess noise, a leaky exhaust system may allow exhaust gases to escape to the cab.

3. Check tubing for dents or crushed areas. Dents or crushed portions of any tubing create exhaust flow restriction and increase back pressure significantly. Even relatively small dents will cause decreased fuel economy and increased turbo wear. If dents are relatively large, increased bearing and cylinder wear will occur due to increased exhaust temperature.

4. Make sure the exhaust system is secured to eliminate vibration. The brackets (B) should fit securely to muffler (C) and to the engine.

IMPORTANT:
Do NOT change muffler type, piping sizes, or exhaust configuration. See your Dealer for proper replacement parts.

5.8.9 Belts

Tensioning Alternator/Fan Belt

The alternator, water pump, and fan belt are automatically tightened. Manual adjustment is NOT required.

Replacing Fan Belt

To replace the fan belt, follow these steps:

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine and remove the key.

2. Open the left platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

3. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.
4. Loosen compressor mounting hardware (B) and push compressor towards engine to release tension.

5. Remove belt (A) from compressor.

6. Insert the drive end of a 1/2 in. drive ratchet wrench into belt tensioner (A).

7. Rotate tensioner clockwise until fan belt (B) can be slipped off pulley (C). Release tensioner and remove wrench.

8. Remove belt in order 1–2–3 as shown. Route fan belt around fan (not shown) and remove belt.

9. Install new belt (B) around fan (not shown) and onto pulleys in order 3–2–1.

10. Insert the drive end of a 1/2 in. drive ratchet wrench into belt tensioner (A).

11. Rotate tensioner clockwise until belt (B) can be slipped onto pulley (C). Release tensioner and remove wrench.

12. Check that belt is properly seated in all pulley grooves.

13. Install new compressor belt (A).

14. Pry compressor away from engine so that a force of 35–55 N (8–12 lbf) deflects belt (A) 5 mm (3/16 in.) at mid-span.

15. Tighten compressor mounting hardware (B).

16. Recheck tension and adjust as required.

17. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

18. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.
MAINTENANCE AND SERVICING

Tensioning Air Conditioner (A/C) Compressor Belt

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine and remove the key.
2. Open the hood. Refer to *5.2.1 Opening Hood (Lower Position), page 284*.
3. Loosen compressor mounting hardware (B).
4. Pry compressor away from engine so that a force of 35–55 N (8–12 lbf) deflects belt (A) 5 mm (3/16 in.) at mid-span.
5. Tighten compressor mounting hardware (B).
6. Recheck tension and adjust as required.
7. Close the hood. Refer to *5.2.2 Closing Hood (Lower Position), page 285*.

[Image: Figure 5.111: A/C Compressor]

Replacing Air Conditioner (A/C) Compressor Belt

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine and remove the key.
2. Open the hood. Refer to *5.2.1 Opening Hood (Lower Position), page 284*.
3. Loosen compressor mounting hardware (B) and push compressor towards engine to release tension.
4. Remove belt (A) from compressor.
5. Install new compressor belt (A).
6. Pry compressor away from engine so that a force of 35–55 N (8–12 lbf) deflects belt (A) 5 mm (3/16 in.) at mid-span.
7. Tighten compressor mounting hardware (B).
8. Recheck tension and adjust as required.
9. Close the hood. Refer to *5.2.2 Closing Hood (Lower Position), page 285*.

[Image: Figure 5.112: A/C Compressor]
5.8.10 Engine Speed

The maximum and idle engine speeds are factory set.

Refer to 2.2 Specifications, page 30 for detailed information. If specified speeds cannot be maintained, see your MacDon Dealer.

IMPORTANT:
Do NOT remove any seals from injector pump. Removal of seals will void the engine warranty.

Refer to Engine Intermediate Speed Control (ISC), page 166 for additional information about engine speed.

Throttle Adjustment

The engine speed is controlled by a throttle lever connected to an electronic sensor inside the console.

The throttle lever in the cab should move the throttle sensor the full range between slow speed stop and full rpm stop without contacting the console at either position.

If the throttle lever is contacting the console and interferes with specified engine speeds, the sensor position may need adjustment. See your MacDon Dealer.
5.9 Electrical System

5.9.1 Preventing Electrical System Damage

To prevent electrical system damage, take the following precautions:

- Carefully observe polarity when attaching booster battery.
- Do NOT short across battery or alternator terminals, or allow battery positive (+) cable or alternator wire to become grounded.
- Be sure alternator connections are correct before cables are connected to battery.
- When welding on any part of the machine, disconnect battery cables and alternator wire. Refer to 1.8 Welding Precautions, page 9.
- Always disconnect battery ground cable when working with the alternator or regulator.
- Never attempt to polarize alternator or regulator.
- If wires are disconnected from the alternator, ensure that terminals (A) and (B) are connected properly.
- Never ground the alternator field terminal or field.
- Never connect or disconnect alternator or regulator wires with battery connected or alternator operating.
- Always disconnect cables from the battery when using a charger to charge battery in windrower.
- Ensure all cables are securely connected before operating engine.
- To avoid damage to circuit boards by static electricity, disconnect negative battery terminal when replacing electronic control modules. Additionally, when handling electronic control modules, avoid touching the connector pins directly.

5.9.2 Battery

Maintaining Batteries

⚠️ CAUTION

Do NOT attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

- Check battery charge once a year, or more often if operating in cold weather. Hydrometer readings should be 1.260 to 1.300. Readings below 1.250 indicate charging is required. Refer to Charging the Batteries, page 350. Add electrolyte if necessary. Refer to Adding Electrolyte to the Battery, page 353.
- Keep batteries clean by wiping with a damp cloth.
MAINTENANCE AND SERVICING

- Keep all connections clean and tight; remove any corrosion and wash terminals with a solution of baking soda and water. A light coating of grease on terminals (after cables are attached) will reduce corrosion.
- To prolong battery life, store batteries in a cool, dry area, in an upright position, fully charged at -7° to +26°C (+20° to +80°F).
- Do NOT stack batteries on top of each other unless they are in cartons.
- Test wet batteries every 4–6 months and recharge if necessary.

Battery Main Disconnect Switch

A battery main disconnect switch (A) is located on the right cab-forward side frame rail, just behind the batteries. It can be easily accessed by moving the maintenance platform.

Ensure the switch is in the POWER OFF position when servicing electrical components and to prevent loss of battery charge when the windrower will not be used for periods longer than one week.

Charging the Batteries

⚠️ CAUTION

- Ventilate the area where batteries are being charged.
- Do NOT charge a frozen battery. Warm to 16°C (60°F) before charging.
- Do NOT connect or disconnect live circuits. To prevent sparks, turn off charger and connect positive cable first. PROTECT YOUR EYES.
- If charging battery in windrower, disconnect POSITIVE battery cable before connecting charger cable, then connect ground cable last, away from battery.
- Stop or cut back charging rate if battery feels hot, or is venting electrolyte. Battery temperature must NOT exceed 52°C (125°F).
- The maximum charge rate in amperes should be NO MORE than 1/3 of the battery’s reserve capacity minute rating. If the terminal voltage exceeds 16.0 volts while charging, reduce the charge rate.
- Continue charging and reduce the rate as needed until a 2-hour period results in no increase in voltage or decrease in current.

WARNING

- Gel and AGM (Absorbed Glass Mat) batteries require a voltage-limited charger. Charging a Gel or AGM battery on a typical shop charger—even one time—may greatly shorten its life.

- If the electrolyte is accessible, verify that plates are covered before beginning to charge. At the end of charge, add distilled water as needed to bring levels to the proper height. If water is added, charge for an additional 30 minutes to mix. If electrolyte levels are low, but battery is not accessible, remove battery from service.

CAUTION

Follow all instructions and precautions furnished by the battery charger manufacturer, including the following:

- Charge at recommended rates and times.
- Turn off charger prior to hook up to avoid dangerous sparks. Wear proper eye protection.
- Reduce charge rate if the terminal voltage is higher than 16.0 volts while charging. The maximum charge rate in amperes should NOT exceed 1/3 of the battery’s reserve capacity minute rating.
- Continue charging if there is no change in voltage or current for a period of two hour and reduce the rate as needed.
- If the battery case gets hot during charging or spews large amount of gasses, temporarily stop charging.

IMPORTANT:

NEVER overcharge batteries. Excessive charging will shorten battery life.

To charge battery, follow these steps:

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Move platform on right cab-forward side of machine to open position to allow access to the batteries. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

30. Charging time depends upon battery capacity, condition, age, temperature, and efficiency of charger.
3. Remove red plastic cover (A) from positive cable clamps.
4. Remove black plastic cover (B) from negative terminals.
5. If charging battery in windrower, disconnect positive battery cable (A), then connect charger cable to positive post. Connect charger ground cable to the engine block last, away from battery.
6. Charge batteries in accordance with charger manufacturer’s instructions.
7. Close platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

Boosting the Batteries

A 12-volt battery can be connected in parallel (+ to +) with the windrower battery. Use heavy-duty battery cables.

⚠️ **CAUTION**

- Gas given off by batteries is explosive. Keep sparks and flames away from batteries.
- Make last connection and first disconnection at the point furthest away from the batteries.
- Wear protective eye-wear when using a booster battery.
- Be sure everyone is clear of machine when starting engine. Start engine from operator’s station only.

1. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.
2. Remove red rubber cover from boost post (A) on windrower frame.
3. Attach one end of battery cable to positive (+) terminal of booster battery, and other end to positive boost post (A) on windrower frame.
4. Attach second cable to negative (-) terminal of booster battery, and then to ground post (B) on windrower frame.
5. Turn ignition switch in cab as with normal start up.
6. After engine starts, disconnect cable from windrower ground first, and then disconnect the other cables.
7. Replace rubber cover on boost post (A).
8. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.
Adding Electrolyte to the Battery

Before servicing batteries, consult the battery manufacturer’s instructions for proper procedures and safety precautions.

⚠️ **CAUTION**

Do not attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

⚠️ **WARNING**

Keep all smoking materials, sparks, and flames away from electrolyte container and battery. Gas given off by electrolyte is explosive.

⚠️ **WARNING**

- Battery electrolyte causes severe burns. Avoid contact with skin, eyes, or clothing. Wear protective eyewear and heavy gloves.
- If electrolyte is spilled or splashed on clothing or on the body, neutralize it immediately with a solution of baking soda and water, then rinse with clean water.
- Electrolyte splashed into the eyes is extremely dangerous. Should this occur, force the eye open, and flood with cool, clean water for 5 minutes. Call a doctor immediately.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
MAINTENANCE AND SERVICING

1. If the batteries are installed in the windrower, stop the engine and remove the key.

2. Open the platform (A) on the right side of the cab. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

3. Add electrolyte in accordance with the battery manufacturer’s instructions.

4. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

Removing Batteries

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Do not attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

1. Stop the engine and remove the key.

2. Open the right cab-forward platform to expose the batteries. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
3. Ensure the battery main disconnect switch (A) is turned to the POWER OFF position (the battery main disconnect switch is located on the right frame rail beside the batteries).

4. Remove bolt (A) that secures the platform arm to the platform. Swing arm (B) out of the way.

5. Remove the black plastic cover from the negative cable clamps (D). Loosen clamps and remove cable from batteries.

6. Remove the red plastic cover from positive cable clamps (C). Loosen the clamps and remove cable from batteries.

7. Remove bolts (E) securing strap (F) to frame, and remove strap.
8. Lift batteries off holder (A).

IMPORTANT:
- Store batteries in a cool, dry area in an upright position.
- **Do NOT** stack batteries on top of each other unless they are in cartons.
- Test wet batteries every 4–6 months and recharge if necessary.

NOTE:
Dual battery support can be removed from frame by simply lifting support, and pulling it away from frame.

Installing Batteries
Replacement batteries must meet the specifications shown in the following table:

Table 5.2 Battery Specification

<table>
<thead>
<tr>
<th>Rating</th>
<th>Group</th>
<th>CCA (min)</th>
<th>Volt</th>
<th>Maximum Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy duty, off-road, vibration resistant</td>
<td>BCI 29H or 31A</td>
<td>750</td>
<td>12</td>
<td>334 x 188 x 232 mm (13.25 x 7.37 x 9.44 in.)</td>
</tr>
</tbody>
</table>

1. Ensure the battery main disconnect switch (A) is turned to the POWER OFF position (the battery main disconnect switch is located on the right frame rail beside the batteries).

2. Open right cab-forward platform to expose batteries. Refer to **5.3.1 Opening Platforms (Standard Position), page 288**

3. Remove cable ties securing battery cables to battery clamp.
4. Position new batteries (G) on dual battery support.
 NOTE:
 Ensure that batteries are positioned so that the positive posts (C) face aft.

5. Install strap (F) with bolts (E).

6. Rotate bar (B) into position and secure with bolt (A).

7. Connect battery cables to positive (C) and negative (D) battery posts. Refer to *Connecting Batteries, page 357*.

8. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

Connecting Batteries

⚠ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop engine and remove key from ignition.

2. Open the right (cab-forward) maintenance platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

3. Ensure the battery main disconnect switch (A) is turned to the POWER OFF position (the battery main disconnect switch is located on the right frame rail beside the batteries).

4. Remove the cable ties securing the battery cables to the battery clamps.

IMPORTANT:

Batteries are negative grounded. Always connect red starter cables to the positive (+) terminals of the batteries and black ground cables to the negative (−) terminals of the batteries. Reversed polarity in the batteries or alternator may result in permanent damage to the electrical system.
5. Remove the plastic caps from the battery posts.

6. Attach the red positive (+) cable terminals to the positive posts (A) on the batteries and tighten clamps. Reposition plastic covers onto clamps.

7. Attach the black negative (−) cable terminals to the negative posts (B) on the batteries and tighten clamps. Reposition plastic covers onto clamps.

8. Turn the battery switch to the POWER ON position.

9. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

5.9.3 Headlights: Engine-Forward

Replacing Headlight Bulb

Replacement bulb: MD #110267 (H4 12V 60/55W)

1. Remove two screws (A) and remove headlight assembly from hood.

2. Pull wiring harness connector off the headlight assembly and remove rubber insulator boot (A).
3. Pinch wire retainer (A) and lift away from hooks.

4. Remove bulb (B) from body.

IMPORTANT:
Do **NOT** touch the glass of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.

5. Align lugs (B) on new bulb with slots (C) in body and push into place.

7. Replace rubber insulator boot (A).

9. Position headlight into light receptacle, ensuring top is up, and secure with screws (A). To align the headlights, refer to Aligning Headlights, page 360.

Aligning Headlights

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:

Header should be attached and raised to maintain proper windrower stance.

1. Position windrower in engine-forward mode on level ground so that headlights are positioned 7.5 m (25 ft.) in front of a vertical surface.
2. Shut down engine and remove key.
3. Turn on ROAD lights (A) and switch to low beam (B).

4. Align the headlights to the following specifications by turning adjusting screws (A).
 - Adjustments are for low beam.
 - Light beams laterally centered on the direction of travel line from the headlights (that is, NOT skewed left or right).
• Upper limit of the beam **NOT** higher than 1263 mm (49-3/4 in.) above ground at a distance of 7.5 m (25 ft.) from the headlight.

![Figure 5.137: Headlight Beam Positioning](image1)

Figure 5.137: Headlight Beam Positioning
- A - 1263 mm (49-3/4 in.) Maximum
- B - 7.5 m (25 ft.)
- C - Top Edge of Beam
- D - Beam Centered on Direction of Travel Line
- E - Ground

5.9.4 Field Lights: Cab-Forward

Adjusting Field Lights

The field lights are best adjusted with the machine in the field (or equivalent) to suit Operator preference.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Hold onto handholds (A) on the cab front corners, and stand on header anti-slip strips.

![Figure 5.138: Windrower Cab-Forward](image2)
2. Adjust lights with screws (A).

Replacing Field Light Bulb

Replacement bulb: MD #110267 (H4 12V 60/55W)

1. Remove two screws (A), and remove light assembly.
2. Replace bulb as described in Replacing Headlight Bulb, page 358.

5.9.5 Floodlights: Forward

Adjusting Forward Floodlights

The forward floodlights are NOT adjustable.

Replacing Bulb in Cab-Forward Flood Light

Replacement bulb: MD #109113 (H3 12V 55W)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Replace bulbs as follows:

1. Shut down engine and remove key. Turn lights OFF.
2. Hold onto handholds (A) on the cab front corners and stand on the header anti-slip strips when removing the forward field lights.

3. Remove two screws (B) and remove light bezel (C).

4. Remove light from receptacle.

5. Pinch wire retainer (A) and lift away from hooks.

6. Remove bulb (B) from body and pull wire from connector (C).

IMPORTANT:
Do NOT touch the glass of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.
7. Match slots on new bulb (B) with lugs (D) in optical unit and insert bulb into unit.
8. Secure bulb with wire retainer (A).
9. Push wire into connector (C).

10. Position light into light receptacle, ensuring top is up and secure with bezel (C) and screws (B).

5.9.6 High-Intensity Discharge (HID) Auxiliary Lighting (Optional – MD #B5596)

Two optional HID lights provide additional lighting during field operation. They operate only in cab-forward mode.

Adjusting High-Intensity Discharge (HID) Auxiliary Lights (if Installed)

If installed, HID auxiliary lights are best adjusted with the machine in the field (or equivalent) to suit Operator preference.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Shut down engine and remove key. Turn lights ON.
2. Loosen bolt (A) and nut (C) (located inside the light/mirror support).
3. Position light (B) to desired position.
4. Tighten bolt and nut.

Figure 5.145: HID Auxiliary Lights

Replacing High-Intensity Discharge (HID) Auxiliary Lights (if Installed)

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

To remove and replace the lamp only, follow these steps:

1. Shut down engine and remove key. Turn lights OFF.

 NOTE:
 Hold onto the handholds (A) on the cab front corners and stand on the header anti-slip strips, or stand on the maintenance platform when accessing the HID auxiliary lights.

Figure 5.146: Cab-Forward Lights
2. Remove the nut, spring washer, and bolt (A) that secure the lamp (B) to lamp bracket (C).
3. Remove lamp (B).
4. Position the new lamp (B) in lamp bracket (C) and secure with bolt (A), spring washer, and nut.
5. Adjust lamp (B) to desired position and tighten bolt (A).

To remove and replace the HID lamp assembly, follow these steps:
6. Disconnect lamp connector (A) from electrical harness (B).
7. Remove grommet (A) from light support (B).
8. Remove nut (C) and spring washer from inside light support (B).
9. Remove the lamp assembly.
10. Locate light in center hole in light support (B) and secure with hardware (C) provided with light assembly.

11. Adjust light assembly to desired position and tighten nut (C).

12. Route lamp harness through grommet (A) and slot in light support (B).

13. Reinstall grommet (A) in light support (B).

14. Connect lamp plug (A) to main harness connector (B).
5.9.7 Floodlights: Rear

Adjusting Rear Floodlights

The rear floodlights are best adjusted with the machine in the field (or equivalent) to suit Operator preference.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down engine and remove key. Turn lights ON.
2. Loosen bolts (A) and (B).
3. Position light to desired position.
4. Tighten bolts (A) and (B).

Replacing Bulb in Rear Flood Light

Replacement bulb: MD #109113 (H3 12V 55W)

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.
2. Remove two screws (A) and remove light bezel (B).
3. Remove light from receptacle.

IMPORTANT:

Do NOT touch the glass of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.
4. Pinch the wire retainer (A) and lift away from hooks.

5. Remove bulb (B) from body and pull wire from connector (D).

6. Match slots on new bulb (B) with lugs (C) in optical unit and insert bulb into unit.

7. Secure bulb with wire retainer (A).

8. Push wire into connector (D).

9. Position light into light receptacle, ensuring top is up.

10. Secure with bezel (B) and screws (A).
5.9.8 Replacing Bulbs in Red and Amber Lights

To replace bulbs in red and amber lights, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.

 NOTE:
 Hold onto handholds (A) on the cab front corners and stand on the header anti-slip strips, or stand on the maintenance platform when accessing the red and amber lights.

2. Remove two screws (A) from lens and remove lens.
3. Push and twist light bulb to remove from socket.
4. Install new bulb in socket ensuring that bulb base is properly engaged in socket.
 - Use Bulb Trade #1157 for red taillights
 - Use Bulb Trade #1156 for amber lights
5. Reinstall lens with screws (B).

![Windrower Cab-Forward](image1)

![Red and Amber Lights](image2)
5.9.9 Replacing Red Taillights

Red taillights are included with the Lighting and Marking for Cab-Forward Road Travel Kit (MD #B5412). To replace the red taillights, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine and remove the key.
2. Turn lights OFF.
3. In the grill of the hood, remove two screws (A) from light (B), and remove light.
4. Remove connector from light.
5. Connect wiring harness to new light (B) and install light with screws (A).

![Figure 5.158: Red Taillights](image)

5.9.10 Replacing the Bulbs in Beacon Lights (If installed)

Beacon warning lights are available as an optional Dealer-installed attachment (MD #B5582).

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

To replace the halogen bulb inside the beacon warning lights, follow these steps:

1. Shut down the engine and remove the key. Turn beacons OFF.

 NOTE:
 Hold onto handholds (B) on the cab front corners and stand on the header anti-slip strips, or stand on the maintenance platform when accessing beacons (A).

![Figure 5.159: Warning Beacons](image)
2. Turn lens (A) counterclockwise to unlock lens from base and remove lens.

3. Pinch retainer (A) and remove it from lamp socket.
4. Pull lamp out of socket.
5. Disconnect harness from lamp.

IMPORTANT:
Do **NOT** touch the glass (A) of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.

6. Connect harness to new lamp, place lamp in socket, and line up the flat side on lamp with recess in socket.
7. Place retainer (A) over lamp and pinch tabs to secure retainer to socket.

8. Line up the three lugs (one is longer) in the base with slots in lens, and seat the lens against the rubber seal.
9. Turn the lens clockwise to lock it in place.

Figure 5.166: Warning Beacon

5.9.11 Replacing a Console Gauge Light

To replace a light inside one of the console gauges, follow these steps:

⚠ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.
2. Remove the appropriate gauge access hole decal (A) behind the operator's console.

Figure 5.167: Operator Console
3. Remove nut (B) securing mounting bracket (C) to gauge inside the console.
4. Pull gauge out from console. It is **NOT** necessary to disconnect the wiring harness from the back of gauge.
5. Twist bulb holder (A) counterclockwise until loose and pull bulb holder from back of gauge.
6. Insert new bulb into gauge and turn clockwise until it locks.
7. Push gauge into console.
8. Locate bracket (C) onto back of gauge and secure with nut (B). Tighten nut.
9. Replace gauge access-hole decal.

5.9.12 Replacing the Cabin Dome Light

To replace a cabin dome light in the headliner switch panel, follow these steps:

1. Remove two screws (A) from the dome light assembly and remove the assembly.
2. Disconnect the old dome light assembly from the wiring harness.
3. Connect the new dome light (MD #183413) to the wiring harness.
4. Install the new dome light with two screws (A).
5.9.13 Replacing the Ambient Light Fixture

To replace the ambient light fixture, follow these steps:

1. Locate ambient light fixture (A) in the roof liner.

![Figure 5.170: Ambient Light Fixture](image1)

2. Push against tabs (A) with a screwdriver and pull ambient light fixture out of cab roof.

3. Remove wires from connectors (B).

4. Connect wires to new light fixture.

5. Push into place in cab roof until tabs hold fixture in place.

![Figure 5.171: Ambient Light Fixture](image2)

5.9.14 Turn Signal Indicators

If the turn signal indicators on the operator console do not function, contact your MacDon Dealer.

5.9.15 Circuit Breakers and Fuses

The circuit breakers and fuses are located inside a fuse box mounted on the right (cab-forward) side of the frame under the platform.

Accessing Circuit Breakers and Fuses

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Access the breakers and fuses as follows:
1. Stop engine and remove key.

2. Move right (cab-forward) side platform rearward. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

3. Remove wing nut (A) and remove fuse box cover (B).

4. A cover may be installed over the circuit breaker. Remove it to access the breaker.

![Figure 5.172: Fuse Box](image)

Checking and Replacing Fuses

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.

2. Open the right (cab-forward) side platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.

4. Refer to the decal on inside of cover for identification of fuses and circuit breakers.

5. To check fuse, pull fuse out of receptacle and visually examine.

6. To replace fuse, insert new fuse into receptacle.

IMPORTANT:

Replacement fuses should match rating on decal shown on Fuse Box Decal, page 381.

7. Reinstall cover and secure with wing nut.

![Figure 5.173: Fuses and Circuit Breakers](image)
Replacing Circuit Breakers and Relays

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Replace breakers and relays as follows:

1. Stop engine and remove key.
2. Move right cab-forward side platform rearward (cab-forward).
4. To replace circuit breaker (A), pull breaker out of receptacle and install new circuit breaker.
5. To replace relay (B), pull relay out of receptacle and install new relay.
6. Reinstall cover and secure with wing nut.

Figure 5.174: Relays and Breakers
Fuse Box Decal

Figure 5.175: Fuse Decal
Inspecting and Replacing 125A Main Fuses

The 125A main fuse holders are located on the frame under the right cab-forward side platform beside the battery.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop engine and remove key.
2. Move right (cab-forward) side platform rearward.
3. To check condition of fuse, pull tab (A) and open cover (B).

4. Visually examine fuse (B) for indications of melting.
5. To remove fuse (B), remove two nuts (C) and pull fuse free from holder (existing wiring may need to be pulled off the stud first).
6. Install new fuse on studs and any existing wiring that was removed.
7. Secure with nuts (C).

Figure 5.176: 125A Main Fuses

Figure 5.177: 125A Main Fuse
8. Close cover (B) and secure with tab (A).

9. Return platform to operating position. Ensure lock engages.
5.10 Hydraulic System

The M205 windrower hydraulic system provides oil pressure for the header lift, the windrower drive, and header drive systems.

⚠️ WARNING

- Avoid high pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines.
- Tighten all connections before applying pressure. Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.

⚠️ WARNING

- Use a piece of cardboard or paper to search for leaks.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

抑郁

IMPORTANT:

Foreign materials such as dirt, dust, and water are the major cause of trouble in the hydraulic system.

If hydraulic system components must be disconnected for service, protect the ends of hoses, tubing, and ports of components from contamination with clean, lint-free towels, or clean plastic bags.

Before installing any replacement hose, flush the inside with unused diesel fuel or unused commercial petroleum cleaning solvent for 10 seconds minimum. Do NOT use water, water soluble cleaners, or compressed air.

The hydraulic system components are built to very close tolerances and have been adjusted at the factory. Do NOT attempt to service these components except to maintain proper oil level, change oil and filters, and to adjust relief pressures as described in this manual.

See your MacDon Dealer for all other service.
5.10.1 Checking and Filling Hydraulic Oil

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Park windrower on level ground and lower header and reel so that lift cylinders are fully retracted.
2. Stop the engine and remove the key.
3. Open the hood. Refer to 5.2.1 Opening Hood (Lower Position), page 284.

NOTE:
A sight glass (A) is provided under the hood on the right side of the tank. It indicates oil level and signs of contamination. No oil in the sight glass indicates oil level is below the add mark on the dipstick.

4. Stand on left (cab-forward side) platform to access the filler pipe.
5. Clean cap (A) and surrounding area.
6. Turn filler cap (A) counterclockwise to unlock cap and remove dipstick.
7. If necessary, add oil to maintain a level between the low (L) and high (H) marks. Refer to inside back cover for hydraulic oil specifications and quantity.

NOTE:
When dipstick is showing low (L), approximately 4 liters (1 US gallon) is required to reach the full (H) mark.

IMPORTANT:
- Use new, good quality, prefiltered clean oil
- Exercise care to prevent debris from falling into tank

8. Reinstall dipstick and filler cap, and turn clockwise to tighten and lock.

9. Close the hood. Refer to 5.2.2 Closing Hood (Lower Position), page 285.

5.10.2 Hydraulic Oil Cooler

The hydraulic oil cooler is located inside the cooling box behind the radiator.

It should be cleaned daily with compressed air. Refer to Cleaning Cooler Box Components, page 339.

5.10.3 Changing the Hydraulic Oil

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Hydraulic oil should be changed every 1500 hours or every 2 years.

To drain hydraulic oil, follow these steps:

1. Park the windrower on level ground, and lower the header and reel so that the lift cylinders are fully retracted.
2. Stop the engine and remove the key.
3. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
4. Place a clean container (at least 75 liters [20 US gallons]) under drain at the bottom of the hydraulic reservoir to collect the oil.
5. Remove drain plug (A) and allow oil to drain.

7. Inspect plug and clean off any metal debris that may have accumulated on magnetic plug. Wipe plug with a clean cloth. Check O-ring condition. Look for cracking, breakage, or deformation that may impede sealing ability and replace as required.

8. Install drain plug (A), torque to 80 Nm (59 lbf·ft).

5.10.4 Changing Hydraulic Oil Filters

Charge Oil Filter

The charge oil filter cleans the oil in the hydraulic charge circuit. The charge circuit replenishes oil losses that occur normally at the motor and pump case drains and associated circuits.

Refer to the following procedures to change the charge oil filter:

- Removing Charge Oil Filter, page 387
- Installing Charge Oil Filter, page 389

Removing Charge Oil Filter

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Stop the engine and remove the key.
2. Clean around head of the filter (A).
3. Place a container beneath the filter to collect any oil that may leak out.
4. Unscrew filter (A) with a filter wrench.
5. Dispose of used oil and filter in accordance with local legislation.

Figure 5.185: Charge Oil Filter
Installing Charge Oil Filter

NOTE:
For charge oil filter replacement part number, refer to 8.2.4 Filter Part Numbers, page 462.

1. Clean the gasket surface of the filter head.
2. Apply a thin film of clean oil to the filter gasket.
3. Screw the new filter (A) onto the mount until the gasket contacts the filter head.
4. Tighten filter an additional 1/2 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install oil filter. Overtightening can damage gasket and filter.

5. Check hydraulic fluid levels and add fluid if needed. Refer to 5.10.1 Checking and Filling Hydraulic Oil, page 385.

Return Oil Filter

The return oil filter filters the oil in the header drive systems and should be changed after the first 50 hours of operation, and then at 500 hour intervals. The return oil filter is a part of the hydraulics package required to run a draper or auger header and is NOT present in a windrower unless this package is installed.

To change the return oil filter, refer to the following procedures:
• Removing Return Oil Filter, page 389
• Installing Return Oil Filter, page 391

Removing Return Oil Filter

The return filter is only installed on windrows that are configured for auger and draper headers.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Stop the engine and remove the key.
2. Open the left cab-forward side maintenance platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
3. Locate return filter (A) next to the manifold.
4. Clean around head filter (A).
5. Place a container beneath filter (A) to collect any oil that may leak out.
6. Unscrew filter (A) with a filter wrench.
7. Dispose of used oil and filter in accordance with local legislation.

NOTE:
Filter head removed to show component clarity.
8. Remove gasket (C) from groove (B) in filter head (A). Filter (D) shown for context.
Installing Return Oil Filter

The return oil filter is only installed on windrowers that are configured for auger and draper headers.

NOTE:
For filter specifications, refer to 8.2.4 Filter Part Numbers, page 462.

1. Clean the gasket groove (B) in the filter head (A).
2. Apply a thin film of clean oil to the filter gasket (C).
3. Install new gasket (C) into the groove (B) in the filter head (A).
4. Screw the new filter (D) onto the filter head until the gasket contacts the filter.

5. Tighten filter (A) an additional 3/4 turn by hand.

IMPORTANT:
Do **NOT** use a filter wrench to install oil filter. Overtightening can damage gasket and filter.

6. Close maintenance platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

7. Check hydraulic fluid levels. Refer to 5.10.1 Checking and Filling Hydraulic Oil, page 385.
Servicing the Lift Filter

The lift filter filters the oil from the header and reel lift hydraulic systems before it returns to the oil reservoir. It should be changed whenever the oil in the hydraulic reservoir is changed.

Refer to the following procedures to change the lift filter:

- Removing Lift Filter, page 392
- Installing Lift Filter, page 393

Removing Lift Filter

Change the lift filter at the same time that the hydraulic oil is changed (1500 hours or every two years).

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop engine and remove key.
2. Open the hood. Refer to 5.2.3 Opening Hood (Highest Position), page 286.
3. Locate lift filter (A) below the hydraulic oil reservoir.
4. Place a container underneath the filter to catch any oil that may leak.

NOTE:

If replacing the filter between oil changes, apply a vacuum to the supply tank to prevent the oil from running out of the filter head when the filter is removed.

5. Clean around head of the filter to prevent contamination.

6. Unscrew the filter (A) with a filter wrench.
7. Remove gasket (C) from groove (B) in filter head (A).
Installing Lift Filter

NOTE:
To view filter specifications, refer to 8.2.4 Filter Part Numbers, page 462.

1. Clean gasket groove (B) in filter head (A).
2. Apply a thin film of clean oil to filter gasket (C).
3. Install new gasket into groove (B) in filter head (A).
4. Screw new filter (D) onto the filter head until the gasket contacts the filter.

5. Tighten filter (A) an additional 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install oil filter. Overtightening can damage gasket and filter.
5.10.5 Header and Reel Hydraulics

Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

⚠️ **WARNING**

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.
- Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure.
- Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.

⚠️ **WARNING**

- Use a piece of cardboard or paper to search for leaks.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a Doctor familiar with this type of injury or gangrene may result.

IMPORTANT:

- Keep hydraulic coupler tips and connectors clean. Dust, dirt, water, and foreign material are the major causes of hydraulic system damage.
- **DO NOT** attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.

Relief Valve and Overload Settings

Pressure relief valves are preset. Relief points (windrower differential relief setting) vary depending on the attached header model, size, and options. Refer to Table 5.3, page 395.

If pressure at the main piston pump relief valve reaches the relief setting, the valve opens—producing a high pitch sound. To decrease the load on the system, reduce ground speed.

An optional load sensor (**7.1.5 Pressure Sensor Kit, page 443**) may be installed to monitor system pressure. When the pressure approaches an overload condition, the cab display module (CDM) produces a warning tone and a flashing pressure reading. If the warning is ignored, the load will continue to rise which causes the relief valve to
open at the relief setting. Otherwise, reduce the ground speed to maintain the correct system load and header drive operation.

The overload pressure is programmed into the CDM when inputting the header parameters. Refer to 3.19.6 Cab Display Module (CDM) Configuration, page 90 and Table 5.3, page 395 for suggested settings.

If lift and drive capacity problems develop, the pressure relief valve may require adjusting. Contact your MacDon Dealer.

Table 5.3 Relief Valve and Overload Settings

<table>
<thead>
<tr>
<th>Header Model</th>
<th>Application/System</th>
<th>Windrower Differential Relief Setting (Header Attached) kPa (psi)</th>
<th>Suggested Overload Warning Setting kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R80 and R85</td>
<td>Disc Pressure</td>
<td>37,921 (5500)</td>
<td>37,232 (5400)</td>
</tr>
<tr>
<td>D60, D65, and A40D</td>
<td>Reel/Draper Pressure</td>
<td>19,995 (2900)</td>
<td>19,995 (2900)</td>
</tr>
<tr>
<td></td>
<td>Knife/Conditioner Pressure</td>
<td>27,579 (4000)</td>
<td>27,579 (4000)</td>
</tr>
</tbody>
</table>

Flow Control Blocks

Two hydraulic valve blocks with multiple cartridges are used for the various windrower functions and are controlled by the windrower control module (WCM) according to the inputs from the Operator. The valve blocks are located behind the left cab-forward side platform.

The valve blocks do not require any scheduled maintenance other than to check for leaking fittings or loose electrical connections. If service is required, contact your MacDon Dealer.
Adjusting Header Drop Rate

The header should lower gradually when the lower header switch is pressed. From fully raised to ground position, it should take approximately 3–4 seconds.

IMPORTANT:
Drop rate should **NOT** be less than 3–4 seconds as structural damage may result.

NOTE:
If drop rate is too slow (over 30 seconds), return to cut height, tilt, or float presets will deactivate to prevent overheating the hydraulic system.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower header to ground, stop the engine, and remove the key.
2. Open left cab-forward side platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
3. Loosen inner knob (B) on needle valve, and refer to the following options:
 - Turn outer knob (A) clockwise to decrease the drop rate
 - Turn outer knob (A) counterclockwise to increase the drop rate
4. Tighten inner knob (B).
5. Check the drop rate and readjust as required.
6. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

Adjusting Reel Drop Rate

The reel should lower gradually when the lower reel switch is pressed. From fully raised to fully lowered should take approximately 3–4 seconds. Drop rate is a customer preference and will vary based on crop type and cutting condition.

IMPORTANT:
Drop rate should **NOT** be less than 3–4 seconds as structural damage may result.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower header to ground, stop the engine, and remove the key.
2. Open the left cab-forward side maintenance platform. Refer to 5.3.1 Opening Platforms (Standard Position), page 288.
3. Locate valve (A) that controls the reel drop rate, installed at port D on the manifold.

NOTE:
This valve is installed on draper-ready windrowers and only affects draper headers.

4. Loosen setscrew (B), then refer to the following options:
 - Turn cap (C) clockwise to decrease the drop rate.
 - Turn cap (C) counterclockwise to increase the drop rate.

5. Check the drop rate and adjust as required.

6. Tighten setscrew (B).

NOTE:
To reset to factory specifications, fully close the needle valve and open it four turns counterclockwise.

7. Close the platform. Refer to 5.3.2 Closing Platforms (Standard Position), page 289.

5.10.6 Traction Drive Hydraulics

The windrower transmission consists of two variable-displacement axial-piston hydraulic pumps—one for each drive wheel.

The pumps are driven through a gearbox from the engine. Each pump requires charge flow in order to
 - Make up for internal leakage
 - Maintain positive pressure in the main circuit
 - Provide flow for cooling
 - Replace any leakage losses from external valving or auxiliary systems

The charge pressure is monitored. The cab display module (CDM) sounds a tone and displays a flashing warning if charge pressure drops below 1725 kPa (250 psi). Refer to Display Warnings and Alarms, page 87.

Checking Transmission Oil Pressure

IMPORTANT:
Rated charge pressure MUST be maintained under all conditions of operation to prevent damage to the transmission.

If the TRANS OIL PRESSURE warning is displayed, shut down the engine, and proceed as follows:

1. Check the hydraulic fluid level in the tank. Refer to 5.10.1 Checking and Filling Hydraulic Oil, page 385.
2. Check the hoses and lines for leakage.
3. Check the charge pressure relief valve. Refer to Checking Charge Pump Pressure, page 398.
4. If charge pressure still cannot be maintained, do NOT operate the windrower. Contact your MacDon Dealer.
Checking Charge Pump Pressure

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Incorrect charge pressure settings may result in the inability to build required system pressure and/or inadequate loop flushing flows.

Correct charge pressure **MUST** be maintained under all conditions to maintain pump control performance and to operate the brake release.

Check charge pump pressure as follows:

1. Open hood fully. Refer to **5.2.3 Opening Hood (Highest Position), page 286**.
2. Attach a 0–4000 kPa (600 psi) pressure gauge to a hose that is long enough to allow pressure gauge to be read from the operator’s seat.
3. Locate test port (A) on the charge filter head. Clean the test port fitting, and then attach hose to the fitting.
4. Start engine, and leave at idle. Pressure should be 1862–2068 kPa (270–300 psi) with the hydraulic oil at 40°C (100°F) minimum.
5. Make note of the reading and shut down the windrower.
6. If pressure is **NOT** within this range, contact your MacDon Dealer.
7. If pressure is within range, remove the hose from the test port and close the hood. Refer to **5.2.4 Closing Hood (Highest Position), page 287**.

![Figure 5.201: Charge Pump Test Port](image)
5.11 Wheels and Tires

5.11.1 Drive Wheels

Inflating Drive Wheel Tire

⚠️ DANGER

- Use a safety cage if available.
- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- NEVER install a tube in a cracked wheel rim.
- NEVER weld a wheel rim.
- Do NOT exceed maximum inflation pressure as per label on tire.
- Make sure all the air is removed from a tire before removing the tire from the rim.

⚠️ DANGER

- NEVER use force on an inflated or partially inflated tire. Make sure the tire is correctly seated before inflating to operating pressure.
- Do NOT remove, install, or make repairs to a tire on a rim unless you have the proper equipment and experience to perform the job. Take the tire and rim to a qualified tire repair shop.
- If the tire is NOT in the correct position on the rim or if overinflated, the tire bead can loosen on one side, causing air to leak at high speed and with great force. An air leak of this nature can thrust the tire in any direction, endangering anyone in the area.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Visually check daily that tires have not lost pressure. Adjust pressure as required. Underinflated drive tires can cause sidewall cracks. Check tire pressure every year.

Maintain tire pressure as follows:

1. Shut down the engine and remove key.
2. Determine the type and size of tire that is installed on your machine.
3. Refer to the following table to determine the appropriate tire pressure:

Table 5.4 Drive Wheel Tire Options (Ten Bolt)

<table>
<thead>
<tr>
<th>18.4-26 Bar</th>
<th>600-65 R28 Bar</th>
<th>18.4-26 Turf</th>
<th>23.1-26 Turf</th>
</tr>
</thead>
<tbody>
<tr>
<td>317 kPa (46 psi)</td>
<td>241 kPa (35 psi)</td>
<td>317 kPa (46 psi)</td>
<td>234 kPa (34 psi)</td>
</tr>
</tbody>
</table>
4. Adjust tire pressure as required.

IMPORTANT:
Check maximum inflation rating on tire sidewall. Do **NOT** exceed recommendation on tire.

Tightening Drive Wheel Nuts

At first use, or when a wheel is removed, torque drive wheel nuts after 1 hour of operation. Continue with torque procedure every hour until two consecutive checks produce no movement of the nuts.

IMPORTANT:

- To avoid damage to wheel rims and studs, tighten nuts by hand, do **NOT** use an impact gun, do **NOT** use lubricant or Never-Seez® compound, and do **NOT** overtighten wheel nuts.
- Ensure only the manufacture’s specified wheel nuts are used.

1. Follow these steps to tighten the drive wheel nuts:
2. Tighten drive wheel nuts (A). Ensure nuts and studs are dry with no lubricant or Never-Seez® compound. Torque each to 510 Nm (375 lbf·ft) using the tightening sequence shown at right.
3. Repeat tightening sequence two additional times at specified torque.
4. Repeat torque procedure every hour until two consecutive checks produce no movement of the nuts.

![Figure 5.203: Wheel Nut Tightening Sequence](image)

Lubricating Wheel Drive

Refer to these procedures to lubricate the wheel drive.

- **Checking Wheel Drive Lubricant Level, page 400**
- **Adding Wheel Drive Lubricant, page 401**
- **Changing Wheel Drive Lubricant, page 402**

Checking Wheel Drive Lubricant Level

Check the wheel drive lubricant level every 250 hours or annually.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Park on a flat, level surface with the header on the ground and the ground speed lever in N-DETENT position with the steering wheel locked.
1. Park the windrower on level ground.

2. Position windrower so plugs (A) and (B) are horizontally aligned with the center (C) of the hub.

3. Stop the engine, and remove the key.

4. Remove plug (A) or (B). The lubricant should be visible through the port or running out slightly. If lubricant needs to be added, refer to *Adding Wheel Drive Lubricant, page 401*.

 NOTE:
 The type of lubricant used after the first lubricant change is different from the factory supplied lubricant.

5. Reinstall plugs and tighten.

Adding Wheel Drive Lubricant

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Park on a flat, level surface with the header on the ground and the ground speed lever in N-DETENT position with the steering wheel locked.

IMPORTANT:

Do **NOT** mix lubricants of different brands or characteristics.

1. Rotate the wheel drive so plugs (A) and (B) are horizontal with the center of the hub (C).

2. Stop windrower and remove key from ignition.

3. Remove the two plugs (A) and (B). The oil should be visible through the hole, or slightly running out.

4. If lubricant needs to be added, remove the second plug (B), and add lubricant until lubricant runs out at location (A). Refer to inside back cover.

 NOTE:
 The type of lubricant used after first lubricant change is different from factory supplied lubricant.

5. Reinstall and tighten plugs (A) and (B).

6. Start up and operate the windrower for a few minutes, then stop and check the oil level. If necessary, add more oil.
Changing Wheel Drive Lubricant

The wheel drive lubricant should be changed after the first 50 hours and then changed after every 1000 hours. Change the lubricant when it is warm.

Check the level every 200 hours or annually.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Park on a flat, level surface with the header on the ground and the ground speed lever in N-DETENT position with the steering wheel locked.

1. Park windrower on level ground and position windrower so that one of the drain plugs (A) or (B) is at the lowest point on the drive wheel hub.
2. Shut down the windrower and remove key from ignition.
3. Place a container that can contain at least 2 liters (2 quarts) under the lower drain plug (B).
4. Remove both plugs (A) and (B), and drain lubricant into container.

⚠️ CAUTION

Dispose of oil in a manner that complies with local rules and regulations.

5. After the lubricant has drained completely, start the windrower and position it so that ports (A) and (B) on wheel are level with the center of the hub (C) as shown.
6. Shut down the windrower and remove the key from the ignition.
7. Add lubricant. Refer to Adding Wheel Drive Lubricant, page 401.
Servicing Drive Wheel

To service a drive wheel, refer to the following procedures:

- Raising Drive Wheel, page 403
- Removing Drive Wheel, page 404
- Installing Drive Wheel, page 405
- Lowering Drive Wheel, page 406

Raising Drive Wheel

This procedure can be used on both drive wheels.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Header MUST be removed and NO weight box installed. Use a hydraulic jack with minimum lifting capacity of 2268 kg (5000 lb.) to provide adequate support for the machine.

1. Remove the header.
2. Park windrower on level ground and block all wheels.
3. Place ground speed lever (GSL) (A) in N-DETENT (B), shut down engine, and remove key.

Figure 5.208: Ground Speed Lever
4. Place a jack under leg jack point (A), and raise the drive wheel until it is slightly off the ground. Place a jack stand beneath lift cylinder mount (B).

NOTE:
Do NOT place jack stand under the cylinder. Use a small metal plate on top of the jack stand.

5. Lower the windrower onto the jack stand.

Removing Drive Wheel

CAUTION

Use a suitable lifting device capable of supporting a minimum of 907 kg (2000 lb.) to lift the wheel assembly away from the windrower.

1. Raise windrower drive wheel (A) off the ground. Refer to *Raising Drive Wheel, page 403.*
2. Remove wheel nuts (B).
3. Use a suitable lifting device to remove drive wheel (A).
Installing Drive Wheel

CAUTION

Use a suitable lifting device capable of supporting a minimum of 907 kg (2000 lb.) to lift the wheel assembly away from the windrower.

1. Position drive wheel (A) against wheel drive hub (B) so air valve (C) is on the outside and tire tread (D) points in cab-forward direction.

 NOTE:
 For turf tires (diamond tread), be sure arrow on sidewall points in cab-forward rotation.

2. Lift wheel onto hub using a suitable lifting device.

3. Remove the lifting device.

4. Line up the holes in the rim with the studs on the wheel drive hub and install wheel nuts (A).

 IMPORTANT:
 To avoid damage to wheel rims and studs, tighten nuts by hand. Do **NOT** use an impact gun, do **NOT** use lubricant or Never-Seez® compound, and do **NOT** overtighten wheel nuts.

5. Torque drive wheel nuts. Refer to *Tightening Drive Wheel Nuts, page 400.*

6. Lower the windrower, and remove jack. Refer to *Lowering Drive Wheel, page 406.*
Lowering Drive Wheel

This procedure is for lowering the drive wheel when it is raised on a jack stand. This procedure can be used on both drive wheels.

⚠️ CAUTION

Jack stand must be capable of supporting a minimum of 2268 kg (5000 lb.).

1. Place a jack under leg jack point (A), and raise the drive wheel slightly off the jack stand.
2. Remove the jack stand from under cylinder lift mount (B), and lower the drive wheel to the ground.
3. Remove the jack.

5.11.2 Caster Wheels

Inflating Caster Tire

⚠️ DANGER

- Do NOT exceed maximum inflation pressure as per label on tire.
- Use a safety cage if available.
- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- NEVER install a tube in a cracked wheel rim.
- NEVER weld a wheel rim.
- Make sure all the air is removed from a tire before removing the tire from the rim.
DANGER

- NEVER use force on an inflated or partially inflated tire. Make sure the tire is correctly seated before inflating to operating pressure.
- Do NOT remove, install, or make repairs to a tire on a rim, unless you have the proper equipment and experience to perform the job. Take the tire and rim to a qualified tire repair shop.
- If the tire is NOT in the correct position on the rim or if too full of air, the tire bead can loosen on one side, causing air to leak at high speed and with great force. An air leak of this nature can thrust the tire in any direction, endangering anyone in the area.
- To avoid severe personal injury or death caused by machine runaway, shut off engine and remove key before performing any of the following checks and/or adjustments.

Check tire pressure every year. Caster tire pressure should be 69 kPa (10 psi).

To maintain pressure, visually check daily that tires have not lost pressure, and adjust pressure as needed. Underinflation of tires can cause sidewall cracks.

NOTE:
If caster wheels shimmy, a possible cause is overinflation.

Table 5.5 Caster Tire Options

<table>
<thead>
<tr>
<th>Formed Caster</th>
<th>Forked Caster</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5–16SL single rib, 10–16 front steer tire</td>
<td>16.5L–16.1 rib implement flotation, 10–16 front steer tire</td>
</tr>
<tr>
<td>69 kPa (10 psi)</td>
<td>69 kPa (10 psi)</td>
</tr>
</tbody>
</table>

Tightening Caster Wheel Nuts

At first use or when a wheel is removed, check wheel nut/bolt torque every 15 minutes on the road or 1 hour in the field until the specified torque is maintained.

Once specified torque is maintained, check wheel nut/bolt torque after 10 and 50 hours (field or road operation) and then at 200 hour intervals thereafter.

To tighten the caster wheel nuts on either forked or formed caster wheels, follow these steps:

1. Position wheel assembly on hub and install wheel bolts (A).
2. Tighten wheel nuts (A) to 163 Nm (120 lbf·ft) using the tightening sequence for the type of caster wheel shown in the illustrations at right. Repeat the tightening sequence three times.

![Figure 5.215: Forked Caster Wheel Nut Tightening Sequence](image)
NOTE:
Wheel bolt (A) tightening sequence for a formed caster wheel (B) shown in Figure 5.216, page 408.

Servicing Caster Wheels

Refer to the following procedures:

* Raising Caster Wheel (Formed and Forked), page 408
* Lowering Caster Wheel (Formed and Forked), page 410
* Removing Forked Caster Wheel, page 410
* Installing Forked Caster Wheel, page 411
* Removing Formed Caster Wheel, page 412
* Installing Formed Caster Wheel, page 412

Raising Caster Wheel (Formed and Forked)

This procedure is the same for forked and formed caster wheels.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
Jack stand must be capable of supporting a minimum of 2268 kg (5000 lb.).

1. Park windrower on level ground and block the drive wheels.
2. Place the ground speed lever (GSL) in N-DETENT (A), stop the engine, and remove the key.

3. Raise the end of walking beam (A) until the caster wheel assembly (B) is slightly off the ground. Use a suitable lifting device, capable of lifting 2268 kg (5000 lb.) minimum.

4. Place a jack stand beneath the walking beam and lower the beam until resting on the stand.
Lowering Caster Wheel (Formed and Forked)

This procedure is for lowering the caster wheel when it is raised on a jack stand. This procedure is the same for forked and formed caster wheels.

⚠️ CAUTION

Jack stand must be capable of supporting a minimum of 2268 kg (5000 lb.).

1. Raise the end of walking beam (A) slightly, using a suitable lifting device capable of lifting minimum 2268 kg (5000 lb.).
2. Remove the jack stand and lower the end of the walking beam until the caster wheel assembly (B) is on the ground.

Removing Forked Caster Wheel

⚠️ CAUTION

Wheel assemblies are heavy. Support wheel assembly before removing axle bolts.

1. Raise caster wheel. Refer to Raising Caster Wheel (Formed and Forked), page 408.
2. Remove the eight bolts (A) (four on each side of caster) attaching axle (B) and cover (C) to forked caster (E), and remove wheel assembly (D) from caster (E).
3. Remove the eight wheel nuts (A) that secure axle (B) to wheel (C).
4. Separate axle (B) and wheel (C).

Installing Forked Caster Wheel

⚠️ CAUTION

Wheel assemblies are heavy. Support wheel assembly before removing axle bolts.

1. Position wheel assembly (C) on axle assembly (B) and install wheel nuts (A).

3. Position wheel assembly (D) in forked caster (E).
4. Position cover plates (C) and install eight bolts (A) (four on each side of caster) to secure axle (B) to caster (E). Torque bolts to 97–107 Nm (75–79 lbf·ft).
5. Lower caster wheel. Refer to Lowering Caster Wheel (Formed and Forked), page 410.
Removing Formed Caster Wheel

⚠️ **CAUTION**

Wheel assemblies are heavy. Support wheel assembly before removing axle bolts.

1. Raise caster wheel. Refer to *Raising Caster Wheel (Formed and Forked), page 408.*
2. Remove the six bolts (A) that secure wheel (B) to the hub.
3. Remove wheel (B).

![Figure 5.224: Formed Caster Wheel](image1)

Installing Formed Caster Wheel

⚠️ **CAUTION**

Wheel assemblies are heavy. Support wheel assembly before removing axle bolts.

1. Position wheel assembly (B) on hub, and install six wheel bolts (A).
2. Refer to the tightening sequence at right and torque bolts (A) to 163 Nm (120 lbf·ft).
3. Lower caster wheel. Refer to *Lowering Caster Wheel (Formed and Forked), page 410.*

![Figure 5.225: Formed Caster Wheel](image2)
Tightening Caster Wheel Anti-Shimmy Dampeners

Each caster is equipped with a fluid-filled anti-shimmy dampener (A).

The mounting bolts (B) need to be checked periodically for security. Refer to [5.12 Maintenance Schedule, page 415](#).

- Inboard bolt should be tightened to 135 Nm (100 lbf·ft)
- Outboard bolt should be tightened to 115 Nm (85 lbf·ft)

Ballast Requirements

Fluid ballasting of rear caster tires is recommended to provide adequate machine stability when using large headers on the windrower. The stability of the machine varies with different attachments, windrower options, terrain, and the operator’s driving technique.

Ballast capability per tire is at a maximum fill of 75%, or when fluid is level with valve stem when the stem is positioned at 12 o’clock. Fluid can be added to any level up to maximum fill. Always add an equal amount of fluid on both sides.

Table 5.6 Fluid Capacity and Ballast Weight

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Fluid per Tire at 75% Fill Liters (US Gallons)</th>
<th>Total Weight of Both Tires kg (lb.)(^{31})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5 X 16</td>
<td>38 (10)</td>
<td>91 (200)</td>
</tr>
<tr>
<td>10 X 16</td>
<td>69 (18)</td>
<td>170 (380)</td>
</tr>
<tr>
<td>16.5 X 16.1</td>
<td>158 (41)</td>
<td>377 (830)</td>
</tr>
</tbody>
</table>

\(^{31}\) Weights are given for typical calcium chloride and water mixtures. Weight is reduced by 20% if only water is used (for areas that do not require anti-freeze protection).
Table 5.6 Fluid Capacity and Ballast Weight (continued)

Table 5.7 Recommended Ballast Weight

<table>
<thead>
<tr>
<th>Header Description</th>
<th>Recommended Ballast</th>
<th>Recommended Tire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level Ground</td>
<td>Hills</td>
</tr>
<tr>
<td></td>
<td>Per Tire</td>
<td>Both Tires</td>
</tr>
<tr>
<td>Size</td>
<td>liters (US Gal)</td>
<td>kg (lb.)</td>
</tr>
<tr>
<td>A Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.5 x 16</td>
<td>10 x 16</td>
</tr>
<tr>
<td>R Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>7.5 x 16</td>
<td>10 x 16</td>
</tr>
<tr>
<td>D Series and D1 SP Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6 m (25 ft.) and smaller</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.1 m (30 ft.) single or double reel without conditioner</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.6 m (35 ft.) single reel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1 m (30 ft.) double reel steel fingers and conditioner</td>
<td>69 (18)</td>
<td>170 (380)</td>
</tr>
<tr>
<td>10.6 m (35 ft.) double reel (5 or 6-bat)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>115 (30)</td>
<td>288 (630)</td>
</tr>
</tbody>
</table>

MAINTENANCE AND SERVICING
5.12 Maintenance Schedule

The Maintenance Schedule specifies the recommended periodic maintenance procedures and service intervals. Regular maintenance is the best insurance against early wear and untimely breakdowns. Follow this schedule to maximize machine life.

For detailed instructions, refer to the various procedures in this chapter. Use the fluids and lubricants specified in 8.2 Recommended Fuel, Fluids, and Lubricants, page 460.

Service Intervals: The recommended service intervals are in hours of operation. Where a service interval is given in more than one time frame, for example 100 hours or annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operated under adverse conditions (severe dust, extra heavy loads, etc.).

⚠️ **CAUTION**

Carefully follow safety messages given in 1 Safety, page 1.

5.12.1 Maintenance Schedule/Record

Windrower Serial Number: ________________

Combine this record with the record in the header operator’s manual. Make copies of this page to continue the record.

<table>
<thead>
<tr>
<th>Action: ✓ Check ▲ Lubricate ▲ Change ● Clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Hour meter reading</td>
</tr>
<tr>
<td>✓ Service date</td>
</tr>
<tr>
<td>✓ Serviced by</td>
</tr>
</tbody>
</table>

Preseason or Annual. Refer to 4.3.3 Preseason Checks / Annual Service, page 162.

First hour

✓ Drive wheel nuts

Refer to Tightening Drive Wheel Nuts, page 400.

First 5 hours

✓ A/C compressor belt

Refer to Tensioning Air Conditioner (A/C) Compressor Belt, page 347.

✓ Caster wheel nuts

Refer to Tightening Caster Wheel Nuts, page 407.

✓ Caster wheel anti-shimmy dampener bolts. Refer to Tightening Caster Wheel Anti-Shimmy Dampeners, page 413.

✓ Walking beam width adjustment bolts

32. Begins from first use of machine.
MAINTENANCE AND SERVICING

Action: ✓ Check ▲ Lubricate ▲ Change ● Clean

Refer to 4.3.7 Adjusting Caster Tread Width, page 177.

First 10 hours

<table>
<thead>
<tr>
<th>✓ Walking beam width adjustment bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to 4.3.7 Adjusting Caster Tread Width, page 177.</td>
</tr>
</tbody>
</table>

Neutral adjustment

Every 10 hours or daily

- A/C condenser
 - Refer to Cleaning Cooler Box Components, page 339.
- Charge air cooler
 - Refer to Cleaning Cooler Box Components, page 339.
- Engine oil level
 - Refer to Checking Engine Oil Level, page 313.
- Engine coolant level
 - Refer to Checking Coolant Level, page 333.
- Fuel tank
 - Refer to Filling the Fuel Tank, page 167.
- Fuel filter water trap
 - Refer to Removing Water from Fuel System, page 329.
- Hydraulic hoses and lines
 - Refer to Hoses and Lines, page 394.
- Hydraulic oil cooler
 - Refer to 5.10.2 Hydraulic Oil Cooler, page 386.
- Hydraulic oil level
 - Refer to 5.10.1 Checking and Filling Hydraulic Oil, page 385.
- Radiator
 - Refer to Maintaining Engine Cooling Box, page 337.
- Tire inflation
 - Refer to Inflating Drive Wheel Tire, page 399.

First 50 hours

| ✓ Hose clamps: air intake/radiator/ |

33. Begins from first use of machine.
34. Dealer adjusted.
35. A record of daily maintenance is not normally required but is at the Owner/Operator’s discretion.
MAINTENANCE AND SERVICING

Action: ✓ Check ⬆ Lubricate ▲ Change ● Clean

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>heater/hydraulic36. Refer to specific hose clamp section.</td>
<td></td>
</tr>
<tr>
<td>Walking beam width adjustment bolts</td>
<td></td>
</tr>
<tr>
<td>Refer to 4.3.7 Adjusting Caster Tread Width, page 177.</td>
<td></td>
</tr>
<tr>
<td>Caster wheel anti-shimmmy dampener bolts (if installed). Refer to</td>
<td></td>
</tr>
<tr>
<td>Tightening Caster Wheel Anti-Shimmmy Dampeners, page 413.</td>
<td></td>
</tr>
<tr>
<td>Main gearbox oil</td>
<td></td>
</tr>
<tr>
<td>Refer to Changing Lubricant, page 344.</td>
<td></td>
</tr>
<tr>
<td>Drive wheel lubricant</td>
<td></td>
</tr>
<tr>
<td>Refer to Changing Wheel Drive Lubricant, page 402.</td>
<td></td>
</tr>
<tr>
<td>Charge system oil filter (if applicable)</td>
<td></td>
</tr>
<tr>
<td>Refer to Charge Oil Filter, page 387.</td>
<td></td>
</tr>
<tr>
<td>Return oil filter</td>
<td></td>
</tr>
<tr>
<td>Refer to Return Oil Filter, page 389.</td>
<td></td>
</tr>
<tr>
<td>Every 50 hours33</td>
<td></td>
</tr>
<tr>
<td>Cab fresh air intake filter</td>
<td></td>
</tr>
<tr>
<td>Refer to Inspecting and Cleaning Fresh Air Filter Element, page 304.</td>
<td></td>
</tr>
<tr>
<td>Caster pivots</td>
<td></td>
</tr>
<tr>
<td>Refer to 5.4.2 Lubrication Points, page 294.</td>
<td></td>
</tr>
<tr>
<td>Forked caster spindle bearings</td>
<td></td>
</tr>
<tr>
<td>Refer to 5.4.2 Lubrication Points, page 294.</td>
<td></td>
</tr>
<tr>
<td>Gearbox oil level</td>
<td></td>
</tr>
<tr>
<td>Refer to Checking Lubricant Level and Adding Lubricant, page 343.</td>
<td></td>
</tr>
<tr>
<td>Top lift link pivots</td>
<td></td>
</tr>
<tr>
<td>Refer to 5.4.2 Lubrication Points, page 294.</td>
<td></td>
</tr>
<tr>
<td>Walking beam center pivot37</td>
<td></td>
</tr>
<tr>
<td>Once a year38 39</td>
<td></td>
</tr>
<tr>
<td>A/C blower</td>
<td></td>
</tr>
<tr>
<td>Refer to Air Conditioning (A/C) Compressor Coolant Cycling, page 163.</td>
<td></td>
</tr>
<tr>
<td>Antifreeze concentration</td>
<td></td>
</tr>
<tr>
<td>Refer to Checking Engine Coolant Strength, page 332.</td>
<td></td>
</tr>
</tbody>
</table>

36. Hand-tighten unless otherwise noted.
37. 2014 and previous.
38. Begins from first use of machine.
39. It is recommended that annual maintenance be done prior to start of operating season.
MAINTENANCE AND SERVICING

<table>
<thead>
<tr>
<th>Action: ☑ Check ◊ Lubricate ▲ Change ◼ Clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery charge</td>
</tr>
<tr>
<td>Refer to Maintaining Batteries, page 349.</td>
</tr>
<tr>
<td>Battery fluid level</td>
</tr>
<tr>
<td>Refer to Charging the Batteries, page 350.</td>
</tr>
<tr>
<td>▲ Fuel tank vent line filter</td>
</tr>
<tr>
<td>Refer to Replacing Fuel Tank Vent Filter, page 323.</td>
</tr>
<tr>
<td>Steering linkages</td>
</tr>
<tr>
<td>Refer to Checking Steering Link Pivots, page 298.</td>
</tr>
</tbody>
</table>

Every 100 hours or once a year

| Cab air return filter |
| Refer to *Cleaning Return Air Cleaner/Filter, page 306.* |
| Cab suspension limit straps |
| Refer to *5.6 Cab Suspension Limit Straps, page 302.* |

Every 250 hours or once a year

| Engine oil and filter |
| Refer to *Changing Engine Oil, page 315.* |
| Engine air cleaner primary filter element |
| Refer to *Removing Primary Air Filter, page 318* and *Installing Primary Air Filter, page 320.* |
| Formed caster wheel hub bearings |
| Refer to *5.4.2 Lubrication Points, page 294.* |
| Drive wheel lubricant |
| Refer to *Checking Wheel Drive Lubricant Level, page 400.* |

Every 500 hours or once a year

| Fuel filters |
| Refer to *Maintaining Fuel Filters, page 324.* |
| Gearbox lubricant |
| Refer to *Changing Lubricant, page 344.* |
| Charge system and return oil filters |
| Refer to *5.10.4 Changing Hydraulic Oil Filters, page 387.* |
| Safety systems |
| Refer to *5.5.2 Safety Systems, page 295.* |

40. Begins from first use of machine, whichever occurs first.
41. Begins from first use of machine.
42. It is recommended that annual maintenance be done prior to start of operating season.
<table>
<thead>
<tr>
<th>Action: ✓ Check ▲ Lubricate ▲ Change ● Clean</th>
</tr>
</thead>
</table>
| **Every 1000 hours**

▲ Drive wheel lubricant
Refer to *Changing Wheel Drive Lubricant, page 402*.

✓ Engine valve tappet clearance

| **1500 hours or every two years**

▲ Hydraulic oil and lift filter

| **5000 hours or every two years**

✓ Engine valve tappet clearance
6 Troubleshooting

6.1 Engine Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine hard to start or will not start</td>
<td>Controls not in NEUTRAL</td>
<td>Move GSL to NEUTRAL.</td>
<td>Starting the Engine, page 164</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Controls not in NEUTRAL</td>
<td>Move steering wheel to locked position.</td>
<td>Starting the Engine, page 164</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Controls not in NEUTRAL</td>
<td>Disengage header drive switch.</td>
<td>4.4.4 Header Drive, page 204</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>NEUTRAL Interlock misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>No fuel to engine</td>
<td>Fill empty fuel tank. Replace clogged filter.</td>
<td>Filling the Fuel Tank, page 167 and Maintaining Fuel Filters, page 324</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Old fuel in tank</td>
<td>Drain tank. Refill with fresh fuel.</td>
<td>5.8.5 Fuel System, page 323</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Water, dirt, or air in fuel system</td>
<td>Drain, flush, fill, and prime system.</td>
<td>5.8.5 Fuel System, page 323</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Improper type of fuel</td>
<td>Use proper fuel for operating conditions.</td>
<td>8.2.2 Fuel Specifications, page 460</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Crankcase oil too heavy</td>
<td>Use recommended oil.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Low battery output</td>
<td>Have battery tested. Check battery electrolyte level.</td>
<td>5.9.2 Battery, page 349</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Poor battery connection</td>
<td>Clean and tighten loose connections.</td>
<td>5.9.2 Battery, page 349</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Faulty starter</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Loose electrical connection at fuel pump</td>
<td>Ensure connector at pump is fully pushed in.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Wiring shorted, circuit breaker open</td>
<td>Check continuity of wiring and breaker (manual reset).</td>
<td>Checking and Replacing Fuses, page 379</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>ECM fuse (1 of 2) blown</td>
<td>Replace.</td>
<td>Checking and Replacing Fuses, page 379</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>ECM Ignition relay faulty</td>
<td>Replace.</td>
<td>Checking and Replacing Fuses, page 379</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>NEUTRAL Logic relay faulty</td>
<td>Replace.</td>
<td>Checking and Replacing Fuses, page 379</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Faulty injectors</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Engine out of time</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Insufficient oil</td>
<td>Add oil.</td>
<td>Adding Engine Oil, page 316</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Low or high coolant temperature</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Improper fuel</td>
<td>Use proper fuel.</td>
<td>8.2.2 Fuel Specifications, page 460</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>Low oil level</td>
<td>Add oil.</td>
<td>Adding Engine Oil, page 316</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>Improper type of oil</td>
<td>Drain and fill crankcase with proper oil.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>Worn components</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High oil consumption</td>
<td>Internal parts worn</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High oil consumption</td>
<td>Crankcase oil too light</td>
<td>Use recommended oil.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>High oil consumption</td>
<td>Oil leaks</td>
<td>Check for leaks around gaskets, seals, and drain plugs.</td>
<td>Checking Engine Oil Level, page 313</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Unsteady fuel supply</td>
<td>Change filter on fuel tank vent line. Replace clogged fuel filter.</td>
<td>Replacing Fuel Tank Vent Filter, page 323 and 5.8.5 Fuel System, page 323</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Water or dirt in fuel system</td>
<td>Drain, flush, and fill fuel system.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Low coolant temperature</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Air in fuel system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Dirty or faulty injectors</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Incorrect timing</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Engine oil viscosity too high</td>
<td>Use recommended oil.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Intake air restriction</td>
<td>Service air cleaner.</td>
<td>5.8.4 Air Intake System, page 317</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Clogged fuel filter</td>
<td>Replace primary fuel filter, and if necessary, replace secondary fuel filter.</td>
<td>Maintaining Fuel Filters, page 324</td>
</tr>
<tr>
<td>Lack of power</td>
<td>High back pressure</td>
<td>Clean out or replace muffler.</td>
<td>5.8.8 Exhaust System, page 345</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Improper type of fuel</td>
<td>Use proper fuel.</td>
<td>8.2.2 Fuel Specifications, page 460</td>
</tr>
<tr>
<td>Lack of power</td>
<td>High or low engine temperature</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Improper valve clearance</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Faulty injectors</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine temperature below normal</td>
<td>Defective thermostat</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Engine overheated</td>
<td>Check coolant level.</td>
<td>Checking Coolant Level, page 333</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Engine overheated</td>
<td>Check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Low engine oil pressure</td>
<td>Check oil level.</td>
<td>Checking Engine Oil Level, page 313</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Low transmission oil pressure</td>
<td>Check oil level.</td>
<td>5.10.1 Checking and Filling</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine overheats</td>
<td>Low coolant level</td>
<td>Fill reserve tank to proper level. Check system for leaks.</td>
<td>5.8.6 Engine Cooling System, page 331</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Water only for coolant</td>
<td>Replace with antifreeze.</td>
<td>5.8.6 Engine Cooling System, page 331</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Engine overloaded</td>
<td>Reduce ground speed.</td>
<td>Driving Forward in Cab-Forward Mode, page 172</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective radiator cap</td>
<td>Replace cap.</td>
<td>Inspecting Radiator Cap, page 331</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective fan belt</td>
<td>Replace belt.</td>
<td>Replacing Fan Belt, page 345</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Dirty radiator screen, rotors turning</td>
<td>Check for obstructions in ducting from screen to fan shroud.</td>
<td>Maintaining Engine Cooling Box, page 337</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Dirty radiator screen, rotors not turning</td>
<td>Check connections to rotor electric motor.</td>
<td>Maintaining Engine Cooling Box, page 337</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Dirty radiator core</td>
<td>Clean radiator.</td>
<td>5.8.6 Engine Cooling System, page 331</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Cooling system dirty</td>
<td>Flush cooling system.</td>
<td>5.8.6 Engine Cooling System, page 331</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective thermostat</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective temperature gauge or sender</td>
<td>Check coolant temperature with thermometer. Replace gauge if necessary.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective water pump</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Clogged or dirty air cleaner</td>
<td>Service air cleaner.</td>
<td>5.8.4 Air Intake System, page 317</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Engine overloaded</td>
<td>Reduce ground speed.</td>
<td>Driving Forward in Cab-Forward Mode, page 172</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Improper valve clearance</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Engine out of time</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Dirty injector nozzles</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Low engine temperature</td>
<td>Check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Improper type of fuel</td>
<td>Use proper fuel.</td>
<td>8.2.2 Fuel Specifications, page 460</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Low battery output</td>
<td>Check battery charge.</td>
<td>Maintaining Batteries, page 349</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Loose or corroded battery connections</td>
<td>Clean and tighten loose connections.</td>
<td>Maintaining Batteries, page 349</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Controls not in NEUTRAL</td>
<td>Move GSL to NEUTRAL.</td>
<td>Driving Forward in Cab-Forward Mode, page 172</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Controls not in NEUTRAL</td>
<td>Move steering wheel to CENTER position.</td>
<td>Driving Reverse in Cab-Forward Mode, page 173</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Controls not in NEUTRAL</td>
<td>Disengage header.</td>
<td>Engaging and Disengaging the Header, page 204</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Relay not functioning</td>
<td>Check relay and wire connections.</td>
<td>5.9 Electrical System, page 349</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Main fuse defective/blown</td>
<td>Replace main fuse.</td>
<td>5.9 Electrical System, page 349</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Key power fuse blown</td>
<td>Replace.</td>
<td>5.9 Electrical System, page 349</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Key switch worn or terminals loose</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Switch at Interlock not closed or defective</td>
<td>Adjust switch or replace. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Crankcase oil too high viscosity</td>
<td>Use recommended oil.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Air filters require frequent cleaning</td>
<td>Aspirator plugged</td>
<td>Clean out aspirator.</td>
<td>5.8.4 Air Intake System, page 317</td>
</tr>
<tr>
<td>Air filters require frequent cleaning</td>
<td>Pre-cleaner rotor not turning freely</td>
<td>Repair/replace.</td>
<td>Maintaining Engine Cooling Box, page 337</td>
</tr>
</tbody>
</table>
6.2 Electrical Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage and/or battery will not</td>
<td>Defective battery</td>
<td>Have battery tested.</td>
<td>5.9.2 Battery, page 349</td>
</tr>
<tr>
<td>charge</td>
<td>Loose or corroded connections</td>
<td>Clean and tighten battery connections.</td>
<td>Maintain Batteries, page 349</td>
</tr>
<tr>
<td>Low voltage and/or battery will not</td>
<td>Defective alternator belt</td>
<td>Replace worn belt.</td>
<td>Replacing Fan Belt, page 345</td>
</tr>
<tr>
<td>charge</td>
<td>Alternator or voltage regulator not connected properly</td>
<td>Connect properly.</td>
<td>5.9.2 Battery, page 349</td>
</tr>
<tr>
<td>Low voltage and/or battery will not</td>
<td>Dirty or defective alternator, defective voltage regulator, or high</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>charge</td>
<td>resistance in circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lights dim</td>
<td>Defective light switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lights dim</td>
<td>High resistance in circuit or poor ground on lights</td>
<td>Check the wiring circuit for a break in a</td>
<td></td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Headlight Bulb, page 358</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Bulb in Cab-Forward Flood Light, page 363</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Bulb in Rear Flood Light, page 369</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Broken wiring</td>
<td>Check wiring for broken wire or shorts.</td>
<td></td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Poor ground on lights</td>
<td>Clean and tighten ground wires.</td>
<td></td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Open or defective circuit breaker</td>
<td>Check circuit breaker.</td>
<td>Accessing Circuit Breakers and Fuses, page 378</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Defective relay</td>
<td>Replace relay.</td>
<td>Replacing Circuit Breakers and Relays, page 380</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Defective light switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Turn signals or indicators showing</td>
<td>Reversed wires</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>wrong direction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No current to cab</td>
<td>Broken or disconnected wire</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>No current to cab</td>
<td>Circuit breaker tripped</td>
<td>Breaker automatically resets.</td>
<td>—</td>
</tr>
<tr>
<td>No current to cab</td>
<td>Battery disconnect switch is OFF</td>
<td>Turn battery disconnect switch ON.</td>
<td>Battery Main Disconnect Switch, page 350</td>
</tr>
</tbody>
</table>
6.3 Hydraulics Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header or reel not lifting</td>
<td>Appropriate solenoids not being energized by activating switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header or reel not lifting</td>
<td>Contaminant in relief valve</td>
<td>Clean relief valve at cylinder control valve.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header or reel lifts but lacks power</td>
<td>Relief pressure too low or contaminant in relief valve</td>
<td>Check/adjust/clean relief valve at cylinder control valve.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Reel and/or conveyor not turning</td>
<td>HEADER DRIVE switch not engaged</td>
<td>Engage HEADER DRIVE switch.</td>
<td>Engaging and Disengaging the Header, page 204</td>
</tr>
<tr>
<td>Reel and/or conveyor not turning</td>
<td>Flow controls adjusted too low</td>
<td>Toggle speed controls on CDM to increase flow.</td>
<td></td>
</tr>
<tr>
<td>Reel and/or conveyor not turning</td>
<td>Appropriate solenoid on flow control block not being energized</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Reel and/or conveyor turns but lacks power</td>
<td>Relief pressure too low</td>
<td>Check/adjust/clean relief valve.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Hydraulic oil high-temperature alarm</td>
<td>Hydraulic oil cooling system not working properly</td>
<td>Check/clean cooling box.</td>
<td>Maintaining Engine Cooling Box, page 337</td>
</tr>
<tr>
<td>Hydraulic oil high-temperature alarm</td>
<td>Faulty bypass valve</td>
<td>Clean or replace.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Hydraulic oil low-temperature alarm</td>
<td>Hydraulic oil too cold</td>
<td>Run engine until hydraulic oil warms up.</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Header Drive Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header drive not</td>
<td>Header DRIVE switch in cab not engaged</td>
<td>Engage HEADER DRIVE switch.</td>
<td>Engaging and Disengaging the Header, page 204</td>
</tr>
<tr>
<td>engaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header drive not</td>
<td>Operator Presence switch not closed or faulty</td>
<td>Occupy operator’s seat or replace switch. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>engaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header drive not</td>
<td>Appropriate solenoid not being energized by activating switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>engaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header drive</td>
<td>Relief valve setting too low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>lacks power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header drive</td>
<td>Hydraulic couplers/ unions not properly connected</td>
<td>Ensure hoses are connected correctly and hose couplers/ unions are tight.</td>
<td>Refer to the header operator’s manual.</td>
</tr>
<tr>
<td>lacks power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header drive</td>
<td>Header drive overload</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>lacks power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning alarm</td>
<td>Header drive overload</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>sounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning alarm</td>
<td>Relief valve setting too low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>sounds</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.5 Traction Drive Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning alarm sounds and transmission oil light is on</td>
<td>Low hydraulic oil level</td>
<td>Stop engine, and add oil to hydraulic system.</td>
<td>5.10.1 Checking and Filling Hydraulic Oil, page 385</td>
</tr>
<tr>
<td>Warning alarm sounds and transmission oil light is on</td>
<td>Low hydraulic pressure</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds and transmission oil light is on</td>
<td>Foreign material shorting sender</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds and transmission oil light is on</td>
<td>Short in alarm wiring</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds and transmission oil light is on</td>
<td>Faulty sender</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Internal pump or motor damage</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Insufficient torque at drive wheels</td>
<td>Move ground speed range control to field position, and reduce ground speed.</td>
<td>Driving Forward in Engine-Forward Mode, page 174</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Loose or worn controls</td>
<td>Check controls.</td>
<td>5.5.3 Ground Speed Lever (GSL) Adjustments, page 296</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Air in system</td>
<td>Use proper oil.</td>
<td>8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Air in system</td>
<td>Check oil level and leaks.</td>
<td>5.10.1 Checking and Filling Hydraulic Oil, page 385</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Air in system</td>
<td>Check hydraulic oil filters.</td>
<td>5.10 Hydraulic System, page 384</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Brakes binding or not releasing fully</td>
<td>Check pressure on brake release valve (min. 1379 kPa [200 psi]).</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Relief valve in tandem pump dirty or damaged</td>
<td>Replace relief valve.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>With steering wheel centered, one wheel pulls more than the other</td>
<td>Leakage at pump or motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>With steering wheel centered, one wheel pulls more than the other</td>
<td>Wheels not in same speed range</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>With steering wheel centered, one wheel pulls more than the other</td>
<td>Faulty relief valve</td>
<td>Repair or replace valve. Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Pump arms have broken shaft or loose hardware</td>
<td>Repair or tighten.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Brakes binding or not releasing fully</td>
<td>Check pressure on brake release valve (min. 1379 kPa [200 psi]).</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Low oil level</td>
<td>Check oil reservoir level.</td>
<td>5.10.1 Checking and Filling Hydraulic Oil, page 385</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Power hubs disengaged</td>
<td>Engage final drives.</td>
<td>Disengaging Final Drives, page 192</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Damaged hydraulic lines preventing proper oil flow</td>
<td>Replace damaged lines.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Ground speed range control not working</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Steering controls worn or defective</td>
<td>Check GSL and steering for loose, worn or damaged ball joints and connecting rods.</td>
<td>5.5.3 Ground Speed Lever (GSL) Adjustments, page 296 and 5.5.4 Steering</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Charge pressure relief valve misadjusted or damaged</td>
<td>Check the valve adjustment. Check valve parts and seat.</td>
<td>Checking Charge Pump Pressure, page 398</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Failed pump or motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Broken pump arm or shaft</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>One final drive disengaged</td>
<td>Engage final drive.</td>
<td>Disengaging Final Drives, page 192</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Steering controls worn or defective</td>
<td>Check GSL and steering for loose, worn or damaged ball joints and connecting rods.</td>
<td>5.5.3 Ground Speed Lever (GSL) Adjustments, page 296 and 5.5.4 Steering Adjustments, page 298</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>High pressure relief valve stuck open, damaged seat</td>
<td>Check valve, and clean or replace.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Brakes binding or not releasing fully</td>
<td>Check pressure on brake release valve (min. 1379 kPa [200 psi]).</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Damaged hydraulic lines preventing proper oil flow</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Ground speed range control not working</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Failed pump, motor or power hub</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Mechanical interference in steering or ground speed linkage</td>
<td>Adjust, repair, and replace.</td>
<td>5.5.3 Ground Speed Lever (GSL) Adjustments, page 296 and 5.5.4 Steering Adjustments, page 298</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Brakes binding or not releasing fully</td>
<td>Check pressure on brake release valve (min. 1379 kPa [200 psi]).</td>
<td>Contact Dealer</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive noise from drive system</td>
<td>Faulty pump or motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Air in system</td>
<td>Check lines for leakage.</td>
<td>—</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Hydraulic line clamps loose</td>
<td>Tighten clamps.</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic oil filter leaks at seal</td>
<td>Not properly tightened</td>
<td>Tighten filter element.</td>
<td>Servicing the Lift Filter, page 392</td>
</tr>
<tr>
<td>Hydraulic oil filter leaks at seal</td>
<td>Damaged seal or threads</td>
<td>Replace filter or filter head.</td>
<td>Servicing the Lift Filter, page 392</td>
</tr>
</tbody>
</table>
6.6 Steering and Ground Speed Control Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine will not steer straight</td>
<td>Linkage worn or loose</td>
<td>Adjust steering chain tension. Replace worn parts. Adjust linkage.</td>
<td>[5.5.4 Steering Adjustments, page 298]</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>Neutral interlock misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>Parking brake not functioning</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>GSL servo misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>GSL cable misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Steering wheel will not lock with GSL in n-detent</td>
<td>Transmission interlock misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Steering wheel will not unlock</td>
<td>Transmission interlock cylinder not working</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Insufficient road speed</td>
<td>Ground speed range control in field position</td>
<td>Move to road position.</td>
<td>Driving on the Road, page 179</td>
</tr>
<tr>
<td>Steering is too stiff or too loose</td>
<td>Steering chain tension is out of adjustment</td>
<td>Adjust steering chain tension.</td>
<td>[5.5.4 Steering Adjustments, page 298]</td>
</tr>
</tbody>
</table>
6.7 Cab Air Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower fan will not run</td>
<td>Burned out motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Burned out switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Motor shaft tight or bearings worn</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Faulty wiring—loose or broken</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Blower rotors in contact with housing</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Blower fan operating but no air coming into cab</td>
<td>Dirty fresh air filter</td>
<td>Clean fresh air filter.</td>
<td>Inspecting and Cleaning Fresh Air Filter Element, page 304</td>
</tr>
<tr>
<td>Blower fan operating but no air coming into cab</td>
<td>Dirty recirculating air filter</td>
<td>Clean recirculating filter.</td>
<td>Cleaning Return Air Cleaner/Filter, page 306</td>
</tr>
<tr>
<td>Blower fan operating but no air coming into cab</td>
<td>Evaporator clogged</td>
<td>Clean evaporator.</td>
<td>Cleaning Air Conditioning (A/C) Evaporator Core, page 308</td>
</tr>
<tr>
<td>Blower fan operating but no air coming into cab</td>
<td>Air flow passage blocked</td>
<td>Remove blockage.</td>
<td>—</td>
</tr>
<tr>
<td>Heater not heating</td>
<td>Heater shut-off valve at engine closed</td>
<td>Open valve.</td>
<td>3.10.1 Heater Shut-Off, page 58</td>
</tr>
<tr>
<td>Heater not heating</td>
<td>Defective thermostat in engine water outlet manifold</td>
<td>Replace thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Heater not heating</td>
<td>Heater temperature control defective</td>
<td>Replace control.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Heater not heating</td>
<td>No thermostat in engine water outlet manifold</td>
<td>Install thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Odor from air louvers</td>
<td>Plugged drainage hose</td>
<td>Blow out hose with compressed air.</td>
<td>—</td>
</tr>
<tr>
<td>Odor from air louvers</td>
<td>Dirty filters</td>
<td>Clean filters.</td>
<td>Cleaning Return Air Cleaner/Filter, page 306</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Low refrigerant level</td>
<td>Add refrigerant. Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Clutch coil burned out or disconnected</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Blower motor disconnected or burned out</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Switch contacts in thermostat burned excessively, or sensing element defective</td>
<td>Replace thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Compressor partially or completely seized</td>
<td>Remove compressor for service or replacement.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Condenser fins plugged</td>
<td>Clean condenser.</td>
<td>5.7.3 Air Conditioning Condenser, page 307</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Loose or broken compressor drive belt</td>
<td>Replace drive belt and/or tighten to specifications.</td>
<td>Tensioning Air Conditioner (A/C) Compressor Belt, page 347 and Replacing Air Conditioner (A/C) Compressor Belt, page 347</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Dirty filters</td>
<td>Clean fresh air and recirculation filters.</td>
<td>Cleaning Engine Air Filter Primary Element, page 321 and Cleaning Return Air Cleaner/Filter, page 306</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Broken or disconnected electrical wire</td>
<td>Check all terminals for loose connections; check wiring for hidden breaks.</td>
<td>—</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Broken or disconnected ground wire</td>
<td>Check ground wire to see if loose, broken, or disconnected.</td>
<td>—</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Expansion valve stuck in open or closed position</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Broken refrigerant line</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Leak in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Compressor shaft seal leaking</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Clogged screen in receiver-drier; plugged hose or coil</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Compressor clutch slipping</td>
<td>Remove clutch assembly for service or replacement.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Thermostat defective or improperly</td>
<td>Replace thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td>adjusted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Clogged air filters</td>
<td>Remove air filters, and clean or replace as necessary.</td>
<td>Cleaning Engine Air Filter Primary Element, page 321 and Cleaning Return Air Cleaner/Filter, page 306</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Heater circuit is open</td>
<td>Close temperature control in cab, and valve on engine.</td>
<td>3.10.3 Climate Controls, page 59 and 3.10.1 Heater Shut-Off, page 58</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Insufficient air circulation over</td>
<td>Clean condenser.</td>
<td>5.7.3 Air Conditioning Condenser, page 307</td>
</tr>
<tr>
<td>producing sufficient</td>
<td>condenser coil; fins clogged with dirt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td>or insects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Evaporator fins clogged</td>
<td>Clean evaporator fins (under cab floor).</td>
<td>Cleaning Air Conditioning (A/C) Evaporator Core, page 308</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Refrigerant low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Clogged expansion valve</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Clogged receiver-drier</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Air in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not</td>
<td>Blower motor sluggish in operation</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>producing sufficient</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

43. Sufficient cooling defined as when air temperature in cab, measured at louvered vent, can be maintained at 25°F [14°C] below ambient air temperature.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Unit icing up due to thermostat adjusted too low</td>
<td>Adjust thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Unit icing up due to excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Unit icing up due to incorrect super-heat adjustment in the expansion valve</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Thermostat defective</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Defective blower switch or blower motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Partially open, improper ground or loose connection in compressor clutch coil</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Compressor clutch slipping</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Defective winding or improper connection in compressor clutch coil or relay</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Excessive charge in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Low charge in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Loose or excessively worn drive belt</td>
<td>Tighten or replace as required.</td>
<td>Tensioning Air Conditioner (A/C) Compressor Belt, page 347 and Replacing Air Conditioner (A/C) Compressor Belt, page 347</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Noisy clutch</td>
<td>Remove clutch for service or replacement as required.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Noisy compressor</td>
<td>Check mountings and repair. Remove compressor for service or replacement.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Compressor oil level low</td>
<td>Add SP-15 PAG refrigerant oil.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Blower fan noisy due to excessive wear</td>
<td>Remove blower motor for service or replacement as necessary.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Windows fog up</td>
<td>High humidity</td>
<td>Run A/C to dehumidify air and heater to control temperature.</td>
<td>3.10.3 Climate Controls, page 59</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

6.8 Operator’s Station Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough ride</td>
<td>Seat suspension not adjusted for operator’s weight</td>
<td>Adjust seat suspension.</td>
<td>3.3 Operator’s Seat Adjustments, page 42</td>
</tr>
<tr>
<td>Rough ride</td>
<td>High air pressure in tires</td>
<td>Deflate to proper pressure.</td>
<td>Inflating Drive Wheel Tire, page 399 and Inflating Caster Tire, page 406</td>
</tr>
<tr>
<td>Rough ride</td>
<td>Cab suspension too stiff</td>
<td>Adjust suspension.</td>
<td>Contact Dealer</td>
</tr>
</tbody>
</table>
7 Options and Attachments

The following options and attachments are available through your MacDon Dealer. The Dealer will require the part number (MD #) to determine pricing and availability.

7.1 Cab

7.1.1 AM/FM Radio

The cab is pre-wired for easy installation of a single DIN audio component available from your MacDon Dealer. Speakers are factory-installed.

In order to retain radio settings and preset memory with the battery disconnect turned off, select a radio with non-volatile memory.

For installation details, refer to the unloading and assembly instructions supplied with your windrower.

7.1.2 Automated Steering Systems

A MacDon-approved automated steering system is available from MacDon Dealers that provide Trimble® GPS installation and support services.

MacDon windrowers are partially pre-wired for either the Trimble® AutoPilot™ hydraulically integrated steering system or the Trimble® EZ-Pilot® wheel/column-based assisted steering system. The windrower’s ground speed lever (GSL) has an automated steering (autosteer) engage switch and the Trimble® display mounting kit (MD #183348) is supplied in the cab.

The Trimble® AutoPilot™ system requires the MacDon automated steering hydraulic interface kit (MD #B5589). Installation instruction (MD #169539) is included in the bundle.

Other GPS providers may supply parts in their vehicle-specific installation packages or make installation kits available through MacDon Dealers.

7.1.3 High Intensity Discharge (HID) Auxiliary Lighting

This kit includes two cab-mounted high intensity discharge (HID) lamps that provide additional field lighting.

MD #B5596

Instruction MD #169621 is included in the bundle.

7.1.4 Lighting and Marking for Cab-Forward Road Travel

This kit allows the windrower to be compliant with vehicle lighting regulations when travelling in the cab-forward mode on public roads. The kit includes red taillights, slow moving vehicle (SMV) markings, hardware, and installation instructions.

MD #B5412

Instruction MD #169426 is included in the bundle.

7.1.5 Pressure Sensor Kit

This kit provides enhanced monitoring of the knife drive (or reel drive) hydraulic pressure, and warns of overload conditions.

MD #B5574

Instruction MD #169031 is included in the bundle.
7.1.6 Warning Beacons

This kit includes two rotating warning beacons designed for installation onto the pre-wired cab, a switch, mounting hardware, and instructions. The beacons are standard equipment for exported windrowers, and are optional for North America. Fits 2009 and newer machines.

MD #B5582

Instruction MD #169538 is included in the bundle.

7.1.7 Windshield Shades

This kit includes retractable sun shades for front and rear windows. Attachment hardware is also included in the kit.

MD #B4866

Instruction MD #169218 is included in the bundle.
7.2 Engine

7.2.1 Engine Block Heater
Contact your nearest Cummins Engine Distributor, and provide your engine model and serial numbers to ensure the proper heater is supplied.

7.2.2 Engine Fan Air Baffle
The Engine Fan Air Baffle kit prevents the windrow from being disturbed by engine cooling fan air blast.
MD #B5440
Instruction MD #169443 is included in the bundle.

7.2.3 Reversible Fan
Allows the cooling fan to reverse direction on a timed interval to clear crop debris accumulated on the engine air intake screen and/or coolers (radiator, charge air cooler, oil cooler, and air conditioner condenser).
MD #B5659
7.3 Header Operation

7.3.1 Spring with External Booster Spring
This kit is available for headers over 2724 kg (6000 lb.) to increase the float capacity.
The Spring with External Booster Spring kit (MD #B4659) includes two springs (one for each side) and mounting brackets. Kit instruction MD #169032 is included in the bundle.

7.3.2 Spring with Internal Booster Spring
MacDon windrowers have two large diameter springs on each side—one is the outboard spring, and the other is the inboard spring. This kit (MD #B5303) replaces ONE of the large diameter springs (that does not already have an inner booster spring installed) with a new inboard spring assembly that comes with an internal booster spring inside.
The Spring with Internal Booster Spring kit (MD #B5303) includes one spring and castings for one side of the windrower.
Instruction MD #169316 is included in the bundle.

7.3.3 Completion Kit for Auger and Draper Header Drives
Used to allow operation of a draper or auger header. Requires installation of Draper Header Reel Drive Kit (7.3.5 Completion Kit for Draper Header Reel Drive, page 446), or Auger Header Drive Kit (7.3.4 Completion Kit for Auger Header Drive and Conditioner Reverser, page 446).
MD #B5491
Instruction MD #169478 is included in the bundle.

7.3.4 Completion Kit for Auger Header Drive and Conditioner Reverser
Used together with Completion Kit for Auger and Draper Header Drives (7.3.3 Completion Kit for Auger and Draper Header Drives, page 446) to allow operation of an auger header. Allows the conditioner to reverse on both auger and draper headers.
MD #B5492
Instruction MD #169479 is included in the bundle.

7.3.5 Completion Kit for Draper Header Reel Drive
Used together with Completion Kit for Auger and Draper Header Drives (7.3.3 Completion Kit for Auger and Draper Header Drives, page 446) to allow operation of a draper header. Includes reel fore-aft plumbing.
MD #B5496
Instruction MD #169480 is included in the bundle.
7.3.6 Double Windrow Attachment (DWA)
This kit allows headers to lay a double windrow when installed on a windrower. The kit includes a draper deck, linkage assembly, hydraulics, and installation instructions.
MD #C1987 consists of:
• MD #B4655 Deck
• MD #B5270 Linkage assembly
• MD #B5301 Hydraulic kit
• Double Windrow Attachment (DWA) manual

7.3.7 Hydraulic Union Kit
Provides a hard plumbing connection to draper/auger headers as an alternative to quick couplers.
MD #166844
Instruction MD #147619 is included in the bundle.

7.3.8 Light Header Flotation
This kit is available for headers that do not require as much spring tension for header float.
MD #B4664
Instruction MD #169033 is included in the bundle.

7.3.9 Quick Coupler Kit
Allows for quick removal of header hydraulics from windrower.
MD #B5497
Instruction MD #169481 is included in the bundle.

7.3.10 Self-Aligning Center-Link
This kit allows the center-link cylinder to be hydraulically positioned and connected to the header without leaving the operator’s station.
MD #B4802
Instruction MD #169004 included in the bundle.

7.3.11 Swath Compressor
The MacDon Swath Compressor is a large, formed polyethylene sheet which is designed to mount to the underside of a MacDon M Series Self-Propelled Windrower. When lowered, the swath compressor shapes the windrow and anchors it into the stubble behind the header using a smooth, gradual transition that helps prevent shelling in ripe conditions.
Contact your MacDon Dealer for information.
7.4 Transport

7.4.1 Towing Harness

The towing harness is used together with the weight box (refer to 7.4.2 Weight Box, page 448) when towing a D Series Draper Header equipped with slow speed transport option behind the windrower.

MD #B5280 – Weight box harness only. Includes hitch pin and wiring for use with slow speed header transport option.

Instruction MD #169278 is included in the bundle.

7.4.2 Weight Box

A weight box installed onto the windrower header lift system is required to transport a header behind the windrower.

MD #B5238 – Weight box without harness

A towing harness is required to use the weight box. Refer to 7.4.1 Towing Harness, page 448 for more information.
8 Reference

8.1 Recommended Torques

8.1.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by \(f = 0.65 \).

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

SAE Bolt Torque Specifications

Torque values shown in following tables are valid for non-greased, or non-oiled threads and heads; therefore, do NOT grease or oil bolts or cap screws unless otherwise specified in this manual.

Table 8.1 SAE Grade 5 Bolt and Grade 5 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>11.9</td>
<td>13.2</td>
</tr>
<tr>
<td>5/16-18</td>
<td>24.6</td>
<td>27.1</td>
</tr>
<tr>
<td>3/8-16</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7/16-14</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>1/2-13</td>
<td>106</td>
<td>118</td>
</tr>
<tr>
<td>9/16-12</td>
<td>153</td>
<td>170</td>
</tr>
<tr>
<td>5/8-11</td>
<td>212</td>
<td>234</td>
</tr>
<tr>
<td>3/4-10</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td>7/8-9</td>
<td>606</td>
<td>669</td>
</tr>
<tr>
<td>1-8</td>
<td>825</td>
<td>912</td>
</tr>
</tbody>
</table>

Figure 8.1: Bolt Grades

A - Nominal Size B - SAE-8
C - SAE-5 D - SAE-2
Table 8.2 SAE Grade 5 Bolt and Grade F Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>8.1</td>
<td>9</td>
</tr>
<tr>
<td>5/16-18</td>
<td>16.7</td>
<td>18.5</td>
</tr>
<tr>
<td>3/8-16</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>7/16-14</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>1/2-13</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>9/16-12</td>
<td>105</td>
<td>116</td>
</tr>
<tr>
<td>5/8-11</td>
<td>144</td>
<td>160</td>
</tr>
<tr>
<td>3/4-10</td>
<td>259</td>
<td>286</td>
</tr>
<tr>
<td>7/8-9</td>
<td>413</td>
<td>456</td>
</tr>
<tr>
<td>1/8</td>
<td>619</td>
<td>684</td>
</tr>
</tbody>
</table>

Table 8.3 SAE Grade 8 Bolt and Grade G Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>16.8</td>
<td>18.6</td>
</tr>
<tr>
<td>5/16-18</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>3/8-16</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>7/16-14</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>1/2-13</td>
<td>102</td>
<td>113</td>
</tr>
<tr>
<td>9/16-12</td>
<td>148</td>
<td>163</td>
</tr>
<tr>
<td>5/8-11</td>
<td>204</td>
<td>225</td>
</tr>
<tr>
<td>3/4-10</td>
<td>362</td>
<td>400</td>
</tr>
<tr>
<td>7/8-9</td>
<td>583</td>
<td>644</td>
</tr>
<tr>
<td>1/8</td>
<td>874</td>
<td>966</td>
</tr>
</tbody>
</table>
Table 8.4 SAE Grade 8 Bolt and Grade 8 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>16.8</td>
<td>18.6</td>
</tr>
<tr>
<td>5/16-18</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>3/8-16</td>
<td>61</td>
<td>68</td>
</tr>
<tr>
<td>7/16-14</td>
<td>98</td>
<td>109</td>
</tr>
<tr>
<td>1/2-13</td>
<td>150</td>
<td>166</td>
</tr>
<tr>
<td>9/16-12</td>
<td>217</td>
<td>239</td>
</tr>
<tr>
<td>5/8-11</td>
<td>299</td>
<td>330</td>
</tr>
<tr>
<td>3/4-10</td>
<td>531</td>
<td>587</td>
</tr>
<tr>
<td>7/8-9</td>
<td>855</td>
<td>945</td>
</tr>
<tr>
<td>1-8</td>
<td>1165</td>
<td>1288</td>
</tr>
</tbody>
</table>

Metric Bolt Specifications

Table 8.5 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 8.4: Bolt Grades

A - Nominal Size
B - SAE-8
C - SAE-5
D - SAE-2

Figure 8.5: Bolt Grades

A - Nominal Size
8.8
10.9
Table 8.6 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8.7 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>
Table 8.8 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm) Min.</th>
<th>Torque (Nm) Max.</th>
<th>Torque (lbf·ft) Min.*</th>
<th>Torque (lbf·ft) Max.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
<td>*12</td>
<td>*13</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
<td>*19</td>
<td>*21</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
<td>*28</td>
<td>*31</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7.0</td>
<td>*56</td>
<td>*62</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
<td>*95</td>
<td>*105</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
<td>106</td>
<td>117</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
<td>165</td>
<td>182</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
<td>322</td>
<td>356</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
<td>556</td>
<td>614</td>
</tr>
</tbody>
</table>

Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.9 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque 8.8 (Cast Aluminum) Nm</th>
<th>Bolt Torque 10.9 (Cast Aluminum) Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
<td>52</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Flare-Type Hydraulic Fittings

1. Check flare (A) and flare seat (B) for defects that might cause leakage.

2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.

3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 8.10, page 454.

4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.

5. Assess final condition of connection.

Table 8.10 Flare-Type Hydraulic Tube Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^{44})</th>
<th>Flats from Finger Tight (FFFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>lbf-ft</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>4–5</td>
<td>3–4</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>7–8</td>
<td>5–6</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>18–19</td>
<td>13–14</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>19–21</td>
<td>14–15</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>30–33</td>
<td>22–24</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>57–63</td>
<td>42–46</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>81–89</td>
<td>60–66</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>113–124</td>
<td>83–91</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/16–12</td>
<td>136–149</td>
<td>100–110</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>160–176</td>
<td>118–130</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>228–250</td>
<td>168–184</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>264–291</td>
<td>195–215</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>359–395</td>
<td>265–291</td>
</tr>
<tr>
<td>-40</td>
<td>3–12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^{44}\) Torque values shown are based on lubricated connections as in reassembly.
O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.

3. Check that O-ring (A) is **NOT** on threads and adjust if necessary.

4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until back up washer (D) and O-ring (A) contact part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).

8. Check final condition of fitting.
Table 8.11 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^{45})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

\(^{45}\) Torque values shown are based on lubricated connections as in reassembly.
O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 8.12, page 457.
6. Check final condition of fitting.

![Figure 8.13: Hydraulic Fitting](image)

Table 8.12 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^{46})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

46. Torque values shown are based on lubricated connections as in reassembly.
O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 8.13, page 458.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 8.13 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value(^\text{47})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note(^\text{48})</td>
<td>3/16</td>
<td>25–28</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>40–44</td>
</tr>
<tr>
<td>-5</td>
<td>Note(^\text{48})</td>
<td>5/16</td>
<td>55–61</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>115–127</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>1-3/16</td>
<td>3/4</td>
<td></td>
</tr>
</tbody>
</table>

\(^{47}\) Torque values and angles shown are based on lubricated connection as in reassembly.

\(^{48}\) O-ring face seal type end not defined for this tube size.
Table 8.13 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value49</th>
</tr>
</thead>
<tbody>
<tr>
<td>-14</td>
<td>Note48</td>
<td>7/8</td>
<td>–</td>
</tr>
<tr>
<td>-16</td>
<td>1-7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>111–122</td>
</tr>
<tr>
<td>-20</td>
<td>1-11/16</td>
<td>1-1/4</td>
<td>205–226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>151–167</td>
</tr>
<tr>
<td>-24</td>
<td>1-2</td>
<td>1-1/2</td>
<td>315–347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>232–256</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>376–414</td>
</tr>
</tbody>
</table>

Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks and scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The Turns From Finger Tight (T.F.F.T.) values are shown in Table 8.14, page 459. Make sure that tube end of a shaped connector (typically 45° or 90°) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.14 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended T.F.F.T.</th>
<th>Recommended F.F.F.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

49 Torque values and angles shown are based on lubricated connection as in reassembly.
8.2 Recommended Fuel, Fluids, and Lubricants

8.2.1 Storing Lubricants and Fluids

Your machine can only operate at top efficiency if clean fuel and lubricants are used.

- Buy good quality, clean fuel from a reputable Dealer.
- Use clean containers to handle fuel and lubricants.
- Keep containers full to avoid condensation issues.
- Store in an area protected from dust, moisture, and other contaminants.
- Avoid storing fuel over long periods of time. If you have a slow fuel turnover in the windrower or supply tank, add fuel conditioner to avoid condensation problems.
- Store fuel in a convenient place away from buildings.

8.2.2 Fuel Specifications

Use good quality diesel fuel from a reputable supplier. For most year-round service, a No.2 diesel fuel that meets ASTM specification D975 Grade S15 will provide good performance.

If the vehicle is exposed to extreme cold (below −7°C [20°F]) or is required to operate at colder-than-normal conditions for prolonged periods, use climatized No.2 diesel fuel, or dilute the No.2 fuel with 50% No.1 fuel. This will provide better protection from fuel gelling or wax-plugging of the fuel filters.

Table 8.15 Fuel Specification

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Specification</th>
<th>Sulphur (by weight)</th>
<th>Water and Sediment (by volume)</th>
<th>Cetane No.</th>
<th>Lubricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade no. 2</td>
<td>ASTM D975</td>
<td>0.5% maximum</td>
<td>0.05% maximum</td>
<td>40°C (104°F) minimum</td>
<td>520 Microns</td>
</tr>
<tr>
<td>Grade no. 1 and 2 mix<sup>50</sup></td>
<td>n/a</td>
<td>1% maximum 0.5% maximum preferred</td>
<td>0.1% maximum</td>
<td>45–55°C (113–131°F) cold weather / high altitude</td>
<td>460 Microns</td>
</tr>
</tbody>
</table>

In extreme situations, when available fuels are of poor quality or problems exist which are peculiar to certain operations, additives can be used. However, the engine manufacturer recommends consultation with the fuel supplier or engine manufacturer before using fuel additives. Situations where additives are useful include:

- A cetane improver additive can be used with low cetane fuels.
- A wax crystal modifier can help with fuels with high cold filter plugging points (CFPP).
- An anti-icer can help prevent ice formation in wet fuel during cold weather.
- An antioxidant or storage stability additive can help with fuel system deposits and poor storage stability.
- A lubricity enhancer can be used to increase the lubricity of fuels so that they meet the requirements given in the table on the previous page. Diesel fuel conditioner is available from your Dealer.

⁵⁰ Optional when operating temperature is below 0°C (32°F).
8.2.3 Lubricants, Fluids, and System Capacities

CAUTION

To avoid injury or death, do not allow ANY machine fluids to enter the body.

Table 8.16 System Capacities

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>As required unless otherwise specified</td>
<td>SAE multi-purpose high temperature extreme pressure (EP2) performance with 1% max Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>—</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Fuel tank</td>
<td>Diesel Grade No. 2, or Diesel Grade No. 1 and 2 mix51; refer to 8.2.2 Fuel Specifications, page 460 for more information</td>
<td>378 liters (97 US gallons)</td>
</tr>
<tr>
<td>Hydraulic oil</td>
<td>Hydraulic reservoir</td>
<td>SAE 15W-40 compliant with SAE specs for API class SJ and CH-4 engine oil</td>
<td>65 liters (17.2 US gallons)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Gearbox</td>
<td>SAE 80W-140, API service class GL-5 Fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>2.1 liters (2.2 US quarts)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Wheel drive52</td>
<td>SAE 75W-90, API service class GL-5 Fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>1.4 liters (1.5 US quarts)</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>Engine cooling system</td>
<td>ASTM D-6210 and Fleetguard ES Compleat®. See notes at the end of this table</td>
<td>31 liters (8.2 US gallons)53</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Engine oil pan</td>
<td>SAE 15W-40 compliant with SAE specs for API class SJ and CH-4 engine oil</td>
<td>14.2 liters (15.0 US quarts)</td>
</tr>
<tr>
<td>Air conditioning refrigerant</td>
<td>Air conditioning system</td>
<td>R134A</td>
<td>2.27 kg (5 lb.)</td>
</tr>
<tr>
<td>Air conditioning refrigerant oil54</td>
<td>Air conditioning system total capacity</td>
<td>PAG SP-15</td>
<td>240 cc (8.1 fl. oz.)</td>
</tr>
</tbody>
</table>

51. Optional when operating temperature is below 0°C (32°F).
52. SAE 85W-140 API Service Class GL-5 Extreme Pressure Gear Lubricant is used before initial change.
53. Equal parts with water, high quality, soft, de-ionized or distilled water as recommended by supplier.
54. New compressor (MD #203013) comes filled. If installing on 2014 and prior models, refer to Service Bulletin 1254.
NOTE:
If Fleetguard ES Compleat® is unavailable, use a coolant concentrate or prediluted coolant intended for use with heavy duty diesel engines and meet a minimum of the following chemical and physical properties:

- Provides cylinder cavitation protection according to fleet study run at or above 60% load capacity.
- Protects the cooling system metals (cast iron, aluminum alloys, and copper alloys such as brass) from corrosion.

The additive package must be part of one of the following coolant mixtures:

- Ethylene glycol or propylene glycol base prediluted (40–60%) heavy duty coolant.
- Ethylene glycol or propylene glycol base heavy duty coolant concentrate in a 40–60% mixture of concentrate with quality water.

Water quality is important to the performance of the cooling system. Distilled, deionized, or demineralized water is recommended for mixing with ethylene glycol and propylene glycol base engine coolant concentrate.

IMPORTANT:
Do NOT use cooling system sealing additives or antifreeze that contains sealing additives.

8.2.4 Filter Part Numbers

Table 8.17 M205 Filter Part Numbers

<table>
<thead>
<tr>
<th>Filter</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine oil filter</td>
<td>MD #111974</td>
</tr>
<tr>
<td>Charge oil filter</td>
<td>MD #112419</td>
</tr>
<tr>
<td>Return oil filter</td>
<td>MD #112419</td>
</tr>
<tr>
<td>Lift oil filter</td>
<td>MD #112419</td>
</tr>
<tr>
<td>Primary fuel filter element</td>
<td>MD #111972</td>
</tr>
<tr>
<td>Secondary fuel filter element</td>
<td>MD #166312</td>
</tr>
<tr>
<td>Fuel strainer filter (breather)</td>
<td>MD #111608</td>
</tr>
<tr>
<td>Fuel filler filter</td>
<td>MD #163989</td>
</tr>
<tr>
<td>Primary element (cab)</td>
<td>MD #111060</td>
</tr>
<tr>
<td>Primary air filter element</td>
<td>MD #138685</td>
</tr>
<tr>
<td>Secondary air filter element</td>
<td>MD #139077</td>
</tr>
<tr>
<td>Return air filter</td>
<td>MD #109797</td>
</tr>
</tbody>
</table>
8.3 Conversion Chart

Table 8.18 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>x 2.4710 = acre</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 = US gallons per minute</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>x 0.2248 = pound force</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>x 0.0394 = inch</td>
</tr>
<tr>
<td></td>
<td>meter</td>
<td>m</td>
<td>x 3.2808 = foot</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>x 1.341 = horsepower</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>x 0.145 = pounds per square inch</td>
</tr>
<tr>
<td></td>
<td>megapascal</td>
<td>MPa</td>
<td>x 145.038 = pounds per square inch</td>
</tr>
<tr>
<td></td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 = pounds per square inch</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 0.7376 = pound feet or foot pounds</td>
</tr>
<tr>
<td></td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 8.8507 = pound inches or inch pounds</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>ºC</td>
<td>(ºC x 1.8) + 32 = degrees Fahrenheit</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 = feet per minute</td>
</tr>
<tr>
<td></td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 = feet per second</td>
</tr>
<tr>
<td></td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 = miles per hour</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>x 0.2642 = US gallon</td>
</tr>
<tr>
<td></td>
<td>milliliter</td>
<td>ml</td>
<td>x 0.0338 = ounce</td>
</tr>
<tr>
<td></td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 = cubic inch</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>x 2.2046 = pound</td>
</tr>
</tbody>
</table>
8.4 Engine Error Codes

The following example explains the segments of an error code:

If the cab display module (CDM) displays the Error Code 629S 12F 28C

629S: S represents the J1939 SPN column. Locate code 629 in that column.
12F: F represents the FMI column. Locate code 12 in that column.
28C: C represents the occurrences (count); 28 is the quantity.

J1939 SPN description: Controller #1. The Cummins description of this is engine control module critical internal failure—Bad intelligent device or component.

The Cummins Dealer will request the fault code that corresponds with the number that you have located in the J1939 SPN column.

<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>719</td>
<td>22</td>
<td>3</td>
<td>Amber</td>
<td>Crankcase pressure</td>
<td>Extended crankcase blow-by pressure circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>729</td>
<td>22</td>
<td>4</td>
<td>Amber</td>
<td>Crankcase pressure</td>
<td>Extended crankcase blow-by pressure circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2114</td>
<td>52</td>
<td>0</td>
<td>Red</td>
<td>Coolant temperature</td>
<td>Coolant temperature 2—data valid but above normal operational range — most severe level</td>
</tr>
<tr>
<td>2111</td>
<td>52</td>
<td>3</td>
<td>Amber</td>
<td>Coolant temperature</td>
<td>Coolant temperature 2 sensor circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2112</td>
<td>52</td>
<td>4</td>
<td>Amber</td>
<td>Coolant temperature</td>
<td>Coolant temperature 2 sensor circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2113</td>
<td>52</td>
<td>16</td>
<td>Amber</td>
<td>Coolant temperature</td>
<td>Coolant temperature 2—data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>241</td>
<td>84</td>
<td>2</td>
<td>Amber</td>
<td>Wheel-based vehicle speed</td>
<td>Vehicle speed sensor circuit—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>242</td>
<td>84</td>
<td>10</td>
<td>Amber</td>
<td>Wheel-based vehicle speed</td>
<td>Vehicle speed sensor circuit tampering has been detected — abnormal rate of change</td>
</tr>
<tr>
<td>148</td>
<td>91</td>
<td>0</td>
<td>Red</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor circuit—abnormal frequency, pulse width, or period</td>
</tr>
<tr>
<td>147</td>
<td>91</td>
<td>1</td>
<td>Red</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor circuit—abnormal frequency, pulse width, or period</td>
</tr>
</tbody>
</table>

55. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1242</td>
<td>91</td>
<td>2</td>
<td>Red</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor 1 and 2—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>131</td>
<td>91</td>
<td>3</td>
<td>Red</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>132</td>
<td>91</td>
<td>4</td>
<td>Red</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>287</td>
<td>91</td>
<td>19</td>
<td>Red</td>
<td>Accelerator pedal position</td>
<td>SAE J1939 multiplexing accelerator pedal or lever sensor system error—received network data in error</td>
</tr>
<tr>
<td>528</td>
<td>93</td>
<td>2</td>
<td>Amber</td>
<td>Switch — data</td>
<td>Auxiliary alternate torque validation switch —data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>2216</td>
<td>94</td>
<td>1</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel pump delivery pressure — data valid but above normal operational range—moderately severe level</td>
</tr>
<tr>
<td>268</td>
<td>94</td>
<td>2</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel pressure sensor circuit—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>546</td>
<td>94</td>
<td>3</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel delivery pressure sensor circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>547</td>
<td>94</td>
<td>4</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel delivery pressure sensor circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2261</td>
<td>94</td>
<td>15</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel pump delivery pressure — data valid but above normal operational range—least severe level</td>
</tr>
<tr>
<td>2262</td>
<td>94</td>
<td>17</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel pump delivery pressure — data valid but below normal operational range—least severe level</td>
</tr>
<tr>
<td>2215</td>
<td>94</td>
<td>18</td>
<td>Amber</td>
<td>Fuel delivery pressure</td>
<td>Fuel pump delivery pressure — data valid but below normal operational range—moderately severe level</td>
</tr>
<tr>
<td>2372</td>
<td>95</td>
<td>16</td>
<td>Amber</td>
<td>Engine fuel filter differential pressure</td>
<td>Fuel filter differential pressure—data valid but above normal operational range—moderately severe level</td>
</tr>
<tr>
<td>428</td>
<td>97</td>
<td>3</td>
<td>Amber</td>
<td>Water in fuel indicator</td>
<td>Water in fuel sensor circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>429</td>
<td>97</td>
<td>4</td>
<td>Amber</td>
<td>Water in fuel indicator</td>
<td>Water in fuel sensor circuit—voltage below normal, or shorted to low source</td>
</tr>
</tbody>
</table>

56. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>418</td>
<td>97</td>
<td>15</td>
<td>Amber Blinking</td>
<td>Water in fuel indicator</td>
<td>Water in fuel indicator high — data valid but above normal operational range — least severe level</td>
</tr>
<tr>
<td>1852</td>
<td>97</td>
<td>16</td>
<td>Amber</td>
<td>Water in fuel indicator</td>
<td>Water in fuel indicator — data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>415</td>
<td>100</td>
<td>1</td>
<td>Red</td>
<td>Engine oil pressure</td>
<td>Oil pressure low — data valid but below normal operational range — most severe level</td>
</tr>
<tr>
<td>435</td>
<td>100</td>
<td>2</td>
<td>Amber</td>
<td>Engine oil pressure</td>
<td>Oil pressure sensor circuit — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>135</td>
<td>100</td>
<td>3</td>
<td>Amber</td>
<td>Engine oil pressure</td>
<td>Oil pressure sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>141</td>
<td>100</td>
<td>4</td>
<td>Amber</td>
<td>Engine oil pressure</td>
<td>Oil pressure sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>143</td>
<td>100</td>
<td>18</td>
<td>Amber</td>
<td>Engine oil pressure</td>
<td>Oil pressure low — data valid but below normal operational range — moderately severe level</td>
</tr>
<tr>
<td>2973</td>
<td>102</td>
<td>2</td>
<td>Amber</td>
<td>Boost pressure</td>
<td>Intake manifold pressure sensor circuit — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>122</td>
<td>102</td>
<td>3</td>
<td>Amber</td>
<td>Boost pressure</td>
<td>Intake manifold pressure sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>123</td>
<td>102</td>
<td>4</td>
<td>Amber</td>
<td>Boost pressure</td>
<td>Intake manifold pressure sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>124</td>
<td>102</td>
<td>16</td>
<td>Amber</td>
<td>Boost pressure</td>
<td>Intake manifold 1 pressure — data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>2345</td>
<td>103</td>
<td>10</td>
<td>Amber</td>
<td>Turbocharger 1 speed</td>
<td>Turbocharger speed invalid rate of change detected — abnormal rate of change</td>
</tr>
<tr>
<td>595</td>
<td>103</td>
<td>16</td>
<td>Amber</td>
<td>Turbocharger 1 speed</td>
<td>Turbocharger #1 speed high — data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>687</td>
<td>103</td>
<td>18</td>
<td>Amber</td>
<td>Turbocharger 1 speed</td>
<td>Turbocharger #1 speed low — data valid but below normal operational range — moderately severe level</td>
</tr>
<tr>
<td>155</td>
<td>105</td>
<td>0</td>
<td>Red</td>
<td>Intake manifold #1 temp</td>
<td>Intake manifold air temperature high — data valid but above normal operational range — most severe level</td>
</tr>
</tbody>
</table>

57. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td>105</td>
<td>3</td>
<td>Amber</td>
<td>Intake manifold #1 temp</td>
<td>Intake manifold air temperature sensor circuit — voltage above normal, or shorted to high</td>
</tr>
<tr>
<td>154</td>
<td>105</td>
<td>4</td>
<td>Amber</td>
<td>Intake manifold #1 temp</td>
<td>Intake manifold air temperature sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>488</td>
<td>105</td>
<td>16</td>
<td>Amber</td>
<td>Intake manifold</td>
<td>Intake manifold 1 temperature — data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>295</td>
<td>108</td>
<td>2</td>
<td>Amber</td>
<td>Barometric pressure</td>
<td>Barometric pressure sensor circuit — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>221</td>
<td>108</td>
<td>3</td>
<td>Amber</td>
<td>Barometric pressure</td>
<td>Barometric pressure sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>222</td>
<td>108</td>
<td>4</td>
<td>Amber</td>
<td>Barometric pressure</td>
<td>Barometric pressure sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>231</td>
<td>109</td>
<td>3</td>
<td>Amber</td>
<td>Coolant pressure</td>
<td>Coolant pressure sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>232</td>
<td>109</td>
<td>4</td>
<td>Amber</td>
<td>Coolant pressure</td>
<td>Coolant pressure sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>233</td>
<td>109</td>
<td>18</td>
<td>Amber</td>
<td>Coolant pressure</td>
<td>Coolant pressure — data valid but below normal operational range — moderately severe level</td>
</tr>
<tr>
<td>151</td>
<td>110</td>
<td>0</td>
<td>Red</td>
<td>Engine coolant temperature</td>
<td>Coolant temperature high — data valid but above normal operational range — most severe level</td>
</tr>
<tr>
<td>334</td>
<td>110</td>
<td>2</td>
<td>Amber</td>
<td>Engine coolant temperature</td>
<td>Coolant temperature sensor circuit — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>144</td>
<td>110</td>
<td>3</td>
<td>Amber</td>
<td>Engine coolant temperature</td>
<td>Coolant temperature sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>145</td>
<td>110</td>
<td>4</td>
<td>Amber</td>
<td>Engine coolant temperature</td>
<td>Coolant temperature sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2963</td>
<td>110</td>
<td>15</td>
<td>None</td>
<td>Engine coolant temperature</td>
<td>Engine coolant temperature high — data valid but above normal operational range — least severe level</td>
</tr>
<tr>
<td>146</td>
<td>110</td>
<td>16</td>
<td>Amber</td>
<td>Engine coolant temperature</td>
<td>Coolant temperature high — data valid but above normal operational range — moderately severe level</td>
</tr>
</tbody>
</table>

58. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
Cummins SPN Codes and Descriptions

<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>111</td>
<td>1</td>
<td>Red</td>
<td>Coolant level</td>
<td>Coolant level low — data valid but below normal operational range — most severe level</td>
</tr>
<tr>
<td>422</td>
<td>111</td>
<td>2</td>
<td>Amber</td>
<td>Coolant level</td>
<td>Coolant level — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>195</td>
<td>111</td>
<td>3</td>
<td>Amber</td>
<td>Coolant level</td>
<td>Coolant level sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>196</td>
<td>111</td>
<td>4</td>
<td>Amber</td>
<td>Coolant level</td>
<td>Coolant level sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2448</td>
<td>111</td>
<td>17</td>
<td>Amber</td>
<td>Coolant level</td>
<td>Coolant level — data valid but below normal operating range — least severe level</td>
</tr>
<tr>
<td>197</td>
<td>111</td>
<td>18</td>
<td>Amber</td>
<td>Coolant level</td>
<td>Coolant level — data valid but below normal operational range — moderately severe level</td>
</tr>
<tr>
<td>449</td>
<td>157</td>
<td>0</td>
<td>Red</td>
<td>Injector metering rail 1 pressure</td>
<td>Fuel pressure high — data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>1911</td>
<td>157</td>
<td>0</td>
<td>Amber</td>
<td>Injector metering rail</td>
<td>Injector metering rail 1 pressure — data valid but above normal operational range — most severe level</td>
</tr>
<tr>
<td>224 9</td>
<td>157</td>
<td>1</td>
<td>Amber</td>
<td>Injector metering rail 1 pressure</td>
<td>Injector metering rail 1 pressure — data valid but below normal operational range — most severe level</td>
</tr>
<tr>
<td>554</td>
<td>157</td>
<td>2</td>
<td>Amber</td>
<td>Injector metering rail 1 pressure</td>
<td>Fuel pressure sensor error — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>451</td>
<td>157</td>
<td>3</td>
<td>Amber</td>
<td>Injector metering rail 1 pressure</td>
<td>Injector metering rail #1 pressure sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>452</td>
<td>157</td>
<td>4</td>
<td>Amber</td>
<td>Injector metering rail 1 pressure</td>
<td>Injector metering rail #1 pressure sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>553</td>
<td>157</td>
<td>16</td>
<td>Amber</td>
<td>Injector metering rail 1 pressure</td>
<td>Injector metering rail #1 pressure high — data valid but above normal operational range — moderately severe level</td>
</tr>
<tr>
<td>559</td>
<td>157</td>
<td>18</td>
<td>Amber</td>
<td>Injector metering rail 1 pressure</td>
<td>Injector metering rail #1 pressure low — data valid but below normal operational range — moderately severe level</td>
</tr>
<tr>
<td>951</td>
<td>166</td>
<td>2</td>
<td>None</td>
<td>Cylinder power</td>
<td>Cylinder power imbalance between cylinders — data erratic, intermittent, or incorrect</td>
</tr>
</tbody>
</table>

59. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.

<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>598 167 1</td>
<td>Red</td>
<td>Alternate potential (voltage)</td>
<td>Electrical charging system voltage low—data valid but below normal operational range—most severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>596 167 16</td>
<td>Amber</td>
<td>Alternate potential (voltage)</td>
<td>Electrical charging system voltage high—data valid but above normal operational range—moderately severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>597 167 18</td>
<td>Amber</td>
<td>Alternate potential (voltage)</td>
<td>Electrical charging system voltage low—data valid but below normal operational range—moderately severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442 168 16</td>
<td>Amber</td>
<td>Electrical potential (voltage)</td>
<td>Battery #1 voltage high—data valid but above normal operational range—moderately severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441 168 18</td>
<td>Amber</td>
<td>Electrical potential (voltage)</td>
<td>Battery #1 voltage low—data valid but below normal operational range—moderately severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>249 171 3</td>
<td>Amber</td>
<td>Ambient air temperature</td>
<td>Ambient air temperature sensor circuit—voltage above normal, or shorted to high source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256 171 4</td>
<td>Amber</td>
<td>Ambient air temperature</td>
<td>Ambient air temperature sensor circuit—voltage below normal, or shorted to low source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263 174 3</td>
<td>Amber</td>
<td>Fuel temperature</td>
<td>Engine fuel temperature sensor 1 circuit—voltage above normal, or shorted to high source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265 174 4</td>
<td>Amber</td>
<td>Fuel temperature</td>
<td>Engine fuel temperature sensor 1 circuit—voltage below normal, or shorted to low source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261 174 16</td>
<td>Amber</td>
<td>Fuel temperature</td>
<td>Engine fuel temperature—data valid but above normal operational range—moderately severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214 175 0</td>
<td>Red</td>
<td>Oil temperature</td>
<td>Engine oil temperature—data valid but above normal operational range—most severe level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>425 175 2</td>
<td>Amber</td>
<td>Oil temperature</td>
<td>Engine oil temperature—data erratic, intermittent, or incorrect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212 175 3</td>
<td>Amber</td>
<td>Oil temperature</td>
<td>Engine oil temperature sensor 1 circuit—voltage above normal, or shorted to high source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213 175 4</td>
<td>Amber</td>
<td>Oil temperature</td>
<td>Engine oil temperature sensor 1 circuit—voltage below normal, or shorted to low source</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>190</td>
<td>0</td>
<td>Red</td>
<td>Engine speed</td>
<td>Engine speed high—data valid but above normal operational range—most severe level</td>
</tr>
<tr>
<td>689</td>
<td>190</td>
<td>2</td>
<td>Amber</td>
<td>Engine speed</td>
<td>Primary engine speed sensor error—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>2321</td>
<td>190</td>
<td>2</td>
<td>None</td>
<td>Engine speed</td>
<td>Engine speed/position sensor #1—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>349</td>
<td>191</td>
<td>16</td>
<td>Amber</td>
<td>Transmission output shaft speed</td>
<td>Transmission output shaft speed—data valid but above normal operational range—moderately severe level</td>
</tr>
<tr>
<td>489</td>
<td>191</td>
<td>18</td>
<td>Amber</td>
<td>Transmission output shaft speed</td>
<td>Transmission output shaft speed—data valid but below normal operational range—moderately severe level</td>
</tr>
<tr>
<td>319</td>
<td>251</td>
<td>2</td>
<td>Amber</td>
<td>Real time clock power</td>
<td>Real time clock power interrupt—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>2375</td>
<td>412</td>
<td>3</td>
<td>Amber</td>
<td>Exhaust gas recirculation temperature</td>
<td>Exhaust gas recirculation temperature sensor circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2376</td>
<td>412</td>
<td>4</td>
<td>Amber</td>
<td>Exhaust gas recirculation temperature</td>
<td>Exhaust gas recirculation temperature sensor circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>293</td>
<td>441</td>
<td>3</td>
<td>Amber</td>
<td>OEM temperature</td>
<td>Auxiliary temperature sensor input #1 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>294</td>
<td>441</td>
<td>4</td>
<td>Amber</td>
<td>OEM temperature</td>
<td>Auxiliary temperature sensor input #1 circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>292</td>
<td>441</td>
<td>14</td>
<td>Red</td>
<td>Auxiliary temperature 1</td>
<td>Auxiliary temperature sensor input 1—special instructions</td>
</tr>
<tr>
<td>431</td>
<td>558</td>
<td>2</td>
<td>Amber</td>
<td>Accelerator pedal low idle switch</td>
<td>Accelerator pedal or lever idle validation circuit—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>551</td>
<td>558</td>
<td>4</td>
<td>Amber</td>
<td>Accelerator pedal low idle switch</td>
<td>Accelerator pedal or lever idle validation circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>432</td>
<td>558</td>
<td>13</td>
<td>Red</td>
<td>Accelerator pedal low idle switch</td>
<td>Accelerator pedal or lever idle validation circuit—out of calibration</td>
</tr>
<tr>
<td>523</td>
<td>611</td>
<td>2</td>
<td>Amber</td>
<td>System diagnostic code #1</td>
<td>OEM intermediate (PTO) speed switch validation—data erratic, intermittent, or incorrect</td>
</tr>
</tbody>
</table>

61. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
Reference

| Cummins Fault Code | J1939 SPN | J1939 FMI | Lamp | J1939 SPN Description | Cummins Description
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2292</td>
<td>611</td>
<td>16</td>
<td>Amber</td>
<td>Fuel inlet meter device</td>
<td>Fuel inlet meter device—data valid but above normal operational range—moderately severe level</td>
</tr>
<tr>
<td>2293</td>
<td>611</td>
<td>18</td>
<td>Amber</td>
<td>Fuel inlet meter device</td>
<td>Fuel inlet meter device flow demand lower than expected—data valid but below normal operational range—moderately severe level</td>
</tr>
<tr>
<td>115</td>
<td>612</td>
<td>2</td>
<td>Red</td>
<td>System diagnostic code #2</td>
<td>Engine speed/position sensor circuit lost both of two signals from the magnetic pickup sensor—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>244</td>
<td>623</td>
<td>4</td>
<td>Amber</td>
<td>Red stop lamp</td>
<td>Red stop lamp driver circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1117</td>
<td>627</td>
<td>2</td>
<td>Power supply</td>
<td></td>
<td>Power lost with ignition on—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>351</td>
<td>627</td>
<td>12</td>
<td>Amber</td>
<td>Controller #1</td>
<td>Injector power supply—bad intelligent device or component</td>
</tr>
<tr>
<td>111</td>
<td>629</td>
<td>12</td>
<td>Red</td>
<td>Controller #1</td>
<td>Engine control module critical internal failure—bad intelligent device or component</td>
</tr>
<tr>
<td>343</td>
<td>629</td>
<td>12</td>
<td>Amber</td>
<td>Controller #1</td>
<td>Engine control module warning internal hardware failure—bad intelligent device or component</td>
</tr>
<tr>
<td>341</td>
<td>630</td>
<td>2</td>
<td>Amber</td>
<td>Calibration memory</td>
<td>Engine control module data lost—data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>342</td>
<td>630</td>
<td>13</td>
<td>Red</td>
<td>Calibration memory</td>
<td>Electronic calibration code incompatibility—out of calibration</td>
</tr>
<tr>
<td>2217</td>
<td>630</td>
<td>31</td>
<td>Amber</td>
<td>Calibration memory</td>
<td>ECM program memory (ram) corruption—condition exists</td>
</tr>
<tr>
<td>2311</td>
<td>633</td>
<td>31</td>
<td>Amber</td>
<td>Fuel control valve #1</td>
<td>Fuelling actuator #1 circuit error—condition exists</td>
</tr>
<tr>
<td>285</td>
<td>639</td>
<td>9</td>
<td>Amber</td>
<td>SAE J1939 datalink</td>
<td>SAE J1939 multiplexing PGN timeout error—abnormal update rate</td>
</tr>
<tr>
<td>286</td>
<td>639</td>
<td>13</td>
<td>Amber</td>
<td>SAE J1939 datalink</td>
<td>SAE J1939 multiplexing configuration error—out of calibration</td>
</tr>
<tr>
<td>599</td>
<td>640</td>
<td>14</td>
<td>Red</td>
<td>Engine external protection input</td>
<td>Auxiliary commanded dual output shutdown—special instructions</td>
</tr>
<tr>
<td>237</td>
<td>644</td>
<td>2</td>
<td>Amber</td>
<td>External speed input</td>
<td>External speed input (multiple unit synchronization)—data erratic, intermittent, or incorrect</td>
</tr>
</tbody>
</table>

62. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2377</td>
<td>647</td>
<td>3</td>
<td>Amber</td>
<td>Fan clutch output device driver</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>647</td>
<td>4</td>
<td>Amber</td>
<td>Fan clutch output device driver</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>651</td>
<td>5</td>
<td>Amber</td>
<td>Injector cylinder #01 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>1139</td>
<td>651</td>
<td>7</td>
<td>Amber</td>
<td>Injector cylinder #1 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>652</td>
<td>5</td>
<td>Amber</td>
<td>Injector cylinder #02 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>1141</td>
<td>652</td>
<td>7</td>
<td>Amber</td>
<td>Injector cylinder #3 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>653</td>
<td>5</td>
<td>Amber</td>
<td>Injector cylinder #03 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>1142</td>
<td>653</td>
<td>7</td>
<td>Amber</td>
<td>Injector cylinder #4 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>654</td>
<td>5</td>
<td>Amber</td>
<td>Injector cylinder #04 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>1143</td>
<td>654</td>
<td>7</td>
<td>Amber</td>
<td>Injector cylinder #5 — mechanical system not responding properly or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>655</td>
<td>5</td>
<td>Amber</td>
<td>Starter solenoid lockout relay driver circuit</td>
<td></td>
</tr>
<tr>
<td>584</td>
<td>677</td>
<td>3</td>
<td>Amber</td>
<td>Starter relay circuit — voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>585</td>
<td>677</td>
<td>4</td>
<td>Amber</td>
<td>Starter relay circuit — voltage below normal, or shorted to low source</td>
<td></td>
</tr>
</tbody>
</table>

63. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description[^64]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2557</td>
<td>697</td>
<td>3</td>
<td>Amber</td>
<td>Auxiliary PWM driver #1</td>
<td>Auxiliary PWM driver #1 — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2558</td>
<td>697</td>
<td>4</td>
<td>Amber</td>
<td>Auxiliary PWM driver #1</td>
<td>Auxiliary PWM driver #1 — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>527</td>
<td>702</td>
<td>3</td>
<td>Amber</td>
<td>Circuit — voltage</td>
<td>Auxiliary input/output 2 circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>529</td>
<td>703</td>
<td>3</td>
<td>Amber</td>
<td>Circuit — voltage</td>
<td>Auxiliary input/output 3 circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>779</td>
<td>703</td>
<td>11</td>
<td>Amber</td>
<td>Auxiliary equipment sensor input</td>
<td>Warning auxiliary equipment sensor input #3 (OEM switch) — root cause not known</td>
</tr>
<tr>
<td>2195</td>
<td>703</td>
<td>14</td>
<td>Red</td>
<td>Auxiliary equipment sensor</td>
<td>Auxiliary equipment sensor input 3 engine protection critical — special instructions</td>
</tr>
<tr>
<td>778</td>
<td>723</td>
<td>2</td>
<td>Amber</td>
<td>Engine speed sensor #2</td>
<td>Engine speed sensor (camshaft) error — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>2322</td>
<td>723</td>
<td>2</td>
<td>None</td>
<td>Engine speed sensor #2</td>
<td>Engine speed/position sensor #2 — data erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>731</td>
<td>723</td>
<td>7</td>
<td>Amber</td>
<td>Engine speed sensor #2</td>
<td>Engine speed/position #2 mechanical misalignment between camshaft and crankshaft sensors — mechanical system not responding properly or out of adjustment</td>
</tr>
<tr>
<td>2555</td>
<td>729</td>
<td>3</td>
<td>Amber</td>
<td>Inlet air heater driver #1</td>
<td>Intake air heater #1 circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2556</td>
<td>729</td>
<td>4</td>
<td>Amber</td>
<td>Inlet air heater driver #1</td>
<td>Intake air heater #1 circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2426</td>
<td>730</td>
<td>3</td>
<td>None</td>
<td>Intake air heater #2</td>
<td>Intake air heater 2 circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2425</td>
<td>730</td>
<td>4</td>
<td>None</td>
<td>Intake air heater #2</td>
<td>Intake air heater 2 circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>133</td>
<td>974</td>
<td>3</td>
<td>Red</td>
<td>Remote accelerator</td>
<td>Remote accelerator pedal or lever position sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>134</td>
<td>974</td>
<td>4</td>
<td>Red</td>
<td>Remote accelerator</td>
<td>Remote accelerator pedal or lever position sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>288</td>
<td>974</td>
<td>19</td>
<td>Red</td>
<td>Remote accelerator</td>
<td>SAE J1939 multiplexing remote accelerator pedal or lever data error — received network data in error</td>
</tr>
</tbody>
</table>

[^64]: The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
Cummins Description

The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.

<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>284</td>
<td>1043</td>
<td>4</td>
<td>Amber</td>
<td>Internal sensor voltage supply</td>
<td>Engine speed/position sensor (crankshaft) supply voltage circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2182</td>
<td>1072</td>
<td>3</td>
<td>Amber</td>
<td>Engine brake output #1</td>
<td>Engine brake actuator driver 1 circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2183</td>
<td>1072</td>
<td>4</td>
<td>Amber</td>
<td>Engine brake output #1</td>
<td>Engine brake actuator driver 1 circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2367</td>
<td>1073</td>
<td>3</td>
<td>Amber</td>
<td>Engine compression brake output #2</td>
<td>Engine brake actuator circuit #2 — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2363</td>
<td>1073</td>
<td>4</td>
<td>Amber</td>
<td>Engine compression brake output #2</td>
<td>Engine brake actuator circuit #2 — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2265</td>
<td>1075</td>
<td>3</td>
<td>Amber</td>
<td>Electric lift pump for engine fuel</td>
<td>Fuel priming pump control signal circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2266</td>
<td>1075</td>
<td>4</td>
<td>Amber</td>
<td>Electric lift pump for engine fuel</td>
<td>Fuel priming pump control signal circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2368</td>
<td>1112</td>
<td>3</td>
<td>Amber</td>
<td>Engine brake output #3</td>
<td>Engine brake actuator driver 3 circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2365</td>
<td>1112</td>
<td>4</td>
<td>Amber</td>
<td>Engine brake output #3</td>
<td>Engine brake actuator driver output 3 circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>697</td>
<td>1136</td>
<td>3</td>
<td>Amber</td>
<td>Sensor circuit — voltage</td>
<td>ECM internal temperature sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>698</td>
<td>1136</td>
<td>4</td>
<td>Amber</td>
<td>Sensor circuit — voltage</td>
<td>ECM internal temperature sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>691</td>
<td>1172</td>
<td>3</td>
<td>Amber</td>
<td>Turbocharger #1 compressor inlet temperature</td>
<td>Turbocharger #1 compressor inlet temperature sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>692</td>
<td>1172</td>
<td>4</td>
<td>Amber</td>
<td>Turbocharger #1 compressor inlet temperature</td>
<td>Turbocharger #1 compressor inlet temperature sensor circuit — voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2373</td>
<td>1209</td>
<td>3</td>
<td>Amber</td>
<td>Exhaust gas pressure</td>
<td>Exhaust gas pressure sensor circuit — voltage above normal, or shorted to high source</td>
</tr>
</tbody>
</table>

65. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2374</td>
<td>1209</td>
<td>4</td>
<td>Amber</td>
<td>Exhaust gas pressure</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>1267</td>
<td>3</td>
<td>Amber</td>
<td>Vehicle accessories relay driver</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>1267</td>
<td>4</td>
<td>Amber</td>
<td>Vehicle accessories relay driver</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>1347</td>
<td>3</td>
<td>Amber</td>
<td>Fuel pump pressurizing assembly #1</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>1347</td>
<td>4</td>
<td>Amber</td>
<td>Fuel pump pressurizing assembly #1</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>1347</td>
<td>7</td>
<td>Amber</td>
<td>Fuel pump pressurizing assembly #1</td>
<td></td>
</tr>
<tr>
<td>497</td>
<td>1377</td>
<td>2</td>
<td>Amber</td>
<td>Switch circuit</td>
<td></td>
</tr>
<tr>
<td>649</td>
<td>1378</td>
<td>31</td>
<td>Amber</td>
<td>Engine oil change interval</td>
<td>Change lubricating oil and filter — condition exists</td>
</tr>
<tr>
<td>297</td>
<td>1388</td>
<td>3</td>
<td>Amber</td>
<td>Auxiliary pressure</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>1388</td>
<td>4</td>
<td>Amber</td>
<td>Auxiliary pressure</td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>1388</td>
<td>14</td>
<td>Red</td>
<td>Auxiliary pressure</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>1484</td>
<td>31</td>
<td>None</td>
<td>J1939 error</td>
<td>Additional auxiliary diagnostic codes logged — condition exists</td>
</tr>
<tr>
<td>1256</td>
<td>1563</td>
<td>2</td>
<td>Amber</td>
<td>Control module identification input state</td>
<td></td>
</tr>
<tr>
<td>1257</td>
<td>1563</td>
<td>2</td>
<td>Red</td>
<td>Control module identification input state</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>1661</td>
<td>4</td>
<td>Amber</td>
<td>Engine automatic start lamp</td>
<td></td>
</tr>
</tbody>
</table>

66. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2263</td>
<td>1800</td>
<td>16</td>
<td>Amber</td>
<td>Battery temperature</td>
<td>Battery temperature—data valid but above normal operational range—moderately severe level</td>
</tr>
<tr>
<td>2264</td>
<td>1800</td>
<td>18</td>
<td>Amber</td>
<td>Battery temperature</td>
<td>Battery temperature—data valid but below normal operational range—moderately severe level</td>
</tr>
<tr>
<td>1239</td>
<td>2623</td>
<td>3</td>
<td>Amber</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor 2 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1241</td>
<td>2623</td>
<td>4</td>
<td>Amber</td>
<td>Accelerator pedal position</td>
<td>Accelerator pedal or lever position sensor 2 circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2346</td>
<td>2789</td>
<td>15</td>
<td>None</td>
<td>System diagnostic code #1</td>
<td>Turbocharger turbine inlet temperature (calculated)—data valid but above normal operational range—least severe level</td>
</tr>
<tr>
<td>2347</td>
<td>2790</td>
<td>15</td>
<td>None</td>
<td>System diagnostic code #1</td>
<td>Turbocharger compressor outlet temperature (calculated)—data valid but above normal operational range—least severe level</td>
</tr>
<tr>
<td>757</td>
<td>2802</td>
<td>31</td>
<td>Amber</td>
<td>Electronic control module</td>
<td>Electronic control module data lost—condition exists</td>
</tr>
<tr>
<td>2115</td>
<td>2981</td>
<td>3</td>
<td>Amber</td>
<td>Coolant pressure</td>
<td>Coolant pressure 2 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2116</td>
<td>2981</td>
<td>4</td>
<td>Amber</td>
<td>Coolant pressure</td>
<td>Coolant pressure 2 circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2117</td>
<td>2981</td>
<td>18</td>
<td>Amber</td>
<td>Coolant pressure</td>
<td>Coolant pressure 2—data valid but below normal operational range—moderately severe level</td>
</tr>
<tr>
<td>386</td>
<td>3509</td>
<td>3</td>
<td>Amber</td>
<td>5 volts dc supply</td>
<td>Sensor supply voltage #1 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>352</td>
<td>3509</td>
<td>4</td>
<td>Amber</td>
<td>5 volts dc supply</td>
<td>Sensor supply voltage #1 circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>227</td>
<td>3510</td>
<td>3</td>
<td>Amber</td>
<td>5 volts dc supply</td>
<td>Sensor supply voltage #2 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>187</td>
<td>3510</td>
<td>4</td>
<td>Amber</td>
<td>5 volts dc supply</td>
<td>Sensor supply voltage #2 circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>239</td>
<td>3511</td>
<td>3</td>
<td>Amber</td>
<td>System diagnostic code #2</td>
<td>Sensor supply voltage #3 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>238</td>
<td>3511</td>
<td>4</td>
<td>Amber</td>
<td>System diagnostic code #1</td>
<td>Sensor supply voltage #3 circuit—voltage below normal, or shorted to low source</td>
</tr>
</tbody>
</table>

67. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
<table>
<thead>
<tr>
<th>Cummins Fault Code</th>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Lamp</th>
<th>J1939 SPN Description</th>
<th>Cummins Description²⁸</th>
</tr>
</thead>
<tbody>
<tr>
<td>2185</td>
<td>3512</td>
<td>3</td>
<td>Amber</td>
<td>System diagnostic code #1</td>
<td>Sensor supply voltage #4 circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2186</td>
<td>3512</td>
<td>4</td>
<td>Amber</td>
<td>System diagnostic code #1</td>
<td>Sensor supply voltage #4 circuit—voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>193</td>
<td>520199</td>
<td>3</td>
<td>Amber</td>
<td>Cruise control</td>
<td>Cruise control (resistive) signal circuit—voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>194</td>
<td>520199</td>
<td>4</td>
<td>Amber</td>
<td>Cruise control</td>
<td>Cruise control (resistive) signal circuit—voltage below normal, or shorted to low source</td>
</tr>
</tbody>
</table>

²⁸. The descriptions of Cummins J1939 SPN codes are subject to change at their discretion.
8.5 Cab Display Module (CDM) Error Codes

The CDM displays error codes when there is a fault with one of the sensors that monitor and control windrower operation. Use the list of error codes to help identify a specific problem with the windrower.

NOTE:

In the case of dual codes being shown for an item (primarily the solenoid valves), the first code indicates a **SHORT CIRCUIT** condition, while the second code indicates an **OPEN CIRCUIT** condition. That is, E41 would be a SHORT in the reel aft solenoids (P55, P59), while E141 would indicate an OPEN circuit.

<table>
<thead>
<tr>
<th>Codes</th>
<th>CDM Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>RTCH NOT ALLOWED</td>
<td>Return to cut activated with the header off</td>
</tr>
<tr>
<td>E2</td>
<td>CDM CAN BUS ERROR</td>
<td>CANBUS error with CDM, check electrical connections</td>
</tr>
<tr>
<td>E3</td>
<td>HDR DRV NOT ALLOWED</td>
<td>Header engage switch activated while in engine-forward</td>
</tr>
<tr>
<td>E5</td>
<td>CHECK HEADER ID</td>
<td>Header ID change has been detected while the header was engaged</td>
</tr>
<tr>
<td>E6</td>
<td>TEMP GAUGE SHORT</td>
<td>Wiring/connection problem</td>
</tr>
<tr>
<td>E7</td>
<td>SPEED STICK SHORT</td>
<td>Wiring/connection problem</td>
</tr>
<tr>
<td>E8</td>
<td>HEADER ENABLE SHORT</td>
<td>Wiring/connection problem</td>
</tr>
<tr>
<td>E9</td>
<td>WCM ENABLE SHORT</td>
<td>Wiring/connection problem</td>
</tr>
<tr>
<td>E10</td>
<td>CDM INTERNAL ERROR</td>
<td>A generic internal CDM error summarizing a number of internal problems</td>
</tr>
<tr>
<td>E11</td>
<td>CDM POWER UP</td>
<td>Indicates that the voltage on CDM connector P38, pin 26 is too low or the ground connections are loose; could be a wiring issue</td>
</tr>
<tr>
<td>E12</td>
<td>WCM POWER UP</td>
<td>E12 indicates that the voltage on WCM connector P34, pin 2 is too low or the ground on pin 9 is loose; could be a wiring issue</td>
</tr>
<tr>
<td>E13</td>
<td>FUEL SOLENOID</td>
<td>WCM fuel solenoid output fault detected</td>
</tr>
<tr>
<td>E15</td>
<td>KNIFE DRIVE PWM P68</td>
<td>Knife drive – PWM solenoid P68 drive fault detected</td>
</tr>
<tr>
<td>E16</td>
<td>DRAPER DRIVE PWM P69</td>
<td>Draper drive – PWM solenoid P69 drive fault detected</td>
</tr>
<tr>
<td>E17</td>
<td>REEL DRIVE PWM P70</td>
<td>Reel drive – PWM solenoid P70 drive fault detected</td>
</tr>
<tr>
<td>E21</td>
<td>REVERSER</td>
<td>Reverser solenoid P106 fault detected</td>
</tr>
<tr>
<td>E22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E23</td>
<td>REVERSER</td>
<td>Reverser – solenoid (P65, P71) fault detected</td>
</tr>
<tr>
<td>E24</td>
<td>DECK SHFT RIGHT P95</td>
<td>Right deck shift solenoid P95 fault detected</td>
</tr>
<tr>
<td>Codes</td>
<td>CDM Display</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>E25</td>
<td>DECK SHIFT LEFT P96</td>
<td>Left deck shift solenoid P96 fault detected</td>
</tr>
<tr>
<td>E26</td>
<td>DWA UP</td>
<td>DWA raise solenoid P72, P73 fault detected</td>
</tr>
<tr>
<td>E27</td>
<td>DWA DOWN</td>
<td>DWA lower solenoid P72, P73, fault detected circuit</td>
</tr>
<tr>
<td>E28</td>
<td>TILT RETRACT</td>
<td>Header tilt retract solenoid P54, fault detected</td>
</tr>
<tr>
<td>E29</td>
<td>TILT EXTEND</td>
<td>Header tilt extend solenoid P53, P54, fault detected</td>
</tr>
<tr>
<td>E30</td>
<td>4 WAY VALVE P62</td>
<td>Four-way valve solenoid P62 fault detected</td>
</tr>
<tr>
<td>E31</td>
<td>BYPASS VALVE P52</td>
<td>Bypass valve solenoid P52 fault detected</td>
</tr>
<tr>
<td>E32</td>
<td>HEADER UP/DOWN P57</td>
<td>Header up/down solenoid P57, fault detected</td>
</tr>
<tr>
<td>E33</td>
<td>SCREEN CLEANERS</td>
<td>Screen cleaner output fault detected</td>
</tr>
<tr>
<td>E34</td>
<td>RIGHT STOP LAMP</td>
<td>Right stop lamp output fault detected</td>
</tr>
<tr>
<td>E35</td>
<td>LEFT STOP LAMP</td>
<td>Left stop lamp output fault detected</td>
</tr>
<tr>
<td>E36</td>
<td>RIGHT TURN LAMP</td>
<td>Right turn lamp output fault detected</td>
</tr>
<tr>
<td>E37</td>
<td>LEFT TURN LAMP</td>
<td>Left turn lamp output fault detected</td>
</tr>
<tr>
<td>E38</td>
<td>MAIN DRIVE</td>
<td>Main header drive solenoid P106 fault detected</td>
</tr>
<tr>
<td>E39</td>
<td>LOW RANGE P61</td>
<td>Low range solenoid P61 fault detected</td>
</tr>
<tr>
<td>E40</td>
<td>HIGH RANGE P60</td>
<td>High range solenoid P60 fault detected</td>
</tr>
<tr>
<td>E41</td>
<td>REEL AFT</td>
<td>Reel aft solenoid P55, P59, fault detected</td>
</tr>
<tr>
<td>E42</td>
<td>REEL FORE</td>
<td>Reel fore solenoid P55, P59, fault detected</td>
</tr>
<tr>
<td>E43</td>
<td>REEL UP/DOWN P58</td>
<td>Reel up/down solenoid P58, P52, P62 fault detected</td>
</tr>
<tr>
<td>E44</td>
<td>FLOAT RHS P64</td>
<td>RHS float solenoid P64, fault detected</td>
</tr>
<tr>
<td>E45</td>
<td>FLOAT LHS P63</td>
<td>LHS float solenoid P63, fault detected</td>
</tr>
<tr>
<td>E46</td>
<td>SENSOR VOLTS HIGH</td>
<td>WCM's 9V sensor voltage output high (wire CH5)</td>
</tr>
<tr>
<td>E47</td>
<td>SENSOR VOLTS LOW</td>
<td>WCM's 9V sensor voltage output low (wire CH5)</td>
</tr>
<tr>
<td>E48</td>
<td>WCM OVER TEMP</td>
<td>E49 the temp limits are set to -10C and +85C representing the board temp read by the chip inside the WCM module; this is to protect the module when operating at extreme temp; the WCM outputs will stop working (they stay off) when the board temp is below -20C or above 120C; the high temp may indicate a strong/ massive short circuit in the cabling on the WCM outputs</td>
</tr>
<tr>
<td>E49</td>
<td>WCM LOW TEMP</td>
<td>WCM low temp fault</td>
</tr>
<tr>
<td>E50</td>
<td>BATT+ OUT OF RANGE</td>
<td>System voltage above 15.5 VDC</td>
</tr>
<tr>
<td>E51</td>
<td>DISK DRIVE PWM P68</td>
<td>Disk header drive solenoid P68 fault detected</td>
</tr>
<tr>
<td>E52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E53</td>
<td>REVERSER P71</td>
<td>Optional reverser—solenoid P71 fault detected</td>
</tr>
<tr>
<td>E54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codes</td>
<td>CDM Display</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>E55</td>
<td>DISK SPD OVERLOAD</td>
<td>Low disk speed detected < setpoint</td>
</tr>
<tr>
<td>E64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E65</td>
<td>KNIFE SPD OVERLOAD</td>
<td>Low knife speed detected < setpoint</td>
</tr>
<tr>
<td>E66</td>
<td>##.# LOW VOLTS</td>
<td>Low system voltage <11.5 VDC</td>
</tr>
<tr>
<td>E67</td>
<td>TRANS OIL PRESSURE</td>
<td>Supercharge pressure low (switch MD #139775)</td>
</tr>
<tr>
<td>E68</td>
<td>HYDRAULIC OIL HOT</td>
<td>Oil tank temp >230°F/110°C</td>
</tr>
<tr>
<td>E69</td>
<td>ENGINE AIR FILTER</td>
<td>Engine air filter plugged</td>
</tr>
<tr>
<td>E70</td>
<td>HYDRAULIC FILTER</td>
<td>Hydraulic filter pressure too high (switch MD #139722)</td>
</tr>
<tr>
<td>E71</td>
<td>LOW HYDRAULIC OIL</td>
<td>Low hydraulic oil level sensor tripped (switch MD #138473)</td>
</tr>
<tr>
<td>E72</td>
<td>##.# HIGH VOLTS</td>
<td>System voltage above 15.5 VDC</td>
</tr>
</tbody>
</table>

Error codes E56 to E63 not allocated

<table>
<thead>
<tr>
<th>Error codes E73 to E100 not allocated</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E101</td>
<td>SPI ERROR</td>
</tr>
<tr>
<td></td>
<td>Indicates that the communication between the two micros inside the WCM module is not working properly; could be resolved by reprogramming the WCM</td>
</tr>
<tr>
<td>E102</td>
<td>CAN ERROR</td>
</tr>
<tr>
<td></td>
<td>E102 is detected by the WCM module so the issue is related to the CANBUS signals on the WCM end; it may happen when the CDM sees the engine ECU but not the WCM (not hooked up or experiencing power or CANBUS problems; may also happen if the CDM connector P38, pin 8 signal is malfunctioning or the wire between the CDM connector P38, pin 8 and WCM connector P36, pin 30 is not making a proper connection). The wire at the CDM is CB60 and at the WCM CH60</td>
</tr>
<tr>
<td>E103</td>
<td>EEPROM READ ERROR</td>
</tr>
<tr>
<td></td>
<td>Internal errors specific to the WCM; try reprogramming the module</td>
</tr>
<tr>
<td>E104</td>
<td>EEPROM WRITE ERROR</td>
</tr>
<tr>
<td></td>
<td>Internal errors specific to the WCM; try reprogramming the module</td>
</tr>
<tr>
<td>E105</td>
<td>TEMP SENSOR ERROR</td>
</tr>
<tr>
<td></td>
<td>Internal errors specific to the WCM; try reprogramming the module</td>
</tr>
</tbody>
</table>
Index

A

A Series headers
 A30D
 auger speed .. 276
 reel speed .. 277
 A30S
 auger speed .. 276
 A40D
 auger speed .. 276
 reel speed .. 277
 reel speed while moving 277
 reel to ground speed 278
 attaching to M205 ... 232
 auger speed .. 276
 definition .. 27
 hydraulic center-link with optional self-alignment kit
 attaching to M205 ... 233
 hydraulic center-link without self-alignment kit
 attaching to M205 ... 238
 knife speed ... 280
 adjusting caster tread width 177
 air conditioning, See HVAC system
 antenna mountings ... 64
 API
 definition .. 27
 assembly
 attaching A Series header to M205 232
 attaching D Series header to M205 218
 attaching D1 SP Series header to M205 218
 installing drive wheels 405
 ASTM
 definition .. 27
 auger speeds ... 276
 A30D header .. 276
 A30S header .. 276
 A40D header .. 276
 auto raise height feature 211
 programming auto raise height 211
 using auto raise height feature 212
 automated steering systems 443
 installing... 356
 main battery disconnect switch 350
 maintaining ... 349
 removing .. 354
 belts ... 345
 A/C compressor belt
 replacing .. 347
 tensioning .. 347
 alternator/fan belt
 tensioning ... 345
 engine belts
 alternator/fan belt
 replacing .. 345
 bolts
 definition .. 27

C

 cab display module (CDM)
 CDM/WCM fault codes 156
 configuration guidelines 89
 display and sound options 119
 backlighting .. 123
 buzzer volume ... 122
 display contrast .. 124
 display language .. 120
 display units ... 121
 engine and windrower functions 76
 engine error codes ... 156, 464
 engine warning lights 86
 header functions ... 77
 header sensors .. 125
 header float sensor .. 129
 header height sensor 125
 header tilt sensor .. 127
 locking CDM buttons
 auger speed .. 113
 displaying locked buttons 118
 draper speed .. 112
 header float ... 109
 header tilt .. 108
 knife speed .. 114
 reel fore-aft ... 110
 reel speed .. 117
 rotary disc speed ... 116
 operating screens ... 78
 programming ... 90
 auger reel speed .. 104
 auto raise height ... 98
 double windrower attachment (DWA) 98

B

 batteries
 adding electrolyte ... 353
 battery safety .. 8
 boosting .. 352
 charging .. 350
 connecting .. 357
INDEX

attaching to M205 ...218
hydraulic center-link without self-alignment kit
attaching to M205 ...223
reel height ..264
reel speed ..264
rear index ..264
rear minimum speed264
rear only speed ..267
rear to ground speed264
DDD definition ..27
decals fuse box decal ..381
GSL header switch functions71
location of safety signs13
deck shift control ..272
declaration of conformity3
definition of terms ..27
DK definition ..27
DKD definition ..27
double windrow attachment (DWA)213
activating in CDM ..150
deck position ..214
draper speed ..214
draper index
setting for D Series269
setting for D1 SP Series269
draper speed
setting for D Series268
setting for D1 SP Series268
setting independent of ground speed270
setting minimum draper speed268
drive manifold
cab display module (CDM) programming98
drive wheels
installing ..405
nut tightening procedure400
servicing ...403
driving the windrower
cab-forward operation172
driving on the road ..179
engine-forward operation174
entering/exiting ...171
reverse in cab-forward mode173
reverse in engine-forward mode175
spin turn ...176
stopping ...177
DWA, See double windrow attachment (DWA)

E

ECM
definition ..27
electrical system ..169
battery ..349
electrical systems ...349
accessing circuit breakers and fuses378
batteries
adding electrolyte ..353
battery main disconnect switch350
boosting the batteries352
charging the batteries350
connecting ..357
installing ...356
maintaining the battery349
removing ..354
checking and replacing fuses379
circuit breakers and fuses378
fuse box decal ..381
inspecting 125A main fuse382
preventing damage to electrical system349
replacing 125A main fuse382
replacing circuit breaker/relay380
switches and sensors
battery disconnect switch350
electric filters ..321
air filters
cleaning air filter primary element321
installing primary air filter320
installing secondary air filter322
removing primary air filter318
removing secondary air filter322
air intake system ...317
batteries
adding electrolyte ..353
installing ..356
connecting ...357
charging the batteries350
battery main disconnect switch350
electric systems ...169
engine ...311
general engine inspection311
inspecting exhaust system345
manuals ..311
turning engine manually311
warning lights ..169
electric – checking interlock296
engine compartment hoods, See hoods
engine cooling system331
changing coolant ...333
cooler box ...337
INDEX

cleaning cooler .. 338
removing primary fuel filter 325
removing secondary fuel filter 326
cooler box screen
removing primary fuel filter 325
removing secondary fuel filter 326
HVAC filters
fresh air filter
inspecting/cleaning filter element 304
installing .. 304
removing .. 303
return air cleaner/filter
removing .. 306
servicing .. 305
hydraulic filters
changing oil filters .. 387
charge oil filter ... 387
installing .. 389
removing .. 387
lift filter
installing .. 393
removing .. 392
return oil filter ... 389
installing .. 391
removing .. 389
final filter .. 392
finger tight
definition .. 27
fuel, fluids, and lubricants
fuel systems ... 323
fuel specifications .. 460
fuel, fluids, and lubricants 460
capacities .. 461
storing .. 460
fuel systems ... 323
fuel filters .. 324
fuel/water separator .. 329
installing primary fuel filter 326
installing secondary fuel filter 327
removing primary fuel filter 325
removing secondary fuel filter 326
fuel specifications .. 460
fuel, fluids, and lubricants 460
fuel tank
draining .. 328
filling ... 167
fuel tank vent filter
installing .. 323
removing .. 323
fuel/water separator .. 329
removing water-in-fuel system 329
fuel, fluids, and lubricants 460
priming
procedure ... 330
system priming .. 330
fuel, fluids, and lubricants
INDEX

engine oil ..313
hydraulic oil ..384
fuse box decals ..381
fuses ..378
accessing ..378
checking and replacing ...379
inspecting and replacing 125A382

G

gearbox – maintaining ..343
glossary ..27
gps automated steering systems443
GVW ...71

See also header controls

definition ..27

GVW

definition ..27

H

hard joint

definition ..27
HDS

definition ..27
header

definition ..27
header angles ..205
header controls ..70
console header switches74
deck shift/float preset switch74
DWA/swath roller switch (if installed)75
display selector switch ..72
ground speed lever (GSL) header switches71
header drive reverse button70
header drive switch ...70
header position switches73
reel and disc speed switches73
reel position switches ...72
header drive ..204
header float ..196
adjusting float using drawbolts198
checking float ..197
float operating guidelines196
float options and presets199
float options with deck shift (D Series and D1 SP
Series) ...273
header levelling ..201
header operation ...194
engaging the header ..204
header and reel hydraulics394
header angle ..205
header drive ..204
header drop rate ..212
levelling the header ..201
operating with a header

A Series header ..275
D Series header ..263
D1 SP Series header ...263
header float ..196
R Series header ..281
reversing the header ..205
header sensors

calibrating header sensors125
header float sensor ..129
header height sensor ...125
header tilt sensor ..127
switching installed sensors on or off134
headers

A Series headers

attaching

non-self-aligning hydraulic center-link238
self-aligning hydraulic center-link233
detaching ..244
hydraulic center-link ...244

D Series headers

attaching

non-self-aligning hydraulic center-link223
self-aligning hydraulic center-link218
attaching header boots217
detaching ..229
hydraulic center-link ...229

D1 SP Series headers

attaching

non-self-aligning hydraulic center-link223
self-aligning hydraulic center-link218
attaching header boots217
detaching ..229
hydraulic center-link ...229

drop rate ..396

R Series headers

attaching ..248
detaching ..259
hydraulic center-link ...259

heater shut-off valves ...58
heating, See HVAC system
hex keys

definition ..27
hoods

closing from highest position287
closing from lower position285
opening to highest position286
opening to lowest position284
horns ...66
hp

definition ..27
HVAC system

INDEX
A/C compressor
- compressor belt tensioning: 347
- coolant cycling: 163
- servicing the compressor: 310

A/C condenser: 307

air distribution: 58

compressor: 310

controls: 59

cover
- installing cover: 309
- removing cover: 307

evaporator heater core: 307

cleaning: 308

filters
- fresh air filter
 - cleaning filter element: 304
 - installing: 304
 - removing: 303
- return air cleaner/filter
 - cleaning: 306
 - servicing: 305
- fresh air intake filter: 303
- heater shut-off valve: 58

hydraulic oil: 384
- changing hydraulic oil: 386
- checking and filling: 385

hydraulics
- changing hydraulic oil filters: 387

filters
- part numbers: 462

fittings
- flare-type: 454
- O-ring boss (ORB) adjustable: 455
- O-ring boss (ORB) non-adjustable: 457
- O-ring face seal (ORFS): 458
- tapered pipe thread fittings: 459

header and reel hydraulics: 394
- flow control blocks: 395
- header drop rate: 396

hydraulic filters
- charge oil filter: 387
- installing: 389
- removing: 387
- return oil filter: 389
- installing: 391
- removing: 389

hydraulic hoses and lines: 394

hydraulic oil cooler: 386

hydraulic safety: 6

lift filter: 392
- installing: 393
- removing: 392

reel drop rate

adjusting relief valves: 394

traction drive hydraulics: 397
- charge pump pressure: 398
- transmission oil pressure: 397

warnings: 384

I

ISC
- definition: 27

J

JIC
- definition: 27

K

knife
- definition: 27

L

lighting: 49
- auto road: 54
- beacons: 53
- replacing bulb: 372
- cab-forward mode
 - field: 50
 - road: 52
- engine-forward mode
 - field: 51
 - adjusting field lights: 362
 - replacing bulb: 363
- floodlights
 - adjusting cab-forward floodlights: 363
 - adjusting rear floodlights: 369
 - replacing bulb in cab-forward flood light: 363
 - replacing bulb in rear flood light: 369
- headlights
 - aligning headlights: 360
 - replacing bulb: 358
 - HID auxiliary lighting: 54, 365, 443
 - adjusting HID lights: 365
 - replacing lamp: 366
 - interior lights: 60
INDEX

ambient light ... 378
console gauge light 376
dome light .. 377
red and amber lights 371
red taillights .. 372
turn signal indicators 378
lubricating the windrower 293
lubricants/fluids/system capacities 461
lubricating engine gearbox 343
lubricating wheel drive 400
adding lubricant .. 401
changing wheel drive lubricant 402
checking lubricant levels 400
lubrication procedure 293
recommended fuel, fluids, and lubricants 460
storing lubricants and fluids 460

M
maintenance and servicing 283
A/C compressor belt
 replacing .. 347
 tensioning ... 347
battery ... 349
daily checks and maintenance 163
external electrical system 349
engine .. 311
 air intake system 317
 charge air cooling 338
 engine belt .. 345
 general engine inspection 311
 turning the engine manually 311
engine compartment
 opening and closing platforms 288
 engine cooling system 331
 engine exhaust system 345
 engine gearbox .. 343
 engine oil ... 313
 checking level .. 313
 filter part numbers 462
 fuel system .. 323
 fuel, fluids, and lubricants 460
 HVAC system ... 303
 fresh air filter
 cleaning filter element 304
 installing ... 304
 hydraulic oil tank
 checking and filling hydraulic oil 385
lighting
 aligning headlights 360
lubrication points ... 294
preparing for servicing 283
priming
 procedure .. 330
 system priming .. 330
safety .. 5
safety systems ... 295
wheels and tires ... 399
caster wheels .. 406
maintenance platforms 288
maintenance schedule 415
manifolds
cab display module (CDM) programming 98
MDS
 definition ... 27
metric bolts – torque specifications 451
minimum reel speed 264

N
N-DETENT
 definition ... 27
n/a
 definition ... 27
NPT
 definition ... 27
nut
 definition ... 27

O
oils (engine) .. 313
adding ... 316
changing engine oil 315
checking level .. 313
draining ... 315
replacing engine oil filter 316
operations .. 161
 See also engine operation
 See also header operation
auto raise height feature
 See also header operation
 programming auto raise height feature 211
 using auto raise height 212
break-in period .. 162
daily checks .. 163
double windrowing 213
deck position .. 214
draper speed .. 214
 driving the windrower 169
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>operating with a header</td>
<td>194</td>
</tr>
<tr>
<td>A Series header</td>
<td>275</td>
</tr>
<tr>
<td>D Series header</td>
<td>263</td>
</tr>
<tr>
<td>D1 SP Series header</td>
<td>263</td>
</tr>
<tr>
<td>header float</td>
<td>196</td>
</tr>
<tr>
<td>R Series header</td>
<td>280</td>
</tr>
<tr>
<td>operator presence system</td>
<td>41</td>
</tr>
<tr>
<td>engine and transmission</td>
<td>41</td>
</tr>
<tr>
<td>header drive</td>
<td>41</td>
</tr>
<tr>
<td>operator’s seat</td>
<td></td>
</tr>
<tr>
<td>adjusting armrest</td>
<td>43</td>
</tr>
<tr>
<td>adjusting armrest angle</td>
<td>45</td>
</tr>
<tr>
<td>adjusting fore-aft position</td>
<td>42</td>
</tr>
<tr>
<td>adjusting lumbar support</td>
<td>45</td>
</tr>
<tr>
<td>adjusting seat tilt</td>
<td>44</td>
</tr>
<tr>
<td>adjusting suspension and seat height</td>
<td>42</td>
</tr>
<tr>
<td>adjusting vertical dampener</td>
<td>43</td>
</tr>
<tr>
<td>fore-aft isolator lock</td>
<td>44</td>
</tr>
<tr>
<td>operator’s station</td>
<td>39, 295</td>
</tr>
<tr>
<td>AM/FM radio</td>
<td>64</td>
</tr>
<tr>
<td>amenities</td>
<td>62</td>
</tr>
<tr>
<td>auto road light</td>
<td>54</td>
</tr>
<tr>
<td>beacon lighting</td>
<td>53</td>
</tr>
<tr>
<td>cab-forward lighting - field mode</td>
<td>50</td>
</tr>
<tr>
<td>cab-forward lighting - road</td>
<td>52</td>
</tr>
<tr>
<td>climate controls</td>
<td>59</td>
</tr>
<tr>
<td>console</td>
<td>39</td>
</tr>
<tr>
<td>emergency exit</td>
<td>61</td>
</tr>
<tr>
<td>engine controls and gauges</td>
<td>67</td>
</tr>
<tr>
<td>engine-forward lighting - road</td>
<td>51</td>
</tr>
<tr>
<td>GSL adjustments</td>
<td>296</td>
</tr>
<tr>
<td>adjusting GSL fore-aft movement</td>
<td>298</td>
</tr>
<tr>
<td>adjusting GSL lateral movement</td>
<td>296</td>
</tr>
<tr>
<td>header controls</td>
<td>70</td>
</tr>
<tr>
<td>HID lighting (optional)</td>
<td>54</td>
</tr>
<tr>
<td>horn</td>
<td>66</td>
</tr>
<tr>
<td>interior light</td>
<td>60</td>
</tr>
<tr>
<td>lighting</td>
<td>49</td>
</tr>
<tr>
<td>operator presence system</td>
<td>41, 295</td>
</tr>
<tr>
<td>engine and transmission</td>
<td>41</td>
</tr>
<tr>
<td>header drive</td>
<td>41</td>
</tr>
<tr>
<td>rear view mirror</td>
<td>57</td>
</tr>
<tr>
<td>safety systems</td>
<td>295</td>
</tr>
<tr>
<td>seat belts</td>
<td>47, 295</td>
</tr>
<tr>
<td>steering adjustments</td>
<td>298</td>
</tr>
<tr>
<td>steering column</td>
<td>48</td>
</tr>
<tr>
<td>training seat</td>
<td>46</td>
</tr>
<tr>
<td>windrower controls</td>
<td>68</td>
</tr>
<tr>
<td>windshield wiper</td>
<td>56</td>
</tr>
<tr>
<td>options and attachments</td>
<td>443</td>
</tr>
<tr>
<td>AM/FM radio</td>
<td>443</td>
</tr>
<tr>
<td>automated steering systems</td>
<td>443</td>
</tr>
<tr>
<td>booster spring kit (internal)</td>
<td>446</td>
</tr>
<tr>
<td>completion kit</td>
<td></td>
</tr>
<tr>
<td>for auger and draper header drives</td>
<td>446</td>
</tr>
<tr>
<td>for auger header drive and conditioner</td>
<td>446</td>
</tr>
<tr>
<td>reversible cooling fan</td>
<td>445</td>
</tr>
<tr>
<td>HID auxiliary lighting</td>
<td>443</td>
</tr>
<tr>
<td>hydraulic union kit</td>
<td>447</td>
</tr>
<tr>
<td>light header float</td>
<td>447</td>
</tr>
<tr>
<td>lighting/marketing for cab-forward travel</td>
<td>443</td>
</tr>
<tr>
<td>pressure sensor kit</td>
<td>443</td>
</tr>
<tr>
<td>quick coupler kit</td>
<td>447</td>
</tr>
<tr>
<td>self-aligning center-link</td>
<td>447</td>
</tr>
<tr>
<td>spring with external booster spring kit</td>
<td>446</td>
</tr>
<tr>
<td>swath compressor</td>
<td>447</td>
</tr>
<tr>
<td>towing harness</td>
<td>448</td>
</tr>
<tr>
<td>warning beacons</td>
<td>444</td>
</tr>
<tr>
<td>weight box</td>
<td>185, 448</td>
</tr>
<tr>
<td>windshield shades</td>
<td>444</td>
</tr>
<tr>
<td>ORB</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>27</td>
</tr>
<tr>
<td>ORFS</td>
<td>27</td>
</tr>
<tr>
<td>owner/operator responsibilities</td>
<td>157</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>platforms</td>
<td>288</td>
</tr>
<tr>
<td>closing platform (major service position)</td>
<td>292</td>
</tr>
<tr>
<td>closing platform (standard position)</td>
<td>289</td>
</tr>
<tr>
<td>opening platform (major service position)</td>
<td>290</td>
</tr>
<tr>
<td>opening platform (standard position)</td>
<td>288</td>
</tr>
<tr>
<td>priming</td>
<td></td>
</tr>
<tr>
<td>fuel system priming procedure</td>
<td>330</td>
</tr>
<tr>
<td>system priming</td>
<td>330</td>
</tr>
<tr>
<td>product overview</td>
<td>27</td>
</tr>
<tr>
<td>programming</td>
<td></td>
</tr>
<tr>
<td>auto raise height feature</td>
<td>211</td>
</tr>
<tr>
<td>return to cut feature</td>
<td>209</td>
</tr>
</tbody>
</table>
R

R Series headers
attaching ... 248
definition ... 27
disc speed .. 282
kit for 13-foot R85 ... 281
setting disc speed ... 282
radiators
inspecting radiator cap ... 331
radios ... 64, 443
rear view mirrors .. 57
reel height
D Series header .. 264
D1 SP Series header .. 264
reel index ... 264
reel minimum speed ... 264
reel speed
A30D header .. 277
A40D header .. 277
D Series header .. 264
D1 SP Series header .. 264
reel-to-ground speed ... 264
relays
replacing .. 380
relief valve ... 394
return to cut feature ... 208
programming return to cut ... 209
using return to cut ... 210
revisions list .. ii
RoHS
definition ... 27
rpm
definition ... 27

S

SAE
bolt torques .. 449
definition ... 27
safety
battery safety .. 8
genre safety .. 10
general safety .. 3
header safety props ... 194
high pressure rail .. 10
hydraulic safety .. 6
maintenance safety ... 5
operational safety .. 161
programming the CDM, See cab display module (CDM)
programming return to cut ... 209
using return to cut ... 210
safety alert symbols ... 1
safety sign decals .. 12
installing decals ... 12
interpreting decals ... 17
sign location ... 13
signal words ... 2
tire safety ... 7
welding precautions .. 9
screen cleaners
adjusting clearance .. 341
screws
definition ... 27
SK
SKD
definition ... 27
soft joint
definition ... 27
specifications
filter part numbers .. 462
fuel .. 460
torque specifications .. 449
windrower dimensions .. 34
windrower specifications ... 30
spm
definition ... 27
springs
float springs
spring with external booster spring kit 446
spring with internal booster spring kit 446
starting the engine ... 164
df engine warm-up ... 166
steering
adjusting steering chain tension 301
adjusting steering column ... 48
adjustments ... 298
checking steering chain tension 301
checking steering link pivots 298
storing the windrower .. 193
swath compressor
activating swath compressor 102
calibrating sensor ... 131
calibrating sensor ... 131
controls and automated functions 215
using swath compressor ... 215
symbols
definitions ... 158
engine function ... 158
header function .. 160
windrower operating ... 159

T

temperature
 cab .. 58
 engine .. 168
tension
 definition .. 27
TFFT
 definition .. 27
torque
 definition .. 27
torque angles
 definition .. 27
torque specifications ... 449
 flare-type hydraulic fittings 454
 metric bolt specifications 451
 bolting into cast aluminum 453
 O-ring boss (ORB) hydraulic fittings
 (adjustable) .. 455
 O-ring boss (ORB) hydraulic fittings (non-adjustable) 457
 O-ring face seal (ORFS) fittings 458
 SAE bolt torque specifications 449
 tapered pipe thread fittings 459
torque-tension
 definition .. 27
towing
 attaching tow-bar to windrower 185
 towing header with windrower 181
 towing the windrower (emergency) 192
training seats ... 46
transporting
 attaching header transport hitch to header 185
 converting from field to transport mode 182
 converting from transport to field mode 189
troubleshooting
 cab air .. 436
 electrical ... 427
 engine .. 421
 header drive .. 430
 header problems ... 139
 hydraulics .. 429
 operator’s station .. 441
 steering and ground speed control 435
 traction drive .. 431
 windrower problems 133

U

UCA
 definition .. 27
ULSD
 definition .. 27

V

ventilating, See HVAC system

W

washers
 definition .. 27
WCM
 definition .. 27
weight boxes ... 448
 attaching to windrower 185
welding .. 9
wheels and tires .. 399
 caster wheels .. 177, 406
 anti-shimmy dampener 413
 ballast requirement 413
 forked caster wheels
 installing .. 411
 lowering ... 410
 raising .. 408
 removing ... 410
 formed caster wheels
 installing .. 412
 lowering ... 410
 raising .. 408
 removing ... 412
 inflating caster tire 406
 servicing ... 408
 tightening caster wheel nuts 407
 drive wheels
 inflating ... 399
 inflating drive tire 399
 lowering ... 406
 nut tightening procedure 400
 raising .. 403
 removing ... 404
 servicing ... 403
 safety ... 7
wheel drive
 checking lubricant levels 400
 lubricating wheel drive 400
 adding lubricant .. 401
 changing lubricant ... 402
windrower control module (WCM)
 calibrating header sensors 125
INDEX

windshield wipers ...56
Lubricants, Fluids, and System Capacities

⚠️ CAUTION

To avoid injury or death, do not allow ANY machine fluids to enter the body.

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>As required unless otherwise specified</td>
<td>SAE multi-purpose high temperature extreme pressure (EP2) performance with 1% max Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td></td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Fuel tank</td>
<td>Grade No.2, or Grade No.1 and 2 mix; refer to 8.2.2 Fuel Specifications, page 460 for more information</td>
<td>378 liters (97 US gallons)</td>
</tr>
<tr>
<td>Hydraulic oil</td>
<td>Hydraulic reservoir</td>
<td>SAE 15W-40 compliant with SAE specs for API class SJ and CH-4 engine oil.</td>
<td>65 liters (17.2 US gallons)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Gearbox</td>
<td>SAE 80W-140, API service class GL-5. Fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>2.1 liters (2.2 US quarts)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Wheel drive</td>
<td>SAE 75W-90, API service class GL-5. Fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>1.4 liters (1.5 US quarts)</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>Engine cooling system</td>
<td>ASTM D-6210 and Fleetguard ES Compleat®; refer to 8.2.3 Lubricants, Fluids, and System Capacities, page 461</td>
<td></td>
</tr>
<tr>
<td>Engine oil</td>
<td>Engine oil pan</td>
<td>SAE 15W-40 compliant with SAE specs for API class SJ and engine oil</td>
<td>14.2 liters (15 US quarts)</td>
</tr>
<tr>
<td>Air conditioning refrigerant</td>
<td>Air conditioning system</td>
<td>R134A</td>
<td>2.27 kg (5 lb.)</td>
</tr>
<tr>
<td>Air conditioning refrigerant oil</td>
<td>Air conditioning system total capacity</td>
<td>PAG SP-15</td>
<td>240 cc (8.1 fl. oz.)</td>
</tr>
</tbody>
</table>

69. Optional when operating temperature is below 0°C (32°F).
70. SAE 75W-140 may be substituted for SAE 80W-140 if necessary.
71. SAE 85W-140 API Service Class GL-5. Extreme Pressure Gear Lubricant is used before initial change.
MacDon Industries Ltd.
680 Moray Street
Winnipeg, Manitoba
Canada R3J 3S3
t. (204) 885-5590 f. (204) 832-7749

MacDon, Inc.
10708 N. Pomona Avenue
Kansas City, Missouri
United States 64153-1924
t. (816) 891-7313 f. (816) 891-7323

MacDon Australia Pty. Ltd.
A.C.N. 079 393 721
P.O. Box 103 Somerton, Victoria, Australia
Australia 3061
t.+61 3 8301 1911 f.+61 3 8301 1912

MacDon Brasil Agribusiness Ltda.
Rua Grã Nicco, 113, sala 202, B. 02
Mossunguê, Curitiba, Paraná
CEP 81200-200 Brasil
t. +55 (41) 2101-1713 f. +55 (41) 2101-1699

LLC MacDon Russia Ltd.
123317 Moscow, Russia
10 Presnenskaya nab, Block C
Floor 5, Office No. 534, Regus Business Centre
t. +7 495 775 6971 f. +7 495 967 7600

CUSTOMERS
MacDon.com

DEALERS
Portal.MacDon.com

Trademarks of products are the marks of their respective manufacturers and/or distributors.

Printed in Canada