This manual contains instructions for safety, operation, maintenance, and service for the MacDon M1240 Windrower, featuring Dual Direction® and CrossFlex™ rear suspension.

California Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm. Battery posts, terminals, and related accessories contain lead and lead components. Wash hands after handling.

Whole Body and Hand-Arm Vibration Levels

The weighted root mean square acceleration, to which the whole body is subjected, ranges from 0.46 to 1.52 m/s² as measured on a representative machine during typical operations and analyzed in accordance with ISO 5008.

During the same operations, the weighted root means square hand-arm vibration was less than 1.79 m/s² when analyzed in accordance with ISO 5349. These acceleration values depend on the roughness of the ground, the speeds at which the windrower is operated, the operator's experience, weight, and driving habits.

Noise Levels

The A-weighted sound pressure levels inside the operator's station ranged from 69.3 to 69.7 dB(A) as measured on several representative machines in accordance with ISO 5131. The sound pressure level depends upon the engine speed and load, field and crop conditions, and the type of platform used.
Declaration of Conformity

EN
- **Name and address of the person authorized to compile the technical file:**
 - Benno von Rosendahl
 - General Manager, MacDon Europe GmbH
 - Hagenauer Straße 59
 - 45233 Wipperfürth
 - benno.vonrosendahl@macdon.com

CE
- **Manufacturer:**
 - MacDon Industries Ltd.
 - 680 Murray Street
 - Winnipeg, Manitoba, Canada R3J 3S3

EC Declaration of Conformity
- As Per Shipping Document
- August 17, 2017
- **Model:** MacDon M1240
- **Product Type:** Products

NL
- **Machine Type:** T2
- **Name & Model:** M1240
- **Serial Number(s):** 1023372
- **Declaration of Conformity:**
 - MacDon Industries Ltd.
 - 680 Murray Street
 - Winnipeg, Manitoba, Canada R3J 3S3

IT
- **Machine Type:** T2
- **Name & Model:** M1240
- **Serial Number(s):** 1023372
- **Declaration of Conformity:**
 - MacDon Industries Ltd.
 - 680 Murray Street
 - Winnipeg, Manitoba, Canada R3J 3S3

IS
- **Model:** M1240
- **Manufacturer:** MacDon Industries Ltd.
- **Name:** MacDon M1240
- **Product Type:** Products

FR
- **Machine Type:** T2
- **Name & Model:** M1240
- **Serial Number(s):** 1023372
- **Declaration of Conformity:**
 - MacDon Industries Ltd.
 - 680 Murray Street
 - Winnipeg, Manitoba, Canada R3J 3S3
EC Declaration of Conformity

IT

Nu., [1] Deklaracje, że produkty:
Tipo di macchina: [2]
Nome e modello: [3]
Numero e serie: [4]
consistono in dispositivi riconosciuti dalla direttiva 2000/14/CE.
Utilizzando gli standard armonizzati, come indicato nell'articolo 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Lunghezza del dritto di trascinaggio: [5]
Nome e firma della persona autorizzata a redigere la dichiarazione: [6]
Nome e firma della persona autorizzata a compilare il file EIC
Benefici: von Riedesel
Generale direttore, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germania)
bovincheck@macdon.com

NL

AR

Modelaardig, go e produkte:
Maschine: [2]
Naam en model: [3]
Serie nummer: [4]
Voldoet aan alle emblemen behorende aan de regel CEE 2000/14/CE.
Om de vereisten van de harmonisirerde richtlijn te voldoen, zoals vermeld
in Artikel 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Lengte van de tracering: [5]
Naam en ondertekening van de persoon, waarvan de verantwoordelijkheid voor de vereisten van de richtlijn benoemde:
Benefici: von Riedesel
Generale direttore, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germania)
bovincheck@macdon.com

PO

AR

Moje miejsce godności, [1]
Oświadczam, że produkte:
Typ urządzenia: [2]
Nazwa i model: [3]
Numer serii: [4]
Zgodnie z wymaganiami harmonizowanymi normami w zgodzie z artykułem 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Długość przenośnego przedłużacza: [5]
Imię i podpisanie osoby, zwierzchnikowej obejmującej tę ocenę zgodnie z poniższymi dotyczącymi regulamin:
Benefici: von Riedesel
Generale direttore, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germania)
bovincheck@macdon.com

PT

AR

Declaro, que os produtos:
Tipo de máquina: [2]
Nome e modelo: [3]
Númer de série: [4]
Conformidade com regras de harmonização e/ou novas directivas CE 2000/14/C:
Normas harmonizadas aplicáveis, conforme referido no Artigo 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Data e hora da declaração: [5]
Identidade e autenticidade da pessoa autorizada a elaborar a declaração: [6]
Nome e firma da pessoa autorizada a elaborar a declaração:
Benefici: von Riedesel
General director, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germany)
bovincheck@macdon.com

RO

AR

Declarăm, că produsele:
Tip de mașină: [2]
Nume și model: [3]
Nume de serie: [4]
Conform cu normele armonizați și directiva CE 2000/14/CE:
Norme armonizate aplicabile, conform referite în Articol 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Data și ora declarației: [5]
Identitatea și autenticitatea persoanei autorizate să redacteze declarația:
Benefici: von Riedesel
General director, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germany)
bovincheck@macdon.com

SL

AR

Ožigajemo, da so proizvodi:
Tip stroja: [2]
Ime in model: [3]
Serie številke: [4]
Zgodovina harmoniziranih standardov, vključno z artiklom 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Plašč podatkov za registar: [5]
Ime in podpis osebe, ki je odgovorna za izvršitev teh standardov:
Benefici: von Riedesel
General director, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germany)
bovincheck@macdon.com

SK

AR

Deklarujeme, že toto výrobky:
Typ variante: [2]
Názov a model: [3]
Výrobné číslo: [4]
Z hľadiska harmonizovaných predpisov a zákonných podmienok v súlade s E 2000/14/CE:
Používanie harmonizovaných norm, ktoré sú zaradené v článku 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009
Miesto a čas preklamania: [5]
Mená a pripomienky osob, ktoré prepracujú tento dokument:
Benefici: von Riedesel
General director, Macdon Europe GmbH
Hagenauer Straße 59
63235 Wiesbaden (Germany)
bovincheck@macdon.com
Introduction

This instruction manual contains information on the MacDon M1240 Windrower, which when coupled with one of MacDon's R85 Rotary Disc Headers, A40 DX Auger Headers, or D1X or D1XL Series Draper Headers, provides a package designed to cut and lay a variety of crops into fluffy, uniform windrows.

Carefully read all the material provided before attempting to use the machine.

If you follow the instructions provided, your M1240 Windrower will work well for many years.

Use this manual as your first source of information about the machine. Use the Table of Contents and the Index to guide you to specific areas. Study the Table of Contents to familiarize yourself with how the material is organized. Use this manual in conjunction with your header operator's manual.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise the machine function and machine life and may result in a hazardous situation.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

A manual storage case is provided in the cab. Keep this manual handy for frequent reference and to pass on to new Operators or Owners. Call your Dealer if you need assistance, information, or additional copies of this manual.

Conventions

The M1240 Windrower is Dual Direction®, meaning the windrower can be driven in cab-forward or engine-forward modes. Right and left designations are therefore determined from the operator’s position, facing the direction of travel. This manual uses the terms “right cab-forward”, “left cab-forward”, “right engine-forward”, and “left engine-forward” when referencing specific locations on the machine.

Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).
Serial Number

If you require MacDon technical assistance, please have the machine's serial numbers recorded and ready before you call.

Record the model number, serial number, and year of manufacture of the windrower and engine on the lines below.

The windrower serial number plate (A) is located on the left side of the main frame near the walking beam.

Windrower Model Number: ____________________________
Windrower Serial Number: ____________________________
Year of Manufacture: ________________________________

Windrower Serial Number Location

The engine serial number plate (A) is located on top of the engine cylinder head cover.

Engine Serial Number: ________________________________
Year of Manufacture: ________________________________

Engine Serial Number Location
TABLE OF CONTENTS

Introduction ... i
Serial Number ... ii

Chapter 1: Safety ... 1
 1.1 Safety Alert Symbols ... 1
 1.2 Signal Words .. 2
 1.3 General Safety .. 3
 1.4 Maintenance Safety ... 5
 1.5 Hydraulic Safety ... 6
 1.6 Tire Safety ... 7
 1.7 Battery Safety .. 8
 1.8 Welding Precaution ... 9
 1.9 Engine Safety .. 14
 1.9.1 High Pressure Rails ... 14
 1.9.2 Engine Electronics ... 15
 1.10 Safety Signs .. 16
 1.10.1 Installing Safety Decals .. 16
 1.11 Safety Sign Locations .. 17
 1.12 Understanding Safety Signs ... 19

Chapter 2: Product Overview ... 29
 2.1 Definitions .. 29
 2.2 Specifications ... 32
 2.3 Windrower Dimensions ... 35
 2.4 Component Location .. 36

Chapter 3: Operator’s Station .. 39
 3.1 Operator Console ... 39
 3.2 Operator Presence System ... 41
 3.2.1 Header Drive ... 41
 3.2.2 Engine and Transmission ... 41
 3.3 Operator’s Seat Adjustments ... 42
 3.3.1 Armrest .. 42
 3.3.2 Armrest Angle ... 43
 3.3.3 Suspension and Height ... 43
 3.3.4 Fore-Aft Slide Control .. 44
 3.3.5 Fore-Aft Isolator Control .. 44
 3.3.6 Tilt ... 45
 3.3.7 Lumbar Support .. 45
 3.3.8 Vertical Dampener .. 46
 3.3.9 Cushion Tilt (Deluxe Cab Only) ... 46

Specifications

Recommended Minimum Windrow Dimensions

Windrower Dimensions

Signal Words

Welding Precaution

Battery Safety

Engine Safety

Hydraulic Safety

Tire Safety

Maintenance Safety
3.3.10 Cushion Extension (Deluxe Cab Only) ... 47
3.3.11 Lateral Isolation Lockout (Deluxe Cab Only) .. 47
3.3.12 Heating/Cooling (Deluxe Cab Only) ... 48

3.4 Training Seat ... 49

3.5 Seat Belts ... 50

3.6 Adjusting the Steering Column and Steering Wheel .. 51

3.7 Lighting ... 52
 3.7.1 Cab-Forward Lighting – Field ... 52
 3.7.2 Cab-Forward Lighting – Road .. 53
 3.7.3 Engine-Forward Lighting – Road ... 54
 3.7.4 Tail/Beacon Lighting .. 56
 3.7.5 Turn Signal / Hazard Lighting .. 57

3.8 Windshield Wipers ... 58

3.9 Rear View Mirrors .. 59

3.10 Cab Temperature ... 60
 3.10.1 Heater Shut-Off Valve .. 60
 3.10.2 Air Distribution .. 60
 3.10.3 Climate Controls ... 61

3.11 Operator Amenities .. 62

3.12 Radio .. 64
 3.12.1 AM/FM/CD/USB Radio with Bluetooth® Wireless Technology 64
 Activating Bluetooth® Feature ... 65
 Pairing a Bluetooth® Device .. 66

3.13 Horn .. 67

3.14 Engine Controls ... 68
 3.14.1 Using Eco Engine Control (EEC) .. 69

3.15 Windrower Controls .. 70

3.16 Header Controls ... 71
 3.16.1 Header Engage Switch .. 71
 3.16.2 Header Drive Reverse Button .. 71
 3.16.3 Ground Speed Lever (GSL) Switches ... 72
 Header Position Six-Way Switch .. 73
 Reel Position Four-Way Switch ... 74
 Reel and Disc Speed Switch ... 74
 One-Touch-Return Buttons (A, B, C) .. 75

 3.16.4 Console Header Buttons ... 76
 Deck Shift / Float Presets ... 76
 Converyer Speed Adjustment Buttons .. 77
 Auxiliary Lift Switches ... 77

3.17 Harvest Performance Tracker (HPT) Display ... 78
 3.17.1 Harvest Performance Tracker (HPT) Screen Layout 78
 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display 81
 Scroll Knob, Scroll Wheel, and Select Button ... 81
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving Forward in Engine-Forward Mode</td>
<td>129</td>
</tr>
<tr>
<td>Driving in Reverse in Engine-Forward Mode</td>
<td>130</td>
</tr>
<tr>
<td>Spin Turning</td>
<td>131</td>
</tr>
<tr>
<td>Stopping</td>
<td>131</td>
</tr>
<tr>
<td>4.3.7 Transporting</td>
<td>133</td>
</tr>
<tr>
<td>Driving on Road in Engine-Forward Mode</td>
<td>133</td>
</tr>
<tr>
<td>Driving on Road in Cab-Forward Mode</td>
<td>135</td>
</tr>
<tr>
<td>Towing Header with Windrower</td>
<td>137</td>
</tr>
<tr>
<td>Towing the Windrower (Emergency)</td>
<td>140</td>
</tr>
<tr>
<td>4.3.8 Storing the Windrower</td>
<td>141</td>
</tr>
<tr>
<td>4.4 Attaching and Detaching Headers</td>
<td>143</td>
</tr>
<tr>
<td>4.4.1 A40 DX Auger Header</td>
<td>143</td>
</tr>
<tr>
<td>Attaching an A40 DX Auger Header</td>
<td>143</td>
</tr>
<tr>
<td>Connecting A40 DX Hydraulics</td>
<td>149</td>
</tr>
<tr>
<td>Detaching an A40 DX Auger Header</td>
<td>151</td>
</tr>
<tr>
<td>4.4.2 D1X or D1XL Series Draper Header</td>
<td>154</td>
</tr>
<tr>
<td>Attaching Draper Header Supports</td>
<td>154</td>
</tr>
<tr>
<td>Attaching a D1X or D1XL Series Header</td>
<td>155</td>
</tr>
<tr>
<td>Connecting D1X or D1XL Series Hydraulics</td>
<td>161</td>
</tr>
<tr>
<td>Detaching a D1X or D1XL Series Header</td>
<td>162</td>
</tr>
<tr>
<td>4.4.3 R85 16-Foot Rotary Disc Header</td>
<td>167</td>
</tr>
<tr>
<td>Attaching an R85 16-Foot Disc Header</td>
<td>167</td>
</tr>
<tr>
<td>Connecting R85 16-Foot Header Hydraulics</td>
<td>172</td>
</tr>
<tr>
<td>Detaching R85 16-Foot Header</td>
<td>174</td>
</tr>
<tr>
<td>4.5 Checking Header Settings</td>
<td>178</td>
</tr>
<tr>
<td>4.6 Operating with a Header</td>
<td>179</td>
</tr>
<tr>
<td>4.6.1 Engaging and Disengaging Header Safety Props</td>
<td>179</td>
</tr>
<tr>
<td>4.6.2 Using Header Float</td>
<td>180</td>
</tr>
<tr>
<td>Checking Float</td>
<td>180</td>
</tr>
<tr>
<td>Setting the Float</td>
<td>181</td>
</tr>
<tr>
<td>Removing and Restoring Float</td>
<td>183</td>
</tr>
<tr>
<td>4.6.3 Header Drive</td>
<td>184</td>
</tr>
<tr>
<td>Engaging and Disengaging the Header</td>
<td>184</td>
</tr>
<tr>
<td>Reversing the Header</td>
<td>185</td>
</tr>
<tr>
<td>4.6.4 Adjusting Header Angle</td>
<td>186</td>
</tr>
<tr>
<td>Checking Self-Locking Center-Link Hook</td>
<td>187</td>
</tr>
<tr>
<td>4.6.5 Setting Cutting Height</td>
<td>188</td>
</tr>
<tr>
<td>4.6.6 Double Windrowing</td>
<td>189</td>
</tr>
<tr>
<td>Double Windrow Attachment (DWA) Deck Position</td>
<td>189</td>
</tr>
<tr>
<td>Double Windrow Attachment (DWA) Conveyor Speed</td>
<td>190</td>
</tr>
<tr>
<td>4.6.7 Operating the Swath Roller</td>
<td>190</td>
</tr>
<tr>
<td>4.6.8 Operating the Swath Compressor</td>
<td>191</td>
</tr>
<tr>
<td>Operating the Swath Compressor Lock</td>
<td>193</td>
</tr>
<tr>
<td>4.6.9 One-Touch-Return</td>
<td>193</td>
</tr>
<tr>
<td>4.6.10 Adjusting Header Raise and Lower Rates</td>
<td>194</td>
</tr>
<tr>
<td>4.7 Operating with D1X or D1XL Series Draper Header</td>
<td>196</td>
</tr>
<tr>
<td>4.7.1 Header Position</td>
<td>196</td>
</tr>
<tr>
<td>4.7.2 Adjusting Reel Fore-Aft Position</td>
<td>196</td>
</tr>
</tbody>
</table>
4.7.3 Adjusting Reel Height ... 196
4.7.4 Leveling the Header ... 197
4.7.5 Adjusting Reel Speed ... 199
 Setting Reel Speed in Auto Mode ... 199
 Setting Reel Speed in Manual Mode ... 201
 Adjusting Reel Alarm Pressure ... 203
4.7.6 Adjusting Draper Speed ... 204
 Setting Draper Speed in Auto Mode ... 204
 Setting Draper Speed in Manual Mode .. 206
 Adjusting Draper Alarm Pressure .. 208
 Draper Slip Warning .. 209
4.7.7 Knife Speed .. 210
 Setting Knife Speed .. 211
 Adjusting Knife Alarm Pressure – Draper Header .. 212
 Adjusting Knife Speed Alarm .. 214
4.7.8 Deck Shift Control ... 215
 Deck Shift .. 215
 Setting Float Options with Deck Shift ... 217
4.7.9 Draper Header Run Screens ... 218
 Run Screen 1 .. 219
 Run Screen 2 .. 220
4.8 Operating with an A40 DX Auger Header .. 221
4.8.1 Adjusting Reel Speed ... 221
 Setting Reel Speed in Auto Mode ... 221
 Setting Reel Speed in Manual Mode ... 223
 Adjusting the Reel/Auger Alarm Pressure ... 224
4.8.2 Knife Speed .. 226
 Setting Knife Speed .. 226
 Adjusting Knife Alarm Pressure – Auger Header .. 228
 Adjusting Knife Speed Alarm .. 229
4.8.3 Setting Float Options with Fixed Deck .. 230
4.8.4 Auger Header Run Screens ... 232
 Run Screen 1 .. 232
 Run Screen 2 .. 233
4.9 Operating with an R85 Rotary Header ... 234
4.9.1 Setting Disc Speed .. 234
4.9.2 Adjusting Disc Pressure Alarm ... 235
4.9.3 Setting Float Options with Fixed Deck .. 237
4.9.4 Disc Header Run Screens ... 239
 Run Screen 1 .. 239
 Run Screen 2 .. 240
Chapter 5: Maintenance and Servicing .. 241
5.1 Recommended Fuel, Fluids, and Lubricants .. 241
5.1.1 Storing Lubricants and Fluids .. 241
5.1.2 Fuel Specifications .. 241
5.1.3 Lubricants, Fluids, and System Capacities ... 242
5.1.4 Filter Part Numbers .. 244
TABLE OF CONTENTS

5.2 Windrower Break-In Inspections and Maintenance Schedule ... 245
5.2.1 Break-in Inspection Schedule .. 245
5.2.2 Maintenance Schedule/Record .. 247
5.2.3 Electronic Maintenance Tool .. 249
5.3 Engine Compartment ...251
5.3.1 Opening Hood ... 251
5.3.2 Closing Hood .. 252
5.4 Platform ... 253
5.4.1 Opening Platform .. 253
5.4.2 Closing Platform ... 253
5.4.3 Adjusting the Platform .. 254
5.4.4 Accessing Tool Box ... 255
5.5 Break-In Inspection Procedures .. 256
5.5.1 Tightening Drive Wheel Nuts ... 256
5.5.2 Tightening Caster Wheel Nuts .. 257
5.5.3 Tightening Caster Wheel Anti-Shimmy Damper ... 258
5.5.4 Tightening Walking Beam Adjustment Bolts .. 259
5.5.5 Tensioning Air Conditioner (A/C) Compressor Belts .. 259
5.5.6 Changing Engine Gearbox Lubricant .. 260
5.5.7 Changing Wheel Drive Lubricant ... 260
5.5.8 Changing Hydraulic Filters ... 261
5.5.8.1 Charge Filter ... 261
5.5.8.2 Return Oil Filter .. 263
5.6 Every 10 Hours or Daily .. 265
5.6.1 Checking Engine Oil Level ... 265
5.6.2 Fuel/Water Separator .. 267
5.6.2.1 Removing Water from Fuel System ... 267
5.6.3 Checking Hydraulic Oil ... 267
5.6.4 Checking Tire Pressures ... 268
5.6.5 Checking Engine Coolant Level ... 271
5.6.6 Hoses and Lines .. 271
5.6.7 Filling Fuel Tank .. 272
5.6.8 Filling the Diesel Exhaust Fluid (DEF) Tank .. 273
5.7 Every 50 Hours ... 274
5.7.1 Fresh Air Intake Filter .. 274
5.7.2 Checking Engine Gearbox Lubricant Level and Adding Lubricant 277
5.7.3 Greasing the Windrower .. 278
5.7.4 Greasing Procedure ... 278
5.7.5 Grease Points ... 279
5.8 Every 100 Hours .. 280
TABLE OF CONTENTS

5.8.1 Servicing Return Air Filter ... 280
5.8.2 Cleaning Cooler Module ... 281
 Cleaning Left Cooling Module .. 281
 Cleaning Right Cooling Module .. 284
5.9 Every 250 Hours or Annually .. 287
 5.9.1 Changing Engine Oil .. 287
 Draining Engine Oil .. 287
 Replacing Engine Oil Filter ... 287
 Adding Engine Oil ... 288
 5.9.2 Maintaining Engine Air Filters ... 289
 Removing Engine Primary Air Filter .. 289
 Installing Engine Primary Air Filter 290
 Cleaning Primary Air Filter .. 292
 Replacing Secondary Air Filter .. 292
 5.9.3 Checking Wheel Drive Lubricant Level 293
 5.9.4 Adding Wheel Drive Lubricant .. 294
 5.9.5 Inspecting Exhaust System ... 295
 5.9.6 Changing Engine Gearbox Lubricant 296
5.10 Every 500 Hours or Annually .. 298
 5.10.1 Maintaining Fuel Filters ... 298
 Removing Primary Fuel Filter ... 298
 Installing Primary Fuel Filter ... 299
 Removing Secondary Fuel Filter ... 299
 Installing Secondary Fuel Filter ... 300
 System Priming .. 300
 Priming Fuel System ... 300
 5.10.2 Safety Systems ... 301
 Checking Operator Presence System 301
 Checking Engine Interlock ... 302
5.11 Every 1000 Hours ... 303
 5.11.1 Removing and Installing the Fuel Tank Vent Filter 303
 5.11.2 DEF Supply Module Filter ... 305
 Checking the Supply Module Filter 305
 Removing the Supply Module Filter 305
 Cleaning and Inspecting the Supply Module Filter 307
 Installing the Supply Module Filter 307
5.12 Every 2000 Hours .. 308
 5.12.1 Changing Engine Coolant .. 308
 Draining Coolant ... 308
 Adding Coolant .. 309
 5.12.2 Draining Hydraulic Oil ... 310
 5.12.3 Filling Hydraulic Oil .. 312
 5.12.4 Replacing the Diesel Exhaust Fluid (DEF) Vent Hose Filter .. 313
 5.12.5 General Engine Inspection .. 313
5.13 Annual Service .. 314
 5.13.1 Batteries ... 314
 Maintaining a Battery .. 314
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Battery Cover</td>
<td>314</td>
</tr>
<tr>
<td>Closing Battery Cover</td>
<td>315</td>
</tr>
<tr>
<td>Charging a Battery</td>
<td>316</td>
</tr>
<tr>
<td>Boosting a Battery</td>
<td>318</td>
</tr>
<tr>
<td>Removing a Battery</td>
<td>320</td>
</tr>
<tr>
<td>Installing a Battery</td>
<td>320</td>
</tr>
<tr>
<td>Disconnecting a Battery</td>
<td>321</td>
</tr>
<tr>
<td>Connecting Batteries</td>
<td>322</td>
</tr>
<tr>
<td>Maintenance as Required</td>
<td>330</td>
</tr>
<tr>
<td>5.14.1 Seat Belts</td>
<td>330</td>
</tr>
<tr>
<td>5.14.2 Draining Fuel Tank</td>
<td>330</td>
</tr>
<tr>
<td>5.14.3 Draining the Diesel Exhaust Fluid (DEF) Tank</td>
<td>331</td>
</tr>
<tr>
<td>5.14.4 Belts</td>
<td>332</td>
</tr>
<tr>
<td>Tensioning Engine Fan Drive Belt</td>
<td>332</td>
</tr>
<tr>
<td>Replacing Engine Fan Drive Belt</td>
<td>332</td>
</tr>
<tr>
<td>Tensioning Air Conditioner (A/C) Compressor Belts</td>
<td>333</td>
</tr>
<tr>
<td>Replacing Air Conditioner (A/C) Compressor Belts</td>
<td>334</td>
</tr>
<tr>
<td>5.14.5 Engine Speed</td>
<td>334</td>
</tr>
<tr>
<td>5.14.6 Lighting</td>
<td>334</td>
</tr>
<tr>
<td>Aligning Headlights: Engine-Forward</td>
<td>334</td>
</tr>
<tr>
<td>Aligning Headlights: Cab-Forward</td>
<td>336</td>
</tr>
<tr>
<td>Adjusting Front Field Lights</td>
<td>337</td>
</tr>
<tr>
<td>Adjusting Rear Work Lights</td>
<td>338</td>
</tr>
<tr>
<td>Adjusting Rear Work Lights</td>
<td>339</td>
</tr>
<tr>
<td>Replacing Bulbs in Standard Work Lights</td>
<td>340</td>
</tr>
<tr>
<td>Replacing Headlight Bulb (Engine-Forward)</td>
<td>341</td>
</tr>
<tr>
<td>Replacing LED Lights (Deluxe Cab Only)</td>
<td>343</td>
</tr>
<tr>
<td>Replacing Bulbs in Red and Amber Lights</td>
<td>344</td>
</tr>
<tr>
<td>Replacing Red Tail Lights</td>
<td>345</td>
</tr>
<tr>
<td>Replacing Beacon Lights</td>
<td>346</td>
</tr>
<tr>
<td>Replacing the Cabin Dome Bulb</td>
<td>346</td>
</tr>
<tr>
<td>Replacing the Cabin Dome Light Assembly</td>
<td>348</td>
</tr>
<tr>
<td>Turn Signal Indicators</td>
<td>349</td>
</tr>
<tr>
<td>5.14.7 Accessing Circuit Breakers and Fuses</td>
<td>350</td>
</tr>
<tr>
<td>Checking and Replacing Fuses</td>
<td>351</td>
</tr>
<tr>
<td>Replacing Circuit Breakers and Relays</td>
<td>351</td>
</tr>
<tr>
<td>Fuse Panel and Relay Module Decals</td>
<td>353</td>
</tr>
<tr>
<td>Inspecting and Replacing 125A Main Fuses</td>
<td>358</td>
</tr>
<tr>
<td>5.14.8 Drive Wheels</td>
<td>359</td>
</tr>
<tr>
<td>Raising Drive Wheel</td>
<td>359</td>
</tr>
<tr>
<td>Removing Drive Wheels</td>
<td>361</td>
</tr>
<tr>
<td>Installing Drive Wheels</td>
<td>361</td>
</tr>
<tr>
<td>Lowering Drive Wheel</td>
<td>362</td>
</tr>
<tr>
<td>5.14.9 Caster Wheels</td>
<td>363</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Adjusting Caster Tread Width .. 363
Servicing Caster Wheels ... 365

Chapter 6: Options and Attachments .. 369

6.1 Cab... 369
6.1.1 Automated Steering Systems .. 369
6.1.2 High Performance Lighting (Standard on Deluxe Cab Package) 369

6.2 Header Operation ... 370
6.2.1 Conversion Kit for Disc Ready to Disc, Auger, and Draper Ready 370
6.2.2 Booster Spring Kit (External) .. 370
6.2.3 Double Booster Spring Kit (External) .. 371
6.2.4 Double Windrow Attachment (DWA) .. 371
6.2.5 Center-Link Lifter .. 371
6.2.6 Swath Compressor .. 371

6.3 Transport .. 373
6.3.1 Weight Box .. 373
6.3.2 Towing Harness ... 373
6.3.3 Ballast ... 373

Chapter 7: Troubleshooting ... 375

7.1 Engine Troubleshooting .. 375
7.2 Electrical Troubleshooting ... 380
7.3 Hydraulics Troubleshooting .. 382
7.4 Header Drive Troubleshooting .. 383
7.5 Traction Drive Troubleshooting ... 384
7.6 Steering and Ground Speed Control Troubleshooting .. 386
7.7 Cab Air Troubleshooting .. 387
7.8 Operator’s Station Troubleshooting .. 392

Chapter 8: Reference ... 393

8.1 Torque Specifications .. 393
8.1.1 Metric Bolt Specifications ... 393
8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum .. 395
8.1.3 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable) .. 396
8.1.4 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable) ... 398
8.1.5 O-Ring Face Seal (ORFS) Hydraulic Fittings .. 399
8.1.6 Tapered Pipe Thread Fittings .. 400

8.2 Conversion Chart .. 401
8.3 Windrower Fault Codes ... 402
8.4 Engine Fault Codes .. 451
TABLE OF CONTENTS

Index...489

Lubricants, Fluids, and System Capacities .. Inside Back Cover
1 Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:
• ATTENTION!
• BECOME ALERT!
• YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?
• Accidents disable and kill
• Accidents cost
• Accidents can be avoided

Figure 1.1: Safety Symbol
1.2 Signal Words

Three signal words, **DANGER**, **WARNING**, and **CAUTION**, are used to alert you to hazardous situations. The appropriate signal word for each situation has been selected using the following guidelines:

⚠ **DANGER**

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠ **WARNING**

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠ **CAUTION**

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.
1.3 General Safety

⚠️ CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do **NOT** take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. Never ignore warning signs of fatigue.
• Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.
• Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
• Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

• Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.
• Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.
• To avoid bodily injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

• Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
• Keep work area well lit.
• Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
• NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
• When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit
- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lube fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do **NOT** attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Tire Safety

⚠️ WARNING

- Service tires safely.
- A tire can explode during inflation which could cause serious injury or death.
- Follow proper procedures when mounting a tire on a wheel or rim. Failure to do so can produce an explosion that may result in serious injury or death.

⚠️ WARNING

- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- Never exceed air pressure of 241 kPa (35 psi) for field tires and 276 kPa (40 psi) for transport tires when seating bead on rim.
- Do NOT exceed maximum inflation pressure indicated on tire label.
- Replace tires that have defects.
- Replace wheel rims that are cracked, worn, or severely rusted.
- Never weld a wheel rim.
- Never use force on an inflated or partially inflated tire.
- Make sure tire is correctly seated before inflating to operating pressure.
- If tire is not correctly positioned on rim or is overinflated, tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can thrust tire in any direction endangering anyone in area.
- Make sure all air is removed from tire before removing tire from rim.
- Do NOT remove, install, or repair a tire on a rim unless you have proper equipment and experience to perform job.
- Take tire and rim to a qualified tire repair shop.
1.7 Battery Safety

⚠️ WARNING

- Keep all sparks and flames away from batteries, as a gas given off by electrolyte is explosive.
- Ventilate when charging in enclosed space.

⚠️ WARNING

- Wear safety glasses when working near batteries.
- Do NOT tip batteries more than 45° to avoid electrolyte loss.
- Battery electrolyte causes severe burns. Avoid contact with skin, eyes, or clothing.
- Electrolyte splashed into eyes is extremely dangerous. Should this occur, force eye open, and flood with cool, clean water for 5 minutes. Call a doctor immediately.
- If electrolyte is spilled or splashed on clothing or body, neutralize it immediately with a solution of baking soda and water, then rinse with clear water.

⚠️ WARNING

- To avoid injury from spark or short circuit, disconnect battery ground cable before servicing any part of electrical system.
- Do NOT operate engine with alternator or battery disconnected. With battery cables disconnected and engine running, a high voltage can be built up if terminals touch frame. Anyone touching frame under these conditions would be severely shocked.
- When working around storage batteries, remember that all of the exposed metal parts are live. Never lay a metal object across terminals because a spark or short circuit will result.
- Keep batteries out of reach of children.
1.8 Welding Precaution

⚠️ WARNING

It is very important that correct procedures be followed when welding anything connected to the windrower. If procedures are not followed, it could result in severe damage to sensitive, expensive electronics. Even if complete failure of a module doesn’t happen immediately, it is impossible to know what effect high current could have with regard to future malfunctions or shorter lifespan.

Due to the number of connectors, components to be welded should be removed from the windrower whenever possible rather than welded in place. When work needs to be completed on a header, disconnect the header completely from the windrower before welding. These same guidelines apply to plasma cutting, or any other high current electrical operation performed on the machine.

The following items need to be disconnected:

- Negative battery terminals (A) (two connections)

 IMPORTANT:
 Always disconnect the battery terminals first, and reconnect them last.

- Master controller (A)
 Four connectors: P231, P232, P233, and P234

 Location: Behind cab, near header lift/fan manifold

 To disconnect the connectors, press the two outer tabs, and pull the connector away from master controller.

 IMPORTANT:
 When reconnecting these connectors, double-check that the connectors are fully seated into the master controller, and that the two locking tabs on each end of all four connectors have popped outward. If the tabs are not popped outward, the connector is not fully seated.

 IMPORTANT:
 Do NOT power up or operate the windrower until these connectors are locked into place.
• Firewall extension module (A)
 Two connectors: P235 and P236
 Location: Behind cab, near header lift/fan manifold.
 To disconnect, use a small 1/8–1/4 in. blade screwdriver to insert into the connector’s locking tab. Gently pry upward (no more than 1/4 in.) to unlock the connector tab, and then pull the connector away from the module.

Figure 1.21: Firewall Extension Module

• Chassis extension module (A)
 Two connectors: P247 and P248
 Location: Under cab, inside left frame rail
 To disconnect, use a small 1/8–1/4 in. blade screwdriver to insert into the connector’s locking tab. Gently pry upward (no more than 1/4 in.) to unlock the connector tab, and then pull the connector away from the module.

Figure 1.22: Chassis Extension Module

• Engine Control Module (ECM)
 Two connectors for Cummins: P100 (A) and J1 Cummins Proprietary ECM Connector (B)
 Location: On engine
 To disconnect, pull the rubber boot off the cover, unlock the latch, and undo the main over-center latch. Remove strain relief bolts (C) so the connectors can be pulled away from the ECM.

 IMPORTANT:
 Be sure to disconnect both connectors. Note connector locations.

 IMPORTANT:
 Be sure to reconnect connectors in the proper locations. Do NOT cross connect.
NOTE:
To disconnect the remaining circular Deutsch connectors, rotate outer collar counterclockwise.

- Cab connectors (A)
 Two round connectors: C1 and C2
 Location: Under cab

- Roof connectors (A)
 Four connectors: C10, C12, C13, and C14
 Location: Under cab at base of left cab post

- Chassis relay module (A)
 Three connectors: P240, P241, and P242)
 Location: Outside left frame rail near batteries
• Engine harness (A)
 Two round connectors: C30 and C31
 Location: Inside left frame rail, at rear of windrower

• Air conditioning (A/C) box connectors (A)
 Two connectors: C15 and C16
 Location: Rear of A/C box

• Wheel motor connectors (A)
 Two round connectors: C25 and C26
 Location: Under center of frame, just behind front cross member
SAFETY

IMPORTANT:
To connect circular Deutsch connectors without bending the pins, align connector with receptacle before attempting to reconnect.

To align the connectors:

1. Observe the channel cuts and mating channel protrusions on the inner part of the circular walls of the connectors.
2. Face the mating connectors to each other, and rotate connectors so that channels are aligned.
3. Press connectors together while turning the outer connector clockwise until collar locks.
1.9 Engine Safety

WARNING

Do NOT use aerosol starting aids such as ether. Such use could result in an explosion and personal injury.

CAUTION

- On initial start-up of a new, serviced, or repaired engine, always be ready to stop the engine in order to stop an overspeed. This may be accomplished by shutting off the air and/or fuel supply to the engine.
- Do NOT bypass or disable automatic shutoff circuits. The circuits are provided in order to help prevent personal injury. The circuits are also provided in order to help prevent engine damage. Refer to your Dealer for repairs and adjustments.
- Inspect the engine for potential hazards.
- Before starting the engine, ensure that no one is on, underneath, or close to the engine. Ensure that people clear the area.
- All protective guards and all protective covers must be installed if the engine must be started in order to perform service procedures.
- To help prevent an accident that is caused by parts in rotation, work around parts carefully.
- If a warning tag is attached to engine start switch or to controls, do NOT start engine or move controls. Consult with person who attached warning tag before engine is started.
- Start engine from operator’s compartment. Always start engine according to procedure that is described in Starting Engine section of operator’s manual. Knowing correct procedure will help to prevent major damage to engine components and prevent personal injury.
- To ensure that the jacket water heater (if equipped) and/or lube oil heater (if equipped) is working correctly, check the water temperature gauge and/or oil temperature gauge during heater operation.
- Engine exhaust contains products of combustion which can be harmful to your health. Always start the engine and operate the engine in a well ventilated area. If the engine is started in an enclosed area, vent the engine exhaust to the outside.

NOTE:
The engine may be equipped with a device for cold starting. If the engine will be operated in very cold conditions, then an additional cold starting aid may be required.

1.9.1 High Pressure Rails

CAUTION

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these instructions may cause personal injury or death.
1.9.2 Engine Electronics

WARNING

Tampering with electronic system installation or original equipment manufacturer (OEM) wiring installation can be dangerous and could result in personal injury or death and/or engine damage.

WARNING

Electrical Shock Hazard. The electronic unit injectors use DC voltage. The engine control module (ECM) sends this voltage to the electronic unit injectors. Do NOT come in contact with the harness connector for the electronic unit injectors while engine is operating. Failure to follow this instruction could result in personal injury or death.

This engine has a comprehensive, programmable engine monitoring system. The ECM has the ability to monitor engine operating conditions. If conditions exceed the allowable range, the ECM will initiate immediate action.

The following actions are available for engine monitoring control:

- Warning
- Derate
- Shut down

The following monitored engine operating conditions have the ability to limit engine speed and/or engine power:

- Engine coolant temperature
- Engine oil pressure
- Engine speed
- Intake manifold air temperature
- Diesel exhaust fluid (DEF) system performance
- Aftertreatment system performance
1.10 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or become illegible.
- If original parts on which a safety sign was installed are replaced, be sure repair part also bears current safety sign.
- Replacement safety signs are available from your Dealer Parts Department.

![Operator’s Manual Decal](image)

Figure 1.30: Operator’s Manual Decal

1.10.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.
1.11 Safety Sign Locations

Figure 1.31: Safety Sign Locations
SAFETY

Table 1.1 Safety Sign Locations

<table>
<thead>
<tr>
<th>Ref</th>
<th>MD Part Number</th>
<th>Safety Sign Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>166234</td>
<td>Decal – Warning (training seat and seat belts)</td>
</tr>
<tr>
<td>B</td>
<td>166425</td>
<td>Decal – Danger</td>
</tr>
<tr>
<td>C</td>
<td>166438</td>
<td>Decal – Header lock, 2 panel (LH)</td>
</tr>
<tr>
<td>D</td>
<td>166439</td>
<td>Decal – Header lock, 2 panel (RH)</td>
</tr>
<tr>
<td>E</td>
<td>166454</td>
<td>Decal – Read manual</td>
</tr>
<tr>
<td>F</td>
<td>166457</td>
<td>Decal – Warning, read manual steering service</td>
</tr>
<tr>
<td>G</td>
<td>166463</td>
<td>Decal – Transport</td>
</tr>
<tr>
<td>H</td>
<td>166824</td>
<td>Decal – Fill rate</td>
</tr>
<tr>
<td>J</td>
<td>166832</td>
<td>Decal – High pressure fluid</td>
</tr>
<tr>
<td>K</td>
<td>166829</td>
<td>Decal – Caution, balance</td>
</tr>
<tr>
<td>L</td>
<td>166834</td>
<td>Decal – Warning, starter jump</td>
</tr>
<tr>
<td>M</td>
<td>166835</td>
<td>Decal – Warning, battery explode</td>
</tr>
<tr>
<td>N</td>
<td>166836</td>
<td>Decal – Warning, battery burn</td>
</tr>
<tr>
<td>P</td>
<td>166837</td>
<td>Decal – Danger, fan</td>
</tr>
<tr>
<td>Q</td>
<td>166838</td>
<td>Decal – Warning hot surface</td>
</tr>
<tr>
<td>R</td>
<td>166839</td>
<td>Decal – Warning, belt</td>
</tr>
<tr>
<td>S</td>
<td>166843</td>
<td>Decal – Steering control</td>
</tr>
<tr>
<td>T</td>
<td>167502</td>
<td>Decal – Warning, pinch hazard</td>
</tr>
</tbody>
</table>

NOTE:
For a more detailed illustration and description of safety signs, refer to 1.12 Understanding Safety Signs, page 19.
1.12 Understanding Safety Signs

MD #166234

Run-over hazard

WARNING

- The training seat is provided for an experienced Operator of the machine when a new Operator is being trained.
- The training seat is not intended as a passenger seat or for use by children.
- Use the seat belt whenever operating the machine or riding as a trainer.
- Keep all other riders off the machine.

MD #166425

Run-over hazard

WARNING

- Remove the key from the ignition.
- Read the windrower and header manuals for inspection and maintenance instructions.
MD #166438
Crushing hazard

DANGER

- Rest header on ground or engage safety props before going under unit.

MD #166439
Crushing hazard

DANGER

- Rest header on ground or engage safety props before going under unit.
MD #166454

General hazard pertaining to machine operation and servicing.

CAUTION

- Read the operator’s manual and follow all safety instructions.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

Figure 1.36: MD #166454
General hazard pertaining to machine operation and servicing

CAUTION
To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

Run-over hazard

WARNING

- Machine will move if steering wheel is turned while engine is running.
- Steering response is opposite to what is normally expected when backing up. Turn bottom of steering wheel in direction you want to go.
- Always move ground speed lever to slow end of range before shifting high-low speed control.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging the machine.
MD #166463
Collision hazard in transport

WARNING

- Collision between windrower and other vehicles may result in injury or death.

When driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles front and rear of windrower if required by law.
- Use slow moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install MacDon approved weight box. Refer to operator’s manual for safe procedure to tow header.

MD #166824
Hot fluid under pressure and fluid fill rate

WARNING

- Do not exceed 11 L/min (3 gpm)
- Coolant is under pressure and may be hot. Never remove radiator cap when engine is hot.
MD #166829

Weight balance caution

DANGER

- Weight on the tail wheels should be greater than 1179 kg (2600 lb.) with the windrower positioned in the cab-forward direction.
- Ensure recommended rear ballast kits are installed for proper machine balance. When operating in hilly conditions, additional rear ballast kits may be required.

MD #166832

High pressure oil hazard

WARNING

- Do not go near leaks.
- High pressure oil easily punctures skin causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

MD #166834

Run-over hazard

DANGER

- Do not start engine by shorting across starter or starter relay terminals. Machine will start with drive engaged and move if starting circuitry is bypassed.
- Start engine only from operator’s seat. Do not try to start engine with someone under or near machine.
MD #166835

Explosion hazard

WARNING

- Prevent serious bodily injury caused by explosive battery gases.
- Keep sparks and flames away from the battery.
- Refer to operator’s manual for battery boosting and charging procedures.

MD #166836

Battery acid hazard

WARNING

- Corrosive and poisonous battery acid. Acid can severely burn your body and clothing.

Figure 1.43: MD #166835

Figure 1.44: MD #166836
MD #166837
Rotating fan hazard

DANGER

• To avoid injury, stop the engine and remove the key before opening engine hood.

MD #166838
Hot surface hazard

WARNING

• To avoid injury, keep a safe distance from hot surface.
MD #166839
Pinch point hazard

WARNING

- To avoid injury, stop the engine and remove the key before opening engine hood.

Figure 1.47: MD #166839

MD #166843
Steering control

WARNING

To avoid serious injury or death from loss of control:

- Do not make abrupt changes in steering direction.
- Anticipate turns by slowing down well in advance.
- Do not rapidly accelerate or decelerate while turning.
- Limit speed to maximum 32 km/h (20 mph) when towing a header. To ensure steering control, refer to operator’s manual for adding weight to drive wheels.

Figure 1.48: MD #166843

MD #167502
Pinch point hazard

WARNING

- To avoid injury, be cautious when opening/closing the training seat to avoid getting pinched.
- Failure to comply could result in death or serious injury.

Figure 1.49: MD #167502
Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Series header</td>
<td>MacDon A40 D, A40 DX, and Grass Seed auger headers</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with Operator and cab facing in direction of travel</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>DEF</td>
<td>Diesel exhaust fluid; also called AdBlue in Europe, and AUS 32 in Australia</td>
</tr>
<tr>
<td>DEF supply module</td>
<td>Pump that supplies diesel exhaust fluid through system</td>
</tr>
<tr>
<td>DM</td>
<td>Dosing module</td>
</tr>
<tr>
<td>D1X Series header</td>
<td>MacDon D115X, D120X, and D125X rigid draper headers for M1 Series windrowers</td>
</tr>
<tr>
<td>D1XL Series header</td>
<td>MacDon D130XL, D135XL, D140XL, and D145XL rigid draper headers for M1 Series windrowers</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DDK</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>DDD</td>
<td>Double-draper drive</td>
</tr>
<tr>
<td>DOC</td>
<td>Diesel oxidation catalyst</td>
</tr>
<tr>
<td>DRT</td>
<td>Decomposition reactor tube</td>
</tr>
<tr>
<td>DWA</td>
<td>Double Windrow Attachment</td>
</tr>
<tr>
<td>ECM</td>
<td>Engine control module</td>
</tr>
<tr>
<td>ECU</td>
<td>Electronic control unit</td>
</tr>
<tr>
<td>EEC</td>
<td>Eco Engine Control</td>
</tr>
<tr>
<td>Engine-forward</td>
<td>Windrower operation with Operator and engine facing in direction of travel</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>FFFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>GSL</td>
<td>Ground speed lever</td>
</tr>
<tr>
<td>GSS</td>
<td>Grass Seed Special</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>HPT display</td>
<td>Harvest Performance Tracker display module on a windrower</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>HDS</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>M1 Series windrower</td>
<td>MacDon M1170 and M1240 windrowers</td>
</tr>
<tr>
<td>MDS</td>
<td>Mechanical deck shift</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>PARK</td>
<td>The slot opposite the NEUTRAL position on operator’s console of M Series windrowers.</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port opening on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>R Series header</td>
<td>MacDon R80 and R85 rotary disc headers</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective catalytic reduction</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>SDD</td>
<td>Single-draper drive</td>
</tr>
<tr>
<td>Self-Propelled (SP) Windrower</td>
<td>Self-propelled machine consisting of a power unit with a header</td>
</tr>
<tr>
<td>SK</td>
<td>Single knife</td>
</tr>
<tr>
<td>SKD</td>
<td>Single-knife drive</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force \times lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf\cdotft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>ULSD</td>
<td>Ultra low sulphur diesel</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or a locking mechanism</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit of a self-propelled header</td>
</tr>
</tbody>
</table>
2.2 Specifications

<table>
<thead>
<tr>
<th>Engine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cummins QSB-6.7L CM2350, six cylinder tier 4 final, turbo, diesel, (B20 bio-diesel approved)</td>
</tr>
<tr>
<td>Displacement</td>
<td>6.7 L (409 cu.in.)</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Rated</td>
<td>185 kW (248 hp) @ 2200 rpm</td>
</tr>
<tr>
<td>Peak</td>
<td>196 kW (263 hp) @ 2000 rpm</td>
</tr>
<tr>
<td>Maximum rpm (no load)</td>
<td>2300</td>
</tr>
<tr>
<td>Idle rpm</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery (2)</td>
<td>12 Volt, maximum dimension – 334 x 188 x 232 mm (13 x 6.81 x 9.43 in.). Group rating 29H or 31A. Heavy duty/off road/vibration resistant</td>
</tr>
<tr>
<td>Minimum CCA per battery (cold cranking amps)</td>
<td>750</td>
</tr>
<tr>
<td>Alternator</td>
<td>200 amp</td>
</tr>
<tr>
<td>Egress lighting</td>
<td>Standard</td>
</tr>
<tr>
<td>Starter</td>
<td>Wet type</td>
</tr>
<tr>
<td>Lights</td>
<td>Base cab(^2) 12 halogen: 4 road, 8 work (2 also used for egress)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traction Drive</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Hydrostatic, infinitely variable motors via electric shift</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>0–29 km/h (18 mph)</td>
</tr>
<tr>
<td>Reverse</td>
<td>9.6 km/h (6 mph)</td>
</tr>
<tr>
<td>Transport</td>
<td>Engine-forward 0–44 km/h (27.5 mph)</td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>2 piston pumps – 1 per drive wheel</td>
</tr>
<tr>
<td>Displacement</td>
<td>44 cc (2.65 cu.in.)</td>
</tr>
<tr>
<td>Flow</td>
<td>167 L/min (40 U.S. gpm)</td>
</tr>
<tr>
<td>Final drive</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Planetary gearbox</td>
</tr>
<tr>
<td>Ratio</td>
<td>27.8 : 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Capacities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel tank</td>
<td>530 L (140 U.S. gallons)</td>
</tr>
<tr>
<td>Diesel exhaust fluid tank</td>
<td>28 L (7.5 U.S. gallons)</td>
</tr>
<tr>
<td>Coolant</td>
<td>33 L (8.72 U.S. gallons)</td>
</tr>
<tr>
<td>Hydraulic reservoir</td>
<td>60 L (15.8 U.S. gallons)</td>
</tr>
</tbody>
</table>

1. Specifications and design are subject to change without notice or obligation to revise previously sold units.
2. High Performance Lighting Package MD #B6051 can be installed on the base cab.
PRODUCT OVERVIEW

Header Drive

<table>
<thead>
<tr>
<th>Component</th>
<th>Pump</th>
<th>Max Pressure</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife/disc</td>
<td>Piston, 105.5 cc (6.44 cu. in.)</td>
<td>41,369 kPa (6000 psi)</td>
<td>0–272.5 L/min (72 gpm)</td>
</tr>
<tr>
<td>Reel</td>
<td>Gear, 25.2 cc (1.54 cu. in.)</td>
<td>23,993 kPa (3480 psi)</td>
<td>75.7 L/min (20 gpm)</td>
</tr>
<tr>
<td>Draper</td>
<td>Gear, 19.3 cc (1.18 cu. in.)</td>
<td>23,993 kPa (3480 psi)</td>
<td>57 L/min (15 gpm)</td>
</tr>
</tbody>
</table>

Fan/Lift Drive

<table>
<thead>
<tr>
<th>Component</th>
<th>Pump</th>
<th>Max Pressure</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piston, 60 cc (3.66 cu. in.)</td>
<td>22,063 kPa (3200 psi)</td>
<td>0–170.3 L/min (45 gpm)</td>
</tr>
</tbody>
</table>

Header Lift/Tilt

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Maximum lift capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Hydraulic double acting cylinders</td>
<td>3810 kg (8400 lb.)</td>
</tr>
</tbody>
</table>

Header Float

<table>
<thead>
<tr>
<th>Component</th>
<th>Adjustment</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment</td>
<td>Fully in-cab adjustable</td>
<td>External booster spring (1 or 2 per side)</td>
</tr>
<tr>
<td>Automatic</td>
<td>Memory for 3 float settings (deck shift positions on draper)</td>
<td></td>
</tr>
</tbody>
</table>

Base Cab

<table>
<thead>
<tr>
<th>Component</th>
<th>Suspensions</th>
<th>Dimensions</th>
<th>Seat</th>
<th>Windshield wiper</th>
<th>Heater</th>
<th>Air conditioning</th>
<th>Electrical outlets</th>
<th>Mirrors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspensions</td>
<td>4 point spring/shock</td>
<td>Width 1767 mm (69.6 in.)</td>
<td>Operator Cloth, adjustable air ride suspension, seat belt</td>
<td>Front 990 mm (39 in.) blade, washer equipped</td>
<td>11.10 kW (37,900 Btu/hr)</td>
<td>8.73 kW (29,800 Btu/hr)</td>
<td>12V DC 6</td>
<td>Two outside (field use), one inside (engine-forward transport)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth 1735 mm (68.3 in.)</td>
<td>Training Cloth, folding, cab mounted, seat belt</td>
<td>Rear 560 mm (22 in.) blade, washer equipped</td>
<td></td>
<td></td>
<td>USB 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height 1690 mm (66.5 in.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>Two speakers, antenna, microphone and AM/FM/CD/USB/Bluetooth® radio factory installed</td>
</tr>
<tr>
<td>Sun shades</td>
<td>Front and rear</td>
</tr>
<tr>
<td>Deluxe Cab Package (in addition to Base Cab)</td>
<td></td>
</tr>
<tr>
<td>Seat Operator</td>
<td>Leather, adjustable air ride suspension, seat belt, heated/coolied, lateral isolation, adjustable front cushion</td>
</tr>
<tr>
<td>Training</td>
<td>Leather, folding, cab mounted, seat belt</td>
</tr>
<tr>
<td>Mirrors</td>
<td>Two power mirrors outside (field use)</td>
</tr>
<tr>
<td>Lights High Performance Lighting</td>
<td>12 lights: 4 halogen road, 8 LED work lights</td>
</tr>
<tr>
<td>System Monitoring</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>178 mm (7 in.) LCD</td>
</tr>
<tr>
<td>Speeds</td>
<td>Ground (mph or km/h), engine (rpm), knife (spm), reel (rpm or mph / km/h), conveyor (rpm or mph / km/h), cooling fan (rpm)</td>
</tr>
<tr>
<td>Pressures</td>
<td>Knife (psi or MPa), reel (psi or MPa), conveyor (psi or MPa), supercharge (psi or MPa)</td>
</tr>
<tr>
<td>Header position</td>
<td>Platform: Height, angle, float</td>
</tr>
<tr>
<td></td>
<td>Reel: Height, fore-aft</td>
</tr>
<tr>
<td>Engine parameters</td>
<td>Fuel consumption, load</td>
</tr>
<tr>
<td>Tire Options</td>
<td></td>
</tr>
<tr>
<td>Drive Bar</td>
<td>600/65R28</td>
</tr>
<tr>
<td>Turf</td>
<td>580/70R26</td>
</tr>
<tr>
<td>Caster</td>
<td>Suspended 16.5L-16.1 with independent suspension</td>
</tr>
<tr>
<td>Frame and Structure</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Refer to 2.3 Windrower Dimensions, page 35</td>
</tr>
<tr>
<td>Frame to ground (crop clearance)</td>
<td>1160 mm (45.7 in.)</td>
</tr>
<tr>
<td>Walking beam maximum width</td>
<td>3856 mm (151.8 in.) with 3422 mm (134.7 in.) crop clearance</td>
</tr>
<tr>
<td>Weight4</td>
<td></td>
</tr>
<tr>
<td>Base3</td>
<td>6078 kg (13,400 lb.)</td>
</tr>
<tr>
<td>Max GVW</td>
<td>10,660 kg (23,500 lb.)</td>
</tr>
<tr>
<td>Max CGVW</td>
<td>11,794 kg (26,000 lb.)</td>
</tr>
<tr>
<td>Header compatibility</td>
<td></td>
</tr>
<tr>
<td>Draper</td>
<td>D1XL Series, D1X Series</td>
</tr>
<tr>
<td>Rotary</td>
<td>16 ft. R85 Rotary Disc Header</td>
</tr>
<tr>
<td>Auger</td>
<td>14 ft., 16 ft., 18 ft. A40-DX Auger Header</td>
</tr>
</tbody>
</table>

3. Weight with 600-65R28 bar tires, no fuel/DEF. Hydraulic oil and coolant included in weight.
4. Weights do not include options.
2.3 Windrower Dimensions

Figure 2.1: Windrower Dimensions

A - 3304 mm (130-3/32 in.)
B - 4290 mm (168-7/8 in.)
C - 5752 mm (226-7/16 in.)
D - 4070 mm (160-1/4 in.)
E - 1160 mm (45-11/16 in.)
F - 3480 mm (137-1/32 in.)
G - 3449 mm (135-13/16 in.)
H - 3422 mm (134-3/4 in.)
J - 3856 mm (151-13/16 in.) (Max)
K - 4415 mm (173-13/16 in.)
2.4 Component Location

Figure 2.2: Front Cab-Forward View

A - Header Lift Leg
B - Header Float Springs
C - Operator’s Station
D - Windshield Wiper
E - Turn Signal / Hazard Lights
F - Tail Lights Engine-Forward
G - Field/Road Lights
H - Handholds
J - Mirror
K - Door
L - Maintenance Platform
M - Center-Link
N - Horn
Figure 2.3: Rear Cab-Forward View

A - Caster Wheel
D - Engine Compartment Hood
G - Turn Signal / Hazard Lights
K - Door
N - Pre-cleaner

B - Walking Beam
E - Windshield Wiper
H - Field/Road Lights
L - Drive Wheel
P - Beacons

C - Tail Lights - Cab-Forward
F - Field Lights
J - Mirror
M - Maintenance Platform
Q - Anti-Shimmy Dampeners
3 Operator’s Station

The operator’s station is designed for operating the windrower in cab-forward mode (working mode) or in engine-forward mode (transport mode). The operator’s station, which includes the seat, console, and steering column, pivots 180 degrees so that the Operator maintains access to the windrower controls and gauges regardless of the direction of travel.

3.1 Operator Console

The console contains controls to operate the windrower, as well as amenities for the Operator. The console position is adjustable to suit each particular Operator.

1. Adjust fore-aft and height as follows:
 a. Pull lever (A) and slide console fore or aft to the desired position.
 b. Release lever to lock console.
2. Adjust only fore-aft as follows:
 a. Loosen nuts (A) under console.
 b. Move console as required.
 c. Tighten nuts (A).

Figure 3.3: Operator Console Fore-Aft
3.2 Operator Presence System

The Operator Presence System is a safety feature designed to deactivate selected systems or sound an alarm when the Operator is not seated at the operator’s station.

These systems include:

- Header drive; refer to 3.2.1 Header Drive, page 41
- Engine and transmission; refer to 3.2.2 Engine and Transmission, page 41

3.2.1 Header Drive

- Requires the Operator to be in the seat in order to engage the header drive.
- Power is maintained to the header drive for five seconds after the Operator leaves the seat, and then the header shuts down.
- After the header has shut down automatically, the HEADER ENGAGE switch must be moved to the OFF position and back to the ON position to restart the header.

3.2.2 Engine and Transmission

- The engine will not start when the HEADER ENGAGE switch is engaged.
- The engine will shut down when the windrower is moving at 8 km/h (5 mph) or less, and the Operator leaves the seat, and the transmission is not locked in NEUTRAL. The Harvest Performance Tracker (HPT) will display NO OPERATOR DETECTED and ENGINE SHUT DOWN 5...4...3...2...1...0 accompanied by a steady tone. At 0, the engine shuts down.
- If the windrower is moving at greater than 8 km/h (5 mph), and the Operator leaves the seat, after two seconds an alarm will sound and the HPT will display NO OPERATOR.
- When the seat is in between cab-forward and engine-forward positions, the engine will shut off if the transmission is not locked in the NEUTRAL position. The HPT will display LOCK SEAT BASE until the seat base is locked into position.
3.3 Operator’s Seat Adjustments

The operator’s seat has several adjustments. Refer to the following sections for a description—and the location—of each adjustment. Some seat features are only available with the deluxe cab option.

3.3.1 Armrest

Raise armrest for easier access to seat.
Lower armrest after seat belt is buckled.

Figure 3.4: Operator’s Seat Armrest
A - Standard Seat B - Deluxe Seat
3.3.2 Armrest Angle

Use controls to adjust angle of armrest.

- Rotate knob (A) clockwise to increase armrest angle.
- Rotate knob (A) counterclockwise to decrease armrest angle.

![Figure 3.5: Operator’s Seat Armrest Angle Controls](image)

3.3.3 Suspension and Height

Use controls to adjust the seat’s suspension stiffness and height.

- Press upper switch (A) to increase seat stiffness and height.
- Press lower switch (A) to decrease seat stiffness and height.

![Figure 3.6: Operator’s Seat Suspension and Height Controls](image)
3.3.4 Fore-Aft Slide Control

Use controls to adjust the seat’s fore-aft position.

1. Pull lever (A) up to release.
2. Move seat forward or rearward.

Figure 3.7: Operator’s Seat Fore-Aft Position Controls

3.3.5 Fore-Aft Isolator Control

Use controls to lock the seat’s fore-aft isolator.

- Push lever (A) down to lock
- Pull lever (A) up to unlock

Figure 3.8: Operator’s Seat Fore-Aft Isolator Controls
3.3.6 Tilt

Use controls to adjust the seat’s tilt.
1. Pull lever (A) up to release.
2. Position seat back as desired.

3.3.7 Lumbar Support

Use controls to adjust the stiffness of the seat’s back.
- Rotate knob (A) clockwise to increase lumbar support.
- Rotate knob (A) counterclockwise to decrease lumbar support.
3.3.8 **Vertical Dampener**

Use controls to adjust the seat’s vertical suspension dampening.

- Turn knob (A) counterclockwise to increase vertical dampener.
- Turn knob (A) clockwise to decrease vertical dampener.

![Operator's Seat Vertical Dampener Controls](image1)

3.3.9 **Cushion Tilt (Deluxe Cab Only)**

Use controls to adjust the deluxe seat’s cushion tilt.

1. Pull lever (A) up to release.
2. Tilt seat cushion up or down.

![Deluxe Seat Cushion Tilt Controls](image2)
3.3.10 Cushion Extension (Deluxe Cab Only)

Use controls to adjust seat cushion extension fore-aft.

1. Pull lever (A) up to release.
2. Move cushion forward or rearward.

![Figure 3.13: Deluxe Seat Cushion Extension Controls](image)

3.3.11 Lateral Isolation Lockout (Deluxe Cab Only)

Use the controls (A) to lock or unlock the deluxe seat's lateral isolation lockout.

![Figure 3.14: Deluxe Seat Lateral Isolation Controls](image)
3.3.12 Heating/Cooling (Deluxe Cab Only)

Use the controls to adjust the heating/cooling of deluxe operator’s seat.

Seat heating/cooling switch (A)
- Press switch forward for COOL
- Press switch back for HEAT

Heating/cooling high/low/off switch (B)
- Press switch up for HIGH
- Press switch down for LOW
- Center switch for OFF

Figure 3.15: Deluxe Seat Heating and Cooling Controls
3.4 Training Seat

A folding wall-mounted training seat (with seat belt) is provided.

⚠️ WARNING

- The training seat is provided for use by an experienced machine Operator while training a new Operator.
- The training seat is NOT intended as a passenger seat or for use by children. Use the seat belt whenever operating the machine or riding as a Trainer.
- Keep all other riders off the machine.

To store training seat, lift seat and secure with latch (A).
To lower training seat, pull latch (A) and lower seat.
3.5 Seat Belts

The windrower is equipped with seat belts on the operator’s and training seats.

⚠️ WARNING

The seat belts can help ensure your safety when properly used and maintained.

- Before starting the engine, fasten your seat belt, and ensure that the training seat occupant’s seat belt is securely fastened.
- Never wear a seat belt loosely or with slack in the belt system. Never wear the belt in a twisted condition or pinched between the seat structural members.

To fasten seat belt:

1. Pull belt with metal eye (A) at right side completely across your body.
2. Push the metal eye (A) into the buckle (B) until it locks.
3. Adjust the position of the belt as low on your body as possible.

To release seat belt:

1. Push the red button on the end of the buckle (B).
2. Separate the buckle (B) from the metal eye (A).

Figure 3.17: Seat Belt
3.6 Adjusting the Steering Column and Steering Wheel

The steering column and steering wheel are adjustable for the operator’s comfort and to make it easier to get in and out of the operator’s seat.

To adjust the steering column:

1. Hold onto the steering wheel, lift handle (A), and move steering column forward or backward to desired position.
2. Release handle (A) to lock the steering column in position.

To adjust the steering wheel:

1. Hold onto the steering wheel, turn the center cap (A) counterclockwise, and move steering wheel up or down to desired position.
2. Turn center cap clockwise (A) to lock steering wheel in position.
3.7 Lighting

The field and road light switches are located on the operator’s console.

The position of the operator’s station (cab-forward mode or engine-forward mode) automatically determines which lights are active when the lighting mode is selected.

The field lights (B) do NOT turn on when the windrower is in engine-forward mode.

An LED on the switch changes from OFF to amber when the switch is on. The high beam switch has a blue LED that changes from OFF to blue when the switch is on.

3.7.1 Cab-Forward Lighting – Field

The following lights are on when FIELD LIGHT button (A) is selected and operator’s station is locked in cab-forward mode:
• Cab-forward road lights (A) with low/high beams
• Engine-forward road lights (B) with low/high beams
• Inner work lights (C)
• Outer work lights (D)

NOTE:
Work lights (D) are also turned on when the high beams are activated in cab-forward mode.

• Rear roof work lights (E)
• Rear swath lights (F)

NOTE:
Refer to *Aligning Headlights: Cab-Forward, page 336* for adjustment procedures.

3.7.2 Cab-Forward Lighting – Road

The following lights are functional when the ROAD LIGHT button (A) is selected and the operator’s station is locked in the cab-forward mode:

• To toggle between low and high beams, press the HIGH BEAM button (B)
• To operate hazard lights, press HAZARD LIGHT button (C)
• Headlights (A) with low/high beams
• Red tail lights (B)
• Amber turn signals/hazard lights (C) on mirror supports
• Work lights (D) turn on only when high beams are on in cab-forward mode

3.7.3 Engine-Forward Lighting – Road
The following lights are functional when the ROAD LIGHT button (A) is selected and the operator’s station is locked in the engine-forward mode.
• To toggle between low and high beams, press the HIGH BEAM button (B)
• To operate hazard lights press HAZARD LIGHT button (C)
• Engine-forward headlights (A) with low/high beams
• Red tail lights (B) on the mirror supports
• Amber turn signals and hazard lights (C) on mirror supports (viewed from the front)
• Work lights (D) turn on only when high beams are activated in engine-forward mode

NOTE:
To align headlights (A), refer to *Aligning Headlights: Engine-Forward, page 334.*
3.7.4 Tail/Beacon Lighting

The beacons (A) are functional when the IGNITION is ON and the BEACON button (B) is selected.

NOTE:
In some areas, the law requires the use of beacon lights when driving on the road.
3.7.5 Turn Signal / Hazard Lighting

The following lights are on when the LEFT and RIGHT turn signal switches (A) are pressed. Press to turn lights off.

- Amber turn signal lights (C) which are visible from both front and rear.

NOTE:

Turn signals can also be controlled with the REEL/DISC SPEED switches on the ground speed lever (GSL) when the header is disengaged.

The following lights are on when the HAZARD switch (B) is pressed. Press to turn lights off.

- Amber hazard lights (C) which are visible from both front and rear.

![Figure 3.29: Turn Signal / Hazard Button](image1)

![Figure 3.30: Windrower Lighting – Top View](image2)
3.8 Windshield Wipers

The windshield wiper controls are located on the operator console. The illustration shows the controls in cab-forward mode.

Button (A) activates the front (cab-forward) wiper, and button (B) activates the rear wiper. One window washer button (C) applies washer fluid to both the front and rear wipers as follows:

- If both wipers are on, pressing and holding the window washer button (C) will spray washer fluid onto both windows. When the button is released, the washer fluid stops, but both wipers continue to operate.

- If both wipers are NOT on, pressing and holding the window washer button (C) will spray washer fluid onto both windows, and both wipers will turn on. When the button is released, the washer fluid stops, but both wipers continue to operate for 4 seconds before automatically stopping.

- If only one wiper is on, pressing and holding the window washer button (C) will activate the other wiper and spray washer fluid onto both windows. When the button is released, the washer fluid stops, and the active wiper will continue to operate while the activated wiper operates for only 4 seconds before automatically stopping.

You can aim the rear wiper washer nozzle (A) by turning it with a flat head screwdriver.

NOTE:
The front wiper washer nozzle is nonadjustable.
3.9 Rear View Mirrors

Two outside-mounted adjustable mirrors (A) provide a rear view when the windrower is in cab-forward mode.

A single interior-mounted mirror (B) provides a rear view in the engine-forward mode.

The mirror/light assemblies (A) are designed to fold back if accidentally struck.

The deluxe cab is equipped with power adjustable exterior mirrors which can be adjusted using knob (A) located next to the radio inside the cab.
3.10 Cab Temperature

The cab environment is controlled by a climate control system that provides clean air-conditioned or heated air.

The heater/evaporator/blower assembly is located under the cab floor and is accessible from beneath the windrower.

3.10.1 Heater Shut-Off Valve

A shut-off valve (A) at the engine allows the cab heater to be isolated from the engine coolant.

The valve must be open to provide heat to the cab, but can be closed for maximum cooling.

3.10.2 Air Distribution

Cab air distribution is controlled through adjustable air vents (A) located in the cab posts.

You can adjust the vent to open/close (B) or to change the direction (C) of the air flow.
3.10.3 Climate Controls

NOTE:
When switches (A), (C), (D), and (E) are activated the LED light on the switch will turn amber.

Auto fan speed switch (A)
Sets the climate control system to auto mode, which automatically adjusts the fan speed to maintain the set point temperature.

Blower control toggle switch (B)
Controls the blower speed. Overrides auto-fan control.
- Press + for more air flow
- Press – for less air flow

Recirculating air switch (C)
Controls the air source; stops booster fan so cab air is recirculated.

Windshield defog/defrost switch (D)
The windshield defog/defrost operates with the A/C switch (E) ON.

Air conditioning (A/C) switch (E)
Controls the A/C system.
The A/C operates with the blower switch ON and blower speed is set above 0.

Temperature control toggle switch (F)
Controls cab temperature.
- Press red (top) area to increase cab temperature.
- Press blue (bottom) area to decrease cab temperature.

IMPORTANT:
When starting the windrower after more than one week of storage, it may be necessary to distribute the refrigerant oil throughout the A/C system. Refer to Air Conditioning Compressor Coolant Cycling, page 111.
3.11 Operator Amenities

The operator’s station includes the following amenities:

Operator’s console
- Auxiliary power outlets (A)
- USB jack (B)
- Utility tray under armrest (C)
- Utility tray (D)
- Cup holder (E)

Window shades
Retractable window shades (A) are located at the front and rear windows.

Manual storage
A plastic case (A) is located behind the training seat to store the windrower manuals.
Coat hook

A coat hook (A) is located above the training seat, to the left of the Operator.

Figure 3.41: Coat Hook
3.12 Radio

The M1240 Windrower comes equipped with an AM/FM/CD/USB/Bluetooth® radio. The following procedures describe how to activate and pair Bluetooth® devices with the radio.

3.12.1 AM/FM/CD/USB Radio with Bluetooth® Wireless Technology

A radio (A) and two speakers (B) are factory-installed in the cab headliner. The radio operates in AM, FM, CD, and USB modes. It also supports Bluetooth® wireless technology audio streaming and hands-free calling. Refer to the operating instructions supplied with the radio.

To locate the operating instructions for the radio, follow this procedure.

1. Turn the latch (A) to unlock the relay module cover (B).
2. Retrieve the operating instructions for the radio from the relay module cover (B) access panel in the cab roof liner.
3. When finished with the radio manual, place the manual in the manual storage case (A) located behind the training seat.

4. Raise the relay module cover (B) and turn the latch (A) to lock it.

Activating Bluetooth® Feature

The Bluetooth® feature must be activated to allow mobile device pairing.

To activate the Bluetooth® feature, follow this procedure:

1. Press POWER button (A) to turn the radio on.
2. Press and hold VOL/SEL knob (B) for two seconds. MENU is displayed on screen (C).
3. Rotate VOL/SEL (B) to highlight BT SET menu and press VOL/SEL to select. BLUETOOTH ON/OFF is displayed (C).
4. Press VOL/SEL to select BLUETOOTH.
5. Rotate VOL/SEL knob to display ON and press VOL/SEL to select.
6. Rotate VOL/SEL knob and select DISCOVER.
7. Rotate VOL/SEL knob to display ON and press VOL/SEL to select.
Pairing a Bluetooth® Device

The installed radio allows the operator to pair a Bluetooth® phone or audio device. Before proceeding, check that Bluetooth® is enabled and radio has been set to DISCOVER mode. Refer to Activating Bluetooth® Feature, page 65.

To pair a mobile device, follow this procedure:

1. Press POWER button (A) to turn radio ON.
 This will set the radio to Bluetooth® discover mode if the Bluetooth® feature has been activated. Refer to Activating Bluetooth® Feature, page 65.

2. Turn the mobile device’s Bluetooth® to ON. Refer to the device’s operator’s manual. The radio appears as a discoverable device.

3. Select CD-5000 BT on the mobile device to connect.

 NOTE:
 A passkey is required to connect to the Bluetooth® radio. The default passkey is four zeros (0000).

4. Enter the default passkey 0000. The radio will display CONNECTED (B) and the Bluetooth® icon (C) appears in the upper right corner of the screen.

![Radio Display](image_url)
3.13 Horn

The horn is activated by pushing button (A) located on the operator console.

Sound the horn three times prior to starting the engine.

The horn is located under the front left corner of the cab floor when facing cab-forward.

Figure 3.48: Operator Console
3.14 Engine Controls

The following engine controls are conveniently located on the operator’s console.

Ignition switch
- ACC (A): The windrower’s electrical accessories are turned ON without starting the engine
- OFF (B): All electrical systems OFF
- RUN (C): Engine run position
- START (D): Turn fully clockwise to crank engine, and release to return switch to RUN position.

IMPORTANT:
Remove ignition key when windrower is not in use. The ignition key also locks the doors and tool box in the left platform.

Throttle (A)
Controls engine speed range
- MAX: Push lever forward
- MIN: Pull lever back

Harvest Performance Tracker display (B)
- Fuel level monitoring
- DEF level monitoring
- High exhaust system temperature indicator (HEST)
- Exhaust system cleaning inhibit and forced indicator
- Speed monitoring (ground, engine, knife/disc, reel, conveyor, and cooling fan)
- Pressure monitoring (knife, reel, conveyor, and supercharge)
- Engine parameters (coolant temperature, fuel consumption, and engine load)
- Header position

For more information on the Harvest Performance Tracker, refer to 3.17 Harvest Performance Tracker (HPT) Display, page 78.
3.14.1 Using Eco Engine Control (EEC)

Eco Engine Control (EEC) is useful in lighter crop conditions that do not require the maximum engine rpm. The reduced engine speed lowers fuel consumption, noise levels, and exhaust emissions in addition to reducing engine wear.

The Eco Engine Control (EEC) limits the engine to 1900–2200 rpm when the header is engaged, and is adjustable in 100 rpm increments. Activate this feature by using the EEC button (A) on the operator’s console. The EEC symbol will display on the Harvest Performance Tracker (HPT) screen over the right side of the tachometer.

The EEC feature will only be active when the header is engaged, but can be adjusted without the header running. When the header is disengaged, EEC will be canceled and engine rpm will return to the setting determined by the throttle.

Use the QuickMenu to adjust EEC rpm. Refer to QuickMenu System, page 83.

Figure 3.51: Eco Engine Control (EEC)
3.15 Windrower Controls

Console controls:

Turn signals (A) – Activates turn signals on windrower and header.
- Push-ON/Push-OFF (activating the hazard switch also cancels the turn signal)

Ground speed lever (GSL) (B) – Controls speed and direction of movement.
- F: Forward
- N: NEUTRAL
- PARK: Engages neutral interlock, and applies park brake when steering locked in center
- R: Reverse

Hazard warning lights (C) – Activates signals on windrower and header.
- Push-ON / Push-OFF

PARK (D) – Engages neutral interlock, and applies park brake when steering locked in center.

Horn (E)

Autosteer engagement button (A) – Engages/disengages the automated steering system (if installed).
- ENGAGE: Click to engage
- DISENGAGE: Turn steering wheel to disengage

![Figure 3.52: Console Controls](image)

![Figure 3.53: Autosteer](image)
3.16 Header Controls

All header controls are conveniently located on the operator’s console and on the ground speed lever (GSL) handle.

NOTE:
Some controls are optional equipment and may not be present in your unit. Some controls may be installed, but are not functional for certain headers.

Refer to specific header sections in this manual for detailed operating procedures for all header controls.

3.16.1 Header Engage Switch

The header engage switch (A) engages and disengages the header drive.

To engage header: Push and hold HEADER ENGAGE switch (A) down while pulling up on the collar (B).

To disengage header: Push HEADER ENGAGE switch (A) down.

NOTE:
Although not required, it is good practice to move the throttle lever back to IDLE before engaging header drive.

![Figure 3.54: Header Engage Switch](image)

3.16.2 Header Drive Reverse Button

NOTE:
The following header systems have reverse capability:
- D1XL Series Draper Headers: knife
- D1X Draper Headers: knife
- R85 rotary disc headers: conditioner and discs
- A40 DX Auger Headers: knife, conditioner, auger and reel
- A40 DX GSS Auger Headers: knife, auger and reel

Reverse header systems as follows:
- **Engage:** Push and hold reverser button (B) and engage header with switch (A).
- **Disengage:** Release reverser button (B).

NOTE:
To re-engage in forward operation, push switch (A) down and then up again.

![Figure 3.55: Header Drive Controls](image)
3.16.3 Ground Speed Lever (GSL) Switches

The switches on the GSL (A) control the most common header functions.

GSL controls — front
- One-Touch-Return position switch (A)
- One-Touch-Return position switch (B)
- One-Touch-Return position switch (C)
- Reel or disc speed (D) (also operates turn signals when header disengaged)
- Reel position (E)
- Autosteer engagement (F) (if equipped)
- Header position (G)
- Back switch (H) controls Harvest Performance Tracker (HPT) functions
- Select switch (J) controls HPT functions

![Figure 3.56: Ground Speed Lever (GSL)](image)

![Figure 3.57: GSL Function Groups](image)
GSL controls — rear

- Shift switch (A)
- Scroll wheel (B)

NOTE:
When the shift switch is used with another button it creates a shortcut to another windrower function;
- Shift + back – Home page
- Shift + select – Main menu access
- Shift + scroll – Adjust maximum ground speed

Header Position Six-Way Switch

- To lower header slowly, press (A) lightly.
- To lower header quickly, press (A) fully.
- To raise header slowly, press (C) lightly.
- To raise header quickly, press (C) fully.
- To tilt header downward, press (B).
- To tilt header upward, press (D).
Release switch at desired position.

NOTE:
Header raise and lower rates are adjustable on the HPT display. Refer to 4.6.10 Adjusting Header Raise and Lower Rates, page 194 or header setup in Menu Icons, page 85

NOTE:
Refer to the section in this manual that is specific to your header for detailed switch operating modes.
Reel Position Four-Way Switch

The reel position button performs different functions depending on the attached options. For specific operating instructions, refer to the following sections:

- Reel fore-aft position and height on draper headers:
 - 4.7.2 Adjusting Reel Fore-Aft Position, page 196
 - 4.7.3 Adjusting Reel Height, page 196
- Center-link assist cylinder:
 - 4.4.2 D1X or D1XL Series Draper Header, page 154
 - 4.4.1 A40 DX Auger Header, page 143
- Double windrow attachment (DWA) position:
 - 4.6.6 Double Windrowing, page 189

Reel and Disc Speed Switch

- Press and hold the + button (A) to increase the reel or disc speed.
- Press and hold the – button (B) to decrease the reel or disc speed.
- Release the button at the desired speed.

Refer to the applicable header topic for detailed use of these switches.

NOTE:

The REEL and DISC SPEED switch can operate the turn signals when the header is not in use. For example, when driving in the engine-forward position, or when operating in cab-forward position with the header disengaged.

Auger Header

- On an A40 DX auger header, the reel and auger speeds are hydraulically linked. When the reel speed is changed, the auger speed changes automatically.

IMPORTANT:

Reel speed on auger header **MUST NOT EXCEED** 85 rpm. Auger speed **MUST NOT EXCEED** 320 rpm.
One-Touch-Return Buttons (A, B, C)

One-Touch-Return buttons save header configuration settings and serve as presets for quickly returning the header to specific settings.

The One-Touch-Return buttons A, B, and C always save header height settings, but the following settings can also be saved depending on the header type:

- Header tilt
- Deck position/header float selection
- Double windrow attachment (DWA) or swath compressor raise/lower
- DWA speed
- Knife speed
- Draper speed
- Reel speed
- Reel height
- Reel fore-aft
- Disc speed

To program the One-Touch-Return buttons, press and hold button A, B, or C on the GSL handle for 3 seconds until an audible tone is heard, indicating the current header settings are saved to that button.

To return header to a preset condition, tap the A, B, or C button quickly. Holding the One-Touch-Return button too long can inadvertently reprogram the current header settings.

Pressing a programmed A, B or C button opens a run screen that shows the corresponding letter (A) on the screen for the preset.

Figure 3.62: One-Touch-Return Buttons on GSL

Figure 3.63: One-Touch-Return Buttons on GSL
3.16.4 Console Header Buttons

The console header buttons (A) adjust the following header functions:

- Deck shift/float preset
- Draper speed
- Double windrow attachment (DWA) / swath roller or swath compressor lift functions

![Figure 3.64: Console Header Buttons](image)

Deck Shift / Float Presets

Draper header with deck shift option

- Controls the draper deck position for double windrowing with a draper header.
- Set header float for each deck position. Refer to Setting the Float, page 181.

NOTE:
The last float setting used in any deck shift position will be stored into memory automatically.

![Figure 3.65: Header Deck Shift Buttons](image)

Draper header / rotary header / auger header

When used with a rotary header, auger header, or draper header, these buttons select header float presets. Refer to 4.9.3 Setting Float Options with Fixed Deck, page 237 to learn how to preset the float.

NOTE:
Refer to the section in this manual that is specific to your header for detailed switch operating modes.

![Figure 3.66: Header Switches](image)
Conveyer Speed Adjustment Buttons

Header, or DWA, draper speed is adjusted by pressing switch (A) to increase the speed, or pressing switch (B) to decrease the speed.

Draper speed can be adjusted in either manual or auto modes. Refer to *4.7.6 Adjusting Draper Speed, page 204* for more information.

![Figure 3.67: Operator’s Console Conveyer Controls](image)

Auxiliary Lift Switches

With DWA attachment:
- Raise the DWA deck by pressing button (A), or lower the deck by pressing button (B).

With swath roller or swath compressor attachment:
- Raise the swath roller by pressing button (A), or lower the roller by pressing button (B).

![Figure 3.68: Operator's Console Auxiliary Controls](image)
3.17 Harvest Performance Tracker (HPT) Display

The HPT display settings are preset at the factory. This section explains how to adjust the settings.

3.17.1 Harvest Performance Tracker (HPT) Screen Layout

The appearance and functions of the HPT depend on the type of header attached.

Figure 3.69: Run Screen 1 (Draper Header Shown)
The HPT display is separated into the following three zones:

Left gauge cluster
- Ground speed
- Maximum ground speed
- Engine rpm
- Eco engine control (EEC) active/inactive
- High exhaust system temperature (HEST) light
- Inhibit status
- Park and turn signal status
- Level gauges for fuel and DEF
- Coolant temperature gauge
- Climate control temperature and blower speed
- Current time

Header information
The information displayed depends on the type of header attached to the windrower and which run screen is active.

- Run screen #1: Displays reel, draper, knife, disc, or auger speed and pressure; alarm point; and indexing (factory-set according to header)
- Run screen #2: Displays draper, knife, or disc speed and pressure; reel height and fore-aft position; hydraulic pressure; and load bar
- Run screen #3: Displays fuel per hour/acre, acres per hour, and sub acres per hour (resettable)
- Run screen #4: Displays cooling fan speed, engine air intake temperature, hydraulic oil temperature, and engine coolant temperature
Current header position

- Displays basic header functions: height and angle

Telltales

- Telltales (A) indicate an engine or windrower fault
- Telltales are amber or red in color accompanied by a symbol for the fault
- Telltales display a short description (B) of the fault

Required maintenance indicator

- An amber indicator (A) is displayed 50 hours before required maintenance is due
- The indicator only displays when header is disengaged
- Indicator flashes when maintenance is overdue by 50 hours
3.17.2 Navigating the Harvest Performance Tracker (HPT) Display

Scroll Knob, Scroll Wheel, and Select Button

Turning the scroll knob (A) on the Harvest Performance Tracker (HPT) highlights the available options within a menu and increases/decreases the available settings. Pushing the scroll knob selects functions or menu items. Scroll and select functions are duplicated on the ground speed lever (GSL) controls. Unless otherwise specified, these two buttons will always perform the same function and when select is used in this document, either one of these buttons can be used.

- Turn scroll knob (A) clockwise to move selections down the screen, to the right, clockwise, and to increase settings. Push the scroll knob to activate the selection.
- Turn scroll knob (A) counterclockwise to move selections up the screen, to the left, counterclockwise and to decrease settings. Push the scroll knob to activate the selection.

NOTE:
The scroll wheel (A) on the back of the GSL and the SELECT button (B) on the front of the GSL perform the same functions as the HPT rotary scroll knob.
Home, Back, and Select Buttons

- Press the BACK button (A) on the Harvest Performance Tracker (HPT) to return to the previous level within the menu structure.
- Press the HOME button (B) on the HPT to return to the last selected run screen (or header disengaged screen).

- Press the BACK button (A) on the ground speed lever (GSL) to return to the previous level within the menu structure.
- Press the SHIFT button (B) on the back of the GSL, and then press the GSL BACK button (A) to return to the last selected run screen (or header disengaged screen). Pressing the SHIFT (B) and BACK (A) buttons on the GSL at the same time produces the same result as pushing the HOME key on the HPT display.

Soft Keys

- Soft keys 1–4 (A) on the Harvest Performance Tracker (HPT) display run screens 1–4 respectively
- Soft key 5 (B) displays the main menu
- After a menu is open, soft keys 1–5 also function as buttons within menus
QuickMenu System

The QuickMenu system allows you to change certain windrower and header functions directly on the screen.

1. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) while in any run screen to open the QuickMenu system.

2. Use the HPT scroll knob or the GSL scroll wheel to move the red cursor (A) around the screen. The following selectable areas are highlighted in white and can be changed while in motion using the QuickMenu system:
 - Ground speed limit (A) – Refer to *Adjusting Ground Speed Limit, page 126*.
 - EEC throttle limit (B) – Refer to *Programming the Eco Engine Control (EEC), page 119*.
 - Header float (C) – Refer to *Setting the Float, page 181*.
 - Header adjustments (when header is running [not shown]) – Refer to *4.6 Operating with a Header, page 179*.
 - Knife speed – Refer to *4.7.7 Knife Speed, page 210, or 4.8.2 Knife Speed, page 226*.
 - Access maintenance information – Refer to *3.17.7 Machine Information Pages, page 100*.
 - Adjust auto speed settings – Refer to *4.7 Operating with D1X or D1XL Series Draper Header, page 196, or 4.8 Operating with an A40 DX Auger Header, page 221*.
 - Define header alarm speeds – Refer to *4.7 Operating with D1X or D1XL Series Draper Header, page 196, or 4.8 Operating with an A40 DX Auger Header, page 221.*
• Header Alarm pressure – Refer to 4.7 Operating with D1X or D1XL Series Draper Header, page 196, or 4.8 Operating with an A40 DX Auger Header, page 221. 4.9 Operating with an R85 Rotary Header, page 234.

• Manage telltales – Refer to Faults and Telltales, page 89.

• Turn auto speeds ON/OFF – Refer to 4.7 Operating with D1X or D1XL Series Draper Header, page 196, or 4.8 Operating with an A40 DX Auger Header, page 221. 4.9 Operating with an R85 Rotary Header, page 234.

3. Place the red cursor (red border [A]) over the function you want to adjust, and press the HPT scroll knob or GSL SELECT button to display a submenu containing the adjustable values within the selected function.
Main Menu

To display the main menu and select functions, follow these steps:

1. Press soft key 5 (A) to open the main menu or press SHIFT and SELECT on the ground speed lever.

2. Use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to place the red cursor (C) over the icon you want to select.

 NOTE:
 Using scroll knob will activate text hints on screen that explain each selection.

3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted icon.

 NOTE:
 Pressing the corresponding soft key will also work.

The main menu provides access to submenus for viewing and adjusting windrower and header settings. Refer to Menu Icons, page 85 for details on navigating the following submenus:

- Information
- Settings
- Maintenance
- Diagnostics
- Engine aftertreatment

Menu Icons

Several menu icons are available in the main menu. Selecting a menu icon will open submenu icons, menu lists, and radio buttons for viewing and adjusting windrower and header settings.

Information: Icon (A) displays the following submenu icons:

- Windrower information (B)
- Header information (C)
- Module information (D)
- Performance information (E)
Setup: Icon (A) displays the following submenu icons:
- Screen settings (B)
- Windrower settings (C)
- Header settings (D)
- One-Touch-Return settings (E)

Screen Settings: Icon (A) displays the following submenu icons:
- Brightness and volume (B)
- Time and date (C)
- Language and units (D)
- Run screen set-up (E)
- Reset to defaults (F)

Windrower Settings: Icon (A) displays the following submenu icons:

NOTE:
The F3 shortcut button on the operator’s console also displays the windrower settings menu.
- Calibration (B)
- Tires (C)
- Lockout functions (D)
- Sensors (E)
Header Setup: Icon (A) opens the SET-UP HEADER menu list.

NOTE:
The F4 shortcut button on the operator’s console also displays the SET-UP HEADER menu list.

- Header type (B)
- Hours used (C)
- Total acres (D)

After the header is selected, the HEADER SETUP menu opens, which includes:

- Cut width
- Raise/lower rates
- Attachments

One-Touch-Return: Icon (A) displays the One-Touch-Return menu list.

NOTE:
The F2 shortcut button on the operator’s console also displays the One-Touch-Return menu list.
Maintenance: Icon (A) opens the maintenance menu list (B). Refer to 5.2.3 Electronic Maintenance Tool, page 249

![Figure 3.90: Maintenance Icon and Maintenance Menu List](image1)

Diagnostics: Icon (A) displays the following submenu icons:
- Windrower fault codes (B)
- Engine fault codes (C)
- Inputs/outputs (D)
- CAN network (E)

![Figure 3.91: Diagnostics Icon and Diagnostics Submenu Icons](image2)

Engine Aftertreatment: Icon (A)
- Soft key 4 (B) activates the initiate manual SCR conditioning command, and the initiate icon (D) will become highlighted on the display
- Soft key 5 (C) activates the inhibit SCR conditioning command, and the inhibit icon (E) will become highlighted on the display

![Figure 3.92: Engine Aftertreatment Icon and Soft Keys](image3)
Faults and Telltales

Faults and telltales—displayed on the Harvest Performance Tracker (HPT)—provide important information about the windrower and the engine. Telltales (A) include a symbol indicating the affected area (refer to 4.2 Symbol Definitions, page 106) and a short description of the fault (B).

- Red faults (displayed on the top line) indicate that a major fault has occurred and will cause progressive damage or affect the safe operation of the machine. The machine should be shut down as soon as possible.
- Yellow faults (displayed on the bottom line) indicate that a failure has occurred, and the machine should be serviced as soon as possible to diagnose the failure.

To display a more detailed fault page, use the HPT scroll knob (E) to select the question mark symbol (C).

To close the short description (B), use the HPT scroll knob (E) to select the close symbol (D). Telltales (A) remain on the screen until the fault is corrected.

NOTE:
Closing the short description of a yellow fault will mute the alarm tone associated with that fault. Alarm tones associated with red faults cannot be muted.

Figure 3.93: HPT Run Screen Displaying Faults
If multiple faults are detected, the number of faults will appear in the corner of the telltale icon (A).

Using the HPT scroll/select knob, select the question mark symbol next to the short description to display a detailed description of the fault. If there are multiple faults, the icons (A) will appear in a row. To display a detailed description of each fault, use the HPT scroll/select knob to select the icon.
3.17.3 Setting up the Harvest Performance Tracker (HPT) Screen

The setup menu configures the HPT for specific operations. The following settings should be checked before initial operation of the windrower.

The key must be turned to the ON position to enter the setup menu, but the engine does not have to be running.

Setting Screen Brightness and Volume

Setting Screen Brightness:

The screen brightness is shown with a 10-segment bar graph and is adjustable down to 10%. The brightness automatically adjusts for daytime and nighttime operation. Day mode is defined as having the headlights or work lights OFF (or having only the clearance lights ON). Night mode is defined as having either the headlights or work lights ON.

1. Navigate to the SETTINGS Menu with soft key 5 and the Harvest Performance Tracker (HPT) scroll knob. Refer to 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display, page 81 if required.

2. Scroll to the SCREEN icon (A) and select it.

3. Scroll to the BRIGHTNESS AND VOLUME icon (B), and select it to open adjustment window.

 ![Figure 3.96: Brightness and Volume](image)

4. Scroll through the following four brightness modes, and select the mode that requires adjustment:
 - DAY mode (A) (default setting is 70%)
 - NIGHT mode (B) (default setting is 20%)
 - KEYPAD DAY mode (C) (default setting is 70%)
 - KEYPAD NIGHT mode (D) (default setting is 20%)

5. Adjust the selected value by scrolling and previewing the brightness as you scroll.

 ![Figure 3.97: Brightness and Volume](image)
Setting Volume:

The volume control adjusts the audible alarms. It is depicted with a 10-segment bar graph and is adjustable down to 10%. The default volume is factory-set to 50%.

Adjust the volume as follows:

6. Navigate to SETTINGS Menu with soft key 5 and the HPT scroll knob (B). Refer to 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display, page 81 if required.

7. Scroll to the SCREEN icon (A) and select it.

8. Scroll to the BRIGHTNESS AND VOLUME icon (B), and select it to open adjustment window.

9. Scroll to the VOLUME option (A) and select it.

10. Adjust volume by scrolling.
Setting Time and Date

Whenever the Harvest Performance Tracker (HPT) boots up, the time and date will display according to your selected configuration.

1. Navigate to the SETTINGS Menu with soft key 5 and the HPT scroll knob. Refer to 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display, page 81 if required.
2. Scroll to the SCREEN option (A) and select it.
3. Scroll to the TIME AND DATE option (B), and select it to open the adjustment window.
4. Scroll through the available options on the HPT display, select desired option, and scroll to adjust.

Setting Language and Units of Measure

1. Navigate to the SETTINGS menu with soft key 5 and the Harvest Performance Tracker (HPT) scroll knob. Refer to 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display, page 81 if required.
2. Scroll to SCREEND icon (A) and select it.
3. Scroll to LANGUAGE AND UNITS icon (B), and select it to open the adjustment window.
4. Scroll through the available options on the HPT, select desired item, and scroll to adjust:
 LANGUAGE
 • ENGLISH (default)
 • SPANISH
UNITS
• METRIC
• USA (default)

Refer to 8.2 Conversion Chart, page 401 for a comprehensive list of imperial and metric units.

Resetting to Factory Defaults

1. Press soft key 5 (A), and use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to place the red cursor over the SETTINGS icon (C).

2. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the main menu (C) options.

3. Scroll to the DISPLAY SETTING icon (A) and press SELECT.

4. Scroll to the RESET TO DEFAULTS icon (B), and press SELECT to open the adjustment window.

5. Scroll through the available options, and press SELECT to reset to default. Refer to the following list for factory default options:
 • Select all
 • Display brightness
 • Keypad brightness by day
 • Display volume
 • Language (English)
 • Units (USA)
 • Eco engine control speed (4 and 6 cylinders have different speeds)
 • Max cab forward speed 14 mph
 • Max cab forward speed 14 mph
 • Max engine forward speed 27 mph
 • Header speed settings
 • Header alarm pressures
 • Knife alarm speed
• Manual (not auto) knife speed mode
• Manual (not auto) reel speed mode
• Manual (not auto) draper speed mode
• All functions unlocked
• All sensors enabled
• Cut width
• Swath roller selection off
• Max header raise/lower rates
• One-touch-return presets (reset to default option available also within this menu)
• DWA speed
• DWA alarm pressure

6. Press the HOME or BACK button. The CONFIRM YES/NO dialog box is displayed.

7. Select YES to save changes and close the dialog box, or select NO to close the dialog box without saving changes.

3.17.4 Calibrating the Windrower and Header

When a header is attached to the windrower, the Harvest Performance Tracker (HPT) will recognize the header ID and determine the appropriate systems to calibrate. The following sensors may require calibration depending on header type:
• Header height
• Header angle
• Header float left
• Header float right
• Reel height
• Reel fore-aft
• Swath compressor

Recalibration is required if the HPT is replaced, a position sensor is replaced, sensor readouts are erratic, or the first time a certain header type and attachment are connected to the windrower.

NOTE:
Calibration can be done with or without a header attached. If a header is attached, the header must be engaged to perform the calibration procedure. If the header is disengaged when calibration is selected, the message ENGAGE HEADER will appear on the screen.

⚠️ CAUTION

Before starting the machine, check to be sure all bystanders have cleared the area.
1. Start the engine, and engage the header.
2. Press soft key 5 (A) to open the main menu.
3. To scroll to the settings icon (C), use the HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
4. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the settings menu options.

5. Scroll to the WINDROWER SETTINGS icon (A) and press SELECT.
6. Scroll to the CALIBRATION icon (B), and press SELECT to open the adjustment page.

NOTE:
The F3 shortcut button on the operator’s console also will open the WINDROWER SETTINGS menu.

7. Select POSITION SENSORS (A).
8. Select CALIBRATION WITH HEADER ENGAGED to display the calibration page as shown at right.

9. Press the PLAY button on the screen to begin the calibration process.

NOTE:
If the engine speed is less than 1500 rpm when you press the PLAY button, the calibration system will accelerate the engine to 1500 rpm.

10. When stage one of the calibration is complete, press the PLAY button (A) on the screen to continue with stage two of the calibration process.

11. When stage two of the calibration is complete, press the RESUME button (A) on the screen to set HEADER FLOAT, or press the HOME or BACK button (not shown) to exit without setting the float.
NOTE:
Press the X button (A) on the screen (or press the HOME, BACK or any GSL button [buttons not shown]) at any time during the calibration process to EXIT calibration without saving. The engine speed will return to the original rpm prior to starting the calibration process.

NOTE:
If a sensor goes out of its normal operating range during the calibration process, calibration will stop, and a message will appear on the screen indicating that the sensor is out of range. A flashing amber question mark will appear on the calibration icon in the menu system. If a sensor is out of range, adjust the sensor and restart the calibration process.

3.17.5 Setting Windrower Tire Size

The Harvest Performance Tracker (HPT) is factory-set for 600/65R28 bar tires. If the windrower has a different tire type, you need to change this setting. Setting the proper tire size is important for accurate tracking of ground speed, acres, and productivity data.

1. Navigate to the SETTINGS menu with soft key 5 and the HPT scroll knob. Refer to 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display, page 81 if required.

2. Scroll to the WINDROWER SETTINGS icon (A) and select it.

3. Scroll to the TIRES icon (B), and select it to display the adjustment window.

NOTE:
The F3 shortcut button on the operator’s console will also display the WINDROWER SETTINGS menu.

4. Scroll to highlight the appropriate tire size (A) and select it. The new selection will be displayed with a shaded green radio button.
3.17.6 Activating Control Locks

All header functions are factory-set to the unlocked position, but certain functions can be locked to prevent changes. This feature can be used to maintain preferred settings when there are multiple Operators.

1. Press soft key 5 (A) to display the main menu.
2. To scroll to the setting icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the settings menu options.

4. Scroll to the WINDROWER SETTINGS icon (A) and press SELECT.
5. Scroll to the CONTROL LOCKS icon (B), and press SELECT to display the adjustment window.

NOTE:
The F3 shortcut button on the operator’s console will also display the windrower settings menu.

6. On the LOCKOUT FUNCTIONS PAGE, use the scroll knob on the HPT to move the cursor (A) to the desired function(s) to lock.
7. Press Select to activate the lock.
3.17.7 Machine Information Pages

Selecting the INFORMATION icon (A) from the main menu provides access to the following submenu icons:

- Windrower information (B) – Refer to Accessing Windrower Information, page 100.
- Header information (C) – Refer to Accessing Header Information, page 101.
- Software information (D) – Refer to Accessing Software Information, page 102.
- Performance information (E) – Refer to Accessing Performance Information, page 103.

Accessing Windrower Information

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.
4. Scroll to the WINDROWER INFORMATION submenu icon (A), and press SELECT to display the windrower information menu.
The windrower information menu displays the following information:

- Engine hours (A)
- Windrower total hours (B)
- Total acres (C)
- Windrower total header hours (D)

Accessing Header Information

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.
4. Scroll to the HEADER INFORMATION submenu icon (A), and press SELECT to display the header information menu.
The header information menu displays the following information:

- Header (A)
- Header hours (B)
- Total acres (B)
- Sub-acres (D) (resettable)

NOTE:
If you select reset (E), the message RESET YES/NO appears on the display. Select YES to reset the sub-acres to zero and return to the same highlighted sub-acres. Select NO or press the BACK or HOME button to dismiss the message without resetting the sub-acres. The sub-acres are also resettable from run screen 3. Refer to Run Screen 3 – Performance Data, page 123.

Accessing Software Information

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.

4. Scroll to the SOFTWARE INFORMATION submenu icon (A), and press SELECT to display the module information menu.
The HPT display reports the component make, software ID, and software installation date in the software information menu. In addition, the software versions and make, model, and serial numbers of the following modules are also displayed on the screen:

- Master controller (A)
- Display (B)
- Console (C)
- Ground speed lever (D)
- Engine control module (E)
- Roof relay module (F)
- Chassis relay module (G)
- HVAC module (not shown)
- Firewall extension module (not shown)

Accessing Performance Information

1. Press soft key 5 (A) to open the main menu.

2. To scroll to the INFORMATION icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).

3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.

4. Scroll to the WINDROWER PERFORMANCE submenu icon (A), and press SELECT to display the performance information menu.
The performance information menu displays two columns: one column displays the accumulated data over the machine’s lifetime (A) and is not resettable, the other displays the data accumulated per field (B) and is resettable.

The performance information menu displays the following information:

- Engine hours (C)
- Engine % idle time (D)
- Average % load (E)
- Gal/Hr (F)
- Acres (G)
- Acres/Gal (H)
- Gal/Acre (J)
- Windrower header hours (K)

NOTE:
To reset all of the field values to zero, use the scroll knob to highlight the FIELD column (B) and press the SELECT button.

3.17.8 F1 to F4 Function Buttons

The following functions have been assigned to the F1–F4 function buttons on the operator’s console:

- **F1** (A) – Float menu
- **F2** (B) – One-Touch-Return
- **F3** (C) – Windrower settings
- **F4** (D) – Header settings

Press a function button to override the existing screen and display the function.

Press the function button again or press the Back button to return to the previous screen.

Press the Home button to return to the run screen.

NOTE:
F5 and F6 buttons are not assigned to any functions.
4 Operation

4.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the windrower. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety signs on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the windrower, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators every year.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do NOT modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.
- The safety information given in this manual does NOT replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
4.2 Symbol Definitions

The following symbols are used to depict functions or reactions of the various instruments and controls. Learn the meaning of these symbols before operating the windrower.

4.2.1 Windrower Operating Symbols

These are the symbols used on the console for windrower operation.

Figure 4.1: Windrower Operating Symbols

- A - Signal Lights
- B - Hazard Lights
- C - Forward
- D - Neutral
- E - Reverse
- F - Road Lights
- G - High Beams
- H - Cab-forward Field Lights
- J - Blower Speed (Manual Mode)
- K - Air Conditioning
- L - Windshield Wiper
- M - Wiper Fluid
- N - Float Menu
- P - Windrower Settings
- Q - Header Settings
- R - Header Engage
- S - Header Disengage
- T - Header Reverse
- U - Slow
- V - Fast
- W - Engine Throttle
- X - One-Touch-Return
- Y - Electrical Power / Accessories

OPERATION
4.2.2 Harvest Performance Tracker Symbols

Figure 4.2: Harvest Performance Tracker Symbols

A - Knife
B - Knife Pressure
C - Reel
D - Reel Speed
E - Reel Height
F - Reel Fore-Aft
G - Draper
H - Draper Pressure
J - Draper Speed
K - Header Height
L - Header Tilt
M - Header Float
N - DWA Raise
P - DWA Lower
Q - Disc
R - Disc Pressure
S - Disc Speed
T - DEF
U - SCR Conditioning Manual
V - SCR Conditioning Inhibit
W - High Exhaust System Temperature
X - Engine rpm
Y - Fuel
Z - Water in Fuel
AA - Parking Brake
AB - Climate Control
AC - Swath Compressor
Figure 4.3: Harvest Performance Tracker Symbols

A - Acres/Hour B - Sub Acres C - Fuel/Acre
D - Fuel/Hour E - Engine Power Kilowatt F - Engine Power Horsepower
G - Engine Malfunction H - Wait to Start J - Engine Coolant Temperature
K - Engine Intake Air Filter L - Engine Oil Pressure M - Engine Oil Level
N - Engine Oil Filter P - Engine Coolant Level Q - Engine Air Intake Temperature
R - Hydraulic Oil Pressure S - Hydraulic Oil Temperature T - Transmission Oil Pressure
U - Battery/Voltage V - Fan Speed W - Caution (Yellow) / Danger (Red)
X - Function Locked Y - Time Z - Date
AA - Alarm AB - Alarm Off AE - Night
AD - Sensor Disabled AC - Volume Level AF - Day
4.3 Operating the Windrower

4.3.1 Operational Safety

⚠️ CAUTION

Follow these safety precautions:

- Wear close fitting clothing and protective shoes with slip resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that could be necessary through the day. DO NOT take chances.
- You may need:
 - a hard hat
 - protective glasses or goggles
 - heavy gloves
 - respirator or filter mask
 - wet weather gear
- Protect against noise. Wear a suitable hearing protective device such as ear muffs or ear plugs to protect against objectionable or uncomfortable loud noises.
- Follow all safety and operational instructions given in your operator’s manuals. If you do not have a header manual, get one from your Dealer and read it thoroughly.
- NEVER attempt to start the engine or operate the machine except from the operator’s seat
- Check the operation of all controls in a safe clear area before starting work.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure. Refer to Shutting down the Engine, page 120.
- Operate only in daylight or good artificial light.
4.3.2 Break-in Period

The windrower is ready for normal operation. However, there are several items to check and watch out for during the first 150 hours.

⚠️ **DANGER**

Before investigating an unusual sound or attempting to correct a problem, place ground speed lever (GSL) in PARK, shut off engine, and remove key.

IMPORTANT:

Until you become familiar with the sound and feel of your new windrower, be extra alert and attentive.

- Avoid unnecessary idling. If engine will be idling longer than five minutes after reaching operating temperature, turn ignition key OFF to stop the engine.
- Check engine oil level frequently. Watch for any signs of leakage. If oil must be added, refer to *Checking Engine Oil Level, page 114*.
- Watch coolant gauge in cab for temperature rising beyond normal operating range. Check that coolant level at reserve tank (mounted next to radiator) stays between HOT and COLD marks on tank. Refer to *5.6.5 Checking Engine Coolant Level, page 271*.

NOTE:

If over-heating problems occur, check for coolant leaks.

- Perform the break-in inspections specified in *5.2.1 Break-in Inspection Schedule, page 245*.

NOTE:

During the break-in period, a higher than usual oil consumption should be considered normal.

NOTE:

If windrower must be driven in cold weather (below freezing), let engine idle for three minutes, and then operate at moderate speed until oil has warmed up.

4.3.3 Preseason Checks/Annual Service

⚠️ **CAUTION**

- Review the operator’s manual to refresh your memory on safety and operating recommendations.
- Review all safety signs and other decals on the windrower and note hazard areas.
- Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
- Store a properly stocked first aid kit and charged fire extinguisher on the windrower.

1. Drain off excess hydraulic oil added for storage. Refer to *5.12.2 Draining Hydraulic Oil, page 310*.
2. Remove plastic bags and/or tape from all sealed openings (air cleaner intake, exhaust pipe, fuel tank).
3. Charge battery and install. Be sure terminals are clean and cables are connected securely.
4. Adjust tension on air conditioning (A/C) compressor belt. Refer to *5.5.5 Tensioning Air Conditioner (A/C) Compressor Belts, page 259*.
5. Distribute A/C refrigerant by cycling the A/C switch. Refer to *Air Conditioning Compressor Coolant Cycling, page 111*.

6. Check the entire A/C system for leakage at the beginning of each season.

7. Perform annual maintenance. Refer to *5.2 Windrower Break-In Inspections and Maintenance Schedule, page 245.*

Air Conditioning Compressor Coolant Cycling

IMPORTANT:
Perform the following steps whenever the machine is first started after storage for more than one week:

1. Press the reduce (–) BLOWER SPEED switch (A) repeatedly until the lowest fan setting is reached.

2. Press the red area on the TEMPERATURE CONTROL switch (F) repeatedly until maximum heating is reached.

3. Press the A/C control (E) to OFF.

4. Start engine and operate at low idle until engine is warm.

Figure 4.6: Climate Control

- A - Blower Toggle Button
- B - Outside Air Button
- C - Recirculating Air Button
- D - Windshield Defog/Defrost
- E - Air Conditioning Button
- F - Temperature Control
4.3.4 Daily Checks and Maintenance

Perform the following checks and recommended maintenance before operating the windrower every day:

1. Check the machine for leaks.

 NOTE:

 Use proper procedure when searching for pressurized fluid leaks. Refer to 5.6.6 Hoses and Lines, page 271.

2. Check for missing or broken parts.

3. Clean the windows and mirrors to ensure good visibility in all directions. Stand on the platform to access the rear window. Hold onto the handholds on the cab front corners and stand on the header anti-slip strips to wash the front window.

4. Clean all lights and reflective surfaces to maintain visibility to others.

5. Perform daily maintenance. Refer to 5.2 Windrower Break-In Inspections and Maintenance Schedule, page 245.

Filling Fuel Tank

The symbol inside the fuel gauge on the Harvest Performance Tracker display will signal the Operator when the fuel level is low. Fill fuel tank daily, preferably at the end of the day’s operation to help prevent condensation in the tank.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

WARNING

- To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.

- NEVER refuel the windrower when the engine is hot or running.

IMPORTANT:

Do NOT allow tank to empty. Running out of fuel can cause air locks and/or contamination of the fuel system. Refer to Priming Fuel System, page 300 System Priming, page 300.

1. Stop windrower and remove the ignition key.

2. Clean the area around the fuel filler cap (A).

3. Turn fuel filler cap (A) counterclockwise until loose. Remove cap.

4. Fill tank with approved fuel. For fuel type and quantity, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

 IMPORTANT:

 Do NOT completely fill the tank as space is required for expansion. A filled tank could overflow if exposed to a rise in temperature, such as direct sunlight.

5. Replace fuel tank filler cap (A), and turn cap clockwise until it clicks.
Filling the Diesel Exhaust Fluid (DEF) Tank

The symbol inside the DEF gauge on the Harvest Performance Tracker display will signal the Operator when DEF level is low.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Clean around filler cap (A).
3. Turn cap (A) counterclockwise until loose and remove cap.

NOTE:
Filler cap for DEF tank is blue and the nozzle dispenser is smaller than that of the fuel tank.

⚠️ **CAUTION**

Avoid contact with eyes. In case of contact, rinse immediately with water for 15 minutes.

4. Fill tank with approved DEF. Refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

IMPORTANT:
Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand, and then shovelled to a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water as DEF is corrosive.

IMPORTANT:
If the windrower temperature is going to be below 0°C (32°F), do not fill the DEF tank to a full level. It should be less than 75% full. When freezing, the DEF fluid will expand by approximately 7%. For storage information, refer to 5.1.1 Storing Lubricants and Fluids, page 241.

5. Replace filler cap (A) and turn clockwise until tight.
Checking Engine Oil Level

Check engine oil level frequently and watch for any signs of leakage.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:

During the break-in period, a higher than usual oil consumption should be considered normal.

NOTE:

Oil can be checked without opening the hood.

1. Operate the engine at low idle and check for leaks at the filter and drain plug.
2. Stop the engine and remove the key. Wait about 5 minutes.
3. Remove the dipstick (A) by turning it counterclockwise to unlock.
4. Wipe the dipstick clean and reinsert it into the engine.

5. Remove the dipstick again and check the oil level.

 NOTE:

 Oil level should be between LOW (L) and HIGH (H). If level is below LOW mark, 1.9 liters (2 US quarts) will raise the level from LOW to HIGH. To add oil, refer to Adding Engine Oil, page 266.

6. Replace dipstick and turn it clockwise to lock.
4.3.5 Engine Operation

Starting the Engine

⚠️ DANGER

- Avoid possible injury or death from a runaway machine.
- This machine has safety devices which allow the engine to start only when the ground speed lever is in PARK, the steering wheel is locked in the PARK position, and the HEADER ENGAGE switch is in the OFF position. Under no circumstances are these devices to be deliberately rewired or misadjusted so that the engine can be started with controls out of NEUTRAL.
- Do NOT start engine by shorting across starter or starter relay terminals. If normal starting circuitry is bypassed, machine will start with drive engaged and move.
- Start engine only from operator’s seat with controls in PARK. NEVER start engine while standing on ground. Never try to start engine with someone under or near machine.
- Before starting engine, be sure there is plenty of ventilation to avoid asphyxiation.

IMPORTANT:
Before starting the windrower, check the fluid level of the following, and add fluid if necessary:

- Engine oil – refer to Checking Engine Oil Level, page 114
- Hydraulic oil – refer to 5.6.3 Checking Hydraulic Oil, page 267
- Gearbox oil – refer to 5.7.2 Checking Engine Gearbox Lubricant Level and Adding Lubricant, page 277

IMPORTANT:
Do NOT tow machine to start engine. Damage to hydrostatic drives will result.

1. Ensure the cab-forward or engine-forward directional lock (A) is engaged at the base of the steering column.
2. Move ground speed lever (GSL) (A) into PARK (C).

3. Turn steering wheel until it locks. It may be possible to move the steering wheel slightly in the locked position.

IMPORTANT:
Do **NOT** attempt to force the wheel out of the locked position or damage to the steering system may occur.

4. Fasten seat belt.

5. Push HEADER ENGAGE switch (B) to ensure it is in the OFF position.

6. Turn IGNITION switch (A) to the ON position; the Harvest Performance Tracker (HPT) (B) will illuminate. If HPT is still booting up, wait for WAIT TO START (WTS) symbol (C) to disappear before trying to start engine.

7. Check that red PARK symbol light (D) is ON and that there are no error messages on screen.

8. Press HORN button (E) three times.
9. Turn the IGNITION switch to crank (A).

NOTE:
When the engine starts and the header is not engaged, the HPT will display the header disengaged screen (B).

IMPORTANT:
- Do NOT operate starter for longer than 15 seconds at a time.
- If engine does not start, wait at least 2 minutes before trying again.
- If you crank the engine for more than 30 seconds within a 2-minute period, the engine will lock the starter circuit to prevent overheating, and a flashing WTS symbol will illuminate on the HPT display. Wait for the WTS symbol to stop flashing before attempting to crank engine again.

NOTE:
When the engine temperature is below 5°C (40°F), the engine will cycle through a period where it appears to labor until the engine warms up. Do NOT operate engine above 1500 rpm until the HPT engine temperature gauge is above the blue range (A).

Engine Start Troubleshooting Tips

If the windrower will not start normally, refer to the following troubleshooting table:

IMPORTANT:
Do NOT tow machine to start engine. Damage to hydrostatic drives will result.

Table 4.1 Engine Start Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls not in NEUTRAL</td>
<td>• Move GSL to NEUTRAL</td>
</tr>
<tr>
<td></td>
<td>• Move steering wheel to locked position</td>
</tr>
<tr>
<td></td>
<td>• Disengage HEADER switch</td>
</tr>
<tr>
<td>Operator’s station not locked</td>
<td>• Adjust position of operator’s station</td>
</tr>
<tr>
<td></td>
<td>• Ensure lock is engaged</td>
</tr>
</tbody>
</table>
OPERATION

Table 4.1 Engine Start Troubleshooting (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral interlock misadjusted</td>
<td>• Contact MacDon Dealer</td>
</tr>
<tr>
<td>No fuel to engine</td>
<td>• Fill empty fuel tank</td>
</tr>
<tr>
<td></td>
<td>• Replace clogged filter</td>
</tr>
<tr>
<td></td>
<td>• Check for blocked or damaged fuel lines</td>
</tr>
<tr>
<td>Old fuel in tank</td>
<td>• Drain tank</td>
</tr>
<tr>
<td></td>
<td>• Refill with fresh fuel</td>
</tr>
<tr>
<td>Water, dirt, or air in fuel system</td>
<td>• Drain, flush, fill, and prime system</td>
</tr>
<tr>
<td>Improper type of fuel</td>
<td>• Use proper fuel for operating conditions</td>
</tr>
<tr>
<td>Crankcase oil too heavy</td>
<td>• Use recommended oil</td>
</tr>
<tr>
<td>Low battery output</td>
<td>• Test the battery</td>
</tr>
<tr>
<td></td>
<td>• Check battery electrolyte level</td>
</tr>
<tr>
<td>Poor battery connection</td>
<td>• Clean and tighten loose connections</td>
</tr>
<tr>
<td>Faulty starter</td>
<td>• Contact MacDon Dealer</td>
</tr>
<tr>
<td>Wiring shorted, circuit breaker open</td>
<td>• Check continuity of wiring and breaker (manually reset)</td>
</tr>
<tr>
<td>Faulty injectors</td>
<td>• Contact MacDon Dealer</td>
</tr>
</tbody>
</table>
Programming the Eco Engine Control (EEC)

Engine speed can be programmed to operate at reduced rpm to lower fuel and diesel exhaust fluid (DEF) consumption, and reduce in-cab noise levels. The set point for engine speed can be adjusted in increments of 100 rpm from 1800–2300 rpm in the Harvest Performance Tracker (HPT) QuickMenu. While the header is engaged, the system can easily be activated and deactivated (depending on field conditions) using the EEC button on the console. When the engine is running at less than full speed, you will notice a small reduction in the maximum reel, draper, and ground speeds.

1. To open the QuickMenu system while in any run screen, press the scroll knob (A) on the HPT.

2. Use the HPT scroll knob to move the red cursor to the ECO THROTTLE LIMIT (A) value.
3. Press the HPT scroll knob to select the ECO THROTTLE LIMIT (A) adjustment function.
4. Adjust the ENGINE RPM value using the HPT scroll knob.
5. Press the HPT scroll knob to program the adjusted value.
The EEC feature is turned ON or OFF by pressing the ECC button (A) on the operator’s console. EEC will only be available when the header is engaged. The GREEN LEAF symbol on the HPT display indicates that the EEC is active. If EEC is turned OFF, or the header is disengaged, the LEAF symbol will appear grayed out. The EEC throttle limit can be adjusted at any time.

Figure 4.19: Eco Engine Control (EEC) Button

Shutting down the Engine

⚠️ CAUTION

Park on a flat, level surface with the header on the ground and the ground speed lever in PARK position with the steering wheel locked.

IMPORTANT:

Before stopping engine, run at low idle for approximately five minutes to cool hot engine parts (and allow turbocharger to slow down while engine oil pressure is available).

1. Lower header.
2. Place ground speed lever (GSL) (B) into PARK.
3. Lock steering wheel.
4. Turn ignition key (A) counterclockwise to the OFF position.

Figure 4.20: Operator Console
Engine Temperature

The engine temperature gauge (A) is displayed in the lower left corner of the Harvest Performance Tracker (HPT) display.

Normal engine operating temperature is indicated when the needle is in the green range of the gauge.

If the engine temperature exceeds 105°C (221°F), the needle will move to the red range of the gauge. Depending on the temperature, the engine will trigger a fault code and an amber caution or red stop light will illuminate on the HPT display.

When the engine temperature is below 5°C (40°F), the engine will cycle through a period where it appears to labor until the engine warms up. Do **NOT** operate engine above 1500 rpm until the HPT engine temperature gauge is above the blue range.

Engine Oil Pressure

The nominal engine oil pressure is 69 kPa (10 psi) at low idle and 380 kPa (55.1 psi) at maximum rated speed.

If the oil pressure drops below the preset level of 52 kPa (7.5 psi), the Harvest Performance Tracker (HPT) displays an engine telltale fault code to identify the issue.

If the red STOP ENGINE light illuminates, stop the engine **IMMEDIATELY** and investigate.

If the amber CAUTION light illuminates, stopping immediately is optional. You may continue operations and investigate later, but you are **STRONGLY** advised to monitor the situation carefully.

Exhaust System Cleaning

The exhaust aftertreatment system uses diesel exhaust fluid (DEF) and selective catalyst reduction (SCR) technology to reduce the emission of nitrogen oxides (NOx). The process involves injecting DEF (a nitrogenous compound which decomposes into ammonia) into the exhaust over a catalyst. The ammonia reacts with NOx producing harmless nitrogen and water.

Automatic exhaust system cleaning events maintain the performance of the aftertreatment system by increasing exhaust temperatures in order to remove the buildup of crystallized DEF. Automatic cleaning occurs anytime during machine operation as long as the INHIBIT SCR CONDITIONING switch is OFF. Turn on the INHIBIT SCR CONDITIONING switch if the environment is not suitable for high exhaust temperatures (e.g., inside of a building). The SCR CONDITIONING INHIBIT switch is intended as a temporary measure. If the INHIBIT switch is left on for an extended period, the engine will derate until manual SCR conditioning is performed.

Activate the MANUAL SCR CONDITIONING exhaust system cleaning if the automatic exhaust system cleaning was deactivated during normal operation. Engine speed may vary between 1000 and 1400 rpm during manual exhaust system cleaning.
Activating the Exhaust Aftertreatment Functions

Follow these steps to access the exhaust aftertreatment functions on the HPT display.

1. To display the main menu, press the soft key 5/menu button (A) on the Harvest Performance Tracker (HPT).

2. To display the manual / inhibit SCR conditioning switches, press soft key 5/menu button (A) next to the EXHAUST AFTERTREATMENT icon (B).

3. To inhibit SCR conditioning, press soft key 5/menu (A) next to the INHIBIT SCR CONDITIONING icon (B), and hold for 3 seconds. The SCR CONDITIONING INHIBIT icon (C) will appear under the engine rpm display.

4. To select manual SCR conditioning, press soft key 4 (A) next to the MANUAL SCR CONDITIONING icon (B), and hold for 3 seconds. The high exhaust system temperature (HEST) icon (C) appears highlighted under the rpm display during system cleaning.

NOTE:
The HEST icon also appears during normal operation when exhaust temperature exceeds the maximum temperature threshold. The icon remains on until the exhaust temperature drops below the minimum temperature threshold.
To display the windrower’s performance data:

1. Press soft key 3 (A) on the Harvest Performance Tracker (HPT) to open the PERFORMANCE DATA display.

NOTE:
Soft keys 1–5 also function as buttons within menus.

NOTE:
The sub-acres can also be reset from this screen. Press the HPT scroll knob to highlight and select the sub-acres. If you press the HPT scroll knob a second time, the message RESET OR EXIT appears on the display. Select RESET to reset the sub-acres to zero and return to the same highlighted sub-acres. Select EXIT or press the BACK or HOME button to dismiss the message without resetting the sub-acres.
To display the windrower’s cooling data:

1. Press soft key 4 (A) on the Harvest Performance Tracker (HPT) to open the COOLING DATA display.

 NOTE:

 Soft keys 1–5 also function as buttons within menus.

 NOTE:

 The engine fan speed will increase/decrease, depending on cooling requirements. The fan speed icon will flash in unison with the icon of the parameter that is controlling the fan.

 NOTE:

 The engine fan will automatically reverse on a set time interval, or when one of the system temperatures gets high enough. No operator input is required to reverse the fan.
4.3.6 Operating the Windrower

Entering and Exiting the Windrower

CAUTION

To prevent slipping and possible injury, ALWAYS face the windrower and use the hand rail when
dismounting (or mounting). NEVER attempt to get on or off a moving windrower.

Before leaving the operator’s seat for any reason:

• Park on level ground if possible.
• Be sure ground speed lever is in PARK and steering wheel is locked in the straight-ahead position.
• Fully lower header and reel.
• Disengage header drives.
• To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove
 key from ignition.
• Turn off lights unless required for inspection purposes.
• Release seat belt.
• Turn off wipers.
• Raise armrest and steering wheel for easier exit and re-entry.
• Lock the cab door when leaving the windrower unattended. (When the door is locked, it can still be
 opened from inside the cab.)

A swing-away platform with stairs (A) is provided on the left
side of the windrower to accommodate cab-forward and
engine-forward access to the operator’s station as well as
several maintenance tasks.

Two doors (B) are provided for cab entry and exit in either
cab-forward mode or engine-forward mode. Enter the cab
using the door opposite the operator’s console.

Figure 4.29: Platforms and Doors
Adjusting Ground Speed Limit

The maximum ground speed, the ground speed of the windrower at full ground speed lever (GSL) stroke (maximum engine speed), has the following selectable speed ranges according to the seat position:

<table>
<thead>
<tr>
<th>Direction of Travel</th>
<th>Selectable Speed Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cab-forward</td>
<td>16, 19, 23, 29 km/h (10, 12, 14, 16, 18 mph)</td>
</tr>
<tr>
<td>Engine-forward</td>
<td>16, 29, 43 km/h (10, 18, 27 mph)</td>
</tr>
</tbody>
</table>

To adjust the ground speed limit, follow these steps:

1. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) while in any run screen to open the QuickMenu system.

2. To scroll to the GROUND SPEED LIMIT selectable area (A), use the HPT scroll knob to move the red cursor.

3. Press the HPT scroll knob to select, and scroll to adjust the ground speed limit values.

 NOTE:
 Ground speed limit is also changed by simultaneously pressing the GSL shift button on back of GSL and scrolling.
Driving Forward in Cab-Forward Mode

CAUTION

Operate both steering wheel and ground speed lever slowly for familiarization. Avoid the common tendency of new Operators to oversteer.

In cab-forward mode, the operator’s station is facing away from the engine. If necessary, swivel operator’s seat to cab-forward position as follows:

WARNING

Do NOT drive windrower on road in cab-forward configuration, unless it is equipped with the proper lighting and markings for cab-forward road travel.

1. Place ground speed lever (GSL) (A) in PARK. Engine can be running.

 IMPORTANT:
 If GSL is NOT in PARK, damage to the GSL cable may result when swivelling operator’s station.

2. Pull up on knob (B) and hold to release latch (C) at base of steering column.

3. Turn steering wheel counterclockwise to pivot operator’s station clockwise 180° until pin engages latch to secure operator’s station in new position.

4. Ensure seat belt is fastened.

5. Start engine if not running. Refer to Starting the Engine, page 115.

6. Set the desired ground speed limit. Refer to Adjusting Ground Speed Limit, page 126.

CAUTION

Check to be sure all bystanders have cleared the area.

7. Slowly push throttle (A) to full forward (operating speed).

8. Move the GSL (B) out of PARK and slowly forward to desired speed.
NOTE:
The transmission is most efficient with the engine at full speed and the GSL fully forward. The windrower can be equipped with an automatic steering system for use in the field. An automated steering system is available as an option and can be installed by a MacDon Dealer. The GSL has been pre-wired at the factory with a switch. Refer to 6.1.1 Automated Steering Systems, page 369.

Driving in Reverse in Cab-Forward Mode

⚠️ WARNING
Back up slowly. Steering is opposite to normal when reversing. Hold steering wheel at the bottom and turn wheel in direction you want the rear of the machine to travel.

1. Move throttle lever (A) to a mid-range position.

 NOTE:
 Reversing in low speed range and at reduced engine speed is recommended since steering will be less sensitive than at higher speed settings.

⚠️ CAUTION
Check again to be sure all bystanders have cleared the area.

2. Move the ground speed lever (GSL) (B) rearward to desired speed.

3. Steer as shown.
Driving Forward in Engine-Forward Mode

In the engine-forward mode, the operator’s station is facing toward the engine. If necessary, swivel operator’s station to engine-forward position as follows:

1. Place ground speed lever (GSL) (A) in PARK and lock steering wheel. Engine can be running.

 IMPORTANT:
 If GSL is NOT in PARK, damage to the GSL cable may result when swivelling operator’s station.

2. Pull up on knob (B) and hold to release latch (C) at base of steering column.

3. Turn steering wheel clockwise to pivot operator’s station counterclockwise 180° until pin engages latch to secure operator’s station in new position.

4. Start engine if not running. Refer to *Starting the Engine, page 115*.

5. Use the Harvest Performance Tracker (HPT) to adjust the maximum speed setting to 43 km/h (27 mph). Refer to *Adjusting Ground Speed Limit, page 126*.

6. Slowly push throttle (A) to full forward (operating speed).

 CAUTION
 Check to be sure all bystanders have cleared the area.

7. Slowly move the GSL (B) forward to desired speed.

 NOTE:
 The transmission is most efficient with the engine at full speed and the GSL fully forward.

 CAUTION
 Operate both steering wheel and ground speed lever slowly while becoming familiar with the machine. Steering can be sensitive; avoid the tendency of new Operators to overcorrect.
8. If more tractive (lugging) power is required (e.g., when driving up a ramp, up a hill, or out of a ditch):
 a. Move the GSL (B) closer to NEUTRAL.
 b. Reduce max speed setting to 16 km/h (10 mph) by holding the shift button on the GSL while scrolling downwards, or by reducing the max speed setting using the QuickMenu. Refer to Adjusting Ground Speed Limit, page 126.

9. Once the lugging condition no longer exists:
 a. Set GSL (B) to NOT MORE THAN HALF maximum forward speed.
 b. Adjust the maximum speed setting back to 43 km/h (27 mph). Refer to Adjusting Ground Speed Limit, page 126.

Driving in Reverse in Engine-Forward Mode

WARNING

Back up slowly. Steering is opposite to normal when reversing. Hold steering wheel at the bottom and turn wheel in direction you want the rear of the machine to travel.

1. Move throttle lever (A) to a mid-range position.

 NOTE:
 Reversing in low speed range and at reduced engine speed is recommended since steering will be less sensitive than at higher speed settings.

2. Move the ground speed lever (GSL) (B) rearward to desired speed.

CAUTION

Check to be sure all bystanders have cleared the area.
3. Steer as shown.

Spin Turning

Hydrostatic steering provides significantly more maneuverability than mechanical steering.

⚠️ **CAUTION**

Be sure area is clear before making turns. Although windrower pivots on the spot, the ends of the header travel faster and in a large arc.

1. Move the ground speed lever (GSL) (A) out of PARK towards the seat and hold.
2. Slowly turn the steering wheel in the desired direction of turn. The windrower will pivot between the drive wheels.
3. To increase the turn radius, slowly move the GSL away from NEUTRAL. Remember that this will increase ground speed as well.
4. To stop the turn, slowly turn the steering wheel back to its centered position.

Stopping

⚠️ **WARNING**

Do NOT move ground speed lever rapidly back to NEUTRAL. You may be thrown forward by sudden stop and wheels may skid reducing steering control. Always wear seat belt when operating windrower.
OPERATION

1. Anticipate stopping and **SLOWLY** return the ground speed lever (GSL) (A) to NEUTRAL and into PARK.
2. Turn steering wheel until it locks.
3. Move throttle lever (B) to low-idle position.

NOTE:
Avoid unnecessary idling. Stop the engine if it will be idling for longer than five minutes.

NOTE:
Brakes are automatically engaged when steering wheel is locked in PARK position.

IMPORTANT:
Before stopping engine, run at low idle for approximately five minutes to cool hot engine parts (and allow turbocharger to slow down while engine oil pressure is available).

4. Turn ignition key counterclockwise to OFF position.
4.3.7 Transporting

Driving on Road in Engine-Forward Mode

The M1240 Windrower is designed to be driven on the road with the engine facing forward to provide better visibility for the Operator and improved stability for the machine. The windrower is also capable of being driven on the road in cab-forward mode, with or without a header attached, but at a reduced speed, under restricted conditions, and only for models sold in North America. Refer to Driving on Road in Cab-Forward Mode, page 135.

⚠️ WARNING

Windrowers sold outside of North America: Do NOT drive windrower on the road in cab-forward mode, as lighting and marking will not be compliant with road regulations.

⚠️ WARNING

Collision between windrower and other vehicles may result in injury or death.

⚠️ WARNING

When driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles in front and rear of windrower if required by law.
- Use slow-moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box.

⚠️ WARNING

Do NOT drive windrower on a road or highway at night or in conditions that reduce visibility, such as fog or rain. The width of the windrower may not be apparent under these conditions.

⚠️ CAUTION

Check local laws for width regulations and lighting and marking requirements before transporting on roads.

Before driving windrower on a roadway:

1. Ensure header engage switch (A) is off (down position).
2. Clean flashing amber lights, red tail and head lights, and check that they work properly.
3. Clean all reflective surfaces and slow moving vehicle emblems.
4. Adjust interior rear view mirror and clean windows.
5. Ensure header (if attached) is fully raised and header lift safety props are engaged.
6. If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box. Refer to Preparing Windrower to Tow a Header, page 138.

Figure 4.45: Header Engage Switch
7. If towing a header, refer to *Towing Header with Windrower, page 137*.

8. Press switch (A) for road lights. Always use these lights when driving machine on roads.

 a. Press switch (B) for high/low lights as required when other vehicles are approaching.

 IMPORTANT:

 Do **NOT** use field lights on roads; other drivers may be confused by them.

9. Press switch (C) to activate beacons.

10. Press switch (D) to activate hazard lights.

11. Set the desired maximum ground speed limit. Refer to *Adjusting Ground Speed Limit, page 126*.

 NOTE:

 Maximum ground speed can be set while the windrower is moving. Anticipate acceleration or deceleration if changing maximum speed while moving.

12. Slowly push throttle (A) to full forward (operating speed).

 CAUTION

 Check to be sure all bystanders have cleared the area.

14. Move the GSL (B) out of PARK and slowly forward to desired speed.

15. If towing a header, refer to *Towing Header with Windrower, page 137*.

Figure 4.46: Light Switches

Figure 4.47: Operator Console

Figure 4.48: Towing a Header
OPERATION

⚠️ WARNING
To avoid serious injury or death from loss of control:
- Do NOT make abrupt changes in steering direction.
- Anticipate turns and steep slopes by slowing down well in advance.
- Do NOT rapidly accelerate or decelerate while turning.

When travelling on steep slopes:
- Move ground speed lever (GSL) closer to NEUTRAL to reduce speed.
- Lower header.
- If the ground speed is greater than or equal to 51 km/h (30 mph), the HPT will display a warning message (SLOW DOWN) with an audible alert. Move GSL closer to NEUTRAL to reduce speed.

With header removed, steering control is reduced if weight is not added to drive wheels. If you must drive the windrower without header or MacDon weight system:
- Do NOT exceed minimum speed setting.
- Avoid loose gravel and slopes.
- Do NOT tow a header.
- If control of machine is lost, immediately pull ground speed lever (GSL) to NEUTRAL.

Driving on Road in Cab-Forward Mode
The M1240 Windrower is capable of being driven on the road in cab-forward mode, with or without a header attached, but at a reduced speed, under restricted conditions, and only for models sold in North America.

⚠️ WARNING
Windrowers sold outside of North America: Do NOT drive windrower on the road in cab-forward mode, as lighting/reflector visibility will not be compliant with road regulations.

⚠️ WARNING
Collision between windrower and other vehicles may result in injury or death.

⚠️ WARNING
When driving windrower on public roadways:
- Obey all highway traffic regulations in your area. Use pilot vehicles in front and rear of windrower if required by law.
- Use slow-moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box.

⚠️ WARNING
Do NOT drive windrower on a road or highway at night or in conditions that reduce visibility, such as fog or rain. The width of the windrower may not be apparent under these conditions.
OPERATION

⚠️ CAUTION

Check local laws for width regulations and lighting and marking requirements before transporting on roads.

Before driving windrower on a roadway:

1. Clean flashing amber lights, red tail lights, and head lights, and check that they work properly.
2. Clean all reflective surfaces and slow moving vehicle emblems.
3. Adjust interior rear view mirror and clean windows.
4. Ensure header engage switch (A) is off (down position).
5. Ensure header (if attached) is fully raised and header lift safety props are engaged.
6. If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box. Refer to *Preparing Windrower to Tow a Header, page 138.*
7. Press switch (A) to turn on lights. Always use these lights on roads to provide warning to other vehicles.
 a. Use high/low switch (B) as required when other vehicles are approaching.
 b. Do NOT use field lights on roads, to avoid confusing other drivers.
8. Press switch (C) to turn on beacons.
9. Press switch (D) to turn on hazard lights.
10. Set the desired maximum ground speed limit. Refer to *Adjusting Ground Speed Limit, page 126.*

 NOTE:
 Maximum ground speed can be set while the windrower is moving. Anticipate acceleration or deceleration if changing maximum speed while moving.
11. Slowly push throttle (A) to full forward (operating speed).

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

12. Move the GSL (B) out of PARK and slowly forward to desired speed.
WARNING

To avoid serious injury or death from loss of control:

- Do NOT make abrupt changes in steering direction.
- Anticipate turns and steep slopes by slowing down well in advance.
- Do NOT rapidly accelerate or decelerate while turning.

When travelling on steep slopes:

- Move ground speed lever (GSL) closer to NEUTRAL to reduce speed.
- Lower header.
- If the ground speed is greater than or equal to 51 km/h (30 mph), the HPT will display a warning message (SLOW DOWN) with an audible alert. Move GSL closer to NEUTRAL to reduce speed.

With header removed, steering control is reduced if weight is not added to drive wheels. If you must drive the windrower without header or MacDon weight system:

- Do NOT exceed minimum speed setting.
- Avoid loose gravel and slopes.
- Do NOT tow a header.
- If control of machine is lost, immediately pull ground speed lever (GSL) to NEUTRAL.

Towing Header with Windrower

The windrower can be used to tow a MacDon draper header that has the slow speed transport option installed. Ensure the optional weight box or an approved header transporter is installed on the windrower to transfer weight to the lift arms. Refer to *Preparing Windrower to Tow a Header, page 138.*

WARNING

- A windrower without a header or weight box must NOT be used to tow headers due to reduced traction and possible loss of control.
- For towed equipment without brakes, do NOT exceed 32 km/h (20 mph).
CAUTION

- To tow a header with an M1240 Windrower, the header must be equipped with the appropriate equipment to comply with local regulations.
- Before towing, verify signal lighting and safety equipment is installed and functioning properly.
- Do NOT exceed the combined gross vehicle weight (CGVW) specified in Table 4.2, page 138.
- To prevent damage and/or loss of control, ensure the machine and attached equipment are within the following weight limits:

<table>
<thead>
<tr>
<th></th>
<th>lb.</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum GVW (includes mounted implements)</td>
<td>23,500</td>
<td>10,660</td>
</tr>
<tr>
<td>Maximum CGVW (includes towed and mounted implements)</td>
<td>26,000</td>
<td>11,793</td>
</tr>
<tr>
<td>Weight (A) on both drive wheels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>19,000</td>
<td>8618</td>
</tr>
<tr>
<td>Minimum</td>
<td>10,070</td>
<td>4568</td>
</tr>
<tr>
<td>Maximum weight (B) on both caster tires</td>
<td>6050</td>
<td>2744</td>
</tr>
</tbody>
</table>

Preparing Windrower to Tow a Header

1. Attach header to windrower. Refer to *Attaching a D1X or D1XL Series Header*, page 155.

 NOTE:
 Skip this step if header is already attached to windrower.
2. Convert header to transport mode. Refer to header operator’s manual.

3. Detach header from windrower. Refer to *Detaching a D1X or D1XL Series Header, page 162.*

4. Remove hairpin (D) and clevis pin (C) securing header support (B) to leg (A). Retain pins for attaching weight box.

5. Remove header support (B) from windrower lift leg (A).

6. Repeat above step for opposite support.

7. Drive windrower so that lift legs (A) are positioned into the weight box (B) pockets. Raise lift legs slightly.

8. Stop the engine and remove the key.

9. Install locking pin (C) into pocket and secure with hairpin (D). Repeat for opposite leg.

NOTE:

Pins (A) were previously removed from the header supports.

10. Attach slow speed transport hitch (A) to the weight box tongue (B) with drawbar pin, and secure with lynch pin. Attach safety chain (C).

11. Connect hitch harness to electrical socket at front of weight box.
12. Start engine and raise weight box until tow bar is level. Transport the header. Refer to *Towing Header with Windrower, page 137*.

Towing the Windrower (Emergency)

Towing the windrower is **NOT** recommended. If the windrower gets stuck, or must be towed onto a truck or trailer, follow these steps:

IMPORTANT:
- **NEVER** attempt to start the windrower by towing it. Serious damage to the final drives may occur.
- Failure to disengage final drives before towing will result in serious transmission damage.
- Only tow the windrower for a short distance, on level ground, and at slow speed.

![DANGER](image)

DANGER

Uncontrolled heavy equipment. With final drives disengaged (turned inward), brakes and steering do **NOT** work. After towing, place blocks under front and rear wheels to prevent uncontrolled movement.

1. Before towing the vehicle, disengage the final drives. Refer to *Disengaging Final Drives, page 141*.
2. Use attachment point (A) to tow if windrower gets stuck, or when pulling onto a truck or trailer for transport.
3. When towing is complete, place blocks under front and rear wheels to prevent uncontrolled movement.
4. Engage final drives. Refer to *Disengaging Final Drives, page 141*.

![Figure 4.58: Towing a Header](image)

![Figure 4.59: Emergency Towing](image)
Disengaging Final Drives

Disengage and engage final drives as follows:

1. Remove the two bolts (A) at the center of drive wheel.
2. Remove cap (B) and flip over so that dished side faces in. The cap presses a pin that disengages the gearbox.
3. Repeat for the other drive wheel.
4. After towing, reverse cover (B) to engage final drives. Be sure plunger at center of wheel pops out to engage drive.

NOTE:
Engaging the final drives may require rocking the wheels slightly.

4.3.8 Storing the Windrower

Use the following instructions to prepare your windrower for storage at the end of the season.

WARNING
NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials are toxic and can be flammable.

CAUTION
NEVER operate engine in a closed building. Proper ventilation is required to avoid exhaust gas hazards.

CAUTION
When working with batteries, remove metal jewelry and NEVER allow a metal object (such as a wrench) to touch across the battery terminals. A short circuit can produce an extremely hot spark causing severe injuries.

1. Check for broken components and order replacements from your Dealer. Attention to these items right away will save time and effort at beginning of next season.
2. Tighten loose hardware and replace any missing hardware. Refer to 8.1 Torque Specifications, page 393.
3. Clean the windrower thoroughly.
4. Repaint all worn or chipped painted surfaces to prevent rust.
5. Fill fuel tank to prevent condensation.
6. Drain the diesel exhaust fluid (DEF) tank when storing for **six months** or longer. Refer to 5.14.3 Draining the Diesel Exhaust Fluid (DEF) Tank, page 331.
7. Change the oil at the end of the season to remove acids and other by-products of combustion from the engine.
8. Test engine coolant antifreeze concentration to ensure it is sufficient to protect engine against lowest expected temperature.
9. Drain windshield washer or ensure fluid can endure the lowest expected temperatures.

10. Lubricate the windrower thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads and sliding surfaces of components.

11. Remove batteries (refer to *Removing a Battery, page 320*), bring to full charge, and store in a cool, dry place not subject to freezing.

12. If possible, block up windrower to take weight off tires. If this is not possible, increase tire pressure by 25% for storage.

 IMPORTANT:
 Do **NOT** exceed the maximum pressure specified on the tire sidewall.

 Adjust to recommended operating pressure before next use.

13. Store windrower in a dry protected place.

14. If stored outside, seal the air cleaner intake and exhaust pipe with plastic bags and/or waterproof tape.

15. If stored outside, cover windrower with a breathable cover. Avoid plastic covers that can trap humidity.
4.4 Attaching and Detaching Headers

4.4.1 A40 DX Auger Header

Attaching an A40 DX Auger Header

⚠️ CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove hairpin (A) from pin (B), and remove pin from header supports (C) on both sides of header.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

2. Start engine.

⚠️ CAUTION
To prevent damage to the header lift linkages when lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released.

NOTE:
If not prompted by the Harvest Performance Tracker (HPT) display to remove float, remove float manually by doing the following:
3. Press HPT scroll knob (A) to highlight QuickMenu options.

4. Rotate HPT scroll knob (A) to highlight the HEADER FLOAT symbol (B) and press to select.

5. On FLOAT ADJUST PAGE, press soft key 3 (A) to remove float.

6. Press the HEADER DOWN switch (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

7. For hydraulic center-link with self-alignment: Press the REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
8. **For hydraulic center-link without self-alignment:**
 Relocate pin (A) in frame linkage as required to raise the center-link (B) until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

9. Drive the windrower slowly forward so the feet (A) on the windrower enter the supports (B) on the header. Continue to drive slowly forward until the feet engage the supports, and the header nudges forward.

10. **For hydraulic center-link with self-alignment:** Adjust position of the center-link cylinder (A) with switches on the GSL until the hook (B) is above the header attachment pin.

11. **For hydraulic center-link without self-alignment:**
 Push down on rod end of link cylinder (C) until hook engages and locks onto header pin.

 IMPORTANT:
 Hook release (D) must be down to enable self-locking mechanism. If the release is open (up), manually push it down after hook engages header pin.

12. **For hydraulic center-link with self-alignment:** Lower center-link (A) onto the header with REEL DOWN switch on the GSL until it locks into position (hook release [D] is down).

13. **For hydraulic center-link with self-alignment:** Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.
CAUTION

Check to be sure all bystanders have cleared the area.

14. Press the HEADER UP switch (A) to raise header to maximum height.

15. If one end of the header does NOT fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:
 This procedure may have to be repeated if there is air in the system.

16. Stop the engine and remove the key.

17. Engage safety prop on the windrower’s lift cylinder as follows:
 a. Pull lever (A) and rotate toward header to release, and lower safety prop onto cylinder.
 b. Repeat for opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over the cylinder piston rods. If safety prop does not engage properly, raise header until prop fits over the rod.

18. Install clevis pin (A) through support and foot, and secure with hairpin. Repeat for opposite support.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.
19. Remove lynch pin from clevis pin (A) in stand (B).
20. Hold stand (B) and remove pin (A).
21. Move stand to storage position by inverting and relocating onto bracket as shown. Reinsert clevis pin (A) and secure with lynch pin.

22. Disengage safety prop by turning lever (A) downward to raise prop until lever locks into vertical position.
23. Repeat for opposite side.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

24. Start engine and press HEADER DOWN switch (A) on GSL to fully lower header.
25. Press rotary scroll knob (A) on HPT to highlight QuickMenu options.

26. Rotate scroll knob (A) to highlight the HEADER FLOAT symbol (B). Press scroll knob to select.

27. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

28. Rotate scroll knob (A) to adjust float setting and press knob when finished.

IMPORTANT:

Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments of 0.05 to optimize field performance.

29. Stop the engine and remove the key.

30. Grasp one end of the auger header and lift. Lifting force should be 335–380 N (75–85 lbf) and should be the same at both ends.

31. Proceed to *Connecting A40 DX Hydraulics, page 149.*
Connecting A40 DX Hydraulics

CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

1. Approach platform/stair unit (A) on left cab-forward side of windrower and ensure cab door is closed.
2. Push latch (B), and pull platform (A) toward walking beam until it stops and latch engages.

3. Retrieve hydraulic multicouplers (A) and electrical harness (B) from the header.
4. Route hose/harness bundle toward the windrower through support (C).

5. Insert hose support (A) into hole in the windrower left leg, and route the header hose bundle (B) under the windrower to the hydraulic and electrical couplers.
6. Clean multicouplers and receptacles to prevent contamination.

7. Push button (A) on rear multicoupler receptacle and rotate handle (B) away from windrower.

8. Open cover (C) and position multicoupler (D) onto receptacle. Align pins in coupler with slots in handle (B), and rotate handle toward windrower so that coupler is locked onto receptacle and button (A) snaps out.

9. Push button (E) on front multicoupler receptacle and rotate handle (F) away from windrower.

10. Open cover and position multicoupler (G) onto receptacle. Align pins in coupler with slots in handle, and rotate handle toward windrower so that coupler is locked onto receptacle and button (E) snaps out.

11. Remove hose (A) from storage cup (C) on multicoupler and connect hose (A) to windrower receptacle (B).

12. Remove cover from receptacle (A), and connect electrical harness from header.
Detaching an A40 DX Auger Header

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ DANGER

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

1. Start engine and press HEADER UP button (A) on ground speed lever (GSL) to raise header to maximum height.

2. If one end of the header does NOT raise fully, rephase the cylinders as follows:
 a. Press and hold the HEADER UP (A) switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

3. Stop the engine and remove the key.

4. Engage safety prop on the windrower’s lift cylinder as follows:
 a. Pull lever (A) and rotate toward header to release, and lower safety prop onto cylinder.
 b. Repeat for opposite lift cylinder.

IMPORTANT:

Ensure the safety props engage over the cylinder piston rods. If safety prop does not engage properly, raise header until prop fits over the rod.
5. Remove hairpin from the clevis pin (A) and remove clevis pin from header support (B) on both sides.

6. Lower stand (A) by pulling clevis pin (B), inverting stand, and relocating on bracket. Reinsert pin (B) and secure with hairpin.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

7. Disengage safety props by turning lever (A) away from header to raise safety prop until lever locks into vertical position. Repeat for opposite cylinder.

8. Start engine, choose a level area, and lower header to the ground.
9. Activate HEADER TILT UP (A) and HEADER TILT DOWN (B) cylinder switches on GSL to release the load on center-link cylinder.

10. Stop the engine and remove the key.

11. Lift hook release (A) and lift hook (B) off header pin.

NOTE:
If optional center-link self-alignment kit is installed, lift release (A) and then operate the link lift cylinder with the REEL UP switch on the GSL to disengage the center-link from the header.

12. Disconnect header drive hydraulics (A) and electrical harness (B) from the windrower.
13. Place the hydraulics/electrical bundle (A) in storage position on the header.

14. Back windrower slowly away from header.

15. Reinstall clevis pin (B) into header support (C) and secure with hairpin (A). Repeat for opposite side.

4.4.2 D1X or D1XL Series Draper Header

Attaching Draper Header Supports

Draper header supports are required to attach a D1X or D1XL Series Draper Header to the windrower.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

If **NOT** installed, attach draper header support (supplied with header) to windrower lift linkage as follows:
1. Remove hairpin and clevis pin (B) from the draper header support (A).

2. Position the draper header support (B) on lift linkage (A), and reinstall clevis pin (C).

 NOTE:
 To avoid pin snagging the windrow, install the clevis pin on the outboard side of the draper header support.

3. Secure clevis pin (C) with hairpin (D).
4. Repeat for opposite lift linkage.

Attaching a D1X or D1XL Series Header

NOTE:
Draper header supports must be installed onto the windrower lift linkage before starting this procedure. Refer to *Attaching Draper Header Supports, page 154*.

DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. **Hydraulic center-link without self-alignment:**
 Relocate pin (A) in frame linkage as required to raise the center-link (B) until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

2. Remove hairpin (A) from pin (B), and remove pin (B) from header leg. Repeat on the other header leg.

 CAUTION
 Check to be sure all bystanders have cleared the area.

 CAUTION
 To prevent damage to the header lift linkages when lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released.

 NOTE:
 If not prompted by the Harvest Performance Tracker (HPT) display to remove float, remove float manually by doing the following:
4. Press scroll knob (A) on HPT to display the QuickMenu system.

5. Rotate scroll knob (A) to highlight the HEADER FLOAT symbol (B), and press scroll knob to select.

6. On Float Adjust page, press soft key 3 (A) to remove float.

7. For **hydraulic center-link with optional self-alignment:**
 a. Press HEADER DOWN switch on the ground speed lever (GSL) to fully retract header lift cylinders.
 b. Press REEL UP switch on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
8. Drive the windrower slowly forward until the draper header supports (A) enter the header legs (B). Continue driving slowly forward until lift linkages contact the support plates in the header legs and the header nudges forward.

9. Ensure that lift linkages are properly engaged in header legs and are contacting the support plates.

10. **Hydraulic center-link with optional self-alignment:**
 a. Adjust position of the center-link cylinder (A) with the switches on the GSL until the hook (B) is above the header attachment pin.

 IMPORTANT:
 Hook release (C) must be down to enable self-locking mechanism.

 b. If the hook release (C) is open (up), stop the engine and remove ignition key. Manually push the hook release (C) down after hook engages the header pin.

 c. Lower center-link (A) onto the header with REEL DOWN switch on the GSL until it locks into position (hook release [C] is down).

 d. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

11. **Hydraulic center-link without optional self-alignment:**
 a. Press HEADER TILT UP or HEADER TILT DOWN cylinder switches on the GSL to extend or retract center-link cylinder until the hook is aligned with the header attachment pin.

 b. Stop the engine and remove the key.

 c. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:
 Hook release must be down to enable self-locking mechanism. If the hook release is open (up), manually push it down after hook engages pin.
d. Check that center-link (A) is locked onto header by pulling upward on rod end (B) of cylinder.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

e. Start engine.

12. Press the HEADER UP switch (A) to raise header to maximum height.

NOTE:
If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:

a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.

b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

13. Stop the engine and remove the key.

14. Engage safety prop on lift cylinder as follows:

a. Pull lever (A) and rotate toward header to release, and lower safety prop onto cylinder.

b. Repeat for opposite lift cylinder.

IMPORTANT:
Ensure the safety props engage over the cylinder piston rods. If safety prop does not engage properly, raise header until prop fits over the rod.
15. Install pin (B) through the header leg (engaging U-bracket in draper header support) on both sides and secure with a hairpin (A).

16. Raise header stand (D) to storage position by pulling spring pin (C) and lifting stand into uppermost position. Release spring pin.

17. Disengage safety prop by turning lever (A) downward to raise safety prop until lever locks into vertical position.

 NOTE:
 If safety prop will not disengage, raise header slightly.

18. Repeat for opposite side.

 CAUTION
 Check to be sure all bystanders have cleared the area.

19. Start engine and press HEADER DOWN switch (A) on GSL to fully lower header.
Connecting D1X or D1XL Series Hydraulics

IMPORTANT:
To prevent contamination of the hydraulic system, use a clean rag to remove dirt and moisture from all (fixed and movable) hydraulic couplers.

1. Pull handle (A) on hose management arm (B) rearward to disengage arm from support (C).
2. Move arm (B) toward left cab-forward side of windrower.
3. Unhook hoses from arm assembly.
4. Connect hydraulic hose management arm (A) to windrower by securing the ball joint (B) on arm into the latch support (C) on windrower leg.
5. Open left cab-forward side platform. Refer to 5.4.1 Opening Platform, page 253.
6. Retrieve draper drive and reel control multicoupler (A) from hose management arm.
7. Push knob (B) on hydraulic receptacle and pull handle (C) fully away from windrower.
8. Open cover (D) and position coupler onto receptacle. Align pins in coupler with slots in handle (C) and push handle toward windrower so that coupler is locked onto receptacle and knob (B) snaps out.
9. Remove cover from electrical connector (E), push electrical connector onto receptacle, and secure by turning collar on electrical connector clockwise.
10. Remove hose quick-disconnect (F) from storage location and connect to receptacle on frame.

11. Retrieve knife and reel drive multicoupler (A) from hose management arm.

12. Push knob (B) on hydraulic receptacle and pull handle (C) fully away from windrower.

13. Open cover (D) and position coupler onto receptacle. Align pins in coupler with slots in handle (C) and push handle toward windrower so that coupler is locked onto receptacle and knob (B) snaps out.

15. Ensure hydraulic hose routing is as straight as possible and avoids potential rub/wear points.

Detaching a D1X or D1XL Series Header

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the reel fully.
2. Lift the header fully.
3. Stop the engine and remove the key from the ignition.
4. Engage safety prop on the windrower’s lift cylinder as follows:
 a. Pull lever (A) and rotate toward header to release, and lower safety prop onto cylinder.
 b. Repeat for opposite lift cylinder.

IMPORTANT:
Ensure the safety props engage over the cylinder piston rods. If safety prop does not engage properly, raise header until prop fits over the rod.

5. Open left-side platform. Refer to 5.4.1 Opening Platform, page 253.

6. Push lock button (A) and pull handle (B) to disengage multicoupler (C). Disconnect the hydraulics from the rear knife/reel drive receptacle.

NOTE:
Firmly hold handle (B) when disconnecting the multicoupler (C). Pressure may cause the handle to kick back with force.

7. Route knife/reel drive hose bundle back to the storage position (D) on the hydraulic hose management arm.

8. Remove any debris that may have accumulated on the receptacle. Close the cover (E).

9. Push lock button (B), and pull handle (C) to disengage multicoupler (A). Disconnect the hydraulics from the windrower draper drive/reel lift receptacle.

10. Disconnect electrical connector (E).

11. Remove any debris that may have accumulated on the windrower front receptacle, and close cover (D).
12. Route draper drive/reel hose bundle back to the storage position (A) on the hydraulic hose management arm (B).

13. Insert electrical connector into storage cup (C).

15. Disconnect hose management arm (A) from windrower by pulling latch lever (B) to open the latch. Keep latch open and move hose management arm (A) away from header with handle (C).

16. Pivot hose management arm (B) forward with handle (A), and engage hook (D) into latch (C) on header.
17. Remove the header leg pin (B) by removing the hairpin (A) from header leg on both sides.

18. Lower header stand (D) by pulling spring loaded pin (C). Release spring pin to lock stand.

19. **Windrowers with self-aligning center-link**: Release the center-link latch (A) before returning to the cab.

20. Disengage safety prop by turning lever (A) downwards until lever locks into the vertical position.

21. Repeat for the opposite side.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.
22. Start the engine.

23. Remove header float when prompted by the Harvest Performance Tracker (HPT).

NOTE:
If not prompted by the HPT to remove float, remove float manually. Refer to *Removing and Restoring Float, page 183.*

24. Lower the header to the ground with HEADER DOWN switch (A).

25. Press HEADER TILT switches (B) as required on GSL to release load on center-link.

26. **Windrowers with self-aligning center-link:** Press the REEL UP switch (C) to disengage center-link from header.

27. Proceed to Step 31, page 166.

28. **Windrowers without self-aligning center-link:** Shut off the engine and remove the key.

29. Disconnect center-link by lifting release (B) and lift hook (A) off header.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

30. Start the engine.

31. Back windrower away from header.

32. Reinstall pin (A) into header leg, and secure with hairpin (B).
4.4.3 R85 16-Foot Rotary Disc Header

Attaching an R85 16-Foot Disc Header

To attach an R85 header to a windrower, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Remove hairpin (B) from clevis pin (A), and remove pin from header support (C) on both sides of header.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

2. Start engine.

⚠️ CAUTION

To prevent damage to the header lift linkages when lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released.

NOTE:

If not prompted by the harvest performance tracker (HPT) display to remove float, remove float manually by doing the following:
3. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to highlight QuickMenu options.

4. Rotate scroll knob (A) to highlight HEADER FLOAT symbol (B), and press scroll knob to select.

5. On FLOAT ADJUST PAGE, press soft key 3 (A) to remove the header float.

NOTE:
If the header float is active, the icon at soft key 3 will say REMOVE FLOAT; if header float has been removed, the icon will say RESUME FLOAT.

6. Press HEADER DOWN switch (E) on the ground speed lever (GSL) to fully retract header lift cylinders.

7. Press REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
8. Drive the windrower slowly forward until the windrower feet (A) enter the header supports (B). Continue to drive slowly forward until feet engage the supports and header nudges forward.

9. Ensure that lift linkages are properly engaged in header legs.

10. Adjust position of the center-link cylinder (A) with the switches on the GSL until the hook (B) is above the header attachment pin.

IMPORTANT:
Hook release (C) must be down to enable self-locking mechanism. If the release is open (up), manually push it down after the hook engages the header pin.

11. Lower center-link (A) onto the header with REEL DOWN switch on GSL until it locks into position (hook release [C] is down). Refer to Figure 4.130, page 168 for GSL controls.

12. Check that the center-link is locked onto header by pressing the REEL UP switch on the GSL. Refer to Figure 4.130, page 168 for GSL controls.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

14. Press HEADER UP switch (A) to raise header to maximum height.

15. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:
 a. Press and hold HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

16. Stop the engine and remove the key.
17. Engage safety prop on lift cylinder as follows:
 a. Pull lever (A) and rotate toward header to release, and lower safety prop onto cylinder.
 b. Repeat for opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over the cylinder piston rods. If safety prop does not engage properly, raise header until prop fits over the rod.

18. Install clevis pin (A) through support and foot, and secure with hairpin (B). Repeat for opposite side.

 IMPORTANT:
 Ensure clevis pin (A) is fully inserted and hairpin is installed behind bracket.

19. Disengage safety prop by turning lever (A) downward to raise safety prop until lever locks into vertical position.

 NOTE:
 If safety prop will not disengage, raise header slightly.

20. Repeat for opposite side.

CAUTION
Check to be sure all bystanders have cleared the area.
21. Start engine and press HEADER DOWN switch (A) on GSL to fully lower header.

22. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to highlight QuickMenu options.

23. Rotate scroll knob (A) to highlight HEADER FLOAT symbol (B), and press scroll knob to select.

24. Turn scroll knob (A) to highlight left or right float setting and press knob (A) to activate selection.

25. Rotate scroll knob (A) to adjust float setting and press knob when finished.

IMPORTANT:
Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments of 0.05 to optimize field performance.

26. Stop the engine and remove the key.

27. Grasp one end of the rotary header and lift. Lifting force should be 426–471 N (95–105 lbf) and should be the same at both ends.
Connecting R85 16-Foot Header Hydraulics

Refer to the following steps to attach the hydraulic hoses and electrical harness from the header to the windrower. Note that these steps are also included in the header operator’s manual.

1. Open the left-side platform (A). Refer to 5.4.1 Opening Platform, page 253.

![Figure 4.140: M1240 Windrower](image)

2. Route hose bundle (A) from header to under windrower frame.

 NOTE:
 Route hoses as straight as possible and avoid rub/wear points that could damage hydraulic hoses.

3. Insert pin (B) into hole (C) in windrower frame, and place hose bundle on support (D).

![Figure 4.141: Hose and Electrical Routing](image)
4. If installed; disconnect hose (A) from windrower receptacle (B) and place in storage cup (C) on multicoupler.

5. Refer to the following to connect hydraulic hoses with quick-disconnect fittings to the windrower:

 NOTE:
 If hoses are not equipped with quick-disconnect fittings, they can be attached directly to the windrower fittings as described in Step 6, page 174.
 a. Use a clean rag to remove dirt and moisture from the couplers.
 b. Connect the disc pressure hose (A) with red plastic tie to receptacle (B).
 c. Connect the disc return hose (C) to receptacle (D).
 d. Connect the case drain hose (E) to receptacle (F).
 e. Connect the electrical harness to receptacle (G).

 NOTE:
 Ensure the hydraulic hoses have sufficient slack to clear the multicoupler without coming into contact with it. If necessary, increase slack in the hoses by loosening the hose holder at the windrower frame and moving the hoses as required.
6. Refer to the following to directly connect the hydraulic hoses with hard plumbed fittings to the windrower:
 a. Use a clean rag to remove dirt and moisture from the couplers.
 b. Attach the disc pressure hose (A) to fitting on frame and torque to 205–226 Nm (151–167 lbf-ft).
 c. Connect the disc return hose (B) to fitting on frame and torque to 205–226 Nm (151–167 lbf-ft).
 d. Connect the case drain hose (C) to fitting on frame and tighten.
 e. Connect the electrical harness to receptacle (D).

 NOTE:
 Ensure the hydraulic hoses have sufficient slack to clear the multicoupler (E) without coming into contact with it. If necessary, increase slack in the hoses by loosening the hose holder at the windrower frame and moving the hoses as required.

7. Close the side platform. Refer to 5.4.2 Closing Platform, page 253.

Detaching R85 16-Foot Header

DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION
Check to be sure all bystanders have cleared the area.

1. Start the engine, and press switch (A) to raise the header to the maximum height.
2. Stop the engine and remove the key.
3. Engage safety prop on the windrower’s lift cylinder as follows:
 a. Pull lever (A) and rotate toward header to release, and lower safety prop onto cylinder.
 b. Repeat for opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over the cylinder piston rods. If safety prop does not engage properly, raise header until prop fits over the rod.

4. Open the left-side platform. Refer to 5.4.1 Opening Platform, page 253.

5. Disconnect the following electrical harness and hydraulic hoses from the windrower:
 a. Disconnect the disc pressure hose from fitting (A).
 b. Disconnect the disc return hose from fitting (B).
 c. Disconnect the case drain hose from fitting (C).
 d. Disconnect the electrical harness from receptacle (D).

6. Remove hairpin (B) from clevis pin (A) and remove clevis pin from header support (C) on both sides of header.
7. **For windrowers with self-aligning center-link:**
 Release center-link latch (A) before returning to the cab.

8. Disengage safety prop by turning lever (A) downwards until lever locks into the vertical position.

9. Repeat for the opposite side.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

10. Start engine and remove header float when prompted by the Harvest Performance Tracker (HPT).

 NOTE:
 If not prompted by the HPT to remove float, remove float manually. Refer to *Removing and Restoring Float, page 183*.

11. Lower the header to the ground.

12. **For windrowers with self-aligning center-link:** Use HEADER TILT cylinder switches (A) on GSL to release load on center-link cylinder.

13. Operate the link lift cylinder with the REEL UP switch (B) to disengage the center-link from the header.
14. *For windrowers without self-aligning center-link:*
 Shut off the engine and remove the key.

15. Lift hook release (C) and lift hook (B) off header pin.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

16. Start the engine.

17. Back the windrower slowly away from header.

18. Reinstall clevis pin (A) through support (C) and secure with hairpin (B). Repeat for opposite side.
4.5 Checking Header Settings

1. Navigate to SETTINGS menu with soft key 5 and Harvest Performance Tracker (HPT) scroll knob. Refer to 3.17.2 Navigating the Harvest Performance Tracker (HPT) Display, page 81 if required.

2. Scroll to SET-UP HEADER option (A) and select it.

3. Scroll to highlight appropriate item and select it.

4. Scroll to highlight appropriate option and select it.
 • Example: If a draper header is attached, and ATTACHMENTS (B) is selected, the available choice is DOUBLE DRAPER DRIVE.

5. Scroll to highlight appropriate item and select it.

6. Press BACK button (A) on the HPT to return to the previous level within the menu structure.

7. Press HOME button (B) on the HPT to return to the last selected run screen (or header disengaged screen).
4.6 Operating with a Header

This section describes the operating instructions for the following header types when attached to a MacDon M1240 Windrower: R85 16-Foot Rotary Disc Header, A40 DX Auger Header, D1XL Series Draper Header, or D1X Draper Header.

4.6.1 Engaging and Disengaging Header Safety Props

Safety props are located on both header lift cylinders on the windrower. Follow these steps to engage or disengage the header safety props:

⚠️ DANGER

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

1. Start the engine. Press the HEADER UP (A) switch to raise header to maximum height.

 NOTE:
 If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:

 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.

 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

2. Stop the engine and remove the key.

3. Engage safety props on both lift cylinders as follows:

 a. Pull lever (A), rotate toward header to release, and lower the safety prop onto the cylinder.

 b. Repeat for opposite lift cylinder.

 IMPORTANT:

 Ensure the safety props engage over cylinder piston rods. If safety prop does not engage properly, raise the header until the safety prop fits over the rod.
4. Disengage safety props by turning lever (A) away from header to raise safety prop until lever locks into vertical position.

NOTE:
If safety prop will not disengage, raise header to release the prop.

5. Repeat for opposite cylinder.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

6. Start the engine, choose a level area, and lower header to the ground. Stop the engine and remove the key.

4.6.2 Using Header Float

The windrower is equipped with float springs that are fully adjustable with hydraulic cylinders. Spring tension is adjustable from 0 to maximum tension through the Harvest Performance Tracker (HPT). The header float feature allows the header to closely follow ground contours and respond quickly to sudden changes or obstacles. The float setting is ideal when the cutterbar is on the ground with minimal bouncing, scooping, or pushing soil.

IMPORTANT:
- Set header float as light as possible—without excessive bouncing—to avoid frequent breakage of knife components, scooping soil, or soil build-up at the cutterbar in wet conditions.
- Avoid excessive bouncing (resulting in a ragged cut) by operating at a slower ground speed when the float setting is light.
- Install header options (upper cross auger, skid shoes, transport kit, etc.) before setting header float. If the slow speed transport (SST) tow bar will be stored on the header during operation, set float with tow bar in place.
- Adjust the float when adding or removing optional attachments that affect the weight of the header.

Checking Float

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Before starting the machine, check to be sure all bystanders have cleared the area.
1. Start the engine.

2. Use the HEADER TILT switches (A) on the ground speed lever (GSL) to set the center-link to the mid-range position (5.0 on the Harvest Performance Tracker [HPT]).

3. If checking float with a draper header attached, set the reel to the normal operating position.

4. Using the HEADER DOWN switch (B), lower header fully with lift cylinders fully retracted.

5. Turn engine off, and remove the ignition key.

6. Grasp one end of the header and lift. The force to lift should be as noted in the following table and should be the same at both ends.

<table>
<thead>
<tr>
<th>Header</th>
<th>Force Required to Lift Header at the Ends (Lift Cylinder Fully Retracted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper</td>
<td>335–380 N (75–85 lbf) with stabilizer/transport wheels raised (if equipped)</td>
</tr>
<tr>
<td>Auger</td>
<td>335–380 N (75–85 lbf)</td>
</tr>
<tr>
<td>Rotary</td>
<td>426–471 N (95–105 lbf)</td>
</tr>
</tbody>
</table>

7. Restart the engine, and adjust float as required. Refer to Setting the Float, page 181.

NOTE:
Increasing the float value on the HPT makes the header feel lighter.

Setting the Float

The float can be set for windrowing with the cutterbar on the ground or with the cutterbar off the ground (normally used with the draper header).

Cutterbar on ground

The optimum float setting lets the header follow the contour of the terrain. Proceed as follows:

1. Set center-link to mid-range position 5.0 on the Harvest Performance Tracker (HPT). Refer to 4.6.4 Adjusting Header Angle, page 186.

2. Lower header until cutterbar is on the ground.

NOTE:
To minimize scooping rocks when operating at the flattest header angle, lower the header skid shoes. Refer to your header operator’s manual.
3. Press rotary scroll knob (A) on HPT to display the QuickMenu system.

4. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.

5. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

6. Rotate scroll knob (A) to adjust float setting and press knob when finished. Float is now set.

IMPORTANT:
Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments 0.05 to optimize field performance.

7. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.

Cutterbar off Ground (Draper header only)

The optimum float setting and stabilizer wheel setting lets the header cut the crop evenly with minimal bouncing. Proceed as follows:

1. Set center-link to mid-range position 5.0 on the Harvest Performance Tracker (HPT). Refer to 4.6.4 Adjusting Header Angle, page 186.

2. Set cutting height with header height controls on the GSL. Refer to 4.6.5 Setting Cutting Height, page 188.
10. Press rotary scroll knob (A) on HPT to display the QuickMenu system.

11. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.

12. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

13. Turn scroll knob (A) to adjust float setting and press knob when finished.

 IMPORTANT:
 Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments 0.05 to optimize field performance.

14. Float is now set.

15. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.

Removing and Restoring Float

Follow these steps to remove and restore the header float settings:

1. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to display the QuickMenu system or press F1 on the console.

2. Rotate scroll knob (A) to highlight header float adjust (B) and press scroll knob to select.
3. Press soft key 3 (A) to remove or restore the header float.

NOTE:

If the header float is active, the icon at soft key 3 will say REMOVE FLOAT; if header float has been removed, the icon will say RESTORE FLOAT.

4.6.3 Header Drive

All header controls are conveniently located on the operator’s console and on the ground speed lever (GSL) handle.

NOTE:

Some controls are optional equipment and may not be present in your unit. Some controls may be installed, but will be nonfunctional for certain headers.

Engaging and Disengaging the Header

The HEADER ENGAGE switch engages and disengages the header drive.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

To Engage Header: Push and hold HEADER ENGAGE switch (A) down, while pulling up on the collar (B).

To Disengage Header: Push HEADER ENGAGE switch (A) down.
Reversing the Header

When reversing, the following header functions will turn in reverse:

- D1XL Series Draper Headers: knife
- D1X Draper Headers: knife
- R85 rotary disc headers: conditioner and discs
- A40 DX Auger Headers: knife, conditioner, auger and reel
- A40 DX GSS Auger Headers: knife, auger and reel

Reverse the header as follows:

1. Press and hold the HEADER DRIVE REVERSE button (A).
2. Press and hold the HEADER ENGAGE switch (B). Pull up on collar (C), until switch (B) is in the ENGAGED position.
3. Release the HEADER DRIVE REVERSE button (A) to stop the header.
4. Push down to reset the HEADER ENGAGE switch (B) to OFF. The header can now be restarted. Refer to Engaging and Disengaging the Header, page 184.

Figure 4.169: Header Drive Controls
4.6.4 Adjusting Header Angle

Header angle is the angle between the ground and the drapers/cutterbar. It is adjustable to accommodate crop conditions and soil types.

Refer to the appropriate header operator’s manual for the range of adjustment and recommended settings for your particular header.

Figure 4.170: HPT Display and GSL

The header angle can be hydraulically adjusted from the cab without shutting down the windrower. A readout on the Harvest Performance Tracker (HPT) display indicates the header height (A) and header angle (B).

IMPORTANT:

- Changing header angle affects header float because it has the effect of making the header lighter or heavier. Adjust float as required. Refer to Setting the Float, page 181.
- To prevent excessive guard breakage when conditions are suited to lighter float (e.g., rocky), do **NOT** use the ground speed lever (GSL) tilt control (C) and (D) while in motion. Instead, use the header height (E) and (F) control.

Adjust the header angle as follows:

- To decrease (flatten) header angle, operate the HEADER TILT UP switch (C) on the GSL to retract the cylinder.
- To increase (steepen) header angle, operate the HEADER TILT DOWN switch (D) on the GSL to extend the cylinder.

NOTE:

The HEADER TILT switches (C) and (D) can be locked out to prevent unintentional header angle changes when pressing the header height control switches (E) and (F). Refer to 3.17.6 Activating Control Locks, page 99.
Checking Self-Locking Center-Link Hook

Periodically check the operation of the hook locking mechanism as follows and ensure that it is working properly:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. If a header is attached to the windrower, lower header to the ground.
2. Turn off the engine and remove the key from the ignition.
3. Pull up on handle (A) to release the locking device, and lift the hook off the header pin.

4. Lower handle (A) into the **locked** position.
5. Push up on lock pin (B) only (not the actuator rod [C]). Handle should catch on casting and pin should **NOT** lift.

Figure 4.171: Center-Link

Figure 4.172: Center-Link Hook
6. Push up on the actuator rod. The lock pin should lift with the handle.

4.6.5 Setting Cutting Height

Cutting height is adjusted by raising or lowering the header with the HEADER UP (A) or HEADER DOWN (B) switches on the ground speed lever (GSL).

Cutting height (A) is always displayed on the Harvest Performance Tracker (HPT) screen.
4.6.6 Double Windrowing

The Double Windrow Attachment (DWA) allows two conditioned windrows from an A40 DX Auger Header or R85 Rotary Disc Header to be laid down side-by-side for faster pickup.

Conditioned crop is deposited onto the side delivery draper and delivered beside the windrower.

Raising the side delivery system shuts off the draper and allows the crop to be deposited between the windrower wheels—as it would be without the side delivery system.

Refer to the MacDon Double Windrow Attachment (DWA) for M1 Series Windrowers Manual for complete setup, operating, and maintenance instructions. The manual is shipped with the DWA kit.

Double Windrow Attachment (DWA) Deck Position

1. Raise and lower DWA deck with REEL UP (A) and REEL DOWN (B) switches on ground speed lever (GSL), or on the operator’s console.

NOTE:

This can also be done with the One-Touch-Return. Refer to *One-Touch-Return Buttons (A, B, C), page 75.*
Double Windrow Attachment (DWA) Conveyor Speed

The DWA conveyor speed is adjustable from the operator’s console. Press button (A) to increase the speed or button (B) to decrease the speed.

NOTE:
When DWA is attached, the conveyor speed adjustment buttons also control header draper speeds.

The DWA conveyor speed is also adjustable with the reel fore-aft switches on the GSL. Press switch (A) to increase speed or switch (B) to decrease speed.

4.6.7 Operating the Swath Roller

The swath roller can be raised by pressing button (A) or lowered by pressing button (B) on the operator’s console.
4.6.8 Operating the Swath Compressor

The following topic explains how the windrower controls the swath compressor, and describes the automated raise/lower functions.

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Before lowering the swath compressor, rotate handle (A) to disengage lock on the rear, left support.

Swath compressor height (A) is displayed on the Harvest Performance Tracker (HPT) with a scale from 0–10.

Figure 4.182: Swath Compressor Lock

Figure 4.183: HPT Display
2. Raise the swath compressor by pressing button (A) or lower it by pressing button (B) on the operator’s console. Interrupt movement by letting go of the button.

NOTE:
Each momentary press of the button will increase/decrease the value by 1. Pressing and holding will change the value by 1 increment per second.

NOTE:
The system remembers the last position set with the console buttons; this position becomes the target height. When an adjustment is made, the display shows the target value. The system immediately adjusts to attain the target position. After the last adjustment, the display shows target value for 5 seconds then reverts to the actual position.

Display functions
- When the swath compressor is moving, the target value (A) will update in real time, the windrower image (B) will appear as wireframe, and the swath compressor (C) will flash.
- When the target height is achieved, windrower icon (B) turns solid.
- When the swath compressor is fully raised, the position value (A) will show zero and the windrower image (B) will be wireframe.
- If no header is attached, icon (B) is **NOT** displayed and automation is disabled. Swath compressor height can still be adjusted.

Swath compressor automated functions: header engaged
- When a ground speed faster than 2.5 km/h (1.6 mph) is detected, the swath compressor lowers to target height.
- When ground speed transitions through 1.6 km/h (1 mph) during deceleration, the swath compressor is fully raised.
- When ground speed is faster than 1.6 km/h (1 mph) and the HEADER ENGAGE switch is toggled from ON to OFF, the swath compressor is fully raised.
- When the operator’s seat is in engine–forward, the GSL is out of PARK, and the displayed height indicates 1 or more, an **IMPORTANT** message instructing you to raise the swath compressor appears on the HPT accompanied by a tone.

When the swath compressor is not in use, or when the windrower is in engine–forward mode, engage the swath compressor lock. Refer to *Operating the Swath Compressor Lock, page 193*.
Operating the Swath Compressor Lock

The swath compressor lock is located on the left side of the swath compressor frame. When engaged, the lock prevents the forming shield from lowering.

Turn lock handle (A) clockwise to engage the swath compressor lock under the following conditions:

- The swath compressor is not in use
- The windrower is being serviced
- The windrower is in engine-forward mode

Turn handle (A) counterclockwise to disengage the lock before operating the swath compressor.

Figure 4.186: Swath Compressor Lock

4.6.9 One-Touch-Return

One-Touch-Return allows you to choose and apply three presets to the A, B, and C keys (A) on the ground speed lever (GSL).

One-Touch-Return presets can be set to control variables such as height, tilt, reel position, and speeds. Refer to One-Touch-Return Buttons (A, B, C), page 75.

Figure 4.187: GSL
4.6.10 Adjusting Header Raise and Lower Rates

To adjust header raise and lower rates, follow these steps:

1. On the Harvest Performance Tracker (HPT) press soft key 5 (A) to display the Header Lower/Raise menu.

2. Use the HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to place the red cursor over the SETTINGS icon (C).

3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the SETTINGS icon (C).

4. Use the HPT scroll knob or the GSL scroll wheel to move the red cursor to the HEADER SETTINGS icon (A).

5. Press the HPT scroll knob or GSL SELECT button to display the SET-UP HEADER menu list.

 NOTE:
 The F4 shortcut button on the operator’s console also will display the SET-UP HEADER menu list.

6. Scroll to the HEADER LOWER/RAISE menu item (B), and press SELECT. A menu for adjusting header lower/raise rates opens with the last header setting as the default starting point.
The header lift/lower rate is adjustable in two stages. A half button press adjusts stage one: the slow rate, and a full button press adjusts stage two: the fast rate.

Scroll through the RAISE FIRST/RAISE SECOND and LOWER FIRST/LOWER SECOND menu selections, and program the following GSL buttons:

- HEADER RAISE (D): half press adjusts first (slow rate) stage, full press adjusts second (fast rate) stage
- HEADER LOWER (E): half press adjusts first (slow rate) stage, full press adjusts second (fast rate) stage
- ONE-TOUCH-RETURN buttons (A), (B), and (C): trigger header raise or lower presets.
4.7 Operating with D1X or D1XL Series Draper Header

The M1240 Windrower can be factory-configured for any of the headers available from MacDon. If your windrower requires any conversion kits, contact your MacDon Dealer for details. Refer to 6 Options and Attachments, page 369.

For attachment instructions, refer to Attaching a D1X or D1XL Series Header, page 155.

4.7.1 Header Position

Refer to 4.6 Operating with a Header, page 179 for procedures for controlling header height, header tilt, and float.

4.7.2 Adjusting Reel Fore-Aft Position

The reel fore-aft position can be adjusted with the multi-function switches on the ground speed lever (GSL).

Press and hold the switch for the desired movement, FORWARD (A) or AFT (B).

4.7.3 Adjusting Reel Height

Press and hold the switch for the desired movement of the reel, UP (A) or DOWN (B).
4.7.4 Leveling the Header

The windrower lift linkages are factory-set to provide the proper header level, and should not normally require adjustment. If leveling is required, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to display the QuickMenu system.

2. Rotate scroll knob (A) to highlight the header float symbol (B) and press scroll knob to select. The SET-UP FLOAT page displays.

3. Press soft key 3 (A) to remove float.

Figure 4.193: HPT Display

Figure 4.194: HPT Display
4. Park the windrower on level ground.

5. Press the header raise button (A) on the ground speed lever (GSL). When the header reaches maximum height, continue to hold the header raise button momentarily to allow the lift cylinders to rephase.

6. Lower the header to approximately 150 mm (6 in.) off the ground.

7. Ensure that member (A) is against link (B).

8. Stop the engine and remove the key from the ignition.

9. Measure the distance to the ground at both ends of the header to determine if the header is level.

CAUTION

Check to be sure all bystanders have cleared the area.

10. If adjustment is necessary, start engine and resume float. Lower the header onto the ground until member (A) lifts away from the link (B) on both sides.

11. Turn off the engine and remove the key.
12. On the side that is higher, remove nut, washer, and bolt (A) that attaches shims (B) to the linkage.

13. Remove one or both of the shims (B) and reinstall the hardware (A).

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

14. Repeat Steps 5, page 198 to 9, page 198 to rephase the cylinders and check the header level.

15. If additional adjustment is required, repeat Steps 10, page 198 to 13, page 199, and install one of the removed shims on the opposite linkage.

16. Reset the header float. Refer to Setting the Float, page 181.

NOTE: Additional shims are available from your Dealer.

4.7.5 Adjusting Reel Speed

Reel speed is displayed in either rpm, mph, or km/h (depending on the global units selection). The default reel speed is 60 rpm and can be set to auto or manual mode.

- MANUAL mode: Reel speed is set and is maintained regardless of ground speed. Refer to Setting Reel Speed in Manual Mode, page 201.

- AUTO mode: Minimum reel speed and operating reel speed differential relative to ground speed are set, and reel speed is maintained relative to ground speed. Refer to Setting Reel Speed in Auto Mode, page 199.

NOTE: Both speed modes work with the One-Touch-Return feature. For example, button A on the GSL can be set for MANUAL mode and button B can be set for AUTO mode. Refer to One-Touch-Return Buttons (A, B, C), page 75.

Setting Reel Speed in Auto Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to REEL setting (A) on the QuickMenu, and press knob to select it. The next page opens.

4. Scroll to mode field (A) and select it.
5. Scroll in pop-up window to AUTO and select it.

NOTE:
In AUTO mode, the speed is displayed in km/h or MPH (B) which cannot be changed.
6. Scroll to and select the MINIMUM REEL SPEED setting (A) (this setting is grayed out in manual mode).

7. Turn scroll knob to adjust reel minimum speed to 1.6–8 km/h (1–5 mph) with 5 km/h (3.0 mph) as the default. Press knob to select desired setting.

8. Scroll to INDEX value (C) and select it.

9. Turn scroll knob to set index value. The index range is +/- 8 km/h (5 mph) (zero, that is equal to ground speed, is the default). Press knob to select desired setting.

NOTE:
The reel operates at reel minimum speed when the ground speed is less than the set minimum speed. Minimum reel speed is displayed (A) and MIN will replace the AUTO +1.7 (B).

Setting Reel Speed in Manual Mode
This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) or the SELECT button (B) on the ground speed lever (GSL) to display the QUICKMENU PAGE.
3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Turn scroll knob to mode window (A) and select it.
5. Scroll in pop-up window to MANUAL and select it.
6. Scroll to units (B) and select desired unit (RPM, MPH, or km/h).
7. Proceed to next step to adjust reel speed (C).

8. Use reel speed switches (A) on GSL to set reel speed. The desired speed increases 1 rpm (0.1 mph or 0.2 km/h if in mph/km/h) per momentary press, or continuous scrolling if switch is pressed and held.
OPERATION

Adjusting Reel Alarm Pressure

Adjusting the reel alarm allows the operator to set an alert to inform them that the reel is operating at a desired pressure. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next page opens.
4. Turn scroll knob to highlight reel pressure ALARM (A), and press knob to select it.

5. Turn knob to change the ALARM setpoint in window (A). Scrolling past the highest setting turns the alarm off. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust reel alarm pressure setpoint to desired value, and press knob to select it. Factory setting is 19,995 kpa (2900 psi).

Figure 4.212: Draper Header Reel Page

4.7.6 Adjusting Draper Speed

Draper speed is displayed in mph or km/h (depending on the global units selection). The default reel speed is rpm and can be set to auto or manual mode.

- **MANUAL mode**: Draper speed is manually set and is maintained independently of ground speed. Refer to Setting Draper Speed in Manual Mode, page 206.

- **AUTO mode**: Draper speed is maintained relative to ground speed. Refer to Setting Draper Speed in Auto Mode, page 204.

NOTE:

Both speed modes work with the One-Touch-Return feature. For example, button A on the GSL can be set for MANUAL mode and button B can be set for AUTO mode. Refer to One-Touch-Return Buttons (A, B, C), page 75.

Setting Draper Speed in Auto Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

Figure 4.213: Header Run Screen 1
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) while in any run screen to display the QuickMenu system.

3. Turn knob to scroll to DRAPER setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Scroll to mode window (A) and select it.

5. Scroll in pop-up window to AUTO and select it.

 NOTE:
 In AUTO mode, the speed is displayed in km/h or MPH (B) which cannot be changed.
6. Scroll to and select the MINIMUM DRAPER SPEED setting (A) (this setting is grayed out in manual mode).

7. Turn scroll knob to adjust draper minimum speed to 1.6–8 km/h (1–5 mph) with 5 km/h (3.0 mph) as the default). Press knob to select desired setting.

8. Scroll to INDEX value (C) and select it.

9. Turn scroll knob to set index value. The index range is +/- 8 km/h (5 mph) (zero, i.e. equal to ground speed, is the default). Press knob to select desired setting.

NOTE:
The draper operates at MINIMUM SPEED when the ground speed + the reel index value is less than the set minimum speed. Minimum reel speed is displayed (A) and MIN will replace the AUTO +1.7 (B).

Setting Draper Speed in Manual Mode

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.
3. Turn knob to scroll to DRAPER setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Turn scroll knob to mode window (A) and select it.
5. Scroll in the pop-up window to MANUAL and select it.

6. Set draper speed with console controls as follows:
 a. Press and quickly release DRAPER SPEED switch (A) to increase draper speed in 0.2 km/h (0.1 mph) intervals.
 b. Press and hold DRAPER SPEED switch (A) to increase draper speed in 2 km/h (1 mph) intervals.
 c. Similarly decrease draper speed with switch (B).
Adjusting Draper Alarm Pressure

Adjusting the draper alarm allows the operator to set an alert to inform them that the draper is operating at a desired pressure. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

![Figure 4.223: Header Run Screen 1](image)

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.

![Figure 4.224: HPT Scroll Knob and GSL Select Button](image)

3. Turn knob to scroll to DRAPER setting (A) on QuickMenu, and press knob to select it. The next page opens.

![Figure 4.225: Draper Header QuickMenu](image)
4. Scroll to the DEFAULT DRAPER ALARM PRESSURE (A), and select it.

5. Change the alarm setpoint by scrolling. Scrolling past the highest setting turns off the alarm. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust draper alarm pressure setpoint to desired value, and press knob to select it. Factory setting is 19,995 kpa (2900 psi).

Draper Slip Warning

If the left or right draper idler roller begins to slip, a warning tone will sound and one of the following messages (A) will appear on the Harvest Performance Tracker (HPT) screen:

- Left draper slipping. Disengage header.
- Right draper slipping. Disengage header.

The Operator cannot cancel the message.

NOTE:
A slipping draper can severely damage the draper belts. Slippage is typically caused by debris inside the draper.

NOTE:
A draper slip sensor failure will disable the sensor and a fault will appear on the Harvest Performance Tracker (HPT) screen. Contact your MacDon Dealer for service.

NOTE:
Draper slip warning is disabled when a double draper drive kit is installed.
4.7.7 Knife Speed

The ideal cutting speed of the knife should achieve a clean cut. Crop types and conditions usually influence the knife and forward speeds.

Table 4.3 Knife Speed

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (feet)</th>
<th>Minimum</th>
<th></th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rpm(^5)</td>
<td>spm(^6)</td>
<td>rpm(^5)</td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>15</td>
<td>750</td>
<td>1500</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>700</td>
<td>1400</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>700</td>
<td>1400</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>600</td>
<td>1200</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>600</td>
<td>1200</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>550</td>
<td>1100</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>550</td>
<td>1100</td>
<td>700</td>
</tr>
</tbody>
</table>

When the header is first attached to the windrower, the Harvest Performance Tracker (HPT) receives a code from the header that determines the knife speed range and the minimum speed.

The desired speed can be programmed and stored in the HPT so the knife will operate at the original set-point after the header is detached and reattached to the windrower.

Refer to the header operator’s manual for the suggested knife speed for a variety of crops and conditions.

NOTE:
The knife speed cannot be programmed outside the range specified for each header.

5. Revolutions per minute is the speed of knife drive box pulley

6. Strokes per minute of knife (rpm x 2)
Setting Knife Speed

Knife speed is displayed in strokes per minute (spm).

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the HPT or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.
3. Scroll to the KNIFE setting (A) on the QuickMenu page, and select it.

4. Scroll to and select the KNIFE SPEED setting (A).
5. Adjust knife speed using the HPT scroll knob.
6. Press the knob to select.

Adjusting Knife Alarm Pressure – Draper Header

Adjusting the knife alarm allows the operator to set an alert to inform them that the knife is operating at a desired pressure. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.
2. Press the scroll knob (A) on the HPT, or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.

3. Turn knob to scroll to the KNIFE setting (A) on the QuickMenu page, and press knob to select it.

4. Scroll to and select the knife alarm pressure setting (A).

5. Turn knob to change the ALARM setpoint in window (A). Scrolling past the highest setting turns the alarm off. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust knife alarm pressure setpoint to desired value, and press knob to select it. Factory setting is 23,442 kpa (3400 psi).
Adjusting Knife Speed Alarm

Adjusting the knife alarm allows the operator to set an alert to inform them that the reel is operating at a desired speed. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

Figure 4.236: Header Run Screen 1

2. Press the scroll knob (A) on the HPT or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

Figure 4.237: HPT Scroll Knob and GSL Select Button

3. Turn knob to scroll to the KNIFE setting (A) on the QuickMenu page, and press knob to select it.

Figure 4.238: Draper Header QuickMenu
4. Scroll to and select the KNIFE SPEED ALARM setting (A).

5. Turn scroll knob to adjust knife speed alarm as desired. Default is 70% and minimum value is 50%. For example, at a setting of 75%, an alarm will sound when knife speed decreases to 75% of preset knife speed due to overload.

4.7.8 Deck Shift Control

When connected to a draper header with the deck shift option, hydraulic deck shift control allows you to select the deck position and draper rotation of the header from the operator’s station. Deck shift allows you to select crop delivery from the left side, center, or right side of the header.

Deck Shift

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

Shift decks as follows:

1. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on collar (B).

Figure 4.239: Adjusting Knife Speed Alarm

Figure 4.240: Header Engage Switch
2. Push the HEADER DECK SHIFT switch to the desired delivery position. Deck(s) will move and direction of drapers will change accordingly.

Figure 4.241: Header Deck Shift Switches

A - Right-Side Delivery
B - Center Delivery
C - Left-Side Delivery
Setting Float Options with Deck Shift

Header float should be set for each deck position. To program a float setting for each of the deck shift positions, follow these steps:

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Start the engine, and use the HEADER TILT switches (A) and (B) on the ground speed lever (GSL) to set header tilt to the MID-RANGE position.

2. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on the collar (B).
3. Select one of the following deck positions using the DECK SHIFT switches on the operator’s console:
 • Right-side delivery (A)
 • Center delivery (B)
 • Left-side delivery (C)

4. After deck(s) have stopped moving, disengage header with HEADER ENGAGE switch (A).

5. Refer to Setting the Float, page 181 to adjust the float setting for the selected deck position.

6. Repeat steps for the other deck positions.

4.7.9 Draper Header Run Screens

Two draper header specific run screens are viewable when operating the windrower with a draper header attached. The screens are accessed by pressing the applicable soft keys on the Harvest Performance Tracker (HPT).

1. Press soft key 1 (A) to access RUN SCREEN 1.
2. Press soft key 2 (B) to access RUN SCREEN 2.
Run Screen 1

Figure 4.247: Run Screen 1 – Draper Header Display

A - Reel Speed
B - Draper Speed
C - Knife Speed
D - Reel Pressure
E - Draper Pressure
F - Knife Pressure
G - Indexing
H - Alarm Point
OPERATION

Run Screen 2

Figure 4.248: Run Screen 2 – Draper Header Display

A - Draper Speed
B - Reel Speed
C - Indexing
D - Reel Fore-Aft Position
E - Reel Height
4.8 Operating with an A40 DX Auger Header

The M1240 is factory-equipped to run an A40 DX Auger Header.

For attachment instructions, refer to Attaching an A40 DX Auger Header, page 143.

4.8.1 Adjusting Reel Speed

Reel speed is displayed in either rpm, mph, or km/h (depending on the global units selection). The default reel speed is 60 rpm and can be set to auto or manual mode:

- MANUAL mode: Reel speed is set and is maintained regardless of ground speed. Refer to Setting Reel Speed in Manual Mode, page 223.

- AUTO mode: Minimum reel speed and operating reel speed differential relative to ground speed are set, and reel speed is maintained relative to ground speed. Refer to Setting Reel Speed in Auto Mode, page 221.

Setting Reel Speed in Auto Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.
3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Scroll to mode window (A) and select it.
5. Scroll to AUTO in the pop-up window, and select it.

NOTE:
In AUTO mode, the speed is displayed in km/h or MPH (B) which cannot be changed.

6. Scroll to and select the MINIMUM REEL SPEED setting (A) (this setting is grayed out in manual mode).
7. Turn scroll knob to adjust minimum reel speed between 0–8 km/h (5 mph). Press knob to select desired setting.
8. Scroll to INDEX value (C) and select it.
9. Turn scroll knob to set index value. The index range is +/- 8 km/h (5 mph) (zero, i.e. equal to ground speed, is the default). Press knob to select desired setting.

NOTE:
The reel operates at reel minimum speed when the ground speed is less than the set minimum speed. Minimum reel speed is displayed (A) and MIN will replace the AUTO +1.7 (B).
Setting Reel Speed in Manual Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next screen opens.
4. Scroll to mode window (A) and select it.
5. Scroll in pop-up window to MANUAL and select it.
6. Scroll to UNITS (B) and select desired unit (i.e., RPM, MPH or km/h).
7. Scroll to SPEED VALUE (C) and select it.

8. Use REEL SPEED switches (A) on GSL to set reel speed. The desired speed increases 1 rpm (0.1 mph or 0.2 km/h if in mph/km/h) per momentary press, or continuous scrolling if switch is pressed and held.

Adjusting the Reel/Auger Alarm Pressure

Adjusting the reel/auger alarm allows the operator to set an alert to inform them that the reel is operating at a desired pressure. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set of less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next screen opens.

4. Turn scroll knob to highlight reel pressure ALARM (A), and press knob to select it.

5. Turn knob to change the ALARM setpoint in window (A). Scrolling past the highest setting turns off alarm. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust reel alarm pressure setpoint to desired value, and press knob to select it. Factory setting is 19,995 kpa (2900 psi).
4.8.2 Knife Speed

The ideal cutting speed of the knife should achieve a clean cut. Crop types and conditions usually influence the knife and forward speeds.

Table 4.4 Knife Speed Table

<table>
<thead>
<tr>
<th>Header Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rpm</td>
<td>spm</td>
</tr>
<tr>
<td>Grass seed</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>Auger A40 DX</td>
<td>700</td>
<td>1400</td>
</tr>
</tbody>
</table>

When the header is first attached to the windrower, the Harvest Performance Tracker (HPT) receives a code from the header that determines the knife speed range and the minimum speed.

The desired speed can be programmed and stored in the HPT so the knife will operate at the original set-point after the header is detached and reattached to the windrower.

Refer to the header operator’s manual for the suggested knife speed for a variety of crops and conditions.

NOTE:
The knife speed cannot be programmed outside the range specified for each header.

Setting Knife Speed

This adjustment requires the header to be in operation.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

7. Revolutions per minute is the speed of knife drive box pulley
8. Strokes per minute of knife (rpm x 2)
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Scroll to the KNIFE setting (A) on the QuickMenu screen, and select it.

4. Scroll to and select the KNIFE SPEED setting (A), displayed in strokes per minute.

5. Adjust knife speed using the HPT scroll knob.

6. Press knob to select.
Adjusting Knife Alarm Pressure – Auger Header

Adjusting the knife alarm allows the operator to set an alert to inform them that the knife is operating at a desired pressure. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Scroll to and select the KNIFE ALARM PRESSURE setting (A).

4. Turn knob to change the ALARM setpoint in window (A). Scrolling past the highest setting turns the alarm off. When the alarm point is off, the digital value is replaced with three dashed lines.

5. Adjust reel alarm pressure setpoint to desired value, and press knob to select it. Factory setting is 24,821 kPa (3600 psi).
Removing Knife Speed Alarm

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Scroll to the KNIFE setting (A) on the QuickMenu screen, and select it.

Figure 4.270: Header Run Screen 1

Figure 4.271: HPT Scroll Knob and GSL Select Button

Figure 4.272: Auger Header QuickMenu Screen
4. Scroll to and select the KNIFE SPEED ALARM setting (A), displayed as a % of the preset knife speed.

5. Adjust knife speed alarm % as desired. Default is 70% and range is 50–90%.

4.8.3 Setting Float Options with Fixed Deck

When using an auger, the DECK SHIFT buttons can be used to store three different float settings. This is useful when cutting in varying ground conditions, or when having one side lighter is desirable (such as cutting along wheel tracks or irrigation borders).

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Start the engine and use the HEADER TILT switches (A) and (B) on the ground speed lever (GSL) to set header tilt to the MID-RANGE position.
2. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on collar (B).

3. Select one of the following deck positions using the DECK SHIFT switches on the operator’s console:
 - Right-side delivery (A)
 - Center delivery (B)
 - Left-side delivery (C)

4. Disengage the header by pushing down on HEADER ENGAGE switch (A).

5. Adjust the float setting for the selected deck position. Refer to Setting the Float, page 181.

6. Repeat steps for the other deck positions.
4.8.4 Auger Header Run Screens

Two auger header specific run screens are viewable when operating windrower with an auger header attached. The screens are accessed by pressing the applicable soft keys on the Harvest Performance Tracker (HPT).

Run Screen 1

Figure 4.278: Run Screen 1 – Auger Header Display
Run Screen 2

Figure 4.279: Run Screen 2 – Auger Header Display

A - Knife Speed B - Knife Pressure C - Reel/Auger Speed D - Engine Load
4.9 Operating with an R85 Rotary Header

4.9.1 Setting Disc Speed

This adjustment requires the header to be in operation.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display RUN SCREEN 1.

2. Press disc speed switch (A) on GSL to increase disc speed, or switch (B) to decrease speed.

3. Refer to screen in previous step for speed display.
4.9.2 Adjusting Disc Pressure Alarm

Adjusting the disc alarm allows the operator to set an alert to inform them that the disc is operating at a desired pressure. A lower setting will cause the alarm to be set off more often. While a higher setting will allow the alarm to be set of less frequently. This adjustment requires the header to be in operation.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.
3. Scroll to the DISC SPEED setting (A) on the QuickMenu screen, and select it.

![Figure 4.284: Disc Header QuickMenu Screen](image)

4. Scroll to the DISC PRESSURE ALARM setting (C), and select it.

5. Scroll to the desired alarm set point or scroll past the highest setting to turn the alarm OFF. The digital value is replaced by three dashed lines, indicating that it is possible to adjust the alarm set point value.

6. Adjust disc alarm pressure set point to desired value. Factory setting is 31,026 kpa (4500 psi).

![Figure 4.285: Disc Pressure Screen](image)
4.9.3 Setting Float Options with Fixed Deck

When using an auger or rotary header, the DECK SHIFT buttons can be used to store three different float settings. This is useful when cutting in varying ground conditions, or when having one side lighter is desirable (such as cutting along wheel tracks or irrigation borders).

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Start the engine and use the HEADER TILT switches (A) and (B) on the ground speed lever (GSL) to set header tilt to the MID-RANGE position.

2. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on collar (B).
3. Select one of the following deck positions using the DECK SHIFT switches on the operator's console:
 - Right-side delivery (A)
 - Center delivery (B)
 - Left-side delivery (C)

4. Disengage the header by pushing down on HEADER ENGAGE switch (A).

5. Adjust the float setting for the selected deck position. Refer to Setting the Float, page 181.

6. Repeat steps for the other deck positions.
4.9.4 Disc Header Run Screens

Two disc header specific run screens are viewable when operating windrower with an auger header attached. The screens are accessed by pressing the applicable soft keys on the Harvest Performance Tracker (HPT).

Run Screen 1

Figure 4.290: Run Screen 1 – Disc Header Display
Run Screen 2

Figure 4.291: Run Screen 2 – Disc Header Display

- A - Disc RPM Digital
- B - Disc Pressure Digital
- C - Engine Load Bar
- D - Hydraulic Oil Temperature
5 Maintenance and Servicing

The following section will guide you through the windrower’s basic maintenance and service requirements.

5.1 Recommended Fuel, Fluids, and Lubricants

5.1.1 Storing Lubricants and Fluids

Your machine can only operate at top efficiency if clean fuel and lubricants are used.

- Buy good quality, clean fuel from a reputable Dealer.
- Use clean containers to handle fuel and lubricants.
- Store in an area protected from dust, moisture, and other contaminants.
- Avoid storing fuel over long periods of time. If you have a slow fuel turnover in the windrower or supply tank, add fuel conditioner and keep tank full to avoid condensation problems.
- Store fuel in a convenient place away from buildings.
- Diesel exhaust fluid (DEF) should be stored in a cool, dry, well ventilated area, out of direct sunlight, on lower shelf or on floor.
- DEF is corrosive to some metals and should only be stored in polyethylene, polypropylene, or stainless steel containers.
- DEF containers should be sealed to prevent contamination and the evaporation of water which will affect the specified water to urea ratio.
- Diesel fuel should never be mixed with DEF.

NOTE:
DEF will degrade over time depending on temperature and exposure to sunlight. Shelf life specifications, as defined by ISO Spec 22241-3, are the minimum expectations for shelf life when stored at constant temperatures. If stored between 12 to 32°C (10 to 90 °F), shelf life will easily be one year. If the maximum temperature does not exceed approximately 24°C (75°F) for an extended period of time, the shelf life will be two years.

5.1.2 Fuel Specifications

Use only ultra low sulphur diesel (ULSD) from a reputable supplier. For most year-round service, No. 2 ULSD fuel meeting ASTM specification D975 Grade S15 will provide good performance.

If the vehicle is exposed to extreme cold (below -7°C [20°F]) or is required to operate at colder-than-normal conditions for prolonged periods, use climatized No. 2 diesel fuel, or dilute the No. 2 ULSD fuel with 50% No. 1 ULSD fuel. This will provide better protection from fuel gelling or wax-plugging of the fuel filters.
Table 5.1 Fuel Specification

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Specification</th>
<th>Sulphur (by weight)</th>
<th>Water and Sediment (by volume)</th>
<th>Cetane No. °C (°F)</th>
<th>Lubricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSD Grade No. 2</td>
<td>ASTM D975</td>
<td>0.5% maximum</td>
<td>0.05% maximum</td>
<td>40 (104) minimum</td>
<td>520 Microns</td>
</tr>
<tr>
<td>ULSD Grade No. 1 and 2 mix⁹</td>
<td>n/a</td>
<td>1% maximum</td>
<td>0.5% maximum preferred</td>
<td>45–55 (113–130)</td>
<td>460 Microns</td>
</tr>
</tbody>
</table>

In extreme situations, when available fuels are of poor quality or problems exist which are peculiar to certain operations, additives can be used. However, the engine manufacturer recommends consultation with the fuel supplier or engine manufacturer before using fuel additives. Situations where additives are useful include:

- A cetane improver additive can be used with low cetane fuels.
- A wax crystal modifier can help with fuels with high cold filter plugging points (CFPP).
- An anti-icer can help prevent ice formation in wet fuel during cold weather.
- An antioxidant or storage stability additive can help with fuel system deposits and poor storage stability.
- Diesel fuel conditioner can be used to increase the lubricity of fuels so that they meet the requirements given in Table 5.1, page 242. Diesel fuel conditioner is available from your Dealer.

5.1.3 Lubricants, Fluids, and System Capacities

⚠️ CAUTION

To avoid injury or death, do NOT allow ANY machine fluids to enter the body.

Table 5.2 System Capacities

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel exhaust fluid (DEF)</td>
<td>Diesel exhaust fluid tank</td>
<td>Must meet ISO 22241 requirements.</td>
<td>28 liters (7.5 US gallons)</td>
</tr>
<tr>
<td>Grease</td>
<td>As required unless otherwise specified</td>
<td>SAE multi-purpose high temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Fuel tank</td>
<td>Ultra low sulphur diesel (ULSD) Grade No. 2, or ULSD Grade No. 1 and 2 mix¹⁰; refer to 5.1.2 Fuel Specifications, page 241 for more information</td>
<td>518 liters (137 US gallons)</td>
</tr>
</tbody>
</table>

9. Optional when operating temperature is below 0°C (32°F).
10. Optional when operating temperature is below 0°C (32°F).
Table 5.2 System Capacities (continued)

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear lubricant</td>
<td>Gearbox</td>
<td>SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>2.1 liters (2.2 US quarts)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Wheel drive</td>
<td>SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>1.4 liters (1.5 US quarts)</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>Engine cooling system</td>
<td>ASTM D-6210 and Fleetguard ES Compleat®</td>
<td>33 liters (8.7 US gallons)</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Engine oil pan</td>
<td>SAE 15W-40 compliant with SAE specs for API Class SJ and CJ-4 engine oil</td>
<td>14 liters (14.8 US quarts)</td>
</tr>
<tr>
<td>Air conditioning refrigerant</td>
<td>Air conditioning system</td>
<td>R134A</td>
<td>2.27 kg (5 lb.)</td>
</tr>
<tr>
<td>Air conditioning refrigerant oil</td>
<td>Air conditioning system total capacity</td>
<td>PAG SP-15</td>
<td>240 cc (8.1 fl. oz.)</td>
</tr>
<tr>
<td>Windshield washer fluid</td>
<td>Windshield washer fluid tank</td>
<td>SAE J942 compliant</td>
<td>4 liters (1 US gallon)</td>
</tr>
</tbody>
</table>

If Fleetguard ES Compleat® is unavailable, use a coolant concentrate or prediluted coolant intended for use with heavy duty diesel engines and with a minimum of the following chemical and physical properties:

- Provides cylinder cavitation protection according to fleet study run at or above 60% load capacity.
- Protects the cooling system metals (cast iron, aluminum alloys, and copper alloys such as brass) from corrosion.

The additive package must be part of one of the following coolant mixtures:

- Ethylene glycol or propylene glycol base prediluted (40–60%) heavy duty coolant.
- Ethylene glycol or propylene glycol base heavy duty coolant concentrate in a 40–60% mixture of concentrate with quality water.

Water quality is important to the performance of the cooling system. Distilled, deionized, or demineralized water is recommended for mixing with ethylene glycol and propylene glycol base engine coolant concentrate.

IMPORTANT:
Do NOT use cooling system sealing additives or antifreeze that contains sealing additives.

12. Equal parts with water; high quality, soft, deionized or distilled water as recommended by Supplier.
5.1.4 Filter Part Numbers

Table 5.3 M1240 Filter Part Numbers

<table>
<thead>
<tr>
<th>Filter</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine oil filter</td>
<td>MD #111974</td>
</tr>
<tr>
<td>Hydraulic charge oil filter</td>
<td>MD #201713</td>
</tr>
<tr>
<td>Hydraulic return oil filter</td>
<td>MD #202986</td>
</tr>
<tr>
<td>Primary fuel filter element</td>
<td>MD #205028</td>
</tr>
<tr>
<td>Secondary fuel filter element</td>
<td>MD #205029</td>
</tr>
<tr>
<td>Fuel strainer (fuel tank vent line) filter</td>
<td>MD #111608</td>
</tr>
<tr>
<td>Primary element (cab)</td>
<td>MD #111060</td>
</tr>
<tr>
<td>Primary air filter element</td>
<td>MD #138685</td>
</tr>
<tr>
<td>Secondary air filter element</td>
<td>MD #139077</td>
</tr>
<tr>
<td>Return air filter</td>
<td>MD #109797</td>
</tr>
<tr>
<td>Diesel exhaust fluid (DEF) – suction filter</td>
<td>MD #207478</td>
</tr>
<tr>
<td>Diesel exhaust fluid (DEF) – vent hose filter</td>
<td>MD #111608</td>
</tr>
<tr>
<td>DEF supply module filter kit</td>
<td>MD #207510</td>
</tr>
</tbody>
</table>
5.2 Windrower Break-In Inspections and Maintenance Schedule

The maintenance schedule specifies the recommended periodic maintenance procedures and service intervals. Regular maintenance is the best insurance against early wear and untimely breakdowns. Follow this schedule to maximize machine life.

For detailed instructions, refer to the various procedures in this chapter. Use the fluids and lubricants specified in 5.1 Recommended Fuel, Fluids, and Lubricants, page 241.

Service Intervals: The recommended service intervals are in hours of operation. Where a service interval is given in more than one time frame, for example 100 hours or annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operated under adverse conditions (severe dust, extra heavy loads, etc.).

⚠️ CAUTION
Carefully follow safety messages given in 1 Safety, page 1.

5.2.1 Break-in Inspection Schedule

<table>
<thead>
<tr>
<th>Hours</th>
<th>Item</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drive wheel nuts</td>
<td>Torque: 510 Nm (375 lbf ft) dry
Repeat checks at one hour intervals until torque stabilizes at two consecutive checks</td>
</tr>
<tr>
<td>5</td>
<td>A/C compressor belt</td>
<td>Tension</td>
</tr>
<tr>
<td>5</td>
<td>Caster wheel nuts</td>
<td>Torque: 170 Nm (125 lbf ft)</td>
</tr>
<tr>
<td>5</td>
<td>Caster wheel anti-shimmy dampener bolts</td>
<td>Inboard bolt torque: 136 Nm (100·lbf ft)
Outboard bolt torque: 244 Nm (182 lbf ft)
Outboard jam nut: 136 Nm (100 lbf ft)</td>
</tr>
<tr>
<td>5</td>
<td>Walking beam width adjustment bolts</td>
<td>Torque: 759 Nm (560 lbf ft)</td>
</tr>
<tr>
<td>10</td>
<td>Walking beam width adjustment bolts</td>
<td>Torque: 759 Nm (560 lbf ft)</td>
</tr>
<tr>
<td>50</td>
<td>Drive wheel nuts</td>
<td>Torque: 510 Nm (375 lbf ft) dry
Repeat checks at one hour intervals until torque stabilizes at two consecutive checks</td>
</tr>
<tr>
<td>50</td>
<td>Hose clamps: air intake / radiator / heater / hydraulic</td>
<td>Hand-tighten unless otherwise noted</td>
</tr>
<tr>
<td>50</td>
<td>Walking beam width adjustment bolts</td>
<td>Torque: 759 Nm (560 lbf ft)</td>
</tr>
<tr>
<td>50</td>
<td>Caster wheel nuts</td>
<td>Torque: 170 Nm (125 lbf ft)</td>
</tr>
<tr>
<td>50</td>
<td>Caster wheel anti-shimmy dampener bolts</td>
<td>Inboard bolt torque: 136 Nm (100 lbf ft)
Outboard bolt torque: 244 Nm (182 lbf ft)
Outboard jam nut: 136 Nm (100 lbf ft)</td>
</tr>
<tr>
<td>50</td>
<td>Main gearbox oil</td>
<td>Change</td>
</tr>
<tr>
<td>Hours</td>
<td>Item</td>
<td>Check</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>50</td>
<td>Drive wheel lubricant</td>
<td>Change</td>
</tr>
<tr>
<td>50</td>
<td>Charge system oil filter</td>
<td>Change</td>
</tr>
<tr>
<td>50</td>
<td>Return oil filter</td>
<td>Change</td>
</tr>
</tbody>
</table>
5.2.2 Maintenance Schedule/Record

Windrower serial number: ________________

Combine this record with the record in the header operator’s manual. Make copies of this page to continue the record.

Refer to 5 Maintenance and Servicing, page 241 for information about each maintenance procedure.

Maintenance Record	Action: ✓ - Check ♦ - Lubricate ▲ - Change ● - Clean + - Add			
Hour meter reading				
Date				
Serviced by				

FIRST USE, Refer to 5.2.1 Break-in Inspection Schedule, page 245

10 Hours or Daily\(^{13}\)

✓ Engine oil level\(^{14}\)
✓ Engine coolant level at reserve tank\(^{14}\)
✓ Fuel tank\(^{14}\)
✓ Drain fuel filter water trap\(^{14}\)
✓ Hydraulic hoses and lines for leaks\(^{14}\)
✓ Hydraulic oil level\(^{14}\)
✓ Tire inflation\(^{14}\)
✓ Diesel exhaust fluid (DEF) level\(^{14}\)

Anually\(^{15}\)

✓ A/C blower
✓ Antifreeze concentration
✓ Battery charge
✓ Battery fluid level
✓ Steering linkages

50 Hours

● Cab fresh air intake filter
♦ Caster pivots
♦ Forked caster wheel bearings

\(^{13}\) Whichever occurs first.

\(^{14}\) A record of daily maintenance is not normally required but is at the Owner/Operator’s discretion.

\(^{15}\) Perform annual maintenance prior to start of operating season.
<table>
<thead>
<tr>
<th>Maintenance Record</th>
<th>Action:</th>
<th>✓ - Check</th>
<th>✿ - Lubricate</th>
<th>▲ - Change</th>
<th>● - Clean</th>
<th>✡ - Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Engine-to-pumps gearbox oil level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✿ Top lift link pivots on lift arms (2 places on both sides (x4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Hours or Annually[^13, ^15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● A/C condenser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Charge air cooler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Hydraulic oil cooler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Radiator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Cab air return filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 Hours or Annually[^13, ^15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Engine oil and filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Engine air cleaner primary filter element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✿ Single-sided caster wheel hub bearings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Drive wheel lubricant level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✿ Mud caster wheel hub bearings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✿ Exhaust system (visually inspect for leakage point, loose clamps or loose hose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Engine-to-pumps gearbox oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Hours or Annually[^13, ^15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Primary and secondary fuel filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Hydraulic return filter and charge filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Safety systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● DEF supply module filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Hours or Annually[^13]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Fuel tank vent line filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Wheel drive lubricant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.3 Electronic Maintenance Tool

The Electronic Maintenance Tool contains a list of items requiring service after 250 hours or more of windrower operation.

To access the maintenance tool use the following procedure:

1. Press soft key 5 (A) to display the main menu.
2. To select the MAINTENANCE icon, use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the icon.

<table>
<thead>
<tr>
<th>Maintenance Record</th>
<th>Action:</th>
<th>✓ - Check</th>
<th>✦ - Lubricate</th>
<th>▲ - Change</th>
<th>● - Clean</th>
<th>+ - Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Crankcase breather filter and gasket</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ DEF tank vent hose filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 Hours or Every Two Years<sup>13</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Engine coolant</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ General inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 Hours or Every Three Years<sup>13</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Hydraulic oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500 Hours or Every Three Years<sup>13</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ DEF supply module filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 Hours or Every Two Years<sup>13</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Engine valve tappet clearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 5.1: Opening the Main Menu](image)
4. Select the MAINTENANCE icon (A) to open the maintenance menu (B). The following information can be added to the screen:

- Completed maintenance
- Selected maintenance notifications
- Maintenance log

Figure 5.2: Maintenance Icon and Menu
5.3 Engine Compartment

⚠️ CAUTION

- NEVER operate engine in a closed building. Proper ventilation is required to avoid exhaust gas hazards.
- Keep the engine clean. Straw and chaff on a hot engine are a fire hazard.
- NEVER use gasoline, naphtha, or any other volatile material for cleaning purposes. These materials are toxic and/or flammable.

5.3.1 Opening Hood

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Move latch (A) towards right cab-forward side of the windrower.
3. Grasp louver (B), and lift hood to open.

NOTE:

If the optional High Debris Cooler Intake kit is installed, a louver can still be used to open the hood.
5.3.2 Closing Hood

1. Grasp the hood by louver (A) and lower until hood engages latch.

NOTE:
Check that latch lever is not tilted to ensure hood is latched.

![Figure 5.5: Engine Compartment](image-url)
5.4 Platform

Swing-away platform and stair units are provided on the windrower for access to the operator’s station and engine bay maintenance.

5.4.1 Opening Platform

Only the left cab-forward side platform can be opened.

⚠️ CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

1. Approach platform/stair unit (A) on left cab-forward side of windrower and ensure cab door is closed.
2. Push latch (B), and pull platform (A) toward walking beam until it stops and latch engages.

![Figure 5.6: Left Cab-Forward Platform](image)

5.4.2 Closing Platform

⚠️ CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

1. Push latch (A) to unlock the platform (B).

![Figure 5.7: Platform: Open](image)
2. Pull platform (A) towards the cab until it stops and latch engages.

5.4.3 Adjusting the Platform

To achieve proper gap between platform and frame, latch adjustment may be required.

1. Locate latch (B) beneath the platform.
2. Adjust the latch position by loosening bolts (A) and moving the latch (B).
3. Retighten bolts (A) and close the platform.

4. The rubber bumper (B) at the cab end of the platform should measure 52–60 mm (2–2.4 in.) when properly compressed against the frame. Platform should also sit firmly against the front guide (A).
5. If adjustment is required, loosen two bolts (C) and slide support as required.
6. Tighten bolts (C) to 39.5 Nm (29.1 lbf·ft).
MAINTENANCE AND SERVICING

7. If required to get the platform to sit correctly on the front guide, adjust the horizontal position of the platform. Loosen bolts (A) and adjust bolt (B).

8. Tighten bolts (A) to 68.5 Nm (50.5 lbf-ft).

9. Use bolts (C) to adjust the platform angle. Tighten bolts (C) to 68.5 Nm (50.5 lbf-ft) after adjustment is complete.

5.4.4 Accessing Tool Box

A tool box is located inside a storage compartment under the left cab-forward platform.

1. Grasp handle on storage compartment (A), press latch (B) and pull to open the compartment.

2. The tool box (B) is located inside storage compartment (A).

3. Swing compartment (A) under platform to close it and push on handle to secure latch.

NOTE:
The ignition key also locks the storage compartment.
5.5 Break-In Inspection Procedures

For the break-in schedule, refer to 5.2.1 Break-in Inspection Schedule, page 245.

5.5.1 Tightening Drive Wheel Nuts

To tighten the drive wheel nuts, follow these steps.

IMPORTANT:

- To avoid damage to wheel rims and studs, tighten nuts by hand. Threads must be clean and dry, do **NOT** apply any lubricant or anti-seize compound. Do **NOT** use an impact gun, and do **NOT** overtighten wheel nuts.
- Use only genuine, manufacturer specified nuts.

1. Locate the drive wheels (A).

2. Torque each nut to 510 Nm (375 lbf·ft) using the tightening sequence shown at right.

3. Repeat tightening sequence two additional times, ensuring the specified torque is achieved each time.

4. Repeat torque procedure every hour until two consecutive checks confirm that there is no movement of the nuts.
5.5.2 Tightening Caster Wheel Nuts

At first use or when a wheel is removed, check wheel nut/bolt torque every 15 minutes on the road or 1 hour in the field until the specified torque is maintained. Once specified torque is maintained, check wheel nut/bolt torque after 10 and 50 hours (field or road operation), and then every 200 hour intervals thereafter.

1. Locate the caster wheel assemblies (A).

2. Position wheel assembly on hub and install wheel bolts (A).

3. Tighten wheel nuts (A) to 163 Nm (120 lbf·ft) using the tightening sequence shown at right. Repeat the tightening sequence three times.

Figure 5.16: Caster Wheel Location

Figure 5.17: Caster Wheel Nut Tightening Sequence
5.5.3 Tightening Caster Wheel Anti-Shimmy Dampeners

Each caster is equipped with two fluid-filled anti-shimmy dampeners (A).

The mounting bolts (B) and (C) need to be checked periodically for security. Refer to 5.2.2 Maintenance Schedule/Record, page 247.

- Two inboard bolts (B) should be tightened to 136 Nm (100 lbf·ft)
- Outboard bolt (C) should be tightened to 244 Nm (182 lbf·ft)
- Outboard jam nut (D) should be tightened to 136 Nm (100 lbf·ft)
5.5.4 Tightening Walking Beam Adjustment Bolts

Check walking beam adjustment bolt torque after 5, 10, and 50 hours of field or road operation.

1. Tighten and torque back bolts (A) to 759 Nm (560 lbf·ft).
2. Tighten and torque bottom bolts (B) to 759 Nm (560 lbf·ft).
3. Repeat on opposite side.

![Walking Beam Adjustment Bolts](image)

Figure 5.19: Walking Beam Adjustment Bolts

5.5.5 Tensioning Air Conditioner (A/C) Compressor Belts

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Loosen compressor mounting hardware (A).
4. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

 NOTE:
 The tab (D) on bracket can be used as support for prying.

5. Tighten compressor mounting hardware (A).
6. Recheck tension and readjust as required.
7. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

![Air Conditioning (A/C) Compressor](image)

Figure 5.20: Air Conditioning (A/C) Compressor
5.5.6 Changing Engine Gearbox Lubricant

Change engine gearbox lubricant after the first 50 hours, and then at 250 hours as follows:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

⚠️ CAUTION

Park on a flat, level surface with the header on the ground and the ground speed lever in PARK position with the steering wheel locked.

NOTE:

The engine should be warm when changing the lubricant.

1. Park windrower on a level surface.
2. Stop the engine and remove the key.
3. Place a 4 liter (1 US gallon) drain pan under the gearbox.
4. Remove drain plug (B) and allow lubricant to completely finish draining.
5. Inspect the drain plug. Small metal shavings are normal, if there are any larger metal pieces an inspection of the gearbox will be required.
6. Install drain plug (B) and remove check plug (A).
7. Add lubricant until oil level reaches check plug (A). For lubricant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.
8. Replace check plug (A).
9. Operate the engine at low idle and check for leaks at the check plug and drain plug.

Figure 5.21: Engine Gearbox

5.5.7 Changing Wheel Drive Lubricant

The wheel drive lubricant should be changed after the first 50 hours and every 1000 hours or annually, whichever occurs first. Change the lubricant when it is warm.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.
1. Park windrower on level ground and position windrower so drain plug (B) is at the lowest point.
2. Shut down the windrower and remove key from ignition.
3. Place a container (about 2 liters [2 quarts]) under the lower drain plug (B).
4. Remove plugs (A) and (B), and drain lubricant into container.
5. Dispose of oil in a manner that complies with local rules and regulations.

6. After the lubricant has drained completely, position the windrower so that ports (A) and (B) on wheel are horizontally level with the center of the hub (C) as shown.
7. Add lubricant. Refer to 5.9.4 Adding Wheel Drive Lubricant, page 294.
8. Reinstall all plugs.

5.5.8 Changing Hydraulic Filters

Charge Filter
The charge filter removes particulate contaminants from the oil before the oil is directed into the traction and header drive pumps. The oil maintains a positive pressure and is continuously supplied in these closed circuits during operation. The charge filter has a high pressure bypass of 345 kPa (50 psi) that allows oil to bypass the filter element during cold temperatures and when the filter element is heavily loaded.

The charge filter must be replaced at regular intervals. The filter telltale is displayed on the Harvest Performance Tracker (HPT). The charge filter must be changed after first 50 hours and every 500 hours thereafter. Follow the service schedule on the HPT.

Refer to the following procedures to change the charge filter:

- Removing Charge Filter, page 262.
- Installing Charge Filter, page 262.
Removing Charge Filter

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ DANGER
Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.

1. Stop the engine and remove the key.
2. Open left platform. Refer to 5.4.1 Opening Platform, page 253.
3. Clean around head of the filter.
4. Place a container beneath the filter to collect any oil that may leak out.
5. Unscrew filter (A) with a filter wrench.
6. Dispose of used oil and filter in a manner that complies with local rules and regulations.

![Figure 5.24: Charge Filter](image)

Installing Charge Filter

NOTE:
For charge filter replacement part number, refer to 5.1.4 Filter Part Numbers, page 244.

1. Clean the gasket surface of the filter head.
2. Apply a thin film of clean oil to the filter gasket.

IMPORTANT:
Do **NOT** pre-fill filter before installation as this may potentially introduce unfiltered oil into the system.

3. Clean the gasket surface of the filter head.
4. Apply a thin film of clean oil to the filter gasket.
5. Screw the new filter (A) onto the mount until the gasket just contacts the filter head.

6. Tighten filter an additional 1/2 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install oil filter. Overtightening can damage gasket and filter.

7. Check hydraulic fluid levels. Refer to 5.6.3 Checking Hydraulic Oil, page 267. For capacity level, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

Return Oil Filter

The return filter removes particulate contaminants from the return oil from the fan drive, lift circuits, and the drive circuits. It must be changed after the first 50 hours and then at 500-hour intervals. Follow the service schedule on the Harvest Performance Tracker (HPT) display.

Removing Return Oil Filter

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

DANGER

Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.

1. Stop the engine and remove the key.
2. Locate the return filter (A) under the left platform.
3. Clean around head of the filter (A).
4. Place a container beneath the filter (A) to collect any oil that may leak out.
5. Unscrew filter (A) with a filter wrench.
6. Dispose of used oil and filter in a manner that complies with local rules and regulations.
MAINTENANCE AND SERVICING

NOTE:
Image showing filter head removed to show component clarity.

7. Remove gasket (C) from groove (B) in filter head (A). Filter (D) shown for context.

Installing Return Oil Filter

NOTE:
For filter specifications, refer to 5.1.4 Filter Part Numbers, page 244.

NOTE:
Image shows filter head removed for component clarity.

1. Clean the gasket groove (B) in the filter head (A).
2. Apply a thin film of clean oil to the filter gasket (C).

IMPORTANT:
Do NOT pre-fill filter before installation as this may potentially introduce unfiltered oil into the system.

3. Install new gasket (C) into the groove (B) in the filter head (A).
4. Screw the new filter (D) onto the filter head until the gasket just contacts the filter.

5. Tighten filter (A) an additional 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install oil filter. Overtightening can damage gasket and filter.

6. Check hydraulic fluid levels. Refer to 5.6.3 Checking Hydraulic Oil, page 267. For capacity level, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.
5.6 Every 10 Hours or Daily
Complete the following maintenance tasks every 10 hours of operation or daily, whichever occurs first.

- Check engine oil level. Refer to 5.6.1 Checking Engine Oil Level, page 265.
- Check engine coolant level. Refer to 5.6.5 Checking Engine Coolant Level, page 271.
- Check hydraulic oil level. Refer to 5.6.3 Checking Hydraulic Oil, page 267.
- Check tire inflation. Refer to 5.6.4 Checking Tire Pressures, page 268.
- Check hydraulic hoses and lines for leaks. Refer to 5.6.6 Hoses and Lines, page 271.
- Drain fuel filter water trap. Refer to 5.6.2 Fuel/Water Separator, page 267.
- Clean radiator, hydraulic oil cooler, charge air cooler, and A/C condenser. Refer to 5.8.2 Cleaning Cooler Module, page 281.
- Fill fuel tank. Refer to 5.6.7 Filling Fuel Tank, page 272.
- Check diesel exhaust fluid (DEF) level. Refer to 3.17 Harvest Performance Tracker (HPT) Display, page 78.

5.6.1 Checking Engine Oil Level
Check engine oil level frequently and watch for any signs of leakage.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
During the break-in period, a higher than usual oil consumption should be considered normal.

NOTE:
Oil can be checked without opening the hood.

1. Operate the engine at low idle and check for leaks at the filter and drain plug.
2. Stop the engine and remove the key. Wait about 5 minutes.
3. Remove the dipstick (A) by turning it counterclockwise to unlock.
4. Wipe the dipstick clean and reinsert it into the engine.

Figure 5.30: Dipstick Location
5. Remove the dipstick again and check the oil level.

NOTE:
Oil level should be between LOW (L) and HIGH (H). If level is below LOW mark, 1.9 liters (2 US quarts) will raise the level from LOW to HIGH. To add oil, refer to *Adding Engine Oil, page 266.*

6. Replace dipstick and turn it clockwise to lock.

Adding Engine Oil

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key. Wait about five minutes.

2. Open the hood. Refer to *5.3.1 Opening Hood, page 251.*

3. Clean around filler cap (A) and remove by turning it counterclockwise.

⚠️ **CAUTION**

Do NOT fill above the HIGH mark.

5. Replace oil filler cap (A) and turn it clockwise until snug.

6. Check the oil level. Refer to *5.6.1 Checking Engine Oil Level, page 265.*

7. Close the hood. Refer to *5.3.2 Closing Hood, page 252.*
5.6.2 Fuel/Water Separator

A fuel/water separator is incorporated into the primary fuel filter. The separator is equipped with a drain and a sensor that detects water in the fuel and displays an alert on the HPT display. Drain the water and sediment from the separator daily or at any time the Water In Fuel (WIF) light illuminates on the HPT display.

To remove water from the fuel system, refer to Removing Water from Fuel System, page 267.

Removing Water from Fuel System

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Place a container under the filter (A) to catch spilled fluid.
4. Turn drain valve (B) by hand 1-1/2 to 2 turns counterclockwise until draining occurs.
5. Drain the filter sump of water and sediment until clear fuel is visible.
6. Turn the valve clockwise to close the drain.
7. Dispose of fluid safely.
8. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

![Figure 5.33: Fuel System](image)

5.6.3 Checking Hydraulic Oil

Hydraulic oil is used to transmit force under high pressure. The oil also lubricates, cools, and cleans the system, thus the cleanliness and quality of the oil is highly important to ensure long system life. It is extremely important to avoid contamination when service and regular maintenance is performed.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.

1. Park windrower on level ground, and lower header and reel so that lift cylinders are fully retracted.
2. Stop the engine and remove the key.
3. Locate the sight glass (A) on the right side of the tank. It indicates the oil level and any signs of contamination.

NOTE:
No oil in the sight glass indicates that the oil level is below the add mark on the dipstick. The sight glass is viewable with the hood open or closed.

4. Ensure the hydraulic oil level is between the low and full indicator marks.

5. If more oil is required to maintain the level between the low and full indicator marks, refer to 5.12.3 Filling Hydraulic Oil, page 312.

5.6.4 Checking Tire Pressures

Check tire pressures with a gauge.

Drive Wheel Tires: For optimal performance, drive wheel (A) tire pressures are determined by tire type, header size, and additional options. Refer to the following table:

Caster Wheel Tires: Inflate all caster wheel (B) tires to 110 kPa (16 psi).

Table 5.4 Drive Tire Inflation Specifications

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper Header</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D115X single reel</td>
<td>15 foot, double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>138 (20)</td>
</tr>
<tr>
<td>D115X single reel</td>
<td>15 foot, double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>138 (20)</td>
</tr>
<tr>
<td>D120X single reel</td>
<td>20 foot, double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>138 (20)</td>
</tr>
<tr>
<td>D120X single reel</td>
<td>20 foot, double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>138 (20)</td>
</tr>
</tbody>
</table>
Table 5.4 Drive Tire Inflation Specifications (continued)

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D125X</td>
<td>25 foot, double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>159 (23)</td>
</tr>
<tr>
<td>D125X</td>
<td>25 foot, double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>159 (23)</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, double knife, timed</td>
<td>Transport</td>
<td>1</td>
<td>Bar</td>
<td>200 (29)</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, double knife, timed</td>
<td>Transport</td>
<td>1</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, double knife, timed</td>
<td>Transport + upper</td>
<td>1</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, double knife, timed</td>
<td>Transport + upper</td>
<td>1</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>200 (29)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport + upper</td>
<td>3</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport + upper</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>221 (32)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport + upper</td>
<td>3</td>
<td>Bar</td>
<td>283 (41)</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double knife, untimed</td>
<td>Transport + upper</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
</tbody>
</table>
Table 5.4 Drive Tire Inflation Specifications (continued)

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D140XL double reel</td>
<td>double reel 40 foot, double knife, un timed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140XL double reel</td>
<td>double reel 40 foot, double knife, un timed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140XL double reel</td>
<td>double reel 40 foot, double knife, un timed</td>
<td>Transport</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140XL double reel</td>
<td>double reel 40 foot, double knife, un timed</td>
<td>Transport</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140XL double reel</td>
<td>double reel 40 foot, double knife, un timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Bar</td>
<td>283 (41)</td>
</tr>
<tr>
<td>D140XL double reel</td>
<td>double reel 40 foot, double knife, un timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL double reel</td>
<td>double reel 45 foot, double knife, un timed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL double reel</td>
<td>double reel 45 foot, double knife, un timed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL double reel</td>
<td>double reel 45 foot, double knife, un timed</td>
<td>Transport</td>
<td>3</td>
<td>Bar</td>
<td>262 (38)</td>
</tr>
<tr>
<td>D145XL double reel</td>
<td>double reel 45 foot, double knife, un timed</td>
<td>Transport</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL double reel</td>
<td>double reel 45 foot, double knife, un timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Bar</td>
<td>283 (41)</td>
</tr>
<tr>
<td>D145XL double reel</td>
<td>double reel 45 foot, double knife, un timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
</tbody>
</table>

Rotary Disc Header

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R85</td>
<td>16 foot</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>179 (26)</td>
</tr>
<tr>
<td>R85</td>
<td>16 foot</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>179 (26)</td>
</tr>
</tbody>
</table>

Auger Header

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A40 DX</td>
<td>16 foot</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>179 (26)</td>
</tr>
<tr>
<td>A40 DX</td>
<td>16 foot</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>159 (23)</td>
</tr>
</tbody>
</table>
5.6.5 Checking Engine Coolant Level

Check coolant level in the pressurized coolant tank daily.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:

Ensure the engine has cooled down prior to checking.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. The tank has a MAX and MIN COLD line marker. Coolant level should be kept at the MAX COLD line (A).

NOTE:

When checking coolant level, use the MAX COLD line on the side of tank that faces cab for an accurate measurement.

NOTE:

For specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

4. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

5.6.6 Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

⚠️ WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.
- Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure.
- Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a Doctor familiar with this type of injury or gangrene may result.
- Use a piece of cardboard or paper to search for leaks.
- Any service components must be genuine MacDon parts.
- All connections must be properly torqued. Refer to 8.1 Torque Specifications, page 393.
IMPORTANT:

- Keep hydraulic coupler tips and connectors clean. Dust, dirt, water, and foreign material are the major causes of hydraulic system damage.
- DO NOT attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.

5.6.7 Filling Fuel Tank

The symbol inside the fuel gauge on the Harvest Performance Tracker display will signal the Operator when the fuel level is low. Fill fuel tank daily, preferably at the end of the day’s operation to help prevent condensation in the tank.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

⚠️ WARNING

- To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.
- NEVER refuel the windrower when the engine is hot or running.

IMPORTANT:

Do NOT allow tank to empty. Running out of fuel can cause air locks and/or contamination of the fuel system. Refer to Priming Fuel System, page 300 System Priming, page 300.

1. Stop windrower and remove the ignition key.
2. Clean the area around the fuel filler cap (A).
3. Turn fuel filler cap (A) counterclockwise until loose. Remove cap.
4. Fill tank with approved fuel. For fuel type and quantity, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

 IMPORTANT:

 Do NOT completely fill the tank as space is required for expansion. A filled tank could overflow if exposed to a rise in temperature, such as direct sunlight.

5. Replace fuel tank filler cap (A), and turn cap clockwise until it clicks.

Figure 5.38: Fuel Tank Filler Cap
5.6.8 Filling the Diesel Exhaust Fluid (DEF) Tank

The symbol inside the DEF gauge on the Harvest Performance Tracker display will signal the Operator when DEF level is low.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Clean around filler cap (A).
3. Turn cap (A) counterclockwise until loose and remove cap.

NOTE:

Filler cap for DEF tank is blue and the nozzle dispenser is smaller than that of the fuel tank.

⚠️ CAUTION

Avoid contact with eyes. In case of contact, rinse immediately with water for 15 minutes.

4. Fill tank with approved DEF. Refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

IMPORTANT:

Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand, and then shovelled to a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water as DEF is corrosive.

IMPORTANT:

If the windrower temperature is going to be below 0°C (32°F), do not fill the DEF tank to a full level. It should be less than 75% full. When freezing, the DEF fluid will expand by approximately 7%. For storage information, refer to 5.1.1 Storing Lubricants and Fluids, page 241.

5. Replace filler cap (A) and turn clockwise until tight.
5.7 Every 50 Hours

Complete the following maintenance tasks every 50 hours of operation.

- Clean the cab air fresh intake filter. Refer to 5.7.1 Fresh Air Intake Filter, page 274.
- Check gearbox oil level. Refer to 5.7.2 Checking Engine Gearbox Lubricant Level and Adding Lubricant, page 277.
- Grease caster bearings and pivots. Refer to 5.7.3 Greasing the Windrower, page 278.
- Grease top lift link pivots. Refer to 5.7.3 Greasing the Windrower, page 278.

5.7.1 Fresh Air Intake Filter

The fresh air intake filter is located outside the lower right rear of the cab (A), and should be serviced every 50 hours under normal conditions and more frequently in severe conditions. Refer to 5.1.4 Filter Part Numbers, page 244 for the appropriate part number.

Removing Fresh Air Intake Filter

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open hood. Refer to 5.3.1 Opening Hood, page 251.
3. Rotate latch (A) counterclockwise to loosen, and remove fresh air filter door.
4. Turn knob (A) counterclockwise, and remove it.
5. Remove air filter retainer (B).
6. Remove air filter (C).

![Figure 5.43: Fresh Air Intake Filter](image)

Inspecting And Cleaning Fresh Air Intake Filter Element

1. Tap the sides of the filter element gently to loosen dirt. Do **NOT** tap element against a hard surface.
2. Using a dry element cleaner gun, clean element with compressed air.

IMPORTANT:

- Air pressure must **NOT** exceed **414 kPa (60 psi)**. Do **NOT** direct air against outside of element, as dirt might be forced through to inside.
3. Hold the air nozzle next to the filter element’s inner surface and move up and down the pleats.
4. Repeat previous steps to remove additional dirt as required.
5. Hold a bright light inside the element and check carefully for holes. Discard any element that shows the slightest hole.
6. Check outer screen for dents. Vibration would quickly wear a hole in the filter.
7. Check filter gasket for cracks, tears, or other signs of damage. If gasket is damaged or missing, replace element.
Installing Fresh Air Intake Filter

Refer to 5.1.4 Filter Part Numbers, page 244 for part number.

1. Clean interior of fresh air intake box (A).

2. Install air filter (A) onto fresh air box panel (B).

3. Secure air filter (C) with retainer (B).

4. Install knob (A), and turn clockwise to tighten.
5. Insert tabs on fresh air filter door into slots on fresh air box, and rotate latch (A) clockwise to secure door.

5.7.2 Checking Engine Gearbox Lubricant Level and Adding Lubricant

Check lubricant level every 50 hours.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

⚠️ CAUTION
Park on a flat, level surface with the header on the ground and the ground speed lever in PARK position with the steering wheel locked.

1. Park the windrower on level ground, shut down engine, and remove key.
2. Remove check plug (A) on underside of windrower beneath the main pumps. The lubricant should be visible through the hole or slightly running out.
3. Add lubricant, if required, through the check plug hole (A) using a squeeze bottle, or by removing the breather at the top right side of the gearbox. For specification, refer to the inside back cover of this book.
5.7.3 Greasing the Windrower

WARNING

To avoid personal injury, before servicing the windrower or opening drive covers, follow procedures in the SAFETY section. Refer to 1 Safety, page 1.

The greasing points are marked on the machine by decals showing a grease gun and grease interval in hours of operation.

Log hours of operation and use the Maintenance Checklist provided to keep a record of scheduled maintenance. Refer to 5.2.2 Maintenance Schedule/Record, page 247.

![Greasing Interval Decal](image)

Greasing Procedure

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. To avoid injecting dirt and grit, wipe grease fitting with a clean cloth before greasing.
2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted. Refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.
3. Leave excess grease on fitting to keep out dirt.
4. Replace any loose or broken fittings immediately.
5. If fitting will NOT take grease, remove and clean thoroughly. Also clean grease passageway. Replace fitting if necessary.
Grease Points

Figure 5.50: Grease Points

A - Top Link (2 Places) (Both Sides) B - Caster Pivot (Both Sides) C - Caster Wheel Hub (Both Sides)

16. Do **NOT** over grease. Use 1 pump of grease.
MAINTENANCE AND SERVICING

5.8 Every 100 Hours

Complete the following maintenance tasks every 100 hours of operation.

- Clean cab air return filter. Refer to 5.8.1 Servicing Return Air Filter, page 280.
- Clean radiator, hydraulic oil cooler, charge air cooler, and A/C condenser. Refer to 5.8.2 Cleaning Cooler Module, page 281.

5.8.1 Servicing Return Air Filter

The return air filter is located behind the operator’s seat on the cab wall and should be serviced every 100 hours.

1. Unscrew two knobs (A) attaching cover and filter to cab wall, and remove cover and filter assembly (B).

2. Separate the filter (B) from the cover (A).

3. Clean the electrostatic filter as follows:
 a. Mix a solution of warm water and detergent in a suitable container so that the filter (B) can soak for a few minutes.
 b. Agitate to flush out the dirt.
 c. Rinse with clean water, and then dry with compressed air.
 d. Inspect filter for damage, separation, and holes. Replace if damaged. Refer to 5.1.4 Filter Part Numbers, page 244 for part number.

4. Assemble the cleaner (B) and cover (A), and position on cab wall over opening.

Figure 5.51: Return Air Filter

Figure 5.52: Return Air Filter
5. Secure filter assembly (B) to cab wall with knobs (A).

5.8.2 Cleaning Cooler Module

The cooling module should be cleaned every 100 hours of operation. Daily cleaning may be required if operating in heavy crop conditions.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the engine compartment hood. Refer to 5.3.1 Opening Hood, page 251. The maintenance platforms can remain in the forward position.
3. Proceed to cleaning procedures. Refer to Cleaning Right Cooling Module, page 284 or Cleaning Left Cooling Module, page 281.

Cleaning Left Cooling Module

This procedure is for cleaning the engine radiator, air conditioning condenser and screen in the left cab-forward cooling module.

1. At left cab-forward side cooler module, push latch (A) and open engine radiator door (B).
2. Lower lever (A) to release screen/condenser door (B) from radiator (C) and open screen/condenser door (B).

3. Pull lever (A) up to partially-open condenser (B) away from screen (C).

4. Secure condenser (A) with bracket (B).

5. Clean debris from radiator (D), condenser (A), and screen (C) with compressed air.
6. Close condenser (B) into screen (C) and secure with bracket (A).

7. Close screen/condenser door (B) onto radiator door (C) and secure with lever (A).

8. Close radiator door (B) and push until latch (A) secures door (D).
Cleaning Right Cooling Module

This procedure is for cleaning the coolers at the right cab-forward side of the windrower.

1. At the right cab-forward side cooler module, lower latch handle (A) and open screen/case drain oil cooler door (B).

2. At left cab-forward side cooler module, push latch (A) and open engine radiator door (B).

3. Access the coolers from inside the cooler box (A) and clean debris from charge air cooler (B), and hydraulic oil cooler (C).
4. At right side cooler module, with screen/case drain cooler (A) open, pull lever (B) to partially open cooler (C) away from screen.

5. Secure case drain cooler (A) with bracket (B).

6. Clean debris from case drain cooler (A) and screen (C) with compressed air.

7. Close case drain cooler (C) into screen (A) and secure with bracket (B).
8. Close screen/case drain cooler door (B) and secure with latch (A).
5.9 Every 250 Hours or Annually

Complete the following maintenance tasks every 250 hours of operation or annually, whichever occurs first.

- Change engine oil and filter. Refer to 5.9.1 Changing Engine Oil, page 287.
- Change engine primary air filter. Refer to 5.9.2 Maintaining Engine Air Filters, page 289.
- Check wheel drive lubricant level. Refer to 5.9.3 Checking Wheel Drive Lubricant Level, page 293.
- Inspect exhaust system. Refer to 5.9.5 Inspecting Exhaust System, page 295.
- Change engine gearbox oil. Refer to 5.9.6 Changing Engine Gearbox Lubricant, page 296.

5.9.1 Changing Engine Oil

Draining Engine Oil

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
The engine should be warm prior to changing the oil.

1. Stop the engine and remove the key.
2. Place a drain pan with a capacity of about 24 liters (6 US gallons) under the engine oil drain.
3. Remove oil drain plug (A) and allow the oil to completely finish draining.
4. Replace drain plug (A).
5. Check the condition of the used oil. If either of the following is evident, have your Dealer correct the problem before starting the engine:
 - Thin black oil indicates fuel dilution
 - Milky discoloration indicates coolant dilution
6. Dispose of used oil properly.

Replacing Engine Oil Filter

NOTE:
Replace oil filter each time engine oil is changed.

1. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
2. Place oil pan below filter.
3. Clean around the filter head (A) and remove filter.

NOTE:
Check that gasket is removed from filter head.

4. Clean gasket mating surface.

5. Apply a thin film of clean oil to the gasket on the new filter. Refer to 5.1.4 Filter Part Numbers, page 244 for recommended oil filter to use.

6. Screw the new filter onto the filter mount until the gasket contacts the filter head.

7. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do **NOT** use a filter wrench to install the oil filter. Overtightening can damage the gasket and filter.

8. Properly dispose of used oil filter.

Adding Engine Oil

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key. Wait about five minutes.

2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.

3. Clean around filler cap (A) and remove by turning it counterclockwise.

⚠️ **CAUTION**

Do **NOT** fill above the **HIGH** mark.

5. Replace oil filler cap (A) and turn it clockwise until snug.

6. Check the oil level. Refer to 5.6.1 Checking Engine Oil Level, page 265.

7. Close the hood. Refer to 5.3.2 Closing Hood, page 252.
5.9.2 Maintaining Engine Air Filters

Removing Engine Primary Air Filter

1. Stand on right service platform.

2. Open the hood. Refer to 5.3.1 *Opening Hood, page 251*.

3. Slightly lift catch (A) at side of end cap (B). Rotate end cap counterclockwise until it stops.

4. Make sure arrow (A) lines up with the UNLOCK symbol on end cap.

5. Pull off the end cap.

6. Check the aspirator duct opening (A) for obstructions or damage. Clean if necessary.

7. Place cover on platform.

NOTE:
Hoses can be left connected to the cover.
8. Pull out the primary filter element (A).

IMPORTANT:
Be extremely careful with the dirty element until it is completely out of the housing. Accidentally bumping it while still inside may cause dirt and dust to contaminate the clean side of filter housing.

9. If necessary, also change the secondary filter (B). Refer to *Replacing Secondary Air Filter, page 292.*

IMPORTANT:
- Do **NOT** remove the secondary filter unless it needs replacing. It must never be cleaned.
- Replace secondary filter annually or after every third primary filter change, even if it looks clean.
- If the secondary filter looks dirty, a further inspection will be required.
- Examine filter canister for cracks and replace as necessary.
- Ensure canister retaining latches are secure.

IMPORTANT:
Clean the inside of the housing and cover carefully. Dirt left in the air cleaner housing may be harmful to your engine.
- Use a clean, water-dampened cloth to wipe every surface clean.
- Check it visually to make sure it is clean before putting in a new element.
- Always clean the gasket sealing surfaces of the housing. An improper gasket seal is one of the most common causes of engine contamination.
- Make sure that all hardened dirt ridges are completely removed wherever filter gaskets contact the cleaner housing.

Check for uneven dirt patterns on your old element. Your old element is a valuable clue to potential dust leakage or gasket sealing problems.
- A pattern on the element clean side is a sign that the old element was not firmly sealed or that a dust leak exists.
- Make certain the cause of that leak is identified and rectified before replacing the element.
- Recheck to see if the sealing surface in the housing is clean.

Installing Engine Primary Air Filter

NOTE:
For primary air filter replacement part number, refer to *5.1.4 Filter Part Numbers, page 244.*
1. Insert new primary filter (A) into canister and push into place, ensuring that element is firmly seated in canister.

2. Align arrow (A) to UNLOCK position on end cap, and push end cap fully onto housing.

3. Rotate end cap clockwise until catch (A) engages housing to prevent end cap from turning.

4. Position end cap (B) onto filter housing with aspirator pointing approximately down.

5. Secure end cap onto filter housing by closing latch (A).

6. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

7. Close the maintenance platform. Refer to 5.4.1 Opening Platform, page 253.
Cleaning Primary Air Filter

The engine air cleaner’s primary filter should be replaced after three cleanings or at the specified interval. The secondary element should be replaced every third time the primary element is changed. Refer to 5.2 Windrower Break-In Inspections and Maintenance Schedule, page 245 for the required interval.

1. Hold a bright light inside element and check carefully for holes. Vibration would quickly wear a hole in the filter.
2. Check filter gasket for cracks, tears, or other signs of damage.
3. Check element for oil or soot contamination.
4. Check the secondary element for cleanliness. If there is visible dirt on the secondary element, replace both primary and secondary elements. Do NOT clean.

IMPORTANT:
• The secondary filter element should NEVER be cleaned, only replaced.
• Air filter element cleaning is NOT recommended due to the possible degradation of the element material. If cleaning is performed, there are several risks involved and the following steps should be followed. If any of the conditions described in these steps are found, the filter element MUST be replaced.

5. If secondary element passes inspection, use compressed air not exceeding 270 kPa (40 psi) and a dry element cleaner gun to clean the primary element. Hold nozzle next to inner surface only and move up and down on pleats.

NOTE:
After three cleanings (or at the specified interval), replace the primary element.

6. Repeat inspection before installing. Refer to Installing Engine Primary Air Filter, page 290.

Replacing Secondary Air Filter

IMPORTANT:
• The secondary filter element (A) should never be cleaned, only replaced. Do not remove the secondary filter element unless it needs replacing.
• Replace secondary element annually or after every third primary filter change, even if it appears clean.
• If replacing secondary element, a further inspection may be necessary.
• Examine filter canister for cracks and replace as necessary.
• Ensure canister retaining latches are secure. Ensure filter sealing surfaces are soft, flexible and sealing, not hard and allowing debris through to secondary filter.
1. Remove the primary filter. Refer to Removing Engine Primary Air Filter, page 289.

IMPORTANT:
When replacing secondary filter, reinsert new filter as soon as possible to prevent dirt from entering engine intake.

2. Remove the secondary element (A) from canister.

NOTE:
If replacing filter, refer to 5.1.4 Filter Part Numbers, page 244.

3. Insert new secondary filter element (A) into canister, seal first, and push until seal is seated inside canister.

4. Install the primary filter. Refer to Installing Engine Primary Air Filter, page 290.

5.9.3 Checking Wheel Drive Lubricant Level

Check the wheel drive lubricant level every 250 hours or annually.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Park the windrower on level ground.

2. Position windrower so that plugs (A) and (B) are horizontally aligned with the center (C) of the hub.

WARNING

Use caution when removing plug as there may be pressure in the drive.

3. Remove plug (A) or (B). The lubricant should be visible through the port or running out slightly. If lubricant needs to be added, refer to **5.9.4 Adding Wheel Drive Lubricant, page 294**.

 NOTE:
 The type of lubricant used after the first lubricant change is different from the factory supplied lubricant.

4. Reinstall plugs and tighten.

5.9.4 Adding Wheel Drive Lubricant

NOTE:

Do **NOT** mix lubricants of different brands or characteristics.

NOTE:

For lubricant specifications, refer to **5.1.3 Lubricants, Fluids, and System Capacities, page 242**.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Rotate the wheel drive so plugs (A) and (B) are horizontally aligned (C).

2. Stop the engine and remove the key.

3. Remove either plug (A) or (B).

 NOTE:
 PRIOR TO FIRST CHANGE: Use SAE 85W140, API service, class GL-5, extreme pressure gear lubricant (non-synthetic).

 NOTE:
 AFTER FIRST CHANGE: Use SAE 75W-140 or 80W-140, API service, class GL-5, fully synthetic transmission lubricant (SAE J2360 preferred).

4. Add lubricant through one of the ports until the lubricant reaches the bottom of the ports and begins to run out.

5. Reinstall and tighten plug (A) or (B).

6. Start up and operate the windrower for a few minutes, then stop and check the oil level. Refer to **5.9.3 Checking Wheel Drive Lubricant Level, page 293**. If necessary, add more oil.
5.9.5 Inspecting Exhaust System

The system consists of two main canisters for exhaust treatment. Between the two exhaust canisters is a tube with a dosing module (DM) for diesel exhaust fluid (DEF).

⚠️ CAUTION

Engine exhaust stack may be hot. To avoid burns, do NOT touch exhaust canister when engine is running. Allow sufficient cooling time after shut-down.

The exhaust system requires no regular maintenance, but it should be inspected periodically as follows:

1. Open the hood. Refer to 5.3.1 Opening Hood, page 251.

 IMPORTANT:

 Ensure the exhaust system is secure to eliminate vibration.

2. Check the following:

 - a. Exhaust canisters (A) and bellow tube (B) for dents, cracks, and wear
 - b. Straps (C) for tightness
 - c. U-bolt (D) and band clamps (E) for breakage, cracks, and rust

 IMPORTANT:

 Damaged exhaust piping, clamps or components can lead to exhaust leaks and engine derate.

![Figure 5.82: Exhaust System](image)
3. Check the three band clamps (A) securing the tubes in between the two exhaust canisters.

IMPORTANT:
Do **NOT** change exhaust canister type, piping sizes, or exhaust configuration. See your Dealer for proper replacement parts.

4. Inspect the area around clamps (A) for breakage, cracks, and rust-through.

IMPORTANT:
If exhaust is leaking, tighten clamps to 12–15 Nm (9–11 lbf·ft). If leaking at band connection, replace seals. Contact your Dealer if exhaust leak persists.

5. Check tubing for dents or crushed areas. Dents or crushed portions of any tubing create exhaust flow restriction and increase back pressure significantly. Even relatively small dents will cause decreased fuel economy and increased turbo wear. If dents are relatively large, increased bearing and cylinder wear will occur due to increased exhaust temperature.

5.9.6 Changing Engine Gearbox Lubricant

Change engine gearbox lubricant after the first 50 hours, and then at 250 hours as follows:

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

⚠️ **CAUTION**

Park on a flat, level surface with the header on the ground and the ground speed lever in PARK position with the steering wheel locked.

NOTE:
The engine should be warm when changing the lubricant.

1. Park windrower on a level surface.
2. Stop the engine and remove the key.
3. Place a 4 liter (1 US gallon) drain pan under the gearbox.
4. Remove drain plug (B) and allow lubricant to completely finish draining.

5. Inspect the drain plug. Small metal shavings are normal, if there are any larger metal pieces an inspection of the gearbox will be required.

6. Install drain plug (B) and remove check plug (A).

7. Add lubricant until oil level reaches check plug (A). For lubricant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

8. Replace check plug (A).

9. Operate the engine at low idle and check for leaks at the check plug and drain plug.
5.10 Every 500 Hours or Annually

Complete the following maintenance tasks every 500 hours of operation or annually, whichever occurs first.

- Change primary and secondary fuel filters. Refer to 5.10.1 Maintaining Fuel Filters, page 298.
- Change hydraulic filters. Refer to 5.5.8 Changing Hydraulic Filters, page 261.
- Check safety systems. Refer to 5.10.2 Safety Systems, page 301.

5.10.1 Maintaining Fuel Filters

The windrower’s fuel system is equipped with primary (A) and secondary (B) screw-on cartridge type filters. The primary filter (A) is equipped with a separator that separates sediment and water from the fuel.

NOTE:
Bottom part of image was made transparent to show the primary filter (A).

Removing Primary Fuel Filter

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Locate the primary fuel filter (A) on the right cab-forward side of the windrower.

 NOTE:
 Bottom part of the image made transparent to show location of the primary filter.
4. Clean around the primary filter (A) head.
5. Disconnect the water in fuel (WIF) sensor (B) from bottom of filter.
6. Turn drain valve (C) by hand counterclockwise until draining occurs, and drain filter into a container.
7. Remove filter (A) with a filter wrench.
8. Clean gasket mating surface.
Installing Primary Fuel Filter

IMPORTANT:
Do **NOT**prefill filter with fuel. Prefilling can contaminate the fuel system.

NOTE:
If replacing filter, refer to *5.1.4 Filter Part Numbers, page 244.*

1. Screw the new filter (A) onto the filter mount until the gasket contacts the filter head.
2. Reconnect water in fuel (WIF) sensor (B).
3. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do **NOT** use a filter wrench to install the filter. Overtightening can damage the gasket and filter.

![Figure 5.87: Fuel System](image)

Removing Secondary Fuel Filter

DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to *5.3.1 Opening Hood, page 251.*
3. Clean around the secondary filter head (A).
4. Place a container under the filter to catch spilled fluid.
5. Remove filter (B) with a filter wrench.
6. Clean gasket mating surface.

![Figure 5.88: Fuel System](image)
Installing Secondary Fuel Filter

IMPORTANT:
Do NOT prefill filter with fuel. Prefilling can contaminate the fuel system.

NOTE:
If replacing filter, refer to 5.1.4 Filter Part Numbers, page 244.

1. Screw the new secondary filter (A) onto the filter mount until the gasket contacts the filter head.

2. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the filter. Overtightening can damage the gasket and filter.

3. Prime the fuel system, refer to Priming Fuel System, page 300.

System Priming

Controlled venting of air is provided at the injection pump through the fuel drain manifold. Small amounts of air introduced by changing filters or injection pump supply line will be vented automatically if the fuel filters are changed in accordance with instructions.

IMPORTANT:
Do NOT bleed the fuel system. Manual priming will be required if

- Fuel filter is replaced
- Injection pump is replaced
- High-pressure fuel lines are replaced
- Engine is run until fuel tank is empty

Priming Fuel System

Controlled venting of air is provided at the injection pump through the fuel drain manifold. Small amounts of air introduced by changing filters or injection pump supply line will be vented automatically if the fuel filters are changed in accordance with instructions.

IMPORTANT:
Do NOT bleed the fuel system. Manual priming will be required if

- Fuel filter is replaced
- Injection pump is replaced
- High-pressure fuel lines are replaced
- Engine is run until fuel tank is empty
DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

WARNING
The fuel pump high-pressure fuel lines and fuel rail contain extremely high pressure fuel. Never loosen any fittings. Personal injury and property damage can result.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Locate the primary fuel filter assembly (A).
4. Turn the priming knob (B) counterclockwise to unlock the plunger on the primary filter head.
5. Pump until hand pump becomes firm.
6. Push the plunger in and lock it by turning knob (B) clockwise until snug.
7. Try starting engine. If engine does NOT start, or starts then shuts down, repeat priming procedure.
8. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

5.10.2 Safety Systems
Perform the following checks on the operator’s presence and engine lock-out systems every year or every 500 hours—whichever occurs first.

Checking Operator Presence System

CAUTION
Check to be sure all bystanders have cleared the area.

1. With the windrower engine running, place the ground speed lever (GSL) in PARK and turn the steering wheel until it locks.
2. With everyone clear of the machine, engage the HEADER ENGAGE switch:
 a. After header drives are running, stand up out of the seat. In approximately 5 seconds, the header should shut off.
 b. If NOT, the Operator Presence System requires adjustment. See your MacDon Dealer.

NOTE:
To restart the header, move the HEADER ENGAGE switch to OFF position and back to the ON position again.
3. With the windrower moving at less than 8 km/h (5 mph):
MAINTENANCE AND SERVICING

- Stand up out of the seat.
- The Harvest Performance Tracker (HPT) display will flash NO OPERATOR DETECTED, ENGINE SHUT DOWN IN 5…4…3…2…1…accompanied by a steady tone. At 0, the engine shuts down.
- If the engine does NOT shut down, the Operator Presence System requires adjustment. See your MacDon Dealer.

4. With the windrower moving at more than 8 km/h (5 mph):
 - Stand up out of the seat.
 - After a 2 second delay, the HPT will display NO OPERATOR DETECTED along with a tone.
 - If NOT, the Operator Presence System requires adjustment. See your MacDon Dealer.

Checking Engine Interlock

CAUTION

Check to be sure all bystanders have cleared the area.

1. With the engine shut down and the HEADER ENGAGE switch (A) engaged, try to start the engine. If the engine turns over, the system requires adjustment. See your MacDon Dealer.

2. With the engine shut down, the steering wheel NOT centered, and the ground speed lever (GSL) (B) in NEUTRAL (but NOT in PARK), try to start the engine. The Harvest Performance Tracker (HPT) will flash NOT IN NEUTRAL and CENTER STEERING WHEEL, accompanied by a short beep with each flash and the engine should NOT turn over. If the engine turns over, the system requires adjustment. See your MacDon Dealer.

A properly functioning system should operate as follows. If not, see your MacDon Dealer.

- The starter should engage ONLY when the GSL is in PARK, steering wheel locked in the CENTER position and the HEADER ENGAGE switch is in the OFF position.
- The brake should engage and the machine should NOT move after engine start-up, under the above conditions.
- The steering wheel should NOT lock with the engine running and the GSL is out of the PARK.
- The machine should NOT move with the engine running and with the steering wheel still centered, when the GSL is pulled straight out of PARK (NOT in forward or reverse).
5.11 Every 1000 Hours

Complete the following maintenance tasks every 1000 hours of operation.

- Change fuel tank vent filter. Refer to 5.11.1 Removing and Installing the Fuel Tank Vent Filter, page 303.
- Clean DEF supply module filter. Refer to 5.11.2 DEF Supply Module Filter, page 305.
- Change wheel drive lubricant. Refer to 5.5.7 Changing Wheel Drive Lubricant, page 260.

5.11.1 Removing and Installing the Fuel Tank Vent Filter

The fuel tank is vented by a hose and filter in the platform rail. Change the filter every 1000 hours or annually, whichever occurs first.

Change the filter as follows:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near windrower when servicing.

1. Stop the engine and remove the key.
2. Remove two bolts (A) and plate (B) on the right service platform.

![Figure 5.92: Right Service Platform](image)
3. Release hose tension clamps (A) and slide away from filter (B).

4. Pull hoses off filter (B) and remove filter.

5. Position new filter (A) and attach to fuel tank hose (B). The IN marking on the filter should face away from the fuel tank hose.

NOTE:
If filter has an arrow instead of an IN marking, arrow should point toward the fuel tank hose.

6. Attach fuel vent hose (A) to filter (B) and secure both hoses with tension clamps (C).

7. Close hood. Refer to 5.3.2 Closing Hood, page 252.
5.11.2 DEF Supply Module Filter

The supply module filter is designed to prevent debris that may be suspended in the diesel exhaust fluid (DEF) from entering the dosing system. Permanent damage to “and premature failure of” the DEF supply module can result from fluid debris.

Checking the Supply Module Filter

1. Locate the aftertreatment diesel exhaust fluid (DEF) supply module (A) on the inside of the right platform by the engine oil dipstick.

2. Inspect the area around the seal and vent of the aftertreatment DEF supply module filter cap (A) for signs of leakage.

3. DEF fluid leaves a white deposit when dry. If there is evidence of leaking, remove the supply module filter, clean and inspect before replacing. For instructions, refer to Cleaning and Inspecting the Supply Module Filter, page 307.

Removing the Supply Module Filter

⚠️ WARNING

Batteries can emit explosive gases. To reduce the possibility of personal injury, always ventilate the compartment before servicing the batteries. To reduce the possibility of arcing, remove the negative (−) battery cable first and attach the negative (−) battery cable last.

⚠️ WARNING

Diesel Exhaust Fluid (DEF) contains urea. Do NOT get the substance in your eyes. In case of contact, immediately flush eyes with water for a minimum of 15 minutes. Do NOT swallow. In the event the DEF is ingested, contact Doctor immediately.
WARNING

The DEF line connecting the aftertreatment DEF dosing unit to the aftertreatment DEF dosing valve is under low pressure and should not be disconnected while the engine is running or before the system has completed the purge process after engine shutdown. Disconnecting the DEF line while under low pressure could cause DEF to spray.

WARNING

Wear appropriate eye and face protection when using compressed air. Flying debris and dirt can cause personal injury.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

IMPORTANT:

Any spilled DEF must be contained and absorbed by non-combustible absorbent material like sand, and then shoveled to a suitable container for disposal. DEF is corrosive. If spilled on tank or any surface of the vehicle, rinse thoroughly with water.

IMPORTANT:

Do NOT disconnect the windrower batteries until the DEF dosing system has completed the purge cycle. Before beginning to remove and/or disconnect any components, wait at least five minutes after the key switch is turned OFF for the aftertreatment DEF dosing system to purge the DEF from the system. The purge cycle is an automatic process and does not require intervention to occur. The aftertreatment DEF supply module will create an audible pumping noise during the purging process.

NOTE:

DO NOT power wash or steam clean the filter. Use compressed air to remove any loose debris.

1. Stop the engine and remove the key. Wait 3 minutes for DEF system to complete purge cycle.

2. Place a catch basin under DEF filter cap to collect the remaining DEF in the filter housing.

3. Unscrew the filter cap (A).

4. Remove the aftertreatment DEF filter equalizing element (B).

5. Remove the old aftertreatment DEF supply module filter element (D).

NOTE:

A disposable service tool (C) is included with the filter to aid in filter removal. Use the appropriate end of the tool to remove filter. When inserting the tool, a click sound can be heard which indicates proper engagement with the filter.

6. Discard and replace the filter and equalizing element if removed from the aftertreatment dosing unit.

Figure 5.98: DEF Supply Module Filter
Cleaning and Inspecting the Supply Module Filter

NOTE:
If there is the possibility that contaminated diesel exhaust fluid (DEF) has gone through the DEF supply system, check the DEF filter prior to discarding the filter.

1. Check the diesel exhaust filter for evidence of contaminated DEF. Use visual and aroma characteristics of the filter to determine if contaminated fluid has passed through the dosing system.
2. Inspect the diesel exhaust filter for debris.
3. Discard the filter element and the equalizing element.
4. Inspect the aftertreatment DEF supply module filter cap for cracks or holes.
5. Check the condition of the threads on the aftertreatment DEF supply module cap.
6. If threads are damaged. Replace the aftertreatment DEF supply module cap.
7. If cap threads are damaged, inspect the aftertreatment DEF supply module threads.
8. If threads of aftertreatment DEF supply module are damaged. Replace the entire aftertreatment DEF supply module.
9. Clean the aftertreatment DEF supply module cap and threads on the supply module with warm water and clean cloth.

Installing the Supply Module Filter

1. Slide the DEF filter equalizing element (A) into the DEF filter cartridge (B).
2. Insert the assembly into the aftertreatment DEF dosing unit (C).
3. Install cap (D) and torque to 20 Nm (15 lbf·ft).

NOTE:
The aftertreatment DEF dosing system will not prime until the correct selective catalytic reduction (SCR) temperatures are reached. To verify that there are no DEF leaks, test drive the windrower for a minimum of 15 minutes to get the SCR system up to temperature.
4. Operate the engine and check for leaks.

Figure 5.99: DEF Supply Module Filter
5.12 Every 2000 Hours

Complete the following maintenance tasks every 2000 hours of operation.

- Change engine coolant. Refer to 5.12.1 Changing Engine Coolant, page 308.
- Change hydraulic oil. Refer to 5.12.2 Draining Hydraulic Oil, page 310.
- Change DEF tank vent hose filter. Refer to 5.12.4 Replacing the Diesel Exhaust Fluid (DEF) Vent Hose Filter, page 313.
- General engine inspection. Refer to 5.12.5 General Engine Inspection, page 313.

5.12.1 Changing Engine Coolant

Change the engine coolant after every 2000 hours of operation or two years, whichever occurs first.

Draining Coolant

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

To avoid personal injury from hot coolant, do NOT turn pressurized coolant tank cap until engine cools.

1. Stop the engine and remove the key. Let the engine cool.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Turn the pressurized coolant tank cap (A) to the first notch to relieve pressure before removing cap completely.
4. Remove the pressurized coolant tank cap.

![Figure 5.100: Coolant Recovery Tank](image)
5. Locate the radiator drain valve (B) on the radiator inlet tube (A). It is located inside the frame beside the engine.

6. Place a drain pan (about 30 liters [8 US gallons]) under the drain valve, and then open the radiator drain valve (B).

7. When the system has been completely drained, close the radiator drain valve (B).

8. Fill system with clean water through the pressurized coolant tank. Replace the pressurized coolant tank cap.

9. Start engine. Turn TEMPERATURE CONTROL knob to HIGH. Run engine until normal operating temperature is reached.

10. Stop the engine. Drain water out before rust or sediment settles. Repeat Steps 3, page 308 to 7, page 309 to drain water.

11. Close drain valves. Fill the system with a solution of clean water and a heavy duty radiator cleaner. Follow instructions provided with the cleaner.

12. After using the cleaner solution, flush system with clean water again. Inspect radiator, hoses, and fittings for leaks.

13. Close drain valves and fill system. Refer to Adding Coolant, page 309.

14. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

Adding Coolant

Check the coolant level in the pressurized coolant tank daily, the tank should be at least one-half full. If less, add coolant.

⚠️ CAUTION
To avoid personal injury from hot coolant, do NOT turn cap until engine cools.

1. Open the hood. Refer to 5.3.1 Opening Hood, page 251.

2. Remove the pressurized cap (A) from coolant recovery tank.

 NOTE: For coolant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242.

3. Add coolant at a rate not exceeding 11 L/min (3 gpm) until the recovery tank is one-half full.

 NOTE: When adding coolant, use the MAX COLD line (B) on the side of tank that faces cab for an accurate measurement.

⚠️ CAUTION
Before starting the machine, check to be sure all bystanders have cleared the area.
4. With the pressurized cap off, start the engine and run at high idle for approximately 20 minutes or until the engine temperature reaches 85°C (185°F).

5. Add coolant until the recovery tank is one-half full. Check the coolant level again. Refer to 5.6.5 Checking Engine Coolant Level, page 271.

6. Replace the pressurized cap (A).

7. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

5.12.2 Draining Hydraulic Oil

Hydraulic oil should be changed every 2000 hours of operation or three years, whichever comes first.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

If machine is running, oil may be hot. Burns can result from contact with hot oil. This procedure can be performed when the oil is cold, but first run the machine to stir the oil up before draining.

1. Park windrower on level ground and lower header and reel so that lift cylinders are fully retracted.
2. Stop the engine and remove the key.
3. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
4. Place a container (at least 65 liters [17 US gallons] capacity) under drain at the bottom of the hydraulic reservoir to collect the oil.
5. On the hydraulic oil tank, turn plug handle (A) counterclockwise until loose, and then remove plug (this will allow air to enter tank).

Figure 5.103: Reservoir Plug
6. From beneath the windrower, locate hose (A) that connects to the inlet manifold (B).

7. Remove hose (A) from the elbow fitting and allow hose to drain into a clean container.

8. Once the tank is empty, reattach hose to elbow.

9. Locate and remove the magnetic drain plug (A) that is underneath the hydraulic oil tank.

 NOTE:
 Pull the traction drive hoses out of the way to allow oil to drop straight down into catch pan.

10. Inspect and clean the magnetic drain plug for any debris.

11. Reinstall drain plug. Torque plug to 75–82 Nm (55–60 lbf·ft).

12. Reinstall plug (A) on the hydraulic oil tank.

13. Close the hood. Refer to **5.3.2 Closing Hood, page 252**.

14. Dispose of used oil in a manner that complies with local rules and regulations.
5.12.3 Filling Hydraulic Oil

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Park windrower on level ground, and lower header and reel so that lift cylinders are fully retracted.
2. Stop the engine and remove the key.
3. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
4. Turn plug handle (A) counterclockwise until loose and then remove plug by pulling straight out.

 NOTE:
 When filling oil at a fast rate, the screen element in the fill tube restricts the oil and makes it difficult for air to escape.

5. To improve oil fill rate through the screen, open the breather cap (A) at the top of the tank to allow air to escape.

 IMPORTANT:
 Whenever the breather cap is opened, clean the area and take care to prevent debris from entering the tank through the opening.

6. Add oil to maintain the level between the low and full indicator marks. Refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 242 for hydraulic oil specifications and quantity.

 NOTE:
 When the sight glass is showing LOW, approximately 4 liters (1 US gallon) is required to reach the FULL.

7. Reinstall plug, and turn plug handle (B) clockwise until plug is secure.
8. Close breather cap (A).
9. Close the hood. Refer to 5.3.2 Closing Hood, page 252.
5.12.4 Replacing the Diesel Exhaust Fluid (DEF) Vent Hose Filter

The DEF vent hose filter should be replaced every 2000 hours.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.

2. Locate the DEF tank (A) vent hose filter (B) that is located below the DEF tank.

3. Pull vent hose filter (A) from DEF tank vent hose.

4. Install the new vent hose filter (A).

 NOTE:
 Ensure arrow on the vent hose filter (A) points towards the DEF tank.

5.12.5 General Engine Inspection

Engine inspection should be performed by your MacDon Dealer.

Refer to your engine manual for further information. (Owner’s Manual QSB 4.5 and QSB 6.7 Engine Cummins #4021531 are supplied with your machine).
5.13 Annual Service

Complete the following maintenance tasks annually. It is recommended that annual maintenance be done prior to start of operating season.

- Check battery charge and fluid level. Refer to 5.13.1 Batteries, page 314.
- Check steering linkages. Refer to 5.13.2 Checking Steering Link Pivots, page 323.
- Check A/C blower. Refer to 5.13.3 Air Conditioning Evaporator, page 325.
- Check antifreeze concentration. Refer to 5.13.4 Checking Engine Coolant Strength, page 328.

5.13.1 Batteries

Table 5.5 Battery Specification

<table>
<thead>
<tr>
<th>Rating</th>
<th>Group</th>
<th>CCA (min)</th>
<th>Volt</th>
<th>Maximum Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy duty, off-road, vibration resistant</td>
<td>31A</td>
<td>760</td>
<td>12</td>
<td>334 x 188 x 232 mm (13 x 7.4 x 9.13 in.)</td>
</tr>
</tbody>
</table>

Maintaining a Battery

⚠️ **CAUTION**

Do NOT attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

- Check battery charge **once a year**, more often if operating in cold weather. Hydrometer readings should be 1.260 to 1.300. Readings below 1.250 indicate charging is required. Refer to Charging a Battery, page 316.
- Keep batteries clean by wiping with a damp cloth.
- Keep all connections clean and tight. Remove any corrosion and wash terminals with a solution of baking soda and water. A light coating of grease on terminals (after cables are attached) will reduce corrosion.
- To prolong battery life, store batteries fully charged and at -7° to +26°C (+20° to +80°F). Check voltage after storage and recharge as needed according to battery and charger manufacturer recommendations.
- Do **NOT** stack storage batteries on top of each other.
- Test batteries every 4–6 months and recharge if necessary.

Opening Battery Cover

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open hood. Refer to 5.3.1 Opening Hood, page 251.
3. Lift up on the cab end of the cover (A) to disengage it from the retaining tab (B), and swing cover away from the frame.

Closing Battery Cover

1. Swing the cover (A) towards the windrower frame. Lift up on the cab end of the cover until it is secured by the retaining tab (B) on the frame.
Charging a Battery

CAUTION

- Ventilate the area where batteries are being charged.
- Do NOT charge a frozen battery. Warm to 16°C (60°F) before charging.
- Do NOT connect or disconnect live circuits. To prevent sparks, turn off charger and connect positive cable first. PROTECT YOUR EYES.
- If charging battery in windrower, disconnect POSITIVE battery cable before connecting charger cable, then connect ground cable last, away from battery.
- Stop or cut back charging rate if battery feels hot, or is venting electrolyte. Battery temperature must NOT exceed 52°C (125°F).
- The maximum charge rate in amperes should be NO MORE than 1/3 of the battery’s reserve capacity minute rating. If the terminal voltage exceeds 16.0 volts while charging, reduce the charge rate.
- Continue charging and reduce the rate as needed until a two hour period results in no increase in voltage or decrease in current.

Table 5.6 Voltage Chart

<table>
<thead>
<tr>
<th>Voltage</th>
<th>State of Charge (%)</th>
<th>Approximate Battery Charging Time to Full Charge at 27°C/80°F. (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Standard Battery</td>
<td>12 Volts</td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>100</td>
<td>— FULL CHARGE —</td>
</tr>
<tr>
<td>12.4</td>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>12.2</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>12.0</td>
<td>25</td>
<td>65</td>
</tr>
<tr>
<td>11.8</td>
<td>0</td>
<td>85</td>
</tr>
</tbody>
</table>

17. Charging time depends on battery capacity, condition, age, temperature, and efficiency of charger.
WARNING

- Gel and AGM (Absorbed Glass Mat) batteries require a voltage-limited charger. Charging a gel or AGM battery on a typical shop charger—even one time—may greatly shorten its life.

- If the electrolyte is accessible, verify that plates are covered before beginning to charge. At the end of charge, add distilled water as needed to bring levels to the proper height. If water is added, charge for an additional 30 minutes to mix. If electrolyte levels are low, but battery is not accessible, remove battery from service.

CAUTION

Follow all instructions and precautions supplied by the battery charger manufacturer, including the following:

- Charge at recommended rates and times.
- Turn off charger prior to hook up to avoid dangerous sparks. Wear proper eye protection.
- Reduce charge rate if the terminal voltage is higher than 16.0 volts while charging. The maximum charge rate in amperes should NOT exceed 1/3 of the battery's reserve capacity minute rating.
- Continue charging if there is no change in voltage or current for a two-hour period, and reduce the rate as needed.
- If the battery case gets hot during charging or spews large amount of gasses, temporarily stop charging.

IMPORTANT:
NEVER overcharge batteries. Excessive charging will shorten battery life.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Stop the engine and remove the key.
2. Open the battery cover. Refer to Opening Battery Cover, page 314.
3. Remove red plastic cover (A) from positive cable clamps.
4. Remove black plastic cover (B) from negative terminals.
5. If charging battery in windrower, disconnect positive battery cable (A), then connect charger cable to positive post. Connect charger ground cable to the engine block last, away from battery.
6. Charge batteries in accordance with charger manufacturer's instructions.
Boosting a Battery

If boosting a battery is required, connect boost cables in the exact order described below.

WARNING

- Gas given off by batteries is explosive. Keep sparks and flames away from batteries.
- Make last connection and first disconnection at the point furthest away from the batteries.
- Wear protective eye-wear when using a booster battery.
- Be sure everyone is clear of machine when starting engine. Start engine from operator’s station only.

Connecting booster cables

1. To access the windrower batteries, remove the battery cover. Refer to *Opening Battery Cover, page 314*.
2. Pull back the red rubber battery terminal cover and connect one end of the positive (+) booster cable to positive (+) post (A) on the dead battery.
3. Connect the other end of the positive (+) booster cable to the positive (+) post (B) on the booster battery.
4. Connect one end of the negative (-) booster cable to negative (-) post (C) on the booster battery.
5. Connect the other end of the negative (-) booster cable (D) to a clean, unpainted, solid metal part on the engine of the dead unit.

WARNING

To minimize the chance of an explosion, avoid connecting the negative boosting cable to the negative post on the dead battery.

6. Turn ignition switch in cab as with normal start-up.

Figure 5.115: Attaching Booster Cables
Removing booster cables

CAUTION
Spark hazard. When disconnecting booster cables, do not allow the cable clamps to touch each other.

1. Disconnect the negative (-) booster cable (A) from the engine of the unit that was boosted.
2. Disconnect the other end of the negative (-) booster cable from the negative (-) battery post (B) of the booster battery.
3. Disconnect the positive (+) booster cable from the positive (+) battery post (C) of the booster battery.
4. Disconnect the other end of the positive (+) booster cable from the positive (+) battery post (D) of the boosted battery.
5. Replace the black and red rubber battery terminal covers.
6. Close the battery cover. Refer to *Closing Battery Cover, page 315*.

Figure 5.116: Removing Booster Cables
Removing a Battery

CAUTION

Do not attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the battery cover. Refer to *Opening Battery Cover, page 314*.
3. Disconnect the battery harness. Refer to *Disconnecting a Battery, page 321*.
4. Loosen bolt (A) until securing strap (B) can be removed.
5. Lift batteries off the support.

Installing a Battery

Table 5.7 Battery Specification

<table>
<thead>
<tr>
<th>Rating</th>
<th>Group</th>
<th>CCA (min)</th>
<th>Volt</th>
<th>Maximum Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy duty, off-road, vibration resistant</td>
<td>31A</td>
<td>760</td>
<td>12</td>
<td>334 x 188 x 232 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(13 x 7.4 x 9.13 in.)</td>
</tr>
</tbody>
</table>

1. Position new batteries on battery support.

NOTE:

Ensure that positive terminal is positioned on the right side of the battery when facing them.

2. Install strap (B) with secure with bolts (A).
3. Connect battery cables. Refer to *Connecting Batteries, page 322*.
4. Close battery cover. Refer to *Closing Battery Cover, page 315*.

![Figure 5.117: Battery Location](image)

![Figure 5.118: Battery Location](image)
Disconnecting a Battery

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the battery cover. Refer to Opening Battery Cover, page 314.
3. Remove the black plastic cover from the negative cable clamps (B). Loosen clamps and remove cable from batteries.
4. Remove the red plastic cover from positive cable clamps (A). Loosen the clamps and remove cable from batteries.
Connecting Batteries

⚠️ DANGER ⚠️

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

IMPORTANT:

Batteries are negative grounded. Always connect starter cable to the positive (+) terminal of battery and battery ground cable to negative (–) terminal of battery. Reversed polarity in battery or alternator may result in permanent damage to electrical system.

NOTE:

Before connecting the harness to the batteries, ensure that positive terminal is positioned on the right side of the battery when installed on the battery support.

1. If installing a new battery, remove plastic caps from battery posts.
2. Attach red positive (+) cable terminals to positive posts (B) on batteries and tighten clamps. Reposition plastic covers onto clamps.
3. Attach black negative (–) cable terminals to negative posts (A) on batteries and tighten clamps. Reposition plastic covers onto clamps.
4. Close the battery cover. Refer to *Closing Battery Cover, page 315.*

![Figure 5.120: Batteries](image)
5.13.2 Checking Steering Link Pivots

The following checks should be performed every year:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Place ground speed lever (GSL) (A) in PARK, shut down engine, and remove key.

Figure 5.121: Operator Console
2. Check steering rod bolts (A) for looseness.
3. Ensure ball joints (B) feel firm, but can be moved by hand.

NOTE:
Ball joints that are excessively loose or too stiff to pivot by hand should be replaced.

4. Check steering link bolts (A) for looseness.
5. Ensure ball joints (B) feel firm but can be moved by hand.

NOTE:
Ball joints that are excessively loose or too stiff to pivot by hand, should be replaced.
6. If bolts are loose:
 a. Back off jam nut (A).
 b. Tighten inside nut (B) to 65–72 Nm (48–53 lbf ft).
 c. Hold inside nut (B) and tighten jam nut (A) to 65–72 Nm (48–53 lbf ft).

7. See your MacDon Dealer to replace any loose steering link ball joints or steering rod ball joints.

8. After replacing parts or making adjustments, perform checks for neutral interlock and steering lock. Refer to 5.10.2 Safety Systems, page 301.

5.13.3 Air Conditioning Evaporator

Check the air conditioning evaporator for cleanliness every year. If the air conditioning system produces insufficient cooling, the evaporator fins may be clogged. Fins will clog up from the side opposite the blowers. The evaporator is located inside the heating air conditioning unit under the cab. To access the evaporator, remove the cover from the air conditioning unit.
Removing Air Conditioning (A/C) Cover

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Loosen the clamps (A) on the two drain hoses and pull the hoses off the A/C drain tubes.

2. Remove the ten fasteners (A) that attach the cover to the housing. Remove the cover (B).
Cleaning Air Conditioning (A/C) Evaporator Core

WARNING

To avoid cuts from evaporator fins, do NOT use bare hands to brush away clogs.

1. Remove the A/C cover. Refer to *Removing Air Conditioning (A/C) Cover, page 326*.
2. Use a vacuum cleaner or compressed air to remove dirt from inside the housing.
3. Blow compressed air through the evaporator fins from the blower side (A) first as shown. Direct the air straight into the evaporator to prevent fin damage. A nozzle extension makes this procedure easier.
4. Repeat the previous step from the side (B) opposite the blowers.

5. If you can’t feel the compressed air blowing through the evaporator core, proceed as follows:
 a. Protect the blower motor (A) from water.
 b. Soak the evaporator core (B) with warm water using a low pressure hose. Let soak for several minutes.
 c. Blow compressed air through the core from the blower side (C).
 d. Repeat the soaking procedure until air blows through the evaporator freely.

Figure 5.128: A/C Evaporator Core

Figure 5.129: A/C Evaporator Core
Installing Air Conditioning (A/C) Cover

1. Straighten any bent fins.
2. Position cover (B) and attach with eight screws (A).

3. Reattach drain hoses to drain tubes and secure with hose clamps (A). Tighten bolts to 7–7.8 Nm (40–45 lbf·in).

5.13.4 Checking Engine Coolant Strength

Check the anti-freeze in the pressurized coolant tank with a tester every year, preferably before off-season storage. Anti-freeze is essential in any climate. It broadens the operating temperature range by lowering the coolant freezing point and by raising its boiling point. Anti-freeze also contains rust inhibitors and other additives to prolong engine life.

⚠️ CAUTION

To avoid personal injury from hot coolant, do NOT turn cap until engine cools.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Remove the pressurized coolant tank cap (A).

4. Check the coolant in the pressurized coolant tank using an antifreeze tester. Tester should indicate protection to temperatures of -34°C (-30°F).

5. Inspect the pressurized coolant tank cap as follows before reinstalling:
 a. Check the gasket for cracks or deterioration, and replace the cap if necessary.
 b. Check that the spring in the cap moves freely. Replace the cap if spring is stuck.

6. Install pressurized coolant tank cap (A).

7. Close the hood. Refer to 5.3.2 Closing Hood, page 252.
5.14 Maintenance as Required

This section details service procedures that should be done as they are required.

5.14.1 Seat Belts

- Keep sharp edges and items that can cause damage away from the belts.
- Check belts, buckles, retractors, tethers, slack take-up system, and mounting bolts for damage.
- Check that bolts are tight on the seat bracket or mounting.
- Replace all parts that have damage or wear.
- Replace belts that have cuts that can weaken the belt.
- Keep seat belts clean and dry. Clean only with a soap solution and warm water. Do NOT use bleach or dye on the belts, as this may weaken the material.

5.14.2 Draining Fuel Tank

Draining the fuel tank is necessary to remove old or contaminated fuel.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

- To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.
- NEVER refuel the windrower when the engine is hot or running.

1. Stop the engine and remove the key.
2. Locate the fuel tank on the right side of the windrower frame.
3. Place a drain pan under plug (A).
4. Loosen plug (A), and drain the tank.
5. Add some clean fuel to tank to flush out any remaining contaminants.

NOTE:

Do NOT refill the fuel tank if you need to work on the system. Refill tank when work is completed. Refer to 5.6.7 Filling Fuel Tank, page 272.

Figure 5.133: Drain Plug
5.14.3 Draining the Diesel Exhaust Fluid (DEF) Tank

It is necessary to drain the DEF tank when the DEF is contaminated or if storing the windrower for a period greater than six months.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Place a drain pan under the DEF tank (B). The drain pan should be large enough to hold 29 liters (7.5 US gallons).

IMPORTANT:

Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand and then shovelled to a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water as DEF is corrosive.

⚠️ CAUTION

Avoid contact with eyes. In case of contact, rinse immediately with water for 15 minutes.

3. Remove the drain plug (A) from under the tank (B) and drain.
4. Add some distilled water to the tank (B) to flush out remaining contaminants.
5. Drain the distilled water that was used to clean the tank.
6. Reinstall drain plug (A) into the tank (B).

NOTE:

Do not refill if storing for six months or longer.
5.14.4 Belts

Tensioning Engine Fan Drive Belt

The engine fan drive belt is automatically tightened. Manual adjustment is NOT required.

Replacing Engine Fan Drive Belt

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Loosen compressor mounting hardware (A) and rotate the compressor (B) towards the engine to release tension on belts.
4. Remove belts (C) from compressor (B).

5. Insert the drive end of a 1/2 in. drive ratchet wrench into the belt tensioner (A).
6. Rotate tensioner counterclockwise until fan belt (B) can be slipped off pulley (C). Release tensioner and remove wrench.
7. Remove belt in order 1–2–3 as shown.
8. Insert the drive end of a 1/2 in. drive ratchet wrench into the belt tensioner (A).
9. Rotate tensioner counterclockwise until belt (B) can be slipped onto pulley (C). Release tensioner and remove wrench.
10. Check that belt is properly seated in all pulley grooves.
11. Install compressor belts (C).
12. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

NOTE:
The tab (D) on bracket can be used as support for prying.
13. Tighten compressor mounting hardware (A).
14. Recheck tension and readjust as required.
15. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

Tensioning Air Conditioner (A/C) Compressor Belts

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Loosen compressor mounting hardware (A).
4. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

NOTE:
The tab (D) on bracket can be used as support for prying.
5. Tighten compressor mounting hardware (A).
6. Recheck tension and readjust as required.
7. Close the hood. Refer to 5.3.2 Closing Hood, page 252.
Replacing Air Conditioner (A/C) Compressor Belts

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Open the hood. Refer to 5.3.1 Opening Hood, page 251.
3. Loosen compressor mounting hardware (A) and rotate the compressor (B) towards the engine to release tension on belts.
4. Remove belts (C) from compressor (B).
5. Install compressor belts (C).
6. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

 NOTE:
 The tab (D) on bracket can be used as support for prying.
7. Tighten compressor mounting hardware (A).
8. Recheck tension and readjust as required.
9. Close the hood. Refer to 5.3.2 Closing Hood, page 252.

5.14.5 Engine Speed
The maximum and idle engine speeds are factory set.

Refer to 2.2 Specifications, page 32 for detailed information. If specified speeds cannot be maintained, see your MacDon Dealer.

IMPORTANT:
Do NOT remove any seals from injector pump. Removal of seals will void the engine warranty.

5.14.6 Lighting

Aligning Headlights: Engine-Forward

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
Header should be attached and raised to maintain proper windrower stance.

18. Specifications and design are subject to change without notice or obligation to revise previously sold units.
MAINTENANCE AND SERVICING

1. Position windrower on level ground (A) 7.5 m (25 ft.) in front of a vertical surface as shown.

 NOTE:
 Check that casters are positioned underneath windrower to properly align headlights.

2. Stop the engine and remove the key.

3. Turn on ROAD lights (A) and switch to LOW BEAM.
4. Adjust headlight (A) with adjusting bolts (B) so that the beam’s maximum height above the ground does not exceed 1263 mm (49-3/4 in.) (C). Access the bolts by reaching under the headlight bezel (D).

Aligning Headlights: Cab-Forward

Adjust field lights when in the field (or equivalent) to suit preference.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Hold onto handholds (A) on the cab front corners, and stand on header anti-slip strips.
2. Adjust lights by hand as required. Loosen/tighten nuts (A) if necessary.

Adjusting Front Field Lights

Adjust field lights when in the field (or equivalent) to best suit Operator preference.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Hold onto handholds (A) on the cab front corners, and stand on header anti-slip strips.
2. Adjust lights by hand as required. Loosen nuts (A) if necessary and retighten.

Adjusting Rear Work Lights
Adjust lights in the field (or equivalent) to best suit Operator preference.

⚠️ DANGER
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Stand on left or right platform (B) to access rear work lights (A).
2. Adjust light by hand. Loosen/tighten bolts (A) if necessary.

Adjusting Rear Work Lights

Adjust rear work lights when in the field (or equivalent) to best suit Operator preference.

1. Stand on left or right platform (B) to access rear work lights (A).

Replacing Bulbs in Standard Work Lights

The following procedure applies to all halogen bulbs shown in Figure 5.151, page 340. If replacing engine-forward headlight bulbs, refer to Replacing Headlight Bulb (Engine-Forward), page 341.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Figure 5.151: Halogen Bulb Locations

NOTE:

Front work light shown.

1. Stop the engine and remove the key.
2. Disconnect wiring harness (A).
3. Remove rubber insulator boot (B).
4. Remove bulb from body.

IMPORTANT:
Do **NOT** touch the glass of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.
5. Align lugs on new bulb with slots in housing and push into place.
6. Install insulator boot (B) and wiring harness (A).

Replacing Headlight Bulb (Engine-Forward)

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Turn off the windrower’s engine and remove the key from the ignition.
2. Remove eight hex flange bolts (A) then remove headlight bezel assembly (B). Retain hardware.
3. Remove electrical connectors from red tail lights (C) to fully remove bezel (B).
4. Remove the two bolts (A) holding the headlight bracket (B) in place and slide bracket forward.

5. Pull wiring harness connector off the headlight and remove assembly (A).

6. Remove four machine screws (A) and nylon nuts (B) and retain hardware.

7. Remove old headlight from bracket and replace with new headlight.

IMPORTANT:
Do **NOT** touch the glass of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.

8. Attach headlight to bracket using four retained machine screws (A) and nylon nuts (B). Torque screws to 2.0–2.7 Nm (18–24 lbf·in).

9. Connect wiring harness connector to headlight.

10. Attach headlight bracket assembly (B) using retained bolts (A).

12. Attach electrical connectors to red tail lights (C).

13. Attach headlight bezel assembly (B) to frame using the eight retained hex flange bolts (A). Torque bolts to 2.0–2.7 Nm (18–24 lbf·in).

Replacing LED Lights (Deluxe Cab Only)

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

The M1240 Windrower deluxe cab is equipped with the following LED lights (MD #207062):

- Four LED field lights (A)
- Two LED stubble lights (B)
- Two LED rear work lights (C)

The bulb of an LED light cannot be replaced. If a light fails, please contact your MacDon Dealer for replacement parts.
Replacing Bulbs in Red and Amber Lights

To replace bulbs in red and amber lights, follow these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.

 NOTE:
 Hold onto the handholds on the cab front corners and stand on the header anti-slip strips, or stand on the maintenance platform when accessing the red and amber lights.

2. Use left or right platform to access marker lights (A) and (B) attached to mirror arms.
3. Remove two screws (A) from lens and remove lens.
4. Push and twist light bulb to remove from socket.
5. Install new bulb in socket ensuring that bulb base is properly engaged in socket.
 - Use Bulb Trade #1157 for red tail lights
 - Use Bulb Trade #1156 for amber lights
6. Reinstall lens with screws (A).

Replacing Red Tail Lights

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.
2. Remove two hex flange bolts (A) from light (B), and remove light from bezel.
3. Remove electrical connector from light (B).
4. Connect wiring harness to new light (B), and secure light to bezel using two hex flange bolts (A).
Replacing Beacon Lights

1. Disconnect wiring (A) from harness.
2. Remove nuts (B) and remove beacon (C). Discard defective beacon and hardware.
3. Clean residue from support (D) mounting surface.
4. Install new beacon (C) with gasket (E) onto support. Secure with bolts (F), washers (G), and nuts (B).
5. Torque nuts to 0.65 Nm (0.48 lbf-ft).

Replacing the Cabin Dome Bulb

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
2. Insert a slotted screwdriver (or similar prying tool) into slot (A). Gently pry the lens cover until retaining tabs (B) are free of the dome light bezel.
3. Remove lens cover.
4. Replace bulb (A) (MD #208191).

IMPORTANT:
Do **NOT** touch glass with fingers.

5. Insert single retaining tab (A) into dome light bezel.

6. Insert a slotted screwdriver (or similar prying tool) into slot (B), and gently pry lens cover until retaining tabs (C) engage into dome light bezel.
Replacing the Cabin Dome Light Assembly

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

1. Stop the engine and remove the key.
2. Insert a slotted screwdriver (or similar prying tool) into slot (A). Gently pry the lens cover until retaining tabs (B) are free of the dome light bezel.
3. Remove lens cover.
4. Remove two screws (A) from dome light bezel.
5. Carefully insert a slotted screwdriver (or similar prying tool) between roof liner and dome light assembly on the side of the light with the ON/OFF switch.

6. Gently depress retaining clip (A), and swing dome light assembly downwards to disengage retaining tab (B).

7. Disconnect the old dome light assembly from the wiring harness.

8. Connect the new dome light (MD #201707) to the wiring harness.

9. Engage retaining tab (B), and swing dome light assembly upwards until retaining clip (A) snaps into place and secures assembly.

10. Secure dome light assembly with two screws (A).

11. Insert single retaining tab (A) into dome light bezel.

12. Insert a slotted screwdriver (or similar prying tool) into slot (B), and gently pry lens cover until retaining tabs (C) engage into dome light bezel.

Turn Signal Indicators

If the turn signal indicators on the operator console do not function, contact your MacDon Dealer.
5.14.7 Accessing Circuit Breakers and Fuses

The circuit breakers and fuses are located inside a fuse box mounted on the left (cab-forward) side of the frame, behind the platform and inside the battery cover.

NOTE:
The circuit breakers automatically reset. Fuses are the plastic blade type.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop engine and remove the key from the ignition.
2. Move left (cab-forward) side platform forward. Refer to 5.4.1 Opening Platform, page 253.
3. Open the battery cover (A) to access the fuse box. Refer to Opening Battery Cover, page 314.
4. Lift latch (A) at top of fuse box cover (B) to disengage tab, and then lower cover.
5. Check and replace fuses as required. Refer to Checking and Replacing Fuses, page 351.
6. Position cover (B) onto fuse panel, ensuring that hooks at bottom of cover have engaged fuse panel.
7. Push latch (A) to engage tab at top of fuse box.
8. Close battery cover and move platform to working position. Refer to 5.4.2 Closing Platform, page 253.
Checking and Replacing Fuses

1. To check fuse, pull fuse (A) out of receptacle and visually examine.
2. To replace fuse, insert new fuse into receptacle.

IMPORTANT:
Replacement fuses should match rating on decal shown on *Fuse Panel and Relay Module Decals, page 353.*

Replacing Circuit Breakers and Relays

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stop the engine and remove the key.
MAINTENANCE AND SERVICING

3. To replace relay (A), pull relay out of receptacle and install new relay.
4. Reinstall cover.

Figure 5.174: Fuse Box (Cover Removed)
Fuse Panel and Relay Module Decals

Figure 5.175: Left Rail Fuse Decal Locations

A - Main Fuse Panel Decal (MD #291611) (Located inside Fuse Cover)
B - Relay Module Fuse Decal (MD #207816) (Located inside Fuse Cover)
C - Lower AMI Group Fuse Decal (MD #291378)
D - Upper AMI Group Fuse Decal (MD #207818)
E - ATO Group Fuse Decal (MD #207817)
Figure 5.176: Main Fuse Panel Decal (MD #291611)
Relay Module Fuse Panel Decal (MD #207816)

BF8	15A	LOW BEAM EF
BF7	15A	RH TURN LIGHTS
BF6	15A	LH TURN LIGHTS
BF5	15A	WIPER EF
BF4	15A	HIGH BEAM EF
BF3	10A	WIPER CF
BF2	15A	TAIL LIGHTS CF
BF1	15A	BRAKE LIGHTS CF

BK9	SELECTOR 1 / 2
BK10	SPARE
BK12	WIPER WASHER
BK3	RH TURN LIGHTS
BK6	LH TURN LIGHTS
BK11	SPARE
BK2	HIGH BEAM EF
BK5	LOW BEAM EF
BK8	WIPER EF
BK1	BRAKE LIGHTS CF
BK4	TAIL LIGHTS CF
BK7	WIPER CF

207816 REV. D
Figure 5.178: ATO and AMI Group Fuse Decals

A - Lower AMI Group Fuse Decal (MD #291378) B - Upper AMI Group Fuse Decal (MD #207818) C - ATO Group Fuse Decal (MD #291465)
Figure 5.179: Roof Headliner Fuse Decal (MD #207819)

EC8	15A	REAR ROOF WRK LTS
EC7	15A	TAIL LIGHTS EF
EC6	15A	HIGH BEAM CF
EC5	15A	REAR SWATH LTS
EC4	15A	LOW BEAM CF
EC3	15A	BRAKE LIGHTS EF
EC2	15A	OUTER WORK LTS
EC1	15A	INNER WORK LTS

| EC10 | 5A | DOME LIGHT |
| EC9 | 10A | BEACONS |

EK3	TAIL LIGHTS EF
EK6	HIGH BEAM CF
EK2	LOW BEAM CF
EK5	REAR ROOF WRK LTS
EK1	INNER WORK LIGHTS
EK4	OUTER WORK LIGHTS
EK7	BRAKE LIGHTS EF
EK8	REAR SWATH LTS
EK9	BEACONS
EK10	DOME LIGHT
Inspecting and Replacing 125A Main Fuses

The 125A main fuse holders are located on the frame on the left cab-forward side platform beside the battery.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Access the 125A main fuses as follows:

1. Stop the engine and remove the key.
2. Open the left platform. Refer to 5.4.1 Opening Platform, page 253.
3. Remove negative battery terminal.
4. Locate the five main fuses secured to the left cab-forward front frame.

5. To check condition of the fuse, pull tab (A) and open cover (B).
6. Examine fuse (A) for indications of melting.

7. To remove fuse (A), remove two nuts (B) and pull the fuse free from holder (existing wiring may need to be pulled off the stud first).

8. Install the new fuse on studs and install any existing wiring that was removed.

9. Secure with nuts (B).

10. Close cover (B) and secure with tab (A).

11. Return platform to operating position. Refer to 5.4.2 Closing Platform, page 253.

5.14.8 Drive Wheels

Raising Drive Wheel

This procedure applies to both drive wheels.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Header MUST be removed and NO weight box installed. Use a hydraulic jack with minimum lifting capacity of 2268 kg (5000 lb.) to provide adequate support for the machine.

1. Disconnect the header.

2. Park windrower on level ground. Block all wheels.
3. Place the ground speed lever (GSL) (A) in PARK.
4. Stop the engine and remove the key.

5. Place a jack under the leg jack point (A). Raise the drive wheel until it is slightly off the ground.
6. Place a jack stand beneath the lift cylinder mount (B).
 NOTE:
 Do **NOT** place jack stand under the cylinder. Use a small metal plate on top of the jack stand.
7. Lower the windrower onto the jack stand.
Removing Drive Wheels

CAUTION

Use a suitable lifting device capable of supporting a minimum of 907 kg (2000 lb.) to lift the wheel assembly away from the windrower.

1. Raise the windrower drive wheel (A) off the ground. Refer to Raising Drive Wheel, page 359.
2. Remove the wheel nuts (B).
3. Remove the drive wheel (A).

Installing Drive Wheels

IMPORTANT:

Windrower must be supported off the ground with stands. Refer to Raising Drive Wheel, page 359.

1. Using a forklift, lift cab-end of windrower to approximately 130 cm (51 in.) (B) off the ground, enough to position the drive wheel assembly (A). Place a stand (C) under windrower frame.
2. Clean mounting surface on wheel drive and rim.
MAINTENANCE AND SERVICING

⚠️ CAUTION
Use a lifting device capable of supporting a minimum of 907 kg (2000 lb.) to lift the wheel assembly.

3. Position pallet jack (A) or equivalent under tire and raise slightly.

4. Locate drive wheel against the wheel drive hub so the air valve (B) is on the outside and the tire tread (C) points forward with the windrower in cab-forward orientation.

NOTE:
For turf tires (diamond tread pattern), be sure arrow on sidewall points in forward rotation with windrower in cab-forward.

5. Position wheel to line up holes in rim with studs on hub and push wheel onto hub.

6. Install wheel nuts (A).

IMPORTANT:
To avoid damage to wheel rims and studs, do **NOT** use an impact wrench. Threads must be clean and dry. Do **NOT** apply lubricant or anti-seize compound. Do **NOT** overtighten the wheel nuts.

7. Torque drive wheel nuts. Refer to 5.5.1 Tightening Drive Wheel Nuts, page 256.

8. Repeat tightening sequence two additional times, ensuring the specified torque is achieved each time.

9. Lower jack and move away from work area.

10. Raise windrower, remove stand, and lower windrower to ground.

11. Repeat Steps 2, page 361 to 8, page 362 for the other drive wheel.

12. Lower the windrower. Remove the jack. Refer to Lowering Drive Wheel, page 362.

13. Repeat torque procedure every hour of operation until two consecutive checks confirm that there is no movement of the nuts.

Lowering Drive Wheel

This procedure is for lowering the drive wheel when it is raised on a jack stand. This procedure applies to both drive wheels.

⚠️ CAUTION
Jack stand must be capable of supporting a minimum of 2268 kg (5000 lb.).
1. Place a jack under the leg jack point (A), and raise the drive wheel slightly off the jack stand.

2. Remove the jack stand from under the cylinder lift mount (B). Lower the drive wheel to the ground.

3. Remove the jack.

5.14.9 Caster Wheels

Adjusting Caster Tread Width

The rear casters can be adjusted to a narrow tread width, which allows loading and shipping without having to remove them.

A narrow tread width is better suited for smaller headers because it allows more space to the uncut crop, and provides more maneuverability around poles, irrigation inlets, and other obstacles.

A wider tread width reduces runover in heavy crops that produce large windrows.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Park on a flat, level surface with the header on the ground and the ground speed lever in PARK position with the steering wheel locked.

1. Park windrower on level ground, and block the drive wheels.

2. Place the ground speed lever (GSL) in PARK.

3. Stop the engine and remove the key.
4. Raise rear of windrower slightly using a jack or other lifting device under the frame at location (A) until most of the weight is off the casters.

NOTE:
Lifting device must have a lifting capacity of at least 4536 kg (10,000 lb.).

5. Remove four bolts (B) (two on backside, two on underside) and washers from left and right side of walking beam.

6. Slide left and right side extensions equal distances in the inboard or outboard directions, and align holes at desired locations.

NOTE:
Rotate the caster so the wheel is parallel to the walking beam to assist with moving the extensions.

IMPORTANT:
Ensure caster wheels are positioned at equal distances from the center of the windrower.
7. Position bracket (A) and install back bolts (C).
8. Install bottom bolts (B).
9. Tighten bolts as follows:
 a. Snug bottom bolts (B), then snug back bolts (C).
 b. Tighten and torque back bolts (C) to 746–770 Nm (550–570 lbf ft).
 c. Tighten and torque bottom bolts (B) to 746–770 Nm (550–570 lbf ft).
10. Lower windrower to ground.

IMPORTANT:
Torque bolts after first 5 and 10 hours of operation.

Servicing Caster Wheels

Raising Caster Wheel

This procedure is for raising the caster wheel. This procedure applies to both caster wheels.

1. Park windrower on level ground, and block the drive wheels.
2. Place the ground speed lever (GSL) (A) in PARK.
3. Stop the engine and remove the key.

4. Raise the end of walking beam (A) until the caster wheel assembly (B) is slightly off the ground. Use a suitable lifting device, capable of lifting 2268 kg (5000 lb.) minimum.
5. Place a jack stand beneath the walking beam and lower the beam until resting on the stand.
MAINTENANCE AND SERVICING

Lowering Caster Wheel

1. Raise the end of walking beam (A) slightly, using a suitable lifting device capable of lifting minimum 2268 kg (5000 lb.).

2. Remove the jack stand, and lower the end of the walking beam until the caster wheel assembly (B) is on the ground.

3. Remove blocks from the drive tires.

Removing Forked Caster Wheel

⚠️ CAUTION

Wheel assemblies are heavy. Support wheel assembly before removing axle bolts.

2. Remove the eight bolts (A) and nuts (four of each on each side of caster) attaching axle (B) to forked caster (C), and remove wheel assembly (D) from caster (C).
3. Remove the eight wheel nuts (A) that secure the axle (B) to the wheel (C).
4. Separate axle (B) and wheel (C).

Installing Forked Caster Wheel
1. Position axle assembly (B) into wheel (C) and secure with wheel nuts (A).

2. Tighten wheel nuts (A) to 163 Nm (120 lbf·ft) using the tightening sequence shown at right. Repeat the tightening sequence three times.
3. Position wheel assembly (D) in forked caster (C).

4. Install eight bolts (A) and nuts (four on each side of caster) to secure axle (B) to caster (C). Torque nuts to 97–107 Nm (75–79 lbf-ft).

5. Lower caster wheel. Refer to Lowering Caster Wheel, page 366.

Figure 5.202: Caster Wheel Assembly
6 Options and Attachments

6.1 Cab

6.1.1 Automated Steering Systems

A MacDon-approved automated steering system is available from MacDon Dealers that provide Trimble® GPS installation and support services.

MacDon windrowers are partially pre-wired for either the Trimble® AutoPilot™ hydraulically integrated steering system or the Trimble® EZ-Pilot® wheel/column-based assisted steering system. The windrower’s ground speed lever (GSL) has an automated steering (autosteer) engage switch.

The Trimble® EZ-Pilot® system requires the MacDon EZ-Pilot Ready kit MD #B5996. Installation instruction (MD #147853) is included in the bundle.

The Trimble® AutoPilot™ system requires the MacDon Trimble Autopilot Ready kit MD #B5995. Installation instruction (MD #147856) is included in the bundle.

Other GPS providers may supply parts in their vehicle-specific installation packages or make installation kits available through MacDon Dealers.

6.1.2 High Performance Lighting (Standard on Deluxe Cab Package)

The standard windrower cab has four halogen field lights on the front, as well as two halogen stubble lights and two halogen work lights on the back. The Lighting Upgrade kit (MD #B6051) contains eight LED flood lights to replace all of these lights. Machines with the deluxe cab already have 360° Night Vision LED Lighting installed.

MD #B6051

Instruction MD #147793 is included with the bundle.

NOTE:

This bundle is included in the deluxe cab package.
6.2 Header Operation

6.2.1 Conversion Kit for Disc Ready to Disc, Auger, and Draper Ready

Used to convert a M1240 from Disc Ready to Disc, Draper, and Auger ready.

MD #B5999

Instruction MD #147822 is included in the bundle.

6.2.2 Booster Spring Kit (External)

Available for headers over 2812 kg (6200 lb.) to increase the float capacity.

MD #B6047 – Booster Spring kit (external) includes two springs (one for each side) and mounting brackets. Kit instruction MD #147825 is included in the bundle.

There is also a Booster Spring Doubler kit (MD #B6106) that is used together with the Booster Spring kit to add on a second booster spring. Refer to 6.2.3 Double Booster Spring Kit (External), page 371.

Table 6.1 Available Float Spring Kits for Different Header Types and Configurations

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Header Configuration</th>
<th>Additional Float Spring Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>D130XL</td>
<td>30-ft single reel, double knife, timed</td>
<td>Transport</td>
<td>—</td>
</tr>
<tr>
<td>D130XL</td>
<td>30-ft single reel, double knife, timed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35-ft single reel, double knife, untimed</td>
<td>Base</td>
<td>—</td>
</tr>
<tr>
<td>D135XL</td>
<td>35-ft single reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35-ft single reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35-ft double reel, double knife, untimed</td>
<td>Base</td>
<td>—</td>
</tr>
<tr>
<td>D135XL</td>
<td>35-ft double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35-ft double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>40-ft double reel, double knife, untimed</td>
<td>Base</td>
<td>—</td>
</tr>
<tr>
<td>D140XL</td>
<td>40-ft double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D140XL</td>
<td>40-ft double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
</tbody>
</table>
6.2.3 Double Booster Spring Kit (External)

Available for headers over 6200 lb. (2812 kg) to increase the float capacity.

The Booster Spring Doubler kit (MD #B6106) that is used together with the Booster Spring kit (MD #B6047) to add on a second booster spring. Refer to 6.2.2 Booster Spring Kit (External), page 370. Kit instruction MD #147826 is included in the bundle.

6.2.4 Double Windrow Attachment (DWA)

Allows auger and rotary headers to lay a double windrow when installed on a windrower. The kit includes a draper deck, linkage assembly, hydraulics, and installation instructions.

MD #C2006 consists of:
- MD #B5973 Deck
- MD #B5974 Mounting frame, and hydraulic/electrical connections
- Double Windrow Attachment (DWA) manual

6.2.5 Center-Link Lifter

This kit allows the center-link cylinder to be hydraulically positioned and connected to the header without leaving the operator’s station.

MD #B6028

Instruction MD #147811 included in the bundle.

6.2.6 Swath Compressor

The MacDon Swath Compressor is a large, formed polyethylene sheet which is designed to mount to the underside of a MacDon M1 Series Windrower. The MacDon Swath Compressor is designed for use with D1XL and D1X Series Draper Headers cutting canola.

When lowered, the swath compressor shapes the windrow and anchors it into the stubble behind the header using a smooth, gradual transition that helps prevent shelling in ripe conditions. Too much compression by a swath compressor or roller can increase losses from crop shelling, and may increase dry-down time; inadequate compression can leave a windrow prone to wind damage.

The swath compressor height can be adjusted and monitored with the cab display. Height can be adjusted for crop ripeness, yield, and the amount of compression required. The swath compressor will automatically lift up if an Operator stops and reverses the windrower.
NOTE:
A preferred height can be saved under a One-Touch-Return preset.

MD #B6441

Instruction MD #224286 is included
6.3 Transport

6.3.1 Weight Box
A weight box installed onto the windrower header lift system is required to transport a header behind the windrower.
MD #B5238 – Weight box without harness
A towing harness is required to use the weight box. Refer to 6.3.2 Towing Harness, page 373 for more information.

6.3.2 Towing Harness
The towing harness is used together with the weight box (refer to 6.3.1 Weight Box, page 373) when towing a D1XL Series or D125X Draper Header equipped with slow speed transport option behind the windrower.
MD #B6048 – Weight box harness only. Includes hitch pin and wiring for use with slow speed header transport option.
Instruction MD #147868 is included in the bundle.

6.3.3 Ballast
Ballast kits are for draper headers only. For operation on steep hills, additional ballast sets beyond the recommended chart below may be installed.

Initial rear ballast package (MD #B6053): 1 unit (163 kg [360 lb.])
Additional rear ballast package (MD #B6054): 2 units (163 kg [360 lb.] each)
Installation instructions included.

Table 6.3 Ballast

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Base Kit</th>
<th>Additional Kits</th>
<th>Additional Float Springs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D125X</td>
<td>25 foot, single reel, double knife, timed</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, single reel, double knife, timed</td>
<td>Transport</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, single reel, double knife, timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>0</td>
<td>B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, single reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, single reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>1</td>
<td>B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, single reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>1</td>
<td>B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>B6047</td>
</tr>
<tr>
<td>D140X</td>
<td>40 foot, double reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 6.3 Ballast (continued)

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Base Kit</th>
<th>Additional Kits</th>
<th>Additional Float Springs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D140XL</td>
<td>40 foot, double reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>1</td>
<td>B6047</td>
</tr>
<tr>
<td>D140XL</td>
<td>40 foot, double reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>45 foot, double reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>45 foot, double reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>2</td>
<td>B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>45 foot, double reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>B6106</td>
</tr>
</tbody>
</table>
Troubleshooting

7.1 Engine Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine won’t crank</td>
<td>Controls not in NEUTRAL</td>
<td>Move ground speed lever (GSL) to NEUTRAL</td>
<td>Starting the Engine, page 115</td>
</tr>
<tr>
<td>Engine won’t crank</td>
<td>Controls not in NEUTRAL</td>
<td>Move steering wheel to locked position</td>
<td>Starting the Engine, page 115</td>
</tr>
<tr>
<td>Engine won’t crank</td>
<td>Controls not in NEUTRAL</td>
<td>Disengage HEADER ENGAGE switch</td>
<td>3.2.1 Header Drive, page 41</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>NEUTRAL interlock misadjusted</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>No fuel to engine</td>
<td>Fill empty fuel tank. Replace clogged filter.</td>
<td>5.6.7 Filling Fuel Tank, page 272 and 5.10.1 Maintaining Fuel Filters, page 298</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Old fuel in tank</td>
<td>Drain tank. Refill with fresh fuel.</td>
<td>5.14.2 Draining Fuel Tank, page 330</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Water, dirt, or air in fuel system</td>
<td>Drain, flush, fill, and prime system</td>
<td>System Priming, page 300</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Improper type of fuel</td>
<td>Use proper fuel for operating conditions</td>
<td>5.1.2 Fuel Specifications, page 241</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Crankcase oil too heavy</td>
<td>Use recommended oil</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 242</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Low battery output</td>
<td>Have battery tested. Check battery electrolyte level.</td>
<td>5.13.1 Batteries, page 314</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Poor battery connection</td>
<td>Clean and tighten loose connections</td>
<td>5.13.1 Batteries, page 314</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Faulty starter</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Loose electrical connection at fuel pump</td>
<td>Ensure connector at pump is fully pushed in</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Wiring shorted, circuit breaker open</td>
<td>Check continuity of wiring and breaker (manual reset)</td>
<td>Checking and Replacing Fuses, page 351</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>ECM fuse (1 of 2) blown</td>
<td>Replace</td>
<td>Checking and Replacing Fuses, page 351</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>ECM Ignition relay faulty</td>
<td>Replace</td>
<td>Checking and Replacing Fuses, page 351</td>
</tr>
<tr>
<td>Engine hard to start or will not start</td>
<td>Faulty injectors</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Engine out of time</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Insufficient oil</td>
<td>Add oil</td>
<td>Adding Engine Oil, page 288</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Low or high coolant temperature</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine knocks</td>
<td>Improper fuel</td>
<td>Use proper fuel</td>
<td>5.1.2 Fuel Specifications, page 241</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>Low oil level</td>
<td>Add oil</td>
<td>Adding Engine Oil, page 288</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>Improper type of oil</td>
<td>Drain and fill crankcase with proper oil</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 242</td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>Worn components</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High oil consumption</td>
<td>Internal parts worn</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High oil consumption</td>
<td>Crankcase oil too light</td>
<td>Use recommended oil</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 242</td>
</tr>
<tr>
<td>High oil consumption</td>
<td>Oil leaks</td>
<td>Check for leaks around gaskets, seals, and drain plugs</td>
<td>5.6.1 Checking Engine Oil Level, page 265</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Unsteady fuel supply</td>
<td>Change filter on fuel tank vent line. Replace clogged fuel filter.</td>
<td>5.11.1 Removing and Installing the Fuel Tank Vent Filter, page 303 and 5.10.1 Maintaining Fuel Filters, page 298</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Water or dirt in fuel system</td>
<td>Drain, flush, and fill fuel system</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 242</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Low coolant temperature</td>
<td>Remove and check thermostat</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Air in fuel system</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Engine runs irregularly or stalls frequently</td>
<td>Dirty or faulty injectors</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Incorrect timing</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Engine oil viscosity too high</td>
<td>Use recommended oil</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 242</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Intake air restriction</td>
<td>Service air cleaner</td>
<td>Cleaning Primary Air Filter, page 292</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Clogged fuel filter</td>
<td>Replace primary fuel filter, and if necessary, replace secondary fuel filter.</td>
<td>5.10.1 Maintaining Fuel Filters, page 298</td>
</tr>
<tr>
<td>Lack of power</td>
<td>High back pressure</td>
<td>Clean out or replace exhaust canisters</td>
<td>5.9.5 Inspecting Exhaust System, page 295</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Improper type of fuel</td>
<td>Use proper fuel</td>
<td>5.1.2 Fuel Specifications, page 241</td>
</tr>
<tr>
<td>Lack of power</td>
<td>High or low engine temperature</td>
<td>Remove and check thermostat</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Improper valve clearance</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lack of power</td>
<td>Faulty injectors</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine temperature below normal</td>
<td>Defective thermostat</td>
<td>Remove and check thermostat</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Engine overheated</td>
<td>Check coolant level</td>
<td>5.6.5 Checking Engine Coolant Level, page 271</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Engine overheated</td>
<td>Check thermostat</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Low engine oil pressure</td>
<td>Check oil level</td>
<td>5.6.1 Checking Engine Oil Level, page 265</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Low charge oil pressure</td>
<td>Check oil level</td>
<td>5.6.3 Checking Hydraulic Oil, page 267</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Low coolant level</td>
<td>Fill reserve tank to proper level. Check system for leaks.</td>
<td>Adding Coolant, page 309</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Water only for coolant</td>
<td>Replace with antifreeze</td>
<td>Adding Coolant, page 309</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Engine overloaded</td>
<td>Reduce ground speed</td>
<td>Driving Forward in Cab-Forward Mode, page 127</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine overheats</td>
<td>Defective radiator cap</td>
<td>Replace cap</td>
<td></td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Dirty radiator screen</td>
<td>Clean screen</td>
<td>5.8.2 Cleaning Cooler Module, page 281</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Dirty radiator core</td>
<td>Clean radiator</td>
<td>5.8.2 Cleaning Cooler Module, page 281</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Cooling system dirty</td>
<td>Flush cooling system</td>
<td>5.12.1 Changing Engine Coolant, page 308</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective thermostat</td>
<td>Remove and check thermostat</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective temperature gauge or sender</td>
<td>Check coolant temperature with thermometer. Replace gauge if necessary.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine overheats</td>
<td>Defective water pump</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Clogged or dirty air cleaner</td>
<td>Service air cleaner</td>
<td>Cleaning Primary Air Filter, page 292</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Engine overloaded</td>
<td>Reduce ground speed</td>
<td>Driving Forward in Cab-Forward Mode, page 127</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Improper valve clearance</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Engine out of time</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Dirty injector nozzles</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Low engine temperature</td>
<td>Check thermostat</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>Improper type of fuel</td>
<td>Use proper fuel</td>
<td>5.1.2 Fuel Specifications, page 241</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Low battery output</td>
<td>Check battery charge</td>
<td>Maintaining a Battery, page 314</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Loose or corroded battery connections</td>
<td>Clean and tighten loose connections</td>
<td>Maintaining a Battery, page 314</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Controls not in NEUTRAL</td>
<td>Move GSL to NEUTRAL</td>
<td>Starting the Engine, page 115</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Controls not in NEUTRAL</td>
<td>Move steering wheel to CENTER position</td>
<td>Driving in Reverse in Cab-Forward Mode, page 128</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Controls not in NEUTRAL</td>
<td>Disengage header</td>
<td>Engaging and Disengaging the Header, page 184</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Relay not functioning</td>
<td>Check relay and wire connections</td>
<td>Checking and Replacing Fuses, page 351</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Main fuse defective/blown</td>
<td>Replace main fuse</td>
<td>Checking and Replacing Fuses, page 351</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Key power fuse blown</td>
<td>Replace</td>
<td>Checking and Replacing Fuses, page 351</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Key switch worn or terminals loose</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Switch at Interlock not closed or defective</td>
<td>Adjust switch or replace Contact your Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Starter cranks slowly or will not operate</td>
<td>Crankcase oil too high viscosity</td>
<td>Use recommended oil</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 242</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

7.2 Electrical Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage and/or battery will not charge</td>
<td>Defective battery</td>
<td>Have battery tested</td>
<td>5.13.1 Batteries, page 314</td>
</tr>
<tr>
<td>Low voltage and/or battery will not charge</td>
<td>Loose or corroded connections</td>
<td>Clean and tighten battery connections</td>
<td>Maintaining a Battery, page 314</td>
</tr>
<tr>
<td>Low voltage and/or battery will not charge</td>
<td>Defective alternator belt</td>
<td>Replace worn belt</td>
<td>Replacing Engine Fan Drive Belt, page 332</td>
</tr>
<tr>
<td>Low voltage and/or battery will not charge</td>
<td>Alternator or voltage regulator not connected properly</td>
<td>Connect properly</td>
<td>5.13.1 Batteries, page 314</td>
</tr>
<tr>
<td>Low voltage and/or battery will not charge</td>
<td>Dirty or defective alternator, defective voltage regulator, or high resistance in circuit</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Lights dim</td>
<td>High resistance in circuit or poor ground on lights</td>
<td>Check the wiring circuit for a break in a wire or a poor ground</td>
<td>—</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Headlight Bulb (Engine-Forward), page 341</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Bulbs in Standard Work Lights, page 340</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Bulbs in Standard Work Lights, page 340</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Bulbs in Standard Work Lights, page 340</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing LED Lights (Deluxe Cab Only), page 343</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing LED Lights (Deluxe Cab Only), page 343</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Bulbs in Red and Amber Lights, page 344</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Red Tail Lights, page 345</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing Beacon Lights, page 346</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb</td>
<td>Replacing the Cabin Dome Bulb, page 346</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Broken wiring</td>
<td>Check wiring for broken wire or shorts</td>
<td>—</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Poor ground on lights</td>
<td>Clean and tighten ground wires</td>
<td>—</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Open or defective circuit breaker</td>
<td>Check circuit breaker</td>
<td>5.14.7 Accessing Circuit Breakers and Fuses, page 350</td>
</tr>
<tr>
<td>Lights do not light</td>
<td>Defective relay</td>
<td>Replace relay</td>
<td>Replacing Circuit Breakers and Relays, page 351</td>
</tr>
<tr>
<td>Turn signals or indicators</td>
<td>Reversed wires</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>No current to cab</td>
<td>Broken or disconnected wire</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>No current to cab</td>
<td>Circuit breaker tripped</td>
<td>Breaker automatically resets</td>
<td>—</td>
</tr>
</tbody>
</table>
7.3 Hydraulics Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header or reel not lifting</td>
<td>Appropriate solenoids not being energized by activating switch</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Reel and/or conveyor not turning</td>
<td>Flow controls adjusted too low</td>
<td>Toggle speed controls on Harvest Performance Tracker (HPT) display to increase flow</td>
<td>Conveyer Speed Adjustment Buttons, page 77 Reel and Disc Speed Switch, page 74</td>
</tr>
<tr>
<td>Reel and/or conveyor not turning</td>
<td>Flow controls adjusted too low</td>
<td>Toggle speed controls on Harvest Performance Tracker (HPT) display to increase flow</td>
<td>Conveyer Speed Adjustment Buttons, page 77 Reel and Disc Speed Switch, page 74</td>
</tr>
<tr>
<td>Reel and/or conveyor not turning</td>
<td>Appropriate solenoid on flow control block not being energized</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Reel and/or conveyor turns but lacks power</td>
<td>Relief pressure too low</td>
<td>Check/adjust/clean relief valve</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Hydraulic oil high-temperature alarm</td>
<td>Hydraulic oil cooling system not working properly</td>
<td>Check/clean cooling box</td>
<td>5.8.2 Cleaning Cooler Module, page 281</td>
</tr>
<tr>
<td>Hydraulic oil low-temperature alarm</td>
<td>Hydraulic oil too cold</td>
<td>Run engine until hydraulic oil warms up</td>
<td>—</td>
</tr>
</tbody>
</table>
Header Drive Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header drive not engaging</td>
<td>OPERATOR PRESENCE switch not closed or faulty</td>
<td>Occupy operator’s seat or replace switch. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive not engaging</td>
<td>OPERATOR PRESENCE switch not closed or faulty</td>
<td>Occupy operator’s seat or replace switch. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive not engaging</td>
<td>Appropriate solenoid not being energized by activating switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive not engaging</td>
<td>Couplers not connected</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive not engaging</td>
<td>Faulty pump or flow controls</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive not engaging</td>
<td>Control solenoids disconnected</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive not engaging</td>
<td>Header ID not detected</td>
<td>Attach header or check wiring. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive lacks power</td>
<td>Relief valve setting too low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive lacks power</td>
<td>Header drive overload</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Header drive overload</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>Warning alarm sounds</td>
<td>Relief valve setting too low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
</tbody>
</table>
7.5 Traction Drive Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning alarm sounds and low charge pressure warning appears on Harvest Performance Tracker (HPT)</td>
<td>Low hydraulic oil level</td>
<td>Stop engine, and add oil to hydraulic system</td>
<td>[5.6.3 Checking Hydraulic Oil, page 267]</td>
</tr>
<tr>
<td>Warning alarm sounds and low charge pressure warning appears on Harvest Performance Tracker (HPT)</td>
<td>Low hydraulic pressure</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Warning alarm sounds and low charge pressure warning appears on Harvest Performance Tracker (HPT)</td>
<td>Faulty sender</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Internal pump or motor damage</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Insufficient torque at drive wheels</td>
<td>Maintain engine rpm, decrease GSL setting</td>
<td></td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Loose or worn controls</td>
<td>Check controls</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Brakes binding or not releasing fully</td>
<td>Check charge pressure</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wheels lack pulling ability on a grade or pulling out of a ditch</td>
<td>Relief valve in tandem pump dirty or damaged</td>
<td>Replace relief valve</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>With steering wheel centered, one wheel pulls more than the other</td>
<td>Leakage at pump or motor</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>With steering wheel centered, one wheel pulls more than the other</td>
<td>Binding or interference with controls under cab</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>With steering wheel centered, one wheel pulls more than the other</td>
<td>Faulty relief valve</td>
<td>Repair or replace valve</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Loose hardware on pump controls</td>
<td>Repair or tighten</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Brakes binding or not releasing fully</td>
<td>Check charge pressure</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Low oil level and low charge pressure</td>
<td>Check oil reservoir level</td>
<td>[5.6.3 Checking Hydraulic Oil, page 267]</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Final drives disengaged</td>
<td>Engage final drives</td>
<td>Disengaging Final Drives, page 141</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Servo input loose</td>
<td>Check servo</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Both wheels will not pull in forward or reverse</td>
<td>Failed pump</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Broken pump arm or shaft</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>One final drive disengaged</td>
<td>Engage final drive</td>
<td>Disengaging Final Drives, page 141</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Steering controls worn or defective</td>
<td>Check GSL and steering for loose, worn or damaged ball joints and connecting rods</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>High pressure relief valve stuck open, damaged seat</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Brakes binding or not releasing fully</td>
<td>Check charge pressure</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>One wheel does not pull in forward or reverse</td>
<td>Failed pump, motor or final drive</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Mechanical interference in steering or ground speed linkage</td>
<td>Remove interference</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Brakes binding or not releasing fully</td>
<td>Check charge pressure</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Faulty pump or motor</td>
<td>Contact Dealer</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Air in system</td>
<td>Check lines for leakage</td>
<td>—</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Hydraulic line clamps loose</td>
<td>Tighten clamps</td>
<td>—</td>
</tr>
<tr>
<td>Excessive noise from drive system</td>
<td>Ball joints are worn</td>
<td>Replace worn parts</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic oil filter leaks at seal</td>
<td>Not properly tightened</td>
<td>Tighten filter element</td>
<td>5.5.8 Changing Hydraulic Filters, page 261</td>
</tr>
<tr>
<td>Hydraulic oil filter leaks at seal</td>
<td>Damaged seal or threads</td>
<td>Replace filter or filter head</td>
<td>5.5.8 Changing Hydraulic Filters, page 261</td>
</tr>
</tbody>
</table>
7.6 Steering and Ground Speed Control Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine will not steer straight</td>
<td>Linkage worn or loose</td>
<td>Adjust steering chain tension. Replace worn parts. Adjust linkage.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>Neutral interlock misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>Parking brake not functioning</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>Ground speed lever (GSL) servo misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Machine moves on flat ground with controls in neutral</td>
<td>GSL cable misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Steering wheel will not lock with GSL in Park</td>
<td>Transmission interlock misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Steering wheel will not lock with GSL in Park</td>
<td>Faulty GSL neutral switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Steering wheel will not lock with GSL in Park</td>
<td>Interlock springs not pulling interlock closed</td>
<td>Replace or reattach springs.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Steering wheel will not unlock</td>
<td>Faulty switch on Park</td>
<td>Replace switch or adjust.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Insufficient road speed</td>
<td>Ground speed limit too low</td>
<td>Increase limit.</td>
<td>Adjusting Ground Speed Limit, page 126</td>
</tr>
<tr>
<td>Maximum ground speed is too slow</td>
<td>Servo not adjusted properly</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Maximum ground speed is too slow</td>
<td>Fault with wheel motor control</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Maximum ground speed is too slow</td>
<td>GSL position sensor not calibrated or damaged</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Maximum ground speed is too slow</td>
<td>Maximum speed limit is set at 10 mph</td>
<td>Increase speed limit.</td>
<td>Adjusting Ground Speed Limit, page 126</td>
</tr>
<tr>
<td>Steering is too stiff or too loose</td>
<td>Steering chain tension is out of adjustment</td>
<td>Adjust steering chain tension.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Steering is too stiff or too loose</td>
<td>Ball joints or steering linkage pivot stiff</td>
<td>Replace or repair.</td>
<td>Contact Dealer.</td>
</tr>
</tbody>
</table>
7.7 Cab Air Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower fan will not run</td>
<td>Burned out motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Burned out switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Motor shaft tight or bearings worn</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Faulty wiring—loose or broken</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Blower fan will not run</td>
<td>Blower rotors in contact with housing</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Blower fan operating but no air</td>
<td>Dirty fresh air filter</td>
<td>Clean fresh air filter</td>
<td>Inspecting And Cleaning Fresh Air Intake Filter Element, page 275</td>
</tr>
<tr>
<td>coming into cab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower fan operating but no air</td>
<td>Dirty recirculating air filter</td>
<td>Clean return air filter</td>
<td>5.8.1 Servicing Return Air Filter, page 280</td>
</tr>
<tr>
<td>coming into cab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower fan operating but no air</td>
<td>Evaporator clogged</td>
<td>Clean evaporator</td>
<td>Cleaning Air Conditioning (A/C) Evaporator Core, page 327</td>
</tr>
<tr>
<td>coming into cab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower fan operating but no air</td>
<td>Air flow passage blocked</td>
<td>Remove blockage</td>
<td>—</td>
</tr>
<tr>
<td>coming into cab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater not heating</td>
<td>Heater shut-off valve at engine closed</td>
<td>Open valve</td>
<td>3.10.1 Heater Shut-Off Valve, page 60</td>
</tr>
<tr>
<td>Heater not heating</td>
<td>Defective thermostat in engine water</td>
<td>Replace thermostat</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>outlet manifold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater not heating</td>
<td>Heater temperature control defective</td>
<td>Replace control</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Heater not heating</td>
<td>No thermostat in engine water outlet</td>
<td>Install thermostat</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>manifold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor from air louvers</td>
<td>Plugged drainage hose</td>
<td>Blow out hose with</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compressed air</td>
<td></td>
</tr>
<tr>
<td>Odor from air louvers</td>
<td>Dirty filters</td>
<td>Clean filters</td>
<td>5.8.1 Servicing Return Air Filter, page 280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Low refrigerant level</td>
<td>Add refrigerant</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dealer.</td>
<td></td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Clutch coil burned out or disconnected</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Blower motor disconnected or burned out</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Switch contacts in thermostat burned excessively, or sensing element defective</td>
<td>Replace thermostat.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Compressor partially or completely seized</td>
<td>Remove compressor for service or replacement.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Condenser fins plugged</td>
<td>Clean condenser.</td>
<td>Cleaning Left Cooling Module, page 281</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Loose or broken compressor drive belt</td>
<td>Replace drive belt and/or tighten to specifications.</td>
<td>Tensioning Air Conditioner (A/C) Compressor Belts, page 333 and Replacing Air Conditioner (A/C) Compressor Belts, page 334</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Dirty filters</td>
<td>Clean fresh air and recirculation filters.</td>
<td>5.8.1 Servicing Return Air Filter, page 280</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Broken or disconnected electrical wire</td>
<td>Check all terminals for loose connections; check wiring for hidden breaks.</td>
<td>—</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Broken or disconnected ground wire</td>
<td>Check ground wire to see if loose, broken, or disconnected.</td>
<td>—</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Expansion valve stuck in open or closed position</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Broken refrigerant line</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Leak in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Compressor shaft seal leaking</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not cooling</td>
<td>Clogged screen in receiver-drier; plugged hose or coil</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Compressor clutch slipping</td>
<td>Remove clutch assembly for service or replacement.</td>
<td>Contact Dealer.</td>
</tr>
</tbody>
</table>

Air conditioning not producing sufficient cooling (sufficient cooling defined as when air temperature in cab, measured at louvered vent, can be maintained at 14°C [57°F] below ambient air temperature)
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Thermostat defective or improperly adjusted</td>
<td>Replace thermostat.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Clogged air filters</td>
<td>Remove air filters, and clean or replace as</td>
<td>5.8.1 Servicing Return Air Filter, page 280</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td></td>
<td>necessary.</td>
<td></td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Heater circuit is open</td>
<td>Lower temperature control in cab, and close</td>
<td>3.10.3 Climate Controls, page 61 and 3.10.1</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td></td>
<td>valve on engine).</td>
<td>Heater Shut-Off Valve, page 60</td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Insufficient air circulation over condenser</td>
<td>Clean condenser.</td>
<td>Cleaning Left Cooling Module, page 281</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td>coil, fins clogged with dirt or insects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Evaporator fins clogged</td>
<td>Clean evaporator fins (under cab floor).</td>
<td>Cleaning Air Conditioning (A/C) Evaporator</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td></td>
<td></td>
<td>Core, page 327</td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Refrigerant low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Clogged expansion valve</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Clogged receiver-drier</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Air in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning not producing sufficient cooling</td>
<td>Blower motor sluggish in operation</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>(sufficient cooling defined as when air temperature in cab, measured at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>louvered vent, can be maintained at 14°C [57°F] below ambient air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Unit icing up due to thermostat adjusted too</td>
<td>Adjust thermostat.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Unit icing up due to excessive moisture in</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Unit icing up due to incorrect super-heat</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>adjustment in the expansion valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Thermostat defective</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Defective blower switch or blower motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Partially open, improper ground or loose</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>connection in compressor clutch coil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning cools intermittently</td>
<td>Compressor clutch slipping</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Defective winding or improper connection in</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>compressor clutch coil or relay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Excessive charge in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Low charge in system</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air conditioning system too noisy</td>
<td>Excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Loose or excessively worn drive belt</td>
<td>Tighten or replace as required.</td>
<td>Tensioning Air Conditioner (A/C) Compressor Belts, page 333 and Replacing Air Conditioner (A/C) Compressor Belts, page 334</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Noisy clutch</td>
<td>Remove clutch for service or replacement as required.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Noisy compressor</td>
<td>Check mountings and repair. Remove compressor for service or replacement.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Compressor oil level low</td>
<td>Add SP-15 PAG refrigerant oil.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Air conditioning system too noisy</td>
<td>Blower fan noisy due to excessive wear</td>
<td>Remove blower motor for service or replacement as necessary.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Windows fog up</td>
<td>High humidity</td>
<td>Run A/C to dehumidify air and heater to control temperature.</td>
<td>3.10.3 Climate Controls, page 61</td>
</tr>
</tbody>
</table>
7.8 Operator’s Station Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough ride</td>
<td>Seat suspension not adjusted for operator’s weight</td>
<td>Adjust seat suspension.</td>
<td>3.3.3 Suspension and Height, page 43</td>
</tr>
<tr>
<td>Rough ride</td>
<td>High air pressure in tires</td>
<td>Deflate to proper pressure.</td>
<td>5.6.4 Checking Tire Pressures, page 268</td>
</tr>
<tr>
<td>Rough ride</td>
<td>Cab suspension too stiff</td>
<td>Adjust suspension.</td>
<td>Contact Dealer</td>
</tr>
</tbody>
</table>
8 Reference

8.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (not to be used on critical or structurally important joints).

8.1.1 Metric Bolt Specifications

Table 8.1 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 8.1: Bolt Grades
Table 8.2 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8.3 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>
Table 8.4 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.5 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 (Cast Aluminum)</td>
</tr>
<tr>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
</tr>
</tbody>
</table>
8.1.3 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.

3. Check that O-ring (A) is **NOT** on threads and adjust if necessary.

4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until back up washer (D) and O-ring (A) contact part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).

8. Check final condition of fitting.
Table 8.6 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>19</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1–1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-16</td>
<td>1–5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1–5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1–7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2–1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

^{19.} Torque values shown are based on lubricated connections as in reassembly.
8.1.4 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is NOT on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 8.7, page 398.
6. Check final condition of fitting.

Table 8.7 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

20 Torque values shown are based on lubricated connections as in reassembly.
8.1.5 O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 8.8, page 399.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 8.8 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value<sup>21</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note<sup>22</sup></td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note<sup>22</sup></td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1-3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
</tbody>
</table>

²¹ Torque values and angles shown are based on lubricated connection as in reassembly.

²² O-ring face seal type end not defined for this tube size.
Table 8.8 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value23</th>
</tr>
</thead>
<tbody>
<tr>
<td>-14</td>
<td>Note22</td>
<td>7/8</td>
<td>–</td>
</tr>
<tr>
<td>-16</td>
<td>1-7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1-11/16</td>
<td>1-1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1-1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

8.1.6 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks and scratches, or any form of contamination.

2. Apply pipe thread sealant (paste type) to external pipe threads.

3. Thread fitting into port until hand-tight.

4. Torque connector to appropriate torque angle. The Turns From Finger Tight (T.F.F.T.) values are shown in Table 8.9, page 400. Make sure that tube end of a shaped connector (typically 45° or 90°) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.

5. Clean all residue and any excess thread conditioner with appropriate cleaner.

6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.

7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.9 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended T.F.F.T.</th>
<th>Recommended F.F.F.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

23 Torque values and angles shown are based on lubricated connection as in reassembly.
8.2 Conversion Chart

Table 8.10 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>Inch-Pound Units (Imperial)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>hectares</td>
<td>ha</td>
<td>x 2.4710 =</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Force</td>
<td>Newtons</td>
<td>N</td>
<td>x 0.2248 =</td>
</tr>
<tr>
<td>Length</td>
<td>millimeters</td>
<td>mm</td>
<td>x 0.0394 =</td>
</tr>
<tr>
<td>Length</td>
<td>meters</td>
<td>m</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatts</td>
<td>kW</td>
<td>x 1.341 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascals</td>
<td>kPa</td>
<td>x 0.145 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>megapascals</td>
<td>MPa</td>
<td>x 145.038 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meters</td>
<td>Nm</td>
<td>x 0.7376 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meters</td>
<td>Nm</td>
<td>x 8.8507 =</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>ºC</td>
<td>(ºC x 1.8) + 32 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 =</td>
</tr>
<tr>
<td>Volume</td>
<td>liters</td>
<td>L</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliters</td>
<td>ml</td>
<td>x 0.00338 =</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeters</td>
<td>cm³ or cc</td>
<td>x 0.061 =</td>
</tr>
<tr>
<td>Weight</td>
<td>kilograms</td>
<td>kg</td>
<td>x 2.2046 =</td>
</tr>
</tbody>
</table>
8.3 Windrower Fault Codes

NOTE:
The Harvest Performance Tracker (HPT) displays the windrower fault codes as a sequence of three numbers (AAA.BBBBBB.CC). The sequence is defined as follows:

• AAA = The Source Address (SA) defines which module generated the fault.
• BBBBBB = The SPN is the description of the unique fault value.
• CC = The FMI indicated the fault’s level of severity.

Source address (SA) numbers refer to the following locations:

• 23: Harvest Performance Tracker (HPT) display
• 25: HVAC box
• 104: Master controller and connected expansion modules
• 176: Roof relay module
• 178: Chassis relay module
• 190: Console and ground speed lever (GSL)
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 521489 1</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 2</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 2 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 3</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 & 2 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 4</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 3 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 5</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 & 3 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 6</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 2 & 3 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 7</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 & 2 & 3 Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521490 1</td>
<td>Electrical System</td>
<td>Ext. Module Offline</td>
<td>Firewall Extension Module Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521491 1</td>
<td>Electrical System</td>
<td>Ext. Module Offline</td>
<td>Chassis Extension Module Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521492 1</td>
<td>Electrical System</td>
<td>Display Offline</td>
<td>CAN 1 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521492 2</td>
<td>Electrical System</td>
<td>Display Offline</td>
<td>CAN 2 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521492 3</td>
<td>Electrical System</td>
<td>Display Offline</td>
<td>CAN 1 & 2 Offline</td>
<td>Check Module connectors; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521493 1</td>
<td>Electrical System</td>
<td>Relay Module Offline</td>
<td>Roof Relay Module Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521494 1</td>
<td>Electrical System</td>
<td>Relay Module Offline</td>
<td>Chassis Relay Module Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521495 1</td>
<td>Electrical System</td>
<td>Console Offline</td>
<td>Console Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>23 521496</td>
<td>Electrical System</td>
<td>HVAC ECU Offline</td>
<td>HVAC ECU Offline</td>
<td>Check Module connectors & Module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521497</td>
<td>Electrical System</td>
<td>Engine ECM Offline</td>
<td>Engine Control Module Offline</td>
<td>First check if cooling module door is open or cooling module door sensor is defective. If not then check engine control module connectors & module fuse; if ok, Contact Dealer.</td>
</tr>
<tr>
<td>23 521498</td>
<td>Electrical System</td>
<td>CAN 1 Offline</td>
<td>CAN 1 Offline</td>
<td>Check CAN Harnessing; if ok, Contact Dealer</td>
</tr>
<tr>
<td>23 521499</td>
<td>Electrical System</td>
<td>CAN 2 Offline</td>
<td>CAN 2 Offline</td>
<td>Check CAN Harnessing; if ok, Contact Dealer</td>
</tr>
<tr>
<td>23 521500</td>
<td>Electrical System</td>
<td>CAN 3 Offline</td>
<td>CAN 3 Offline</td>
<td>Check CAN Harnessing; if ok, Contact Dealer</td>
</tr>
<tr>
<td>25 168</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Low voltage - Below normal, most severe</td>
<td>Check HVAC power supply. Contact Dealer.</td>
</tr>
<tr>
<td>25 520193</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Clutch low amps - Current below normal</td>
<td>Inspect A/C clutch wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>25 520194</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Evaporator temp open circuit - Voltage above normal</td>
<td>Check temperature sensor and wiring at the evaporator. Contact Dealer.</td>
</tr>
<tr>
<td>25 170</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Cab temp open circuit - Voltage above normal</td>
<td>Inspect cab temperature and wiring. Contact Dealer</td>
</tr>
<tr>
<td>25 442</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Duct temp open circuit - Voltage above normal</td>
<td>Check HVAC duct temperature sensor wiring. Contact Dealer.</td>
</tr>
<tr>
<td>25 442</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Duct temp shorted - Voltage below normal</td>
<td>Check HVAC duct temperature sensor wiring. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>104 111 1</td>
<td>Windrower</td>
<td>Engine Coolant Low</td>
<td>Below Normal Most Severe</td>
<td>Coolant Level - Data Valid But Below Normal Operational Range.</td>
</tr>
<tr>
<td>104 111 17</td>
<td>Windrower</td>
<td>Engine Coolant Low</td>
<td>Below Normal Least Severe</td>
<td>Coolant Level - Data Valid But Below Normal Operating Range.</td>
</tr>
<tr>
<td>104 521000 3</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521000 4</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521000 5</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521000 6</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521000 8</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521003 3</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>Low Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Contact dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521003 4</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Contact dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521003 5</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>Low Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Contact dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521003 6</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Contact Dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521003 8</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521006 5</td>
<td>Electrical System</td>
<td>Hyd Oil Temp Sensor</td>
<td>Low Error</td>
<td>Sensor voltage below 50 mV. Check sensor power supply. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521006 6</td>
<td>Electrical System</td>
<td>Hyd Oil Temp Sensor</td>
<td>High Error</td>
<td>Sensor voltage above 1300 mV. Check for wiring damage. Replace sensor if necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>104 521006 8</td>
<td>Electrical System</td>
<td>Hyd Oil Temp Sensor</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521383 15</td>
<td>Windrower</td>
<td>Hydraulic Oil Hot</td>
<td>Above Normal Least Severe</td>
<td>Clean cooler cores with compressed air. If condition persists with clean cores, contact dealer.</td>
</tr>
<tr>
<td>104 521383 0</td>
<td>Windrower</td>
<td>Hyd Oil Very Hot</td>
<td>Above Normal Most Severe</td>
<td>Clean cooler cores with compressed air. If condition persists with clean cores, contact dealer. Continued operation may lead to machine damage.</td>
</tr>
<tr>
<td>104 521387 0</td>
<td>Windrower</td>
<td>Oil Charge Press High</td>
<td>Above Normal Most Severe</td>
<td>Charge pressure relief valve may be misadjusted or damaged. Contact dealer.</td>
</tr>
<tr>
<td>104 521387 17</td>
<td>Windrower</td>
<td>Oil Charge Press Low</td>
<td>Below Normal Least Severe</td>
<td>Charge pressure relief valve may be misadjusted or damaged. Contact dealer.</td>
</tr>
<tr>
<td>104 521387 1</td>
<td>Windrower</td>
<td>Oil Charge Press Low</td>
<td>Below Normal Most Severe</td>
<td>Shut down engine. Charge pressure relief valve may be misadjusted or damaged. Contact Dealer.</td>
</tr>
<tr>
<td>104 521021 3</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021 4</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021 5</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021 6</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021 8</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521024 3</td>
<td>Electrical System</td>
<td>Reel Fore-Aft</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMN</td>
<td>Full Fault Description</td>
<td>Short Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>104</td>
<td>521024</td>
<td>4</td>
<td>Electrical System Reel Fore-Aft High Alarm</td>
<td>Reel Fore-Aft</td>
</tr>
<tr>
<td>104</td>
<td>521024</td>
<td>5</td>
<td>Electrical System Reel Fore-Aft Low Error</td>
<td>Reel Fore-Aft</td>
</tr>
<tr>
<td>104</td>
<td>521024</td>
<td>6</td>
<td>Electrical System Reel Fore-Aft High Error</td>
<td>Reel Fore-Aft</td>
</tr>
<tr>
<td>104</td>
<td>521024</td>
<td>8</td>
<td>Electrical System Reel Fore-Aft Vreff Error</td>
<td>Reel Fore-Aft</td>
</tr>
<tr>
<td>104</td>
<td>521027</td>
<td>3</td>
<td>Electrical System Lateral Tilt Low Alarm</td>
<td>Lateral Tilt</td>
</tr>
<tr>
<td>104</td>
<td>521027</td>
<td>4</td>
<td>Electrical System Lateral Tilt High Error</td>
<td>Lateral Tilt</td>
</tr>
<tr>
<td>104</td>
<td>521027</td>
<td>5</td>
<td>Electrical System Lateral Tilt Low Error</td>
<td>Lateral Tilt</td>
</tr>
<tr>
<td>104</td>
<td>521027</td>
<td>6</td>
<td>Electrical System Lateral Tilt High Error</td>
<td>Lateral Tilt</td>
</tr>
<tr>
<td>104</td>
<td>521027</td>
<td>8</td>
<td>Electrical System Lateral Tilt Vreff Error</td>
<td>Lateral Tilt</td>
</tr>
<tr>
<td>104</td>
<td>521030</td>
<td>3</td>
<td>Electrical System LH Float Cyl. Low Alarm</td>
<td>LH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521030</td>
<td>4</td>
<td>Electrical System LH Float Cyl. High Alarm</td>
<td>LH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521030</td>
<td>5</td>
<td>Electrical System LH Float Cyl. Low Error</td>
<td>LH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521030</td>
<td>6</td>
<td>Electrical System LH Float Cyl. High Error</td>
<td>LH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521030</td>
<td>8</td>
<td>Electrical System LH Float Cyl. Vreff Error</td>
<td>LH Float Cyl.</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521030 5</td>
<td>Electrical System</td>
<td>LH Float Cyl.</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521030 6</td>
<td>Electrical System</td>
<td>LH Float Cyl.</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521030 8</td>
<td>Electrical System</td>
<td>LH Float Cyl.</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521033 3</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>Low Alarm</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 4</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>High Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 5</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 6</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 8</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521036 3</td>
<td>Electrical System</td>
<td>RH Float Cyl.</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SA</td>
<td>SPN</td>
<td>FMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>521036</td>
<td>4</td>
<td>Electrical System</td>
<td>RH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521036</td>
<td>5</td>
<td>Electrical System</td>
<td>RH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521036</td>
<td>6</td>
<td>Electrical System</td>
<td>RH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521036</td>
<td>8</td>
<td>Electrical System</td>
<td>RH Float Cyl.</td>
</tr>
<tr>
<td>104</td>
<td>521039</td>
<td>3</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521039</td>
<td>4</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521039</td>
<td>5</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521039</td>
<td>6</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521039</td>
<td>8</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521042</td>
<td>3</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521042</td>
<td>4</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
</tr>
<tr>
<td>104</td>
<td>521042</td>
<td>5</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>104 521042 6</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521042 8</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521045 3</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 4</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 5</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 6</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 8</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521048 3</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 4</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 5</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 6</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 8</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>104 521051 3</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521051 4</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521051 5</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521051 6</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521051 8</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>Vreff Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521362 19</td>
<td>Electrical System</td>
<td>Cab Fwd Stop Lt Snsr</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521059 19</td>
<td>Electrical System</td>
<td>Cooler Box Door</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521060 19</td>
<td>Electrical System</td>
<td>Seat Cab Fwd</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521061 19</td>
<td>Electrical System</td>
<td>Seat Engine Fwd</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521062 19</td>
<td>Electrical System</td>
<td>Interlock Closed</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521063 19</td>
<td>Electrical System</td>
<td>Oil Level Signal</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521063 1</td>
<td>Windrower</td>
<td>Oil Level Low</td>
<td>Low Hydraulic Oil Level</td>
<td>Low Hydraulic Oil Level, or oil level switch failed or open wiring circuit. Shut off engine and check oil level. Check sensor wiring and replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521064 19</td>
<td>Electrical System</td>
<td>Hyd Filter Ind</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521065 19</td>
<td>Electrical System</td>
<td>DWA Position Switch</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>104 521066</td>
<td>Electrical System</td>
<td>Header ID1</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521067</td>
<td>Electrical System</td>
<td>Header ID2</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521068</td>
<td>Electrical System</td>
<td>Header ID3</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521069</td>
<td>Electrical System</td>
<td>Header ID4</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521070</td>
<td>Electrical System</td>
<td>Header ID5</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>104 521071</td>
<td>Electrical System</td>
<td>LH Wheel Motor</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521072</td>
<td>Electrical System</td>
<td>RH Wheel Motor</td>
<td>Low Alarm</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521460</td>
<td>Windrower</td>
<td>Wheel Speed</td>
<td>LH Wheel Speed Sensor</td>
<td>Check LH wheel speed sensor and wiring. Reading speed off RH wheel only. Auto-reel and auto-draper speed performance will be impacted while turning.</td>
</tr>
<tr>
<td>104 521460</td>
<td>Windrower</td>
<td>Wheel Speed</td>
<td>RH Wheel Speed Sensor</td>
<td>Check RH wheel speed sensor and wiring. Reading speed off LH wheel only. Auto-reel and auto-draper speed performance will be impacted while turning.</td>
</tr>
<tr>
<td>104 521460</td>
<td>Windrower</td>
<td>Wheel Speed</td>
<td>LH & RH Wheel Speed Sensor</td>
<td>Check RH and LH wheel speed sensors and wiring. Acre tracking, auto-reel and auto-draper speed features will be disabled.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>104 521073 2</td>
<td>Electrical System</td>
<td>Knife/Disc Speed</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521073 3</td>
<td>Electrical System</td>
<td>Knife/Disc Speed</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521073 31</td>
<td>Electrical System</td>
<td>Knife/Disc Speed</td>
<td>Condition Exists</td>
<td>No knife/disc speed feedback. Estimated speed will be used. This will exclude knife/disc speed changes when selecting buttons A, B and C on ground speed lever.</td>
</tr>
<tr>
<td>104 521074 0</td>
<td>Windrower</td>
<td>Knife Speed</td>
<td>Above Norm Most Severe</td>
<td>Knife speed above max allowable for header type. Contact Dealer.</td>
</tr>
<tr>
<td>104 521074 2</td>
<td>Electrical System</td>
<td>Reel Speed</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521074 3</td>
<td>Electrical System</td>
<td>Reel Speed</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521074 31</td>
<td>Electrical System</td>
<td>Reel Speed</td>
<td>Condition Exists</td>
<td>No reel speed feedback. This will exclude reel speed changes when selecting buttons A, B and C on ground speed lever. It will also disable the auto-reel speed feature.</td>
</tr>
<tr>
<td>104 521075 2</td>
<td>Electrical System</td>
<td>Cooling Fan Spd</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521075 3</td>
<td>Electrical System</td>
<td>Cooling Fan Spd</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521390 0</td>
<td>Windrower</td>
<td>Cooling Fan Spd High</td>
<td>Above Norm Most Severe</td>
<td>Fan speed readout high. Safe mode activated. Fan will default to full rpm at high idle. Contact Dealer.</td>
</tr>
<tr>
<td>104 521391 31</td>
<td>Windrower</td>
<td>Cooling Fan Speed</td>
<td>Condition Exists</td>
<td>No cooling fan speed feedback.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>104 521391 1</td>
<td>Windrower</td>
<td>Cooling Fan Spd Low</td>
<td>Below Normal Most Severe</td>
<td>Control system is unable to adjust fan speed. Beware that there is the potential for engine overheat if fan speed is too low. Safe mode activated. Fan will default to full rpm at high idle. Contact dealer.</td>
</tr>
<tr>
<td>104 521076 2</td>
<td>Electrical System</td>
<td>LH Draper Idler Spd</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521076 3</td>
<td>Electrical System</td>
<td>LH Draper Idler Spd</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521076 31</td>
<td>Electrical System</td>
<td>LH Draper Idler Spd</td>
<td>Condition Exists</td>
<td>No draper slip feedback. Draper slip detection is no longer active. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521077 2</td>
<td>Electrical System</td>
<td>RH Draper Idler Spd</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521077 3</td>
<td>Electrical System</td>
<td>RH Draper Idler Spd</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521077 31</td>
<td>Electrical System</td>
<td>RH Draper Idler Spd</td>
<td>Condition Exists</td>
<td>No draper slip feedback. Draper slip detection is no longer active. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521078 4</td>
<td>Electrical System</td>
<td>Knife Drive</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521078 3</td>
<td>Electrical System</td>
<td>Knife Drive</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521078 2</td>
<td>Electrical System</td>
<td>Knife Drive</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>104 521079</td>
<td>Electrical System</td>
<td>LH Wheel Motor</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521079</td>
<td>Electrical System</td>
<td>LH Wheel Motor</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521079</td>
<td>Electrical System</td>
<td>LH Wheel Motor</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>104 521080</td>
<td>Electrical System</td>
<td>RH Wheel Motor</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521080</td>
<td>Electrical System</td>
<td>RH Wheel Motor</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521080</td>
<td>Electrical System</td>
<td>RH Wheel Motor</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>104 521081</td>
<td>Electrical System</td>
<td>Cooling Fan Speed</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521081</td>
<td>Electrical System</td>
<td>Cooling Fan Speed</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521081</td>
<td>Electrical System</td>
<td>Cooling Fan Speed</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>104 521082</td>
<td>Electrical System</td>
<td>Header Raise/Lower</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521082</td>
<td>Electrical System</td>
<td>Header Raise/Lower</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521083</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Open Load</td>
<td>Check circuit for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521083</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Overload</td>
<td>Check circuit for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521085</td>
<td>Electrical System</td>
<td>Reel Drive PWM</td>
<td>Open Load</td>
<td>Check circuit for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521085</td>
<td>Electrical System</td>
<td>Reel Drive PWM</td>
<td>Overload</td>
<td>Check circuit for damage. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>104 521086 4</td>
<td>Electrical System</td>
<td>Conveyor Drive PWM</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521086 5</td>
<td>Electrical System</td>
<td>Conveyor Drive PWM</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521357 3</td>
<td>Electrical System</td>
<td>Interlock Open</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521357 4</td>
<td>Electrical System</td>
<td>Interlock Open</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521359 3</td>
<td>Electrical System</td>
<td>Brake Release</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521359 4</td>
<td>Electrical System</td>
<td>Brake Release</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521361 3</td>
<td>Electrical System</td>
<td>Batt. Disc. Open</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521361 4</td>
<td>Electrical System</td>
<td>Batt. Disc. Open</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521364 3</td>
<td>Electrical System</td>
<td>Ignition</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521364 4</td>
<td>Electrical System</td>
<td>Ignition</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521366 3</td>
<td>Electrical System</td>
<td>Starter Relay</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521366 4</td>
<td>Electrical System</td>
<td>Starter Relay</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521368 3</td>
<td>Electrical System</td>
<td>12V Sensor Pwr</td>
<td>Firewall 12V Sensor Power - Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer. The following sensors may be affected: Hydraulic Oil Temperature, Hydraulic Oil Level, Cooling Fan Speed, Cab Forward Seat Position, Engine Forward Seat Position, Hydraulic Oil Filter</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>104 521368 4</td>
<td>Electrical System</td>
<td>12V Sensor Pwr</td>
<td>Firewall 12V Sensor Power - Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer. The following sensors may be affected: Hydraulic Oil Temperature, Hydraulic Oil Level, Cooling Fan Speed, Cab Forward Seat Position, Engine Forward Seat Position, Hydraulic Oil Filter</td>
</tr>
<tr>
<td>104 521369 3</td>
<td>Electrical System</td>
<td>Cooling Fan Reverse</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521369 4</td>
<td>Electrical System</td>
<td>Cooling Fan Reverse</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521370 3</td>
<td>Electrical System</td>
<td>Reel/Aux Lift Selector</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521370 4</td>
<td>Electrical System</td>
<td>Reel/Aux Lift Selector</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521371 3</td>
<td>Electrical System</td>
<td>Reel Retract O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521371 4</td>
<td>Electrical System</td>
<td>Reel Retract O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521372 3</td>
<td>Electrical System</td>
<td>Reel Extend O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521372 4</td>
<td>Electrical System</td>
<td>Reel Extend O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521373 3</td>
<td>Electrical System</td>
<td>Reel Raise O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521373 4</td>
<td>Electrical System</td>
<td>Reel Raise O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521374 3</td>
<td>Electrical System</td>
<td>Reel Lower O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521374 4</td>
<td>Electrical System</td>
<td>Reel Lower O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>104 521375</td>
<td>Electrical System</td>
<td>12V Sensor Pwr</td>
<td>Chassis 12V Sensor Power - Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer. The following sensors may be affected: DWA Position Header Tilt Position Swath Former Position</td>
</tr>
<tr>
<td>104 521375</td>
<td>Electrical System</td>
<td>12V Sensor Pwr</td>
<td>Chassis 12V Sensor Power - Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer. The following sensors may be affected: DWA Position Header Tilt Position Swath Former Position</td>
</tr>
<tr>
<td>104 521376</td>
<td>Electrical System</td>
<td>Deck Shift Left O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521376</td>
<td>Electrical System</td>
<td>Deck Shift Left O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521377</td>
<td>Electrical System</td>
<td>Deck Shift Right O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521377</td>
<td>Electrical System</td>
<td>Deck Shift Right O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521378</td>
<td>Electrical System</td>
<td>LH Lateral Tilt O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521378</td>
<td>Electrical System</td>
<td>LH Lateral Tilt O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521379</td>
<td>Electrical System</td>
<td>RH Lateral Tilt O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521379</td>
<td>Electrical System</td>
<td>RH Lateral Tilt O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521380</td>
<td>Electrical System</td>
<td>RH Float Adjust O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521380</td>
<td>Electrical System</td>
<td>RH Float Adjust O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521381</td>
<td>Electrical System</td>
<td>LH Float Adjust O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521381</td>
<td>Electrical System</td>
<td>LH Float Adjust O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>104 521087 2</td>
<td>Electrical System</td>
<td>Master Controller Disabled</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>104 521087 3</td>
<td>Electrical System</td>
<td>Master Controller High Temperature</td>
<td>Module has exceeded max operating temperature. Allow module to cool down before continuing operation.</td>
<td></td>
</tr>
<tr>
<td>104 521087 4</td>
<td>Electrical System</td>
<td>Master Controller Low Batt Voltage</td>
<td>Battery voltage is low. Contact Dealer to check charging system.</td>
<td></td>
</tr>
<tr>
<td>104 521087 5</td>
<td>Electrical System</td>
<td>Master Controller High Batt Voltage</td>
<td>Battery voltage is high. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>104 521087 7</td>
<td>Electrical System</td>
<td>Master Controller Vref Error</td>
<td>Reference voltage error. Check wiring for damage. The following sensors may be affected: Left Hand Wheel Speed, Right Hand Wheel Speed, Fuel Level, Ground Speed, Lever Position. Check address wiring.</td>
<td></td>
</tr>
<tr>
<td>104 521087 10</td>
<td>Electrical System</td>
<td>Master Controller MultiAddress</td>
<td>Check address wiring.</td>
<td></td>
</tr>
<tr>
<td>104 521092 1</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall Disabled</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>104 521092 2</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall High Temperature</td>
<td>Module has exceeded max operating temperature. Allow module to cool down before continuing operation.</td>
<td></td>
</tr>
<tr>
<td>104 521092 3</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall Low Batt Voltage</td>
<td>Battery voltage is low. Contact Dealer to check charging system.</td>
<td></td>
</tr>
<tr>
<td>104 521092 4</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall High Batt Voltage</td>
<td>Battery voltage is high. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>104 521092 6</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall Address Error</td>
<td>CAN Address Error. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>104 521092 7</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall Vref error</td>
<td>Reference voltage error. Check wiring for damage.</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>SPN</td>
<td>FMI</td>
<td>Short Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>104 521097 1</td>
<td>Electrical System Ext. Module, Chassis Disabled</td>
<td>104</td>
<td>2</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521097 3</td>
<td>Electrical System Ext. Module, Chassis Low Batt Voltage</td>
<td>104</td>
<td>4</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521097 4</td>
<td>Electrical System Ext. Module, Chassis High Batt Voltage</td>
<td>104</td>
<td>5</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521097 7</td>
<td>Electrical System Ext. Module, Chassis Vref error</td>
<td>104</td>
<td>7</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521501 3</td>
<td>Electrical System Swath Compressor Low Alarm</td>
<td>104</td>
<td>1</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521501 4</td>
<td>Electrical System Swath Compressor High Alarm</td>
<td>104</td>
<td>2</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521501 5</td>
<td>Electrical System Swath Compressor Low Error</td>
<td>104</td>
<td>3</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521501 6</td>
<td>Electrical System Swath Compressor High Error</td>
<td>104</td>
<td>4</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521501 8</td>
<td>Electrical System Swath Compressor Vref Error</td>
<td>104</td>
<td>5</td>
<td>Electrical System</td>
</tr>
<tr>
<td>104 521502 3</td>
<td>Electrical System AHHC Left-Out Sensor Low Alarm</td>
<td>104</td>
<td>6</td>
<td>Electrical System</td>
</tr>
</tbody>
</table>

Reference:

- Module has exceeded max operating temperature. Allow module to cool down before continuing operation.
- Battery voltage is low. Contact Dealer to check charging system.
- Battery voltage is high. Contact Dealer.
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>SA SPN</th>
<th>Full Fault Description</th>
<th>Short Description</th>
<th>Telltale</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521502 1</td>
<td>Electrical System</td>
<td>4</td>
<td>AHHC Left-out Sensor High Alarm</td>
<td>Electrical</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 2</td>
<td>Electrical System</td>
<td>5</td>
<td>AHHC Left-out Sensor Low Error</td>
<td>Electrical</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 3</td>
<td>Electrical System</td>
<td>6</td>
<td>AHHC Left-out Sensor High Error</td>
<td>Electrical</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 4</td>
<td>Electrical System</td>
<td>7</td>
<td>AHHC Left-out Sensor Vreff Error</td>
<td>Electrical</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521503 1</td>
<td>Electrical System</td>
<td>8</td>
<td>AHHC Left-in Sensor High Alarm</td>
<td>Electrical</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 2</td>
<td>Electrical System</td>
<td>9</td>
<td>AHHC Left-in Sensor Low Error</td>
<td>Electrical</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 3</td>
<td>Electrical System</td>
<td>10</td>
<td>AHHC Left-in Sensor High Error</td>
<td>Electrical</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 4</td>
<td>Electrical System</td>
<td>11</td>
<td>AHHC Left-in Sensor Vreff Error</td>
<td>Electrical</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521504 1</td>
<td>Electrical System</td>
<td>12</td>
<td>AHHC Right-in Sensor High Alarm</td>
<td>Electrical</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504 2</td>
<td>Electrical System</td>
<td>13</td>
<td>AHHC Right-in Sensor Low Error</td>
<td>Electrical</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504 3</td>
<td>Electrical System</td>
<td>14</td>
<td>AHHC Right-in Sensor High Error</td>
<td>Electrical</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504 4</td>
<td>Electrical System</td>
<td>15</td>
<td>AHHC Right-in Sensor Vreff Error</td>
<td>Electrical</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>104 521504 5</td>
<td>Electrical System</td>
<td>AHHC Right-in Sensor</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521504 6</td>
<td>Electrical System</td>
<td>AHHC Right-in Sensor</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521504 8</td>
<td>Electrical System</td>
<td>AHHC Right-in Sensor</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
<td></td>
</tr>
<tr>
<td>104 521505 3</td>
<td>Electrical System</td>
<td>AHHC Right-out Sensor</td>
<td>Low Alarm</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521505 4</td>
<td>Electrical System</td>
<td>AHHC Right-out Sensor</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521505 5</td>
<td>Electrical System</td>
<td>AHHC Right-out Sensor</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521505 6</td>
<td>Electrical System</td>
<td>AHHC Right-out Sensor</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521505 8</td>
<td>Electrical System</td>
<td>AHHC Right-out Sensor</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
<td></td>
</tr>
<tr>
<td>104 521506 2</td>
<td>Electrical System</td>
<td>VREF XC10 Firewall</td>
<td>CAN Error</td>
<td>Contact Dealer The following sensors may be affected: Knife Speed Reel Speed Left Hand Draper Speed Right Hand Draper Speed Header Identification Reel Height Position Reel Fore-Aft Position Hydraulic Oil Temperature</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>104 521506 3</td>
<td>Electrical System</td>
<td>VREF XC10 Firewall</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer. The following sensors may be affected: Knife Speed Reel Speed Left Hand Draper Speed Right Hand Draper Speed Header Identification Reel Height Position Reel Fore-Aft Position Hydraulic Oil Temperature</td>
<td></td>
</tr>
<tr>
<td>104 521506 4</td>
<td>Electrical System</td>
<td>VREF XC10 Firewall</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer. The following sensors may be affected: Knife Speed Reel Speed Left Hand Draper Speed Right Hand Draper Speed Header Identification Reel Height Position Reel Fore-Aft Position Hydraulic Oil Temperature</td>
<td></td>
</tr>
<tr>
<td>104 521507 2</td>
<td>Electrical System</td>
<td>VREF XC10 Chassis</td>
<td>CAN Error</td>
<td>Contact Dealer The following sensors may be affected: Knife Pressure Reel Pressure Draper Pressure Supercharge Pressure Left Hand Float Position Right Hand Float Position Header Height Position Header Tilt Position Swath Former Position</td>
<td></td>
</tr>
<tr>
<td>104 521507 3</td>
<td>Electrical System</td>
<td>VREF XC10 Chassis</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer. The following sensors may be affected: Knife Pressure Reel Pressure Draper Pressure Supercharge Pressure Left Hand Float Position Right Hand Float Position Header Height Position Header Tilt Position Swath Former Position</td>
<td></td>
</tr>
<tr>
<td>104 521507 4</td>
<td>Electrical System</td>
<td>VREF XC10 Chassis</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer. The following sensors may be affected: Knife Pressure Reel Pressure Draper Pressure Supercharge Pressure Left Hand Float Position Right Hand Float Position Header Height Position Header Tilt Position Swath Former Position</td>
<td></td>
</tr>
<tr>
<td>104 521508 1</td>
<td>Windrower</td>
<td>Lift/Fan Hyd Unstable</td>
<td>Instability Detected</td>
<td>If condition persists, contact dealer. Continued operation may lead to machine damage.</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Tealite (FMI)</td>
<td>SPN</td>
<td>Fault Codes</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>104 521509 1</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>1</td>
<td>19</td>
<td>176 521104 1</td>
</tr>
<tr>
<td>104 521509 2</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>2</td>
<td>19</td>
<td>176 521104 2</td>
</tr>
<tr>
<td>104 521510 1</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>1</td>
<td>19</td>
<td>176 521104 3</td>
</tr>
<tr>
<td>104 521510 2</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>2</td>
<td>19</td>
<td>176 521104 4</td>
</tr>
<tr>
<td>104 521509 3</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>3</td>
<td>19</td>
<td>176 521104 5</td>
</tr>
<tr>
<td>104 521509 4</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>4</td>
<td>19</td>
<td>176 521104 6</td>
</tr>
<tr>
<td>104 521510 3</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>3</td>
<td>19</td>
<td>176 521104 7</td>
</tr>
<tr>
<td>104 521510 4</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>4</td>
<td>19</td>
<td>176 521111 1</td>
</tr>
<tr>
<td>104 521509 5</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>5</td>
<td>19</td>
<td>176 521111 2</td>
</tr>
<tr>
<td>104 521509 6</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>6</td>
<td>19</td>
<td>176 521111 3</td>
</tr>
<tr>
<td>104 521510 5</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>5</td>
<td>19</td>
<td>176 521111 4</td>
</tr>
<tr>
<td>104 521510 6</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>6</td>
<td>19</td>
<td>176 521111 5</td>
</tr>
<tr>
<td>104 521509 7</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>7</td>
<td>19</td>
<td>176 521111 6</td>
</tr>
<tr>
<td>104 521509 8</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>8</td>
<td>19</td>
<td>176 521111 7</td>
</tr>
<tr>
<td>104 521509 9</td>
<td>Windrower Gearbox Oil Level Signal Low</td>
<td>Low Gearbox Oil Level Signal Low</td>
<td>9</td>
<td>19</td>
<td>176 521111 8</td>
</tr>
<tr>
<td>104 521510 7</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>7</td>
<td>19</td>
<td>176 521111 9</td>
</tr>
<tr>
<td>104 521510 8</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>8</td>
<td>19</td>
<td>176 521111 10</td>
</tr>
<tr>
<td>104 521510 9</td>
<td>Windrower Gearbox Oil Level Signal High</td>
<td>High Gearbox Oil Level Signal High</td>
<td>9</td>
<td>19</td>
<td>176 521111 11</td>
</tr>
</tbody>
</table>

Full Fault Description

- **104 521509 1**: Windrower Gearbox Oil Level Signal Low
 - **Recommended Fix/Check Message**: Check sensor wiring and replace sensor if necessary.

- **104 521509 2**: Windrower Gearbox Oil Level Signal High
 - **Recommended Fix/Check Message**: Check sensor wiring and replace sensor if necessary.

- **104 521510 1**: Windrower Gearbox Oil Level Signal Low
 - **Recommended Fix/Check Message**: Shut off engine and check oil level.

- **104 521510 2**: Windrower Gearbox Oil Level Signal High
 - **Recommended Fix/Check Message**: Shut off engine and check oil level.

Short Description

- **Electrical System**: Equipment that supplies power to various components of the vehicle.

- **Windrower**: Equipment used for the collection and transportation of crop material.

Tealite (FMI)

- **19**: Tealite Code for Windrower Gearbox Oil Level Signal Low and High.

Fault Codes

- **SA 521104**: Fault Code for Electrical System Front Work Lights EK1 Relay.
- **521104**: Fault Code for Electrical System Low Beam Light Cab Fwd EK2 Relay.

SPN

- **104**: System Power Number for Gearbox Oil Level Signal.
<table>
<thead>
<tr>
<th>Fault Code</th>
<th>SPN</th>
<th>FMI</th>
<th>Full Fault Description</th>
<th>Short Description</th>
<th>Telltale</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>176 521111</td>
<td>4</td>
<td>1</td>
<td>Electrical System Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally Closed contact is open</td>
<td>Low Beam Light Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521111</td>
<td>5</td>
<td>2</td>
<td>Electrical System Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally Closed contact is shorted</td>
<td>Low Beam Light Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521111</td>
<td>6</td>
<td>3</td>
<td>Electrical System Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally Closed contact is open</td>
<td>Low Beam Light Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521111</td>
<td>7</td>
<td>4</td>
<td>Electrical System Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally Closed contact is shorted</td>
<td>Low Beam Light Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>1</td>
<td>5</td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is open</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>2</td>
<td>6</td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is shorted</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>3</td>
<td>7</td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is open</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>4</td>
<td></td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is shorted</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>5</td>
<td></td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is open</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>6</td>
<td></td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is shorted</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521119</td>
<td>7</td>
<td></td>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>EK4 Relay Normally Closed contact is open</td>
<td>Tail Lights Engine Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521127</td>
<td>1</td>
<td></td>
<td>Electrical System Corner Lights, Cab Fwd</td>
<td>EK4 Relay Normally Closed contact is open</td>
<td>Corner Lights, Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521127</td>
<td>2</td>
<td></td>
<td>Electrical System Corner Lights, Cab Fwd</td>
<td>EK4 Relay Normally Closed contact is open</td>
<td>Corner Lights, Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521127</td>
<td>3</td>
<td></td>
<td>Electrical System Corner Lights, Cab Fwd</td>
<td>EK4 Relay Normally Closed contact is open</td>
<td>Corner Lights, Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>176 521127</td>
<td>4</td>
<td></td>
<td>Electrical System Corner Lights, Cab Fwd</td>
<td>EK4 Relay Normally Closed contact is open</td>
<td>Corner Lights, Cab Fwd</td>
<td>Check chassis relay module</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 5</td>
<td>Electrical System Corner Lights, Cab Fwd EK4 Relay coil is not receiving power</td>
<td>Check wiring to chassis relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 6</td>
<td>Electrical System Corner Lights, Cab Fwd EK4 Relay Normally open contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 7</td>
<td>Electrical System Corner Lights, Cab Fwd EK4 Relay Normally closed contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 1</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay coil open or not present</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 2</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay Coil shorted or failed relay driver</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 3</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay Normally Open contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 4</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay Normally Closed contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 5</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay coil is not receiving power</td>
<td>Check wiring to chassis relay module EK5. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 6</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay Normally open contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521135 7</td>
<td>Electrical System Rear Roof Work Lights EK5 Relay Normally closed contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143 1</td>
<td>Electrical System High Beam Lights CF EK6 Relay coil open or not present</td>
<td>Check wiring to chassis relay module EK6. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143 2</td>
<td>Electrical System High Beam Lights CF EK6 Relay Coil shorted or failed relay driver</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143 3</td>
<td>Electrical System High Beam Lights CF EK6 Relay Normally Open contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143 4</td>
<td>Electrical System High Beam Lights CF EK6 Relay Normally Closed contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143 5</td>
<td>Electrical System High Beam Lights CF EK6 Relay coil is not receiving power</td>
<td>Check wiring to chassis relay module EK6. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143</td>
<td>Electrical</td>
<td>High Beam Lights CF</td>
<td>EK6 Relay Normally open contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521143</td>
<td>Electrical</td>
<td>High Beam Lights CF</td>
<td>EK6 Relay Normally closed contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay coil open or not present</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay Coil shorted or failed relay driver</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay Normally Open contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay Normally Closed contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay coil is not receiving power</td>
<td>Check wiring to chassis relay module EK7. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay Normally open contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521151</td>
<td>Electrical</td>
<td>Brake Lights, Eng Fwd</td>
<td>EK7 Relay Normally closed contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical</td>
<td>Cab Swath Lights, Roof</td>
<td>EK8 Relay coil open or not present</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical</td>
<td>Cab Swath Lights, Roof</td>
<td>EK8 Relay Coil shorted or failed relay driver</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical</td>
<td>Cab Swath Lights, Roof</td>
<td>EK8 Relay Normally Open contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical</td>
<td>Cab Swath Lights, Roof</td>
<td>EK8 Relay Normally Closed contact is open</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical</td>
<td>Cab Swath Lights, Roof</td>
<td>EK8 Relay coil is not receiving power</td>
<td>Check wiring to chassis relay module EK8. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical</td>
<td>Cab Swath Lights, Roof</td>
<td>EK8 Relay Normally open contact is shorted</td>
<td>Check chassis relay module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Telltale</td>
<td>SPN</td>
<td>FMI</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>176 521159</td>
<td>Electrical System Cab Swath Lights, Roof</td>
<td>EK8 Relay Normally closed contact is shorted</td>
<td>1 Electrical System</td>
<td>1</td>
<td>7</td>
<td>Check chassis relay module EK8.</td>
</tr>
<tr>
<td>176 521167</td>
<td>Electrical System Beacon Lights</td>
<td>EK9 Relay Coil shorted or failed relay driver</td>
<td>2 Electrical System</td>
<td>2</td>
<td>7</td>
<td>Check chassis relay module EK9.</td>
</tr>
<tr>
<td>176 521167</td>
<td>Electrical System Beacon Lights</td>
<td>EK9 Relay Normally Open contact is open</td>
<td>3 Electrical System</td>
<td>3</td>
<td>7</td>
<td>Check wiring to chassis relay module EK9. Contact Dealer.</td>
</tr>
<tr>
<td>176 521167</td>
<td>Electrical System Beacon Lights</td>
<td>EK9 Relay Normally Closed contact is open</td>
<td>4 Electrical System</td>
<td>4</td>
<td>7</td>
<td>Check wiring to chassis relay module EK9.</td>
</tr>
<tr>
<td>176 521167</td>
<td>Electrical System Dome Light, Cab</td>
<td>EK10 Relay Coil shorted or failed relay driver</td>
<td>5 Electrical System</td>
<td>5</td>
<td>7</td>
<td>Check wiring to chassis relay module EK10.</td>
</tr>
<tr>
<td>176 521167</td>
<td>Electrical System Dome Light, Cab</td>
<td>EK10 Relay Normally Open contact is open</td>
<td>6 Electrical System</td>
<td>6</td>
<td>7</td>
<td>Check wiring to chassis relay module EK10.</td>
</tr>
<tr>
<td>176 521167</td>
<td>Electrical System Dome Light, Cab</td>
<td>EK10 Relay Normally Closed contact is open</td>
<td>7 Electrical System</td>
<td>7</td>
<td>7</td>
<td>Check wiring to chassis relay module EK10.</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner work lights</td>
<td>EC1 Circuit Breaker Blown</td>
<td>Check roof relay module</td>
</tr>
<tr>
<td>EC1 Circuit Breaker Not Powered</td>
<td>Contact dealer</td>
<td></td>
</tr>
<tr>
<td>EC1 Circuit Breaker Not Used</td>
<td>Check wiring to roof relay module</td>
<td></td>
</tr>
<tr>
<td>Outer work lights</td>
<td>EC2 Circuit Breaker Blown</td>
<td>Contact dealer</td>
</tr>
<tr>
<td>EC2 Circuit Breaker Not Powered</td>
<td>Check wiring to roof relay module</td>
<td></td>
</tr>
<tr>
<td>EC2 Circuit Breaker Not Used</td>
<td>Contact dealer</td>
<td></td>
</tr>
<tr>
<td>Brake Lights, Eng Fwd</td>
<td>EC3 Circuit Breaker Blown</td>
<td>Check roof relay module</td>
</tr>
<tr>
<td>EC3 Circuit Breaker Not Powered</td>
<td>Contact dealer</td>
<td></td>
</tr>
<tr>
<td>EC3 Circuit Breaker Not Used</td>
<td>Check wiring to roof relay module</td>
<td></td>
</tr>
<tr>
<td>Low Beam Light Cab Fwd</td>
<td>EC4 Circuit Breaker Blown</td>
<td>Check roof relay module</td>
</tr>
<tr>
<td>EC4 Circuit Breaker Not Powered</td>
<td>Contact dealer</td>
<td></td>
</tr>
<tr>
<td>EC4 Circuit Breaker Not Used</td>
<td>Check wiring to roof relay module</td>
<td></td>
</tr>
<tr>
<td>Cab Swath Lights, Roof</td>
<td>EC5 Circuit Breaker Blown</td>
<td>Check roof relay module</td>
</tr>
<tr>
<td>EC5 Circuit Breaker Not Powered</td>
<td>Contact dealer</td>
<td></td>
</tr>
<tr>
<td>EC5 Circuit Breaker Not Used</td>
<td>Check wiring to roof relay module</td>
<td></td>
</tr>
<tr>
<td>Fault Codes SPN</td>
<td>176 521300</td>
<td>176 521303</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>FMI</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Teitale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Short Description</td>
<td>High Beam Lights CF</td>
<td>High Beam Lights CF</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>EC6 Circuit Breaker Blown</td>
<td>EC7 Circuit Breaker Not Used</td>
</tr>
<tr>
<td>Fix/Check Message</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Description</td>
<td>Full Fault Description</td>
<td>Full Fault Description</td>
</tr>
<tr>
<td>Telltale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>FMI</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Teitale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Short Description</td>
<td>High Beam Lights Engine Fwd</td>
<td>Tail Lights Engine Fwd</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>EC6 Circuit Breaker Blown</td>
<td>EC7 Circuit Breaker Not Used</td>
</tr>
<tr>
<td>Fix/Check Message</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Description</td>
<td>Full Fault Description</td>
<td>Full Fault Description</td>
</tr>
<tr>
<td>Telltale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>FMI</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Teitale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Short Description</td>
<td>High Beam Lights Engine Fwd</td>
<td>Tail Lights Engine Fwd</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>EC6 Circuit Breaker Blown</td>
<td>EC7 Circuit Breaker Not Used</td>
</tr>
<tr>
<td>Fix/Check Message</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Description</td>
<td>Full Fault Description</td>
<td>Full Fault Description</td>
</tr>
<tr>
<td>Telltale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>FMI</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Teitale</td>
<td>Electrical System</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Short Description</td>
<td>Dome Light, Cab</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>dome Light, Cab</td>
<td>dome Light, Cab</td>
</tr>
<tr>
<td>Fix/Check Message</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Check wiring to roof relay module EC6 circuit breaker. Contact dealer.</td>
<td>Check wiring to roof relay module EC7 circuit breaker.</td>
</tr>
<tr>
<td>Description</td>
<td>Full Fault Description</td>
<td>Full Fault Description</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>176 521474 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521475 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521476 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521477 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521478 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521479 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521480 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521481 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521482 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521483 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521484 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521485 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>176 521486 1</td>
<td>Electrical System Roof Relay Module Error - Module, Roof</td>
<td>Electrical System Roof Relay Module</td>
</tr>
<tr>
<td>178 521186 1</td>
<td>Electrical System Brake Lights, Cab Fwd BK1 Relay coil open or not present</td>
<td>Electrical System</td>
</tr>
<tr>
<td>178 521186 2</td>
<td>Electrical System Brake Lights, Cab Fwd BK1 Relay coil shorted or failed relay driver</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>178</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>178 521226 4</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>178 521226 5</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>178 521226 6</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>178 521226 7</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
</tr>
<tr>
<td>178 521210 1</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521210 2</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521210 3</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521210 4</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521210 5</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521210 6</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521210 7</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
</tr>
<tr>
<td>178 521218 1</td>
<td>Electrical System</td>
<td>LH Turn Signal</td>
</tr>
<tr>
<td>178 521218 2</td>
<td>Electrical System</td>
<td>LH Turn Signal</td>
</tr>
<tr>
<td>178 521218 3</td>
<td>Electrical System</td>
<td>LH Turn Signal</td>
</tr>
<tr>
<td>178 521218 4</td>
<td>Electrical System</td>
<td>LH Turn Signal</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SA</td>
<td>SPN</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>178 521218</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>178 521218</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>178 521218</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>178 521202</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178 521202</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>178 521202</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>178 521202</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>178 521202</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>178 521202</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>178 521202</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>178 521234</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178 521234</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>178 521234</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>178 521234</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>178 521234</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>178 521234 6</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay coil is not receiving power</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521234 7</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally closed contact is shorted</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 1</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally open contact is shorted</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 2</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally closed contact is open</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 3</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally open contact is open</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 4</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally closed contact is shorted</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 5</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally open contact is shorted</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 6</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally closed contact is open</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521242 7</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally open contact is open</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521250 1</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay coil is not receiving power</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521250 2</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally closed contact is shorted</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521250 3</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally open contact is shorted</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521250 4</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally closed contact is open</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521250 5</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay normally open contact is open</td>
<td>Replace relay</td>
</tr>
<tr>
<td>178 521250 6</td>
<td>Electrical System Tail Lights, Cab Fwd BK4 Relay coil is not receiving power</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>178 521250</td>
<td>Electrical System</td>
<td>Tail Lights, Cab Fwd</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521266</td>
<td>Electrical System</td>
<td>Header swath lights</td>
</tr>
<tr>
<td>178 521274</td>
<td>Electrical System</td>
<td>Windshield washer</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>178 521315</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>178 521315</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>178 521315</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>178 521318</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>178 521318</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>178 521318</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>178 521321</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>178 521321</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>178 521321</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>178 521324</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>178 521324</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>178 521324</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>178 521327</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>178 521327</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>178 521327</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Telltale</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>BF6 Fuse Blown</td>
<td>LH Turn Signal</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF6 Fuse Not Powered</td>
<td>LH Turn Signal</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF6 Fuse Not Used</td>
<td>LH Turn Signal</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF7 Fuse Blown</td>
<td>RH Turn Signal</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF7 Fuse Not Powered</td>
<td>RH Turn Signal</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF7 Fuse Not Used</td>
<td>RH Turn Signal</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF8 Fuse Blown</td>
<td>Low Beam Lights, EF</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF8 Fuse Not Powered</td>
<td>Low Beam Lights, EF</td>
<td>Electrical System</td>
</tr>
<tr>
<td>BF8 Fuse Not Used</td>
<td>Low Beam Lights, EF</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Error - Module, Chassis Relay</td>
<td>Chassis Relay Module</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Error - Module, Chassis Relay</td>
<td>Chassis Relay Module</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Error - Module, Chassis Relay</td>
<td>Chassis Relay Module</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Error - Module, Chassis Relay</td>
<td>Chassis Relay Module</td>
<td>Electrical System</td>
</tr>
<tr>
<td>Error - Module, Chassis Relay</td>
<td>Chassis Relay Module</td>
<td>Electrical System</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>SPN</th>
<th>System</th>
<th>Full Fault Description</th>
<th>Short Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 521467</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521468</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521469</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521470</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521471</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521472</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>178 521473</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error - Module, Chassis Relay Contact Dealer</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 524101</td>
<td>12</td>
<td>Electrical System</td>
<td>Console ROM CRC failed</td>
<td>Console ROM CRC read</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 524102</td>
<td>12</td>
<td>Electrical System</td>
<td>Console memory failed</td>
<td>Console EEPROM read</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 524103</td>
<td>12</td>
<td>Electrical System</td>
<td>Console EEPROM write</td>
<td>Console 12V, Low</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 444</td>
<td>1</td>
<td>Electrical System</td>
<td>Console 2.5 V, Low</td>
<td>Check console wiring for damage</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 1043</td>
<td>2</td>
<td>Electrical System</td>
<td>The +12V input is below the minimum operation voltage</td>
<td>Check console wiring for damage</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 3509</td>
<td>2</td>
<td>Electrical System</td>
<td>Error writing value to the console EEPROM.</td>
<td>Check console wiring for damage</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>190 524260</td>
<td>13</td>
<td>Electrical System</td>
<td>Error writing value to the console EEPROM.</td>
<td>Check console wiring for damage</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>190 524262 13</td>
<td>Electrical System</td>
<td>Console primary CRC</td>
<td>Parameter primary table CRC failure.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524263 13</td>
<td>Electrical System</td>
<td>Console redundant CRC</td>
<td>Parameter redundant table CRC failure.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524264 13</td>
<td>Electrical System</td>
<td>Console config reading</td>
<td>Error reading a configuration parameter.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 2662 3</td>
<td>Electrical System</td>
<td>Throttle Voltage High</td>
<td>Throttle input has a voltage too high.</td>
<td>Check console wiring for damage. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 2662 4</td>
<td>Electrical System</td>
<td>Throttle Voltage Low</td>
<td>Throttle input has a voltage too low.</td>
<td>Check console wiring for damage. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 2662 14</td>
<td>Electrical System</td>
<td>Console throttle input</td>
<td>Throttle inputs failed the plausibility check.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 2662 13</td>
<td>Electrical System</td>
<td>Console throttle > 0</td>
<td>The throttle was out of neutral when powering up.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524129 31</td>
<td>Electrical System</td>
<td>GSL Handle Offline</td>
<td>Communications lost with the GSL Handle.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524130 31</td>
<td>Electrical System</td>
<td>GSL Button Stuck</td>
<td>There is a stuck button on the handle at power up.</td>
<td>Check GSL switches for failure or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 524131 31</td>
<td>Electrical System</td>
<td>Console Button Stuck</td>
<td>There is a stuck button on the console at power up.</td>
<td>Check console switches for failure or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 524117 31</td>
<td>Electrical System</td>
<td>Console button reading</td>
<td>There was an error reading the serial data for the console buttons.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524118 31</td>
<td>Electrical System</td>
<td>Console button low</td>
<td>The LOW state test for control panel buttons 4-8 & HeaderReverse failed.</td>
<td>Includes deck shift, DWA up/down & header reverse buttons. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 524119 31</td>
<td>Electrical System</td>
<td>Console button high</td>
<td>The HIGH state test for control panel buttons 4-8 & HeaderReverse failed</td>
<td>Includes deck shift, DWA up/down & header reverse buttons. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 524221 31</td>
<td>Electrical System</td>
<td>GSL button low state</td>
<td>A handle button failed its LOW state check.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>190 524222</td>
<td>Electrical System</td>
<td>GSL button high state</td>
<td>A handle button failed its HIGH state check.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524223</td>
<td>Electrical System</td>
<td>GSL scroll encoder</td>
<td>There was a serial data transfer error with the scroll wheel encoders.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524224</td>
<td>Electrical System</td>
<td>GSL scroll data</td>
<td>The scroll wheel data was read, but there was an error reading a portion of data.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524225</td>
<td>Electrical System</td>
<td>GSL scroll SPI read</td>
<td>There was a SPI transfer failure while reading the scroll wheel encoders.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524265</td>
<td>Electrical System</td>
<td>Horn Current High</td>
<td>The horn output is drawing more than 6A.</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524266</td>
<td>Electrical System</td>
<td>Console on-relay >2.5A</td>
<td>The battery on-relay coil is drawing more than 2.5A</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 524267</td>
<td>Electrical System</td>
<td>Console off-relay>2.5A</td>
<td>The battery off relay coil is drawing more than 2.5A</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521392</td>
<td>Electrical System</td>
<td>LH Turn Signal</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521392</td>
<td>Electrical System</td>
<td>LH Turn Signal</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521393</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521393</td>
<td>Electrical System</td>
<td>RH Turn Signal</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521394</td>
<td>Electrical System</td>
<td>Hazard</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521394</td>
<td>Electrical System</td>
<td>Hazard</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521395</td>
<td>Electrical System</td>
<td>DWA/Swath Roller Up</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Teiltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>DWA/Swath Roller Up</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>DWA/Swath Roller Dn</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>DWA/Swath Roller Dn</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Deck Shift Right</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Deck Shift Right</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Deck Shift Center</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Deck Shift Center</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Deck Shift Left</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Deck Shift Left</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Draper Speed Decrease</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Draper Speed Decrease</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Draper Speed Increase</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Draper Speed Increase</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Road Lights</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Electrical System</td>
<td>Road Lights</td>
<td>CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>190 521403</td>
<td>3</td>
<td>4</td>
<td>Electrical System High Beam Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521404</td>
<td>3</td>
<td>4</td>
<td>Electrical System F1 Button Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521405</td>
<td>4</td>
<td>3</td>
<td>Electrical System Beacons Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521406</td>
<td>3</td>
<td>4</td>
<td>Electrical System Clearance Lights Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521407</td>
<td>4</td>
<td>3</td>
<td>Electrical System Wiper EF Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521408</td>
<td>4</td>
<td>3</td>
<td>Electrical System Washer Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521409</td>
<td>3</td>
<td>4</td>
<td>Electrical System Wiper CF Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>190 521410</td>
<td>3</td>
<td>4</td>
<td>Electrical System Field Lights Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td>CAN Fault Error</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Teiltale</td>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>Field Lights</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521410</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>F2 Button</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521411</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>F2 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521411</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>F2 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521411</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC Fan Spd Decrease</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521412</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC Fan Spd Decrease</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521412</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC Fan Spd Decrease</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521412</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC Fan Spd Decrease</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521412</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC Fan Spd Increase</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521413</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC Fan Spd Increase</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521413</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC Fan Spd Increase</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521413</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC Fan Spd Increase</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521413</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC Recirc</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521414</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC Recirc</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521414</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC Recirc</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521414</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC Recirc</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521414</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>F3 Button</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521415</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>F3 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521415</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>F3 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521415</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>F3 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521415</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>F4 Button</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521416</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>F4 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521416</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>F4 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521416</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>F4 Button</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521416</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC On/Off</td>
<td>3 Electrical System</td>
<td>190</td>
<td>521417</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC On/Off</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521417</td>
</tr>
<tr>
<td>CAN Error</td>
<td>CAN Error</td>
<td>AC On/Off</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521417</td>
</tr>
<tr>
<td>Switch Error</td>
<td>Switch Error</td>
<td>AC On/Off</td>
<td>4 Electrical System</td>
<td>190</td>
<td>521417</td>
</tr>
</tbody>
</table>

Recommended Fix/Check Message: Contact Dealer. Check switch for damage or binding. Contact Dealer.
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>SPN</th>
<th>FM1</th>
<th>Full Fault Description</th>
<th>Short Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 521418</td>
<td>3</td>
<td>Electrical System</td>
<td>AC Defrost</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521418</td>
<td>4</td>
<td>Electrical System</td>
<td>AC Defrost</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521419</td>
<td>3</td>
<td>Electrical System</td>
<td>AC Auto Fan Spd</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521419</td>
<td>4</td>
<td>Electrical System</td>
<td>AC Auto Fan Spd</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521420</td>
<td>3</td>
<td>Electrical System</td>
<td>AC Cold</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521420</td>
<td>4</td>
<td>Electrical System</td>
<td>AC Cold</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521421</td>
<td>3</td>
<td>Electrical System</td>
<td>AC Auto Fan Spd</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521421</td>
<td>4</td>
<td>Electrical System</td>
<td>AC Auto Fan Spd</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521422</td>
<td>3</td>
<td>Electrical System</td>
<td>AC Hot</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521422</td>
<td>4</td>
<td>Electrical System</td>
<td>AC Hot</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521423</td>
<td>3</td>
<td>Electrical System</td>
<td>Horn</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521423</td>
<td>4</td>
<td>Electrical System</td>
<td>Horn</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521424</td>
<td>3</td>
<td>Electrical System</td>
<td>F5 Button</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521424</td>
<td>4</td>
<td>Electrical System</td>
<td>F5 Button</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521425</td>
<td>3</td>
<td>Electrical System</td>
<td>F6 Button</td>
<td>Switch Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521425</td>
<td>4</td>
<td>Electrical System</td>
<td>F6 Button</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Telltale</td>
<td>FMI</td>
<td>Fault SPN</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>190 521425</td>
<td>Electrical System F6 Button</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521426</td>
<td>Electrical System Header Stop NC</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521426</td>
<td>Electrical System Header Stop NC</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521427</td>
<td>Electrical System Header Reverse</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521427</td>
<td>Electrical System Header Reverse</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521429</td>
<td>Electrical System Operator Present</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521429</td>
<td>Electrical System Operator Present</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521433</td>
<td>Electrical System Door Switches</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521433</td>
<td>Electrical System Door Switches</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521434</td>
<td>Electrical System Throttle</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521434</td>
<td>Electrical System Throttle</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521435</td>
<td>Electrical System Batt Disc. Close</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521435</td>
<td>Electrical System Batt Disc. Close</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>190 521436</td>
<td>Electrical System Horn</td>
<td>Switch Error</td>
<td>Electrical System</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>190 521436</td>
<td>Electrical System Horn</td>
<td>CAN Error</td>
<td>Electrical System</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMN</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>190 521438 3</td>
<td>Electrical System AutoSteer Engage</td>
<td>Switch Error</td>
<td>AutoSteer Engage A Button</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521439 4</td>
<td>Electrical System AutoSteer Engage</td>
<td>Switch Error</td>
<td>AutoSteer Engage B Button</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521440 3</td>
<td>Electrical System A Button Switch Error</td>
<td>Switch Error</td>
<td>A Button</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521441 4</td>
<td>Electrical System B Button</td>
<td>Switch Error</td>
<td>B Button</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521442 3</td>
<td>Electrical System C Button</td>
<td>Switch Error</td>
<td>C Button</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521443 4</td>
<td>Electrical System Select</td>
<td>CAN Error</td>
<td>Select</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521444 3</td>
<td>Electrical System Escape</td>
<td>Switch Error</td>
<td>Escape</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521445 4</td>
<td>Electrical System Autosteer</td>
<td>CAN Error</td>
<td>Autosteer</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521446 3</td>
<td>Electrical System Tilt Extend</td>
<td>Switch Error</td>
<td>Tilt Extend</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Teiltale</td>
<td>FMI</td>
<td>SPN</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>190 521445 3 Electrical System Tilt Extend</td>
<td>CAN Error</td>
<td>Tilt Extend</td>
<td>4</td>
<td>190</td>
<td>521446</td>
</tr>
<tr>
<td>190 521447 4 Electrical System Tilt Retract</td>
<td>CAN Error</td>
<td>Tilt Retract</td>
<td>3</td>
<td>190</td>
<td>521446</td>
</tr>
<tr>
<td>190 521447 4 Electrical System Tilt Retract</td>
<td>CAN Error</td>
<td>Tilt Retract</td>
<td>3</td>
<td>190</td>
<td>521447</td>
</tr>
<tr>
<td>190 521447 4 Electrical System Tilt Retract</td>
<td>CAN Error</td>
<td>Tilt Retract</td>
<td>3</td>
<td>190</td>
<td>521447</td>
</tr>
<tr>
<td>190 521448 3 Electrical System Header Raise 1</td>
<td>CAN Error</td>
<td>Header Raise 1</td>
<td>4</td>
<td>190</td>
<td>521448</td>
</tr>
<tr>
<td>190 521448 4 Electrical System Header Raise 1</td>
<td>CAN Error</td>
<td>Header Raise 1</td>
<td>3</td>
<td>190</td>
<td>521448</td>
</tr>
<tr>
<td>190 521448 4 Electrical System Header Raise 1</td>
<td>CAN Error</td>
<td>Header Raise 1</td>
<td>3</td>
<td>190</td>
<td>521448</td>
</tr>
<tr>
<td>190 521448 4 Electrical System Header Raise 1</td>
<td>CAN Error</td>
<td>Header Raise 1</td>
<td>3</td>
<td>190</td>
<td>521448</td>
</tr>
<tr>
<td>190 521449 3 Electrical System Header Raise 2</td>
<td>CAN Error</td>
<td>Header Raise 2</td>
<td>4</td>
<td>190</td>
<td>521449</td>
</tr>
<tr>
<td>190 521449 4 Electrical System Header Raise 2</td>
<td>CAN Error</td>
<td>Header Raise 2</td>
<td>3</td>
<td>190</td>
<td>521449</td>
</tr>
<tr>
<td>190 521449 4 Electrical System Header Raise 2</td>
<td>CAN Error</td>
<td>Header Raise 2</td>
<td>3</td>
<td>190</td>
<td>521449</td>
</tr>
<tr>
<td>190 521449 4 Electrical System Header Raise 2</td>
<td>CAN Error</td>
<td>Header Raise 2</td>
<td>3</td>
<td>190</td>
<td>521449</td>
</tr>
<tr>
<td>190 521450 3 Electrical System Header Lower 1</td>
<td>CAN Error</td>
<td>Header Lower 1</td>
<td>4</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 4 Electrical System Header Lower 1</td>
<td>CAN Error</td>
<td>Header Lower 1</td>
<td>3</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 4 Electrical System Header Lower 1</td>
<td>CAN Error</td>
<td>Header Lower 1</td>
<td>3</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 4 Electrical System Header Lower 1</td>
<td>CAN Error</td>
<td>Header Lower 1</td>
<td>3</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 3 Electrical System Header Lower 2</td>
<td>CAN Error</td>
<td>Header Lower 2</td>
<td>4</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 4 Electrical System Header Lower 2</td>
<td>CAN Error</td>
<td>Header Lower 2</td>
<td>3</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 4 Electrical System Header Lower 2</td>
<td>CAN Error</td>
<td>Header Lower 2</td>
<td>3</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521450 3 Electrical System Header Lower 2</td>
<td>CAN Error</td>
<td>Header Lower 2</td>
<td>3</td>
<td>190</td>
<td>521450</td>
</tr>
<tr>
<td>190 521451 3 Electrical System Keyswitch - Ignition</td>
<td>CAN Error</td>
<td>Keyswitch - Ignition</td>
<td>4</td>
<td>190</td>
<td>521451</td>
</tr>
<tr>
<td>190 521451 4 Electrical System Keyswitch - Ignition</td>
<td>CAN Error</td>
<td>Keyswitch - Ignition</td>
<td>3</td>
<td>190</td>
<td>521451</td>
</tr>
<tr>
<td>190 521451 4 Electrical System Keyswitch - Ignition</td>
<td>CAN Error</td>
<td>Keyswitch - Ignition</td>
<td>3</td>
<td>190</td>
<td>521451</td>
</tr>
<tr>
<td>190 521451 3 Electrical System Keyswitch - Ignition</td>
<td>CAN Error</td>
<td>Keyswitch - Ignition</td>
<td>4</td>
<td>190</td>
<td>521451</td>
</tr>
<tr>
<td>190 521452 3 Electrical System Keyswitch - Accessory</td>
<td>CAN Error</td>
<td>Keyswitch - Accessory</td>
<td>4</td>
<td>190</td>
<td>521452</td>
</tr>
<tr>
<td>190 521452 4 Electrical System Keyswitch - Accessory</td>
<td>CAN Error</td>
<td>Keyswitch - Accessory</td>
<td>3</td>
<td>190</td>
<td>521452</td>
</tr>
<tr>
<td>190 521452 4 Electrical System Keyswitch - Accessory</td>
<td>CAN Error</td>
<td>Keyswitch - Accessory</td>
<td>3</td>
<td>190</td>
<td>521452</td>
</tr>
<tr>
<td>190 521452 3 Electrical System Keyswitch - Accessory</td>
<td>CAN Error</td>
<td>Keyswitch - Accessory</td>
<td>4</td>
<td>190</td>
<td>521452</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 521432 3</td>
<td>Electrical System</td>
<td>Keyswitch - Crank Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521432 4</td>
<td>Electrical System</td>
<td>Keyswitch - Crank CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521451 3</td>
<td>Electrical System</td>
<td>Reel/Knrf Spd - Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521451 4</td>
<td>Electrical System</td>
<td>Reel/Knrf Spd - CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521452 3</td>
<td>Electrical System</td>
<td>Reel/Knrf Spd + Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521452 4</td>
<td>Electrical System</td>
<td>Reel/Knrf Spd + CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521453 3</td>
<td>Electrical System</td>
<td>Reel Fore Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521453 4</td>
<td>Electrical System</td>
<td>Reel Fore CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521454 3</td>
<td>Electrical System</td>
<td>Reel Aft Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521454 4</td>
<td>Electrical System</td>
<td>Reel Aft CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521455 3</td>
<td>Electrical System</td>
<td>Reel Raise Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521455 4</td>
<td>Electrical System</td>
<td>Reel Raise CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521456 3</td>
<td>Electrical System</td>
<td>Reel Lower Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>190 521456 4</td>
<td>Electrical System</td>
<td>Reel Lower CAN Error</td>
<td>Contact Dealer</td>
<td></td>
</tr>
<tr>
<td>190 521457 3</td>
<td>Electrical System</td>
<td>GSL Shift Switch Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Telltale</td>
<td>FMI</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>190 521457 4</td>
<td>Electrical System</td>
<td>CAN Error</td>
<td>4</td>
<td>Electrical System</td>
</tr>
<tr>
<td>190 521459 3</td>
<td>Electrical System</td>
<td>Switch Error</td>
<td>3</td>
<td>Electrical System</td>
</tr>
<tr>
<td>190 521459 4</td>
<td>Electrical System</td>
<td>CAN Error</td>
<td>4</td>
<td>Electrical System</td>
</tr>
</tbody>
</table>
8.4 Engine Fault Codes

Example: Harvest Performance Tracker (HPT) displays the Fault Code 629S 16F 28C

- 629S - S represents the J1939 SPN column. Locate code 629 in that column.
- 12F - F represents the FMI column. Locate code 12 in that column.
- 28C - C is occurrences, 28 is the quantity.
- J1939 SPN description - Controller 1. The Cummins description of this is engine control module critical internal failure - Bad intelligent device or component
- The Cummins Dealer will request the fault code that corresponds with the number that you have located in the J1939 SPN column.

<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Telltale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2272</td>
<td>Engine Exhaust Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EGR Valve Position Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>51</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6497</td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>51</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6498</td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit - Voltage above normal, or shorted to low source</td>
</tr>
<tr>
<td>81</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2754</td>
<td>Engine Diesel Particulate Filter Intake Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Diesel Particulate Filter Intake Pressure - Data Valid But Above Normal Operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>241</td>
<td>Wheel-Based Vehicle Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wheel-Based Vehicle Speed - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>84</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>242</td>
<td>Wheel-Based Vehicle Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wheel-Based Vehicle Speed Sensor Circuit tampering has been detected - Abnormal rate of change</td>
</tr>
<tr>
<td>84</td>
<td>19</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3525</td>
<td>Wheel-Based Vehicle Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wheel-Based Vehicle Speed - Received network data in error</td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>148</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accelerator Pedal or Lever Position Sensor 1 - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>Stop Engine</td>
<td>Red</td>
<td>147</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accelerator Pedal or Lever Position Sensor 1 Sensor Circuit Frequency - Data valid but below normal operating range</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>91</td>
<td>2</td>
<td>Stop Engine</td>
<td>Red</td>
<td>1242</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td>91</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1358</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td>91</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1359</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td>91</td>
<td>9</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3326</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td>91</td>
<td>19</td>
<td>Stop Engine</td>
<td>Red</td>
<td>1515</td>
<td>Accelerator Pedal Position 1</td>
</tr>
<tr>
<td>94</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>546</td>
<td>Engine Fuel Delivery Pressure</td>
</tr>
<tr>
<td>94</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>547</td>
<td>Engine Fuel Delivery Pressure</td>
</tr>
<tr>
<td>95</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2372</td>
<td>Engine Fuel Filter Differential Pressure</td>
</tr>
<tr>
<td>97</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>428</td>
<td>Water In Fuel Indicator</td>
</tr>
<tr>
<td>97</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>429</td>
<td>Water In Fuel Indicator</td>
</tr>
<tr>
<td>97</td>
<td>15</td>
<td>Water in Fuel (Blinking)</td>
<td>Amber</td>
<td>418</td>
<td>Water In Fuel Indicator</td>
</tr>
<tr>
<td>97</td>
<td>16</td>
<td>Water in Fuel</td>
<td>Amber</td>
<td>1852</td>
<td>Water In Fuel Indicator</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>Eng Oil Press</td>
<td>Red</td>
<td>415</td>
<td>Engine Oil Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Oil Rifle Pressure - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>435</td>
<td>Engine Oil Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Oil Rifle Pressure - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>135</td>
<td>Engine Oil Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Oil Rifle Pressure 1 Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>141</td>
<td>Engine Oil Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Oil Rifle Pressure 1 Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>143</td>
<td>Engine Oil Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engine Oil Rifle Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>556</td>
<td>Engine Crankcase Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankcase Pressure - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>101</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1942</td>
<td>Engine Crankcase Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankcase Pressure - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>101</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1843</td>
<td>Engine Crankcase Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankcase Pressure Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>101</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1844</td>
<td>Engine Crankcase Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankcase Pressure Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>101</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1974</td>
<td>Engine Crankcase Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankcase Pressure - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>101</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>555</td>
<td>Engine Crankcase Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crankcase Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>102</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>122</td>
<td>Engine Intake Manifold #1 Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intake Manifold 1 Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>102</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>123</td>
<td>Engine Intake Manifold #1 Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intake Manifold 1 Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
</tbody>
</table>
REFERENCE

<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Telltale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>124</td>
<td>Engine Intake Manifold #1</td>
<td>Intake Manifold 1 Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>103</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2288</td>
<td>Engine Turbocharger 1 Speed</td>
<td>Turbocharger 1 Speed - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>103</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>595</td>
<td>Engine Turbocharger 1 Speed</td>
<td>Turbocharger 1 Speed - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>103</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>687</td>
<td>Engine Turbocharger 1 Speed</td>
<td>Turbocharger 1 Speed - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>105</td>
<td>0</td>
<td>Check Engine</td>
<td>Red</td>
<td>155</td>
<td>Engine Intake Manifold 1</td>
<td>Intake Manifold 1 Temperature - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>105</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>153</td>
<td>Engine Intake Manifold 1</td>
<td>Intake Manifold 1 Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>105</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>154</td>
<td>Engine Intake Manifold 1</td>
<td>Intake Manifold 1 Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>105</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2964</td>
<td>Engine Intake Manifold #1</td>
<td>Intake Manifold 1 Temperature - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>105</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>488</td>
<td>Engine Intake Manifold</td>
<td>Intake Manifold 1 Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>107</td>
<td>15</td>
<td>Eng Air Filter</td>
<td>Amber</td>
<td>5576</td>
<td>Engine Air Filter 1 Differential Pressure</td>
<td>Engine Air Filter Differential Pressure - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>107</td>
<td>16</td>
<td>Eng Air Filter</td>
<td>Amber</td>
<td>3341</td>
<td>Engine Air Filter 1 Differential Pressure</td>
<td>Engine Air Filter Differential Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>108</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>221</td>
<td>Barometric Pressure</td>
<td>Barometric Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>108</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>222</td>
<td>Barometric Pressure</td>
<td>Barometric Pressure Sensor Circuit - Voltage above normal, or shorted to low source</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>Eng coolant temp</td>
<td>Red</td>
<td>151</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>110</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>144</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature 1 Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>110</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>145</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature 1 Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>110</td>
<td>16</td>
<td>Eng coolant temp</td>
<td>Amber</td>
<td>146</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>110</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>2659</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature - Condition Exists</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>Coolant Level</td>
<td>Red</td>
<td>235</td>
<td>Engine Coolant Level</td>
<td>Coolant Level - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>111</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6522</td>
<td>Engine Coolant Level</td>
<td>Coolant Level Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>111</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6523</td>
<td>Engine Coolant Level</td>
<td>Coolant Level Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>111</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3613</td>
<td>SAE J1939 Multiplexing PGN Timeout</td>
<td>SAE J1939 Multiplexing PGN Timeout Error - Abnormal update rate</td>
</tr>
<tr>
<td>111</td>
<td>17</td>
<td>Coolant Level</td>
<td>Amber</td>
<td>2448</td>
<td>Engine Coolant Level</td>
<td>Engine Coolant Level - Data valid but below normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>111</td>
<td>18</td>
<td>Coolant Level</td>
<td>Amber</td>
<td>197</td>
<td>Engine Coolant Level</td>
<td>Coolant Level - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>111</td>
<td>19</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3614</td>
<td>SAE J1939 Multiplexing PGN Timeout</td>
<td>Coolant Level Sensor - Received Network Data in Error</td>
</tr>
<tr>
<td>157</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>449</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>157</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>451</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>157</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>452</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>157</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>553</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>157</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>559</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>15</td>
<td>Battery</td>
<td>None</td>
<td>6256</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>16</td>
<td>Battery</td>
<td>Amber</td>
<td>442</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>17</td>
<td>Battery</td>
<td>None</td>
<td>6257</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>249</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>171</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>256</td>
<td>Ambient Air Temperature</td>
<td>Ambient Air Temperature Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>171</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3531</td>
<td>Ambient Air Temperature</td>
<td>Ambient Air Temperature Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>171</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>234</td>
<td>Ambient Air Temperature</td>
<td>Ambient Air Temperature - Abnormal update rate</td>
</tr>
<tr>
<td>175</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>689</td>
<td>Engine Oil Temperature 1</td>
<td>Engine Oil Temperature Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>175</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6525</td>
<td>Engine Oil Temperature 1</td>
<td>Engine Oil Temperature Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>190</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>234</td>
<td>Engine Speed</td>
<td>Engine Crankshaft Speed/Position - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>190</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>2321</td>
<td>Engine Speed</td>
<td>Engine Crankshaft Speed/Position - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>190</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2468</td>
<td>Engine Speed</td>
<td>Engine Crankshaft Speed/Position - Data valid but above normal operational range - Moderately Severe Level</td>
</tr>
<tr>
<td>191</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3328</td>
<td>Transmission Output Shaft</td>
<td>Transmission Output Shaft Speed - Abnormal update rate</td>
</tr>
<tr>
<td>191</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>349</td>
<td>Transmission Output Shaft</td>
<td>Transmission Output Shaft Speed - Data valid but above normal operational range - Moderately Severe Level</td>
</tr>
<tr>
<td>191</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>489</td>
<td>Transmission Output Shaft</td>
<td>Transmission Output Shaft Speed - Data valid but below normal operational range - Moderately Severe Level</td>
</tr>
<tr>
<td>191</td>
<td>19</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3418</td>
<td>Transmission Output Shaft</td>
<td>Transmission Output Shaft Speed - Received Network Data In Error</td>
</tr>
<tr>
<td>237</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4517</td>
<td>Vehicle Identification Number</td>
<td>Vehicle Identification Number - Out of Calibration</td>
</tr>
<tr>
<td>411</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1866</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Differential Pressure - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>411</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2273</td>
<td>Engine Exhaust Gas Recirculation 1 Differential Pressure</td>
<td>Exhaust Gas Recirculation Differential Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>411</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2274</td>
<td>Engine Exhaust Gas Recirculation 1 Differential Pressure</td>
<td>Exhaust Gas Recirculation Differential Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>412</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2375</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>412</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2376</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>412</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2961</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature - Data valid but above normal operational range - Least Severe Level</td>
</tr>
<tr>
<td>412</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2962</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature - Data valid but above normal operational range - Moderately Severe Level</td>
</tr>
<tr>
<td>441</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>293</td>
<td>Auxiliary Temperature 1</td>
<td>Auxiliary Temperature Sensor Input 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>441</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>294</td>
<td>Auxiliary Temperature 1</td>
<td>Auxiliary Temperature Sensor Input 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>441</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6583</td>
<td>Auxiliary Temperature 1</td>
<td>Auxiliary Temperature Sensor Input 1 - Special Instructions</td>
</tr>
<tr>
<td>442</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3765</td>
<td>Auxiliary Temperature 2</td>
<td>Auxiliary Temperature Sensor Input 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>442</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3766</td>
<td>Auxiliary Temperature 2</td>
<td>Auxiliary Temperature Sensor Input 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>558</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>431</td>
<td>Accelerator Pedal 1 Low Idle Switch</td>
<td>Accelerator Pedal or Lever Idle Validation Switch - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>558</td>
<td>13</td>
<td>Stop Engine</td>
<td>Red</td>
<td>432</td>
<td>Accelerator Pedal 1 Low Idle Switch</td>
<td>Accelerator Pedal or Lever Idle Validation Switch Circuit - Out of Calibration</td>
</tr>
<tr>
<td>558</td>
<td>19</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3527</td>
<td>Accelerator Pedal 1 Low Idle Switch</td>
<td>Accelerator Pedal or Lever Idle Validation Switch - Received Network Data In Error</td>
</tr>
<tr>
<td>563</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3488</td>
<td>Anti-Lock Braking (ABS) Active</td>
<td>Anti-Lock Braking (ABS) Controller - Abnormal update rate</td>
</tr>
<tr>
<td>563</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>4215</td>
<td>Anti-Lock Braking (ABS) Active</td>
<td>Anti-Lock Braking (ABS) Active - Condition Exists</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>611</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>523</td>
<td>System Diagnostic Code #1</td>
<td>Auxiliary Intermediate (PTO) Speed Switch Validation - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>612</td>
<td>2</td>
<td>Stop</td>
<td>Red</td>
<td>115</td>
<td>System Diagnostic Code #2</td>
<td>Engine Magnetic Speed/Position Lost Both of Two Signals - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>625</td>
<td>9</td>
<td>Stop</td>
<td>Red</td>
<td>291</td>
<td>Proprietary Datalink</td>
<td>Proprietary Datalink Error (OEM/Vehicle Datalink) - Abnormal update rate</td>
</tr>
<tr>
<td>629</td>
<td>12</td>
<td>Check</td>
<td>Amber</td>
<td>343</td>
<td>Controller #1</td>
<td>Engine Control Module Warning Internal Hardware Failure - Bad intelligent device or component</td>
</tr>
<tr>
<td>630</td>
<td>12</td>
<td>Stop</td>
<td>Red</td>
<td>3697</td>
<td>Engine Control Module Calibration Memory</td>
<td>Engine Control Module Calibration Memory - Bad intelligent device or component</td>
</tr>
<tr>
<td>633</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>2311</td>
<td>Engine Fuel Actuator 1 Control Command</td>
<td>Electronic Fuel Injection Control Valve Circuit - Condition Exists</td>
</tr>
<tr>
<td>639</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>285</td>
<td>J1939 Network #1, Primary Vehicle Network (previously SAE J1939 Data Link)</td>
<td>SAE J1939 Multiplexing PGN Timeout Error - Abnormal update rate</td>
</tr>
<tr>
<td>639</td>
<td>13</td>
<td>Check</td>
<td>Amber</td>
<td>286</td>
<td>J1939 Network #1, Primary Vehicle Network (previously SAE J1939 Data Link)</td>
<td>SAE J1939 Multiplexing Configuration Error - Out of Calibration</td>
</tr>
<tr>
<td>640</td>
<td>14</td>
<td>Stop</td>
<td>Red</td>
<td>599</td>
<td>Engine External Protection Input</td>
<td>Auxiliary Commanded Dual Output Shutdown - Special Instructions</td>
</tr>
<tr>
<td>641</td>
<td>7</td>
<td>Check</td>
<td>Amber</td>
<td>2387</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit (Motor) - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>641</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>1894</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit - Abnormal update rate</td>
</tr>
<tr>
<td>641</td>
<td>11</td>
<td>Check</td>
<td>Amber</td>
<td>2198</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit - Root Cause Not Known</td>
</tr>
<tr>
<td>641</td>
<td>12</td>
<td>Stop</td>
<td>Red</td>
<td>2634</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Controller - Bad intelligent device or component</td>
</tr>
<tr>
<td>641</td>
<td>13</td>
<td>Stop</td>
<td>Red</td>
<td>2449</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Controller - Out of Calibration</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>641</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>1976</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Over Temperature (Calculated) - Data valid but above normal operational range - Least Severe Level</td>
</tr>
<tr>
<td>641</td>
<td>31</td>
<td>Stop Engine</td>
<td>Red</td>
<td>2635</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit - Condition exists</td>
</tr>
<tr>
<td>647</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6263</td>
<td>Engine Fan Clutch 1 Output Device Driver</td>
<td>Fan Control Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>647</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6264</td>
<td>Engine Fan Clutch 1 Output Device Driver</td>
<td>Fan Control Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>651</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>322</td>
<td>Engine Injector Cylinder #01</td>
<td>Injector Solenoid Driver Cylinder 1 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>652</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>331</td>
<td>Engine Injector Cylinder #02</td>
<td>Injector Solenoid Driver Cylinder 2 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>652</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1141</td>
<td>Engine Injector Cylinder #02</td>
<td>Injector Solenoid Driver Cylinder 2 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>324</td>
<td>Engine Injector Cylinder #03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detail Injectable Solenoid Driver Cylinder 3 Circuit - Current below normal or open circuit</td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1142</td>
<td>Engine Injector Cylinder #03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detail Injectable Solenoid Driver Cylinder 3 - Mechanical system not responding or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>654</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>332</td>
<td>Engine Injector Cylinder #04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detail Injectable Solenoid Driver Cylinder 4 Circuit - Current below normal or open circuit</td>
<td></td>
</tr>
<tr>
<td>654</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1143</td>
<td>Engine Injector Cylinder #04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detail Injectable Solenoid Driver Cylinder 4 - Mechanical system not responding or out of adjustment</td>
<td></td>
</tr>
</tbody>
</table>
J1939 SPN and FMI Table

<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Telltale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>655</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>323</td>
<td>Engine Injector Cylinder #05</td>
<td>Injector Solenoid Driver Cylinder 5 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>655</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1144</td>
<td>Engine Injector Cylinder #05</td>
<td>Injector Solenoid Driver Cylinder 5 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>656</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>325</td>
<td>Engine Injector Cylinder #06</td>
<td>Injector Solenoid Driver Cylinder 6 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>656</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1145</td>
<td>Engine Injector Cylinder #06</td>
<td>Injector Solenoid Driver Cylinder 6 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>677</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>584</td>
<td>Engine Starter Motor Relay</td>
<td>Starter Relay Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>677</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>585</td>
<td>Engine Starter Motor Relay</td>
<td>Starter Relay Driver Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>697</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2557</td>
<td>Auxiliary PWM Driver #1</td>
<td>Auxiliary PWM Driver 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>697</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2558</td>
<td>Auxiliary PWM Driver #1</td>
<td>Auxiliary PWM Driver 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>701</td>
<td>14</td>
<td>Stop Engine</td>
<td>Red</td>
<td>4734</td>
<td>Auxiliary I/O #01</td>
<td>Auxiliary Input/Output 1 - Special Instructions</td>
</tr>
<tr>
<td>702</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>527</td>
<td>Auxiliary I/O #02</td>
<td>Auxiliary Input/Output 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>703</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>529</td>
<td>Auxiliary I/O #03</td>
<td>Auxiliary Input/Output 3 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>723</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>2322</td>
<td>Engine Speed 2</td>
<td>Engine Camshaft Speed/Position Sensor - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>723</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>731</td>
<td>Engine Speed 2</td>
<td>Engine Speed/Position Camshaft and Crankshaft Misalignment - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>729</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6556</td>
<td>Engine Intake Air Heater Driver #1</td>
<td>Engine Intake Air Heater 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>729</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6557</td>
<td>Engine Intake Air Heater Driver #1</td>
<td>Engine Intake Air Heater 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>748</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3641</td>
<td>Transmission Output Retarder</td>
<td>Transmission Output Retarder - Abnormal update rate</td>
</tr>
<tr>
<td>862</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6336</td>
<td>Crankcase Breather Heater Circuit</td>
<td>Crankcase Breather Filter Heater Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>862</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6337</td>
<td>Crankcase Breather Heater Circuit</td>
<td>Crankcase Breather Filter Heater Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>974</td>
<td>3</td>
<td>Stop Engine</td>
<td>Red</td>
<td>133</td>
<td>Remote Accelerator Pedal Position</td>
<td>Remote Accelerator Pedal or Lever Position Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>974</td>
<td>4</td>
<td>Stop Engine</td>
<td>Red</td>
<td>134</td>
<td>Remote Accelerator Pedal Position</td>
<td>Remote Accelerator Pedal or Lever Position Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>974</td>
<td>19</td>
<td>Stop Engine</td>
<td>Red</td>
<td>288</td>
<td>Remote Accelerator Pedal Position</td>
<td>SAE J1939 Multiplexing Remote Accelerator Pedal or Lever Position Sensor System - Received network data in error</td>
</tr>
<tr>
<td>976</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6563</td>
<td>PTO Governor State</td>
<td>Auxiliary Intermediate (PTO) Speed Switch Validation - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>1072</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6418</td>
<td>Engine (Compression) Brake Output #1</td>
<td>Engine Brake Actuator Driver 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1072</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6419</td>
<td>Engine (Compression) Brake Output #1</td>
<td>Engine Brake Actuator Driver 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1073</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6421</td>
<td>Engine (Compression) Brake Output #2</td>
<td>Engine Brake Actuator Driver Output 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1073</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6422</td>
<td>Engine (Compression) Brake Output #2</td>
<td>Engine Brake Actuator Driver Output 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1075</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>6258</td>
<td>Engine Electric Lift Pump for Engine Fuel Supply</td>
<td>Electric Lift Pump for Engine Fuel Supply Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1075</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6259</td>
<td>Engine Electric Lift Pump for Engine Fuel Supply</td>
<td>Electric Lift Pump for Engine Fuel Supply Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1081</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>3555</td>
<td>Engine Wait to Start Lamp</td>
<td>Engine Wait to Start Lamp - Abnormal update rate</td>
</tr>
<tr>
<td>1172</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>691</td>
<td>Engine Turbocharger 1 Compressor Intake Temperature</td>
<td>Turbocharger 1 Compressor Intake Temperature Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1172</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>692</td>
<td>Engine Turbocharger 1 Compressor Intake Temperature</td>
<td>Turbocharger 1 Compressor Intake Temperature Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1176</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>743</td>
<td>Engine Turbocharger 1 Compressor Intake Pressure</td>
<td>Turbocharger 1 Compressor Intake Pressure Circuit - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>1176</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>741</td>
<td>Engine Turbocharger 1 Compressor Intake Pressure</td>
<td>Turbocharger 1 Compressor Intake Pressure Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1176</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>742</td>
<td>Engine Turbocharger 1 Compressor Intake Pressure</td>
<td>Turbocharger 1 Compressor Intake Pressure Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1194</td>
<td>13</td>
<td>Stop</td>
<td>Red</td>
<td>3298</td>
<td>Anti-theft Encryption Seed Present Indicator</td>
<td>Anti-theft Encryption Seed - Out of Calibration</td>
</tr>
<tr>
<td>1209</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>2554</td>
<td>Engine Exhaust Gas Pressure 1</td>
<td>Exhaust Gas Pressure 1 - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>1209</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>2373</td>
<td>Engine Exhaust Gas Pressure 1</td>
<td>Exhaust Gas Pressure Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1209</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>2374</td>
<td>Engine Exhaust Gas Pressure 1</td>
<td>Exhaust Gas Pressure Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1231</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>3329</td>
<td>J1939 Network #2</td>
<td>J1939 Network #2 - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>1235</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>3331</td>
<td>J1939 Network #3</td>
<td>J1939 Network #3 - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1267</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>338</td>
<td>Idle Shutdown Vehicle Accessories Relay Driver Circuit</td>
<td>Idle Shutdown Vehicle Accessories Relay Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1267</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>339</td>
<td>Idle Shutdown Vehicle Accessories Relay Driver Circuit</td>
<td>Idle Shutdown Vehicle Accessories Relay Driver Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1323</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>1654</td>
<td>Engine Misfire Cylinder #1</td>
<td>Engine Misfire Cylinder 1 - Condition Exists</td>
</tr>
<tr>
<td>1324</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>1655</td>
<td>Engine Misfire Cylinder #2</td>
<td>Engine Misfire Cylinder 2 - Condition exists</td>
</tr>
<tr>
<td>1325</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>1656</td>
<td>Engine Misfire Cylinder #3</td>
<td>Engine Misfire Cylinder 3 - Condition Exists</td>
</tr>
<tr>
<td>1326</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>1657</td>
<td>Engine Misfire Cylinder #4</td>
<td>Engine Misfire Cylinder 4 - Condition Exists</td>
</tr>
<tr>
<td>1327</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>1658</td>
<td>Engine Misfire Cylinder #5</td>
<td>Engine Misfire Cylinder 5 - Condition Exists</td>
</tr>
<tr>
<td>1328</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>1659</td>
<td>Engine Misfire Cylinder #6</td>
<td>Engine Misfire Cylinder 6 - Condition Exists</td>
</tr>
<tr>
<td>1347</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>272</td>
<td>Engine Fuel Pump Pressurizing Assembly #2</td>
<td>Engine Fuel Pump Pressurizing Assembly 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1347</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>271</td>
<td>Engine Fuel Pump Pressurizing Assembly #1</td>
<td>Engine Fuel Pump Pressurizing Assembly 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1347</td>
<td>7</td>
<td>Check</td>
<td>Amber</td>
<td>281</td>
<td>Engine Fuel Pump Pressurizing Assembly #3</td>
<td>Engine Fuel Pump Pressurizing Assembly 1 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>1349</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>483</td>
<td>Engine Injector Metering Rail 2 Pressure</td>
<td>Injector Metering Rail 2 Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1377</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>497</td>
<td>Engine Synchronization Switch</td>
<td>Multiple Unit Synchronization Switch - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>1378</td>
<td>31</td>
<td>Check</td>
<td>Amber (Blinking)</td>
<td>649</td>
<td>Engine Oil Change Interval</td>
<td>Engine Oil Change Interval - Condition exists</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1387</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1539</td>
<td>Auxiliary Pressure #1</td>
<td>Auxiliary Pressure Sensor Input 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1387</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1621</td>
<td>Auxiliary Pressure #1</td>
<td>Auxiliary Pressure Sensor Input 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1388</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>297</td>
<td>Auxiliary Pressure #2</td>
<td>Auxiliary Pressure Sensor Input 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1388</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>298</td>
<td>Auxiliary Pressure #2</td>
<td>Auxiliary Pressure Sensor Input 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1388</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6584</td>
<td>Auxiliary Pressure #2</td>
<td>Auxiliary Pressure Sensor Input 2 - Special Instructions</td>
</tr>
<tr>
<td>1569</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3714</td>
<td>Engine Protection Torque Derate</td>
<td>Engine Protection Torque Derate - Condition Exists</td>
</tr>
<tr>
<td>1623</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3186</td>
<td>Tachograph output shaft speed</td>
<td>Tachograph Output Shaft Speed - Abnormal update rate</td>
</tr>
<tr>
<td>1623</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5248</td>
<td>Tachograph output shaft speed</td>
<td>Tachograph Output Shaft Speed - Out of Calibration</td>
</tr>
<tr>
<td>1623</td>
<td>19</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3213</td>
<td>Tachograph output shaft speed</td>
<td>Tachograph Output Shaft Speed - Received Network Data In Error</td>
</tr>
<tr>
<td>1632</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2998</td>
<td>Engine Torque Limit Feature</td>
<td>Engine Torque Limit Feature - Special Instructions</td>
</tr>
<tr>
<td>1639</td>
<td>0</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4789</td>
<td>Fan Speed</td>
<td>Fan Speed - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>1639</td>
<td>1</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4791</td>
<td>Fan Speed</td>
<td>Fan Speed - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>1639</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6469</td>
<td>Fan Speed</td>
<td>Fan Speed – Data Erratic, Intermittent, or Incorrect</td>
</tr>
<tr>
<td>1639</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>6467</td>
<td>Fan Speed</td>
<td>Fan Speed - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>1639</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6468</td>
<td>Fan Speed</td>
<td>Fan Speed - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>1668</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>4437</td>
<td>J1939 Network #4 - Data erratic</td>
<td>J1939 Network #4 - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1675</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>3737</td>
<td>Engine Starter Mode</td>
<td>Engine Starter Mode Overcrank Protection - Condition Exists</td>
</tr>
<tr>
<td>1761</td>
<td>1</td>
<td>DEF</td>
<td>Amber</td>
<td>1673</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>1761</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1669</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor Circuit - Voltage above normal, orshorted to high source</td>
</tr>
<tr>
<td>1761</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1668</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor Circuit - Voltage below normal, orshorted to low source</td>
</tr>
<tr>
<td>1761</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4677</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>SAE J1939 Multiplexing PGN Timeout Error - Abnormal update rate</td>
</tr>
<tr>
<td>1761</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4769</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor Circuit - Abnormal Rate of Change</td>
</tr>
<tr>
<td>1761</td>
<td>11</td>
<td>Check Engine</td>
<td>None</td>
<td>6562</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor - Root Cause Not Known</td>
</tr>
<tr>
<td>1761</td>
<td>13</td>
<td>Check Engine</td>
<td>None</td>
<td>6526</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor - Out of Calibration</td>
</tr>
<tr>
<td>1761</td>
<td>17</td>
<td>DEF (Blinking)</td>
<td>Amber</td>
<td>3497</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level - Data Valid But Below Normal Operating Range - Least Severe Level</td>
</tr>
<tr>
<td>1761</td>
<td>18</td>
<td>DEF (Blinking)</td>
<td>Amber</td>
<td>3498</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level - Data valid but below normal operational range - Moderately Severe Level</td>
</tr>
<tr>
<td>2623</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1239</td>
<td>Accelerator Pedal #1 Channel 2</td>
<td>Accelerator Pedal or Lever Position Sensor 2 Circuit - Voltage above normal, orshorted to high source</td>
</tr>
<tr>
<td>2623</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1241</td>
<td>Accelerator Pedal #1 Channel 2</td>
<td>Accelerator Pedal or Lever Position Sensor 2 Circuit - Voltage below normal, orshorted to low source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2630</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2571</td>
<td>Engine Charge Air Cooler 1 Outlet Temperature</td>
<td>Engine Charge Air Cooler Outlet Temperature - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2630</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2572</td>
<td>Engine Charge Air Cooler 1 Outlet Temperature</td>
<td>Engine Charge Air Cooler Outlet Temperature - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2789</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2346</td>
<td>Engine Turbocharger 1 Calculated Turbine Intake Temperature</td>
<td>Turbocharger Turbine Intake Temperature - Data valid but above normal operational range - Least Severe</td>
</tr>
<tr>
<td>2791</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2349</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>2791</td>
<td>6</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2353</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit - Current above normal or grounded circuit</td>
</tr>
<tr>
<td>2791</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6555</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>2791</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1896</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Controller - Out of Calibration</td>
</tr>
<tr>
<td>2791</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1961</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit Over Temperature - Data valid but above normal operational range - Least Severe Level</td>
</tr>
<tr>
<td>3031</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1679</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3031</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1678</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature Sensor - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3031</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6559</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature Sensor - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3031</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4572</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature - Abnormal Update Rate</td>
</tr>
<tr>
<td>3031</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4737</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature - Root Cause Not Known</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>3031</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4731</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
</tr>
<tr>
<td>3216</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3228</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3216</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1885</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3216</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3232</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Abnormal update rate</td>
</tr>
<tr>
<td>3216</td>
<td>10</td>
<td>Check Engine</td>
<td>None</td>
<td>6621</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Abnormal rate of change</td>
</tr>
<tr>
<td>3216</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3718</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx - Out of Calibration</td>
</tr>
<tr>
<td>3216</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3726</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3216</td>
<td>20</td>
<td>Check Engine</td>
<td>None</td>
<td>6458</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
</tr>
<tr>
<td>3216</td>
<td>21</td>
<td>Check Engine</td>
<td>None</td>
<td>6459</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
</tr>
<tr>
<td>3218</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3682</td>
<td>Aftertreatment 1 Intake Gas Sensor Power Status</td>
<td>Aftertreatment 1 Intake NOx Sensor Power Supply - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3226</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6464</td>
<td>Aftertreatment 1 Outlet NOx</td>
<td>Aftertreatment 1 Outlet NOx Sensor - Data not Rational - Drifted High</td>
</tr>
<tr>
<td>3226</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6521</td>
<td>Aftertreatment Outlet NOx Sensor Circuits</td>
<td>Aftertreatment Outlet NOx Sensor Circuit - Voltage below normal or shorted to low source</td>
</tr>
<tr>
<td>3226</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2771</td>
<td>Aftertreatment 1 Outlet NOx</td>
<td>Aftertreatment 1 Outlet NOx Sensor - Abnormal update rate</td>
</tr>
<tr>
<td>3226</td>
<td>10</td>
<td>Check Engine</td>
<td>None</td>
<td>6565</td>
<td>Aftertreatment 1 Outlet NOx</td>
<td>Aftertreatment 1 Outlet NOx Sensor - Abnormal rate of change</td>
</tr>
<tr>
<td>3226</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3717</td>
<td>Aftertreatment 1 Outlet NOx</td>
<td>Aftertreatment 1 Outlet NOx Sensor - Out of Calibration</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>3226</td>
<td>20</td>
<td>Check Engine</td>
<td>None</td>
<td>6462</td>
<td>Aftertreatment 1 Outlet NOx</td>
<td>Aftertreatment 1 Outlet NOx Sensor - Data not Rational - Drifted High</td>
</tr>
<tr>
<td>3226</td>
<td>21</td>
<td>Check Engine</td>
<td>None</td>
<td>6463</td>
<td>Aftertreatment 1 Outlet NOx</td>
<td>Aftertreatment 1 Outlet NOx Sensor - Data not Rational - Drifted High</td>
</tr>
<tr>
<td>3228</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6582</td>
<td>Aftertreatment 1 Outlet Gas Sensor Power Status</td>
<td>Aftertreatment 1 Outlet NOx Sensor Power Supply - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3242</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3311</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Temperature - Data valid but above normal operation</td>
</tr>
<tr>
<td>3242</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3318</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Temperature - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3242</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3317</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3242</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3316</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3242</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3254</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Temperature - Data valid but above normal operating range</td>
</tr>
<tr>
<td>3242</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3253</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Intake Temperature - Data valid but above normal operating range</td>
</tr>
<tr>
<td>3246</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3312</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Temperature - Data valid but above normal operation</td>
</tr>
<tr>
<td>3246</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3322</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Temperature - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>3246</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3319</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3246</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3321</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3246</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3256</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Temperature - Data valid but above normal operating range</td>
</tr>
<tr>
<td>3246</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3255</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Temperature - Data valid but above normal operating range</td>
</tr>
<tr>
<td>3251</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>1922</td>
<td>Aftertreatment 1 Diesel Particulate Filter Differential Pressure</td>
<td>Aftertreatment Diesel Particulate Filter Differential Pressure - Data valid but above normal operating range</td>
</tr>
<tr>
<td>3251</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1883</td>
<td>Aftertreatment 1 Diesel Particulate Filter Differential Pressure</td>
<td>Aftertreatment Diesel Particulate Filter Differential Pressure Sensor - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3251</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1879</td>
<td>Aftertreatment 1 Diesel Particulate Filter Differential Pressure</td>
<td>Aftertreatment Diesel Particulate Filter Differential Pressure Sensor Circuit - Voltage above normal</td>
</tr>
<tr>
<td>3251</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1881</td>
<td>Aftertreatment 1 Diesel Particulate Filter Differential Pressure</td>
<td>Aftertreatment Diesel Particulate Filter Differential Pressure Sensor Circuit - Voltage below normal</td>
</tr>
<tr>
<td>3251</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2639</td>
<td>Aftertreatment 1 Diesel Particulate Filter Differential Pressure</td>
<td>Aftertreatment Diesel Particulate Filter Differential Pressure - Data valid but above normal operating range</td>
</tr>
<tr>
<td>3251</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1921</td>
<td>Aftertreatment 1 Diesel Particulate Filter Differential Pressure</td>
<td>Aftertreatment Diesel Particulate Filter Differential Pressure - Data valid but above normal operating range</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>3361</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2976</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Temperature - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3361</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3558</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3361</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3559</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3362</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1682</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Input Lines - Condition Exists</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Input Lines - Condition Exists</td>
</tr>
<tr>
<td>3363</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6479</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3363</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6481</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3363</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6475</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>3363</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1713</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3363</td>
<td>18</td>
<td>Check Engine</td>
<td>None</td>
<td>6476</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3364</td>
<td>1</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3866</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>3364</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3878</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>3364</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1686</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality Sensor Circuit - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1685</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality Sensor Circuit - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4741</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality Sensor Circuit - Current below normal or open circuit</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>6</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4742</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality Sensor Circuit - Current above normal or grounded circuit</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3876</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality Sensor - Mechanical system not responding or out of adjustment</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3868</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality - Abnormal update rate</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4277</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality - Abnormal rate of change</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1715</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality - Root cause not known</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3877</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality Sensor - Bad intelligent device or component</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1714</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Quality - Out of Calibration</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>4842</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data valid but above normal operating range - Least Severe Level</td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>18</td>
<td>Check Engine</td>
<td>None</td>
<td>6752</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data valid but below normal operating range - Moderate Severe Level</td>
<td></td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3364</td>
<td>19</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4241</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Received Network Data In Error</td>
</tr>
<tr>
<td>3464</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6493</td>
<td>Electronic Throttle Control Actuator Driver Circuit</td>
<td>Electronic Throttle Control Actuator Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3464</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6494</td>
<td>Electronic Throttle Control Actuator Driver Circuit</td>
<td>Electronic Throttle Control Actuator Driver Circuit - Voltage above normal, or shorted to low source</td>
</tr>
<tr>
<td>3464</td>
<td>5</td>
<td>Check Engine</td>
<td>None</td>
<td>6496</td>
<td>Electronic Throttle Control Actuator Driver Circuit</td>
<td>Electronic Throttle Control Actuator Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3509</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>386</td>
<td>Sensor supply voltage 1</td>
<td>Sensor Supply 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3509</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>352</td>
<td>Sensor supply voltage 1</td>
<td>Sensor Supply 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3510</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>227</td>
<td>Sensor supply voltage 2</td>
<td>Sensor Supply 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3510</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>187</td>
<td>Sensor supply voltage 2</td>
<td>Sensor Supply 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3511</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>239</td>
<td>Sensor supply voltage 3</td>
<td>Sensor Supply 3 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3511</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>238</td>
<td>Sensor supply voltage 3</td>
<td>Sensor Supply 3 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3512</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2185</td>
<td>Sensor supply voltage 4</td>
<td>Sensor Supply 4 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3512</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2186</td>
<td>Sensor supply voltage 4</td>
<td>Sensor Supply 4 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3513</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1695</td>
<td>Sensor supply voltage 5</td>
<td>Sensor Supply 5 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3513</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>1696</td>
<td>Sensor supply voltage 5</td>
<td>Sensor Supply 5 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3514</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>515</td>
<td>Sensor supply voltage 6</td>
<td>Sensor Supply 6 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3514</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>516</td>
<td>Sensor supply voltage 6</td>
<td>Sensor Supply 6 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3515</td>
<td>5</td>
<td>Check</td>
<td>Amber</td>
<td>4743</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 Sensor Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>3515</td>
<td>6</td>
<td>Check</td>
<td>Amber</td>
<td>4744</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 Sensor Circuit - Current above normal or grounded</td>
</tr>
<tr>
<td>3515</td>
<td>10</td>
<td>Check</td>
<td>None</td>
<td>6619</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 - Abnormal Rate of Change</td>
</tr>
<tr>
<td>3515</td>
<td>11</td>
<td>Check</td>
<td>Amber</td>
<td>4745</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 - Root Cause Not Known</td>
</tr>
<tr>
<td>3521</td>
<td>11</td>
<td>Check</td>
<td>Amber</td>
<td>4768</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Property</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Property - Root Cause Not Known</td>
</tr>
<tr>
<td>3597</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>1117</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>Power Supply Lost With Ignition On - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3597</td>
<td>12</td>
<td>Check</td>
<td>Amber</td>
<td>351</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>Injector Power Supply - Bad intelligent device or component</td>
</tr>
<tr>
<td>3597</td>
<td>17</td>
<td>Check</td>
<td>None</td>
<td>6499</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>ECU Power Output Supply Voltage 1 - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3597</td>
<td>18</td>
<td>Check</td>
<td>Amber</td>
<td>1938</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>ECU Power Output Supply Voltage 1 - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3610</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>6553</td>
<td>Aftertreatment Diesel Particulate Filter Outlet Pressure</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Pressure - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>3610</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6551</td>
<td>Aftertreatment Diesel Particulate Filter Outlet Pressure</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3610</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6552</td>
<td>Aftertreatment Diesel Particulate Filter Outlet Pressure</td>
<td>Aftertreatment 1 Diesel Particulate Filter Outlet Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3667</td>
<td>2</td>
<td>Stop Engine</td>
<td>Red</td>
<td>5221</td>
<td>Engine Air Shutoff Status</td>
<td>Engine Air Shutoff Status - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3667</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3139</td>
<td>Engine Air Shutoff Status</td>
<td>Engine Air Shutoff Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3667</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3141</td>
<td>Engine Air Shutoff Status</td>
<td>Engine Air Shutoff Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3667</td>
<td>7</td>
<td>Stop Engine</td>
<td>Red</td>
<td>4484</td>
<td>Engine Air Shutoff</td>
<td>Engine Air Shutoff - Mechanical System Not Responding or Out of Adjustment</td>
</tr>
<tr>
<td>3695</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6568</td>
<td>Aftertreatment Regeneration Inhibit Switch</td>
<td>Aftertreatment Regeneration Inhibit Switch - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>3703</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2777</td>
<td>Diesel Particulate Filter Active Regeneration Inhibited Due to Inhibit Switch</td>
<td>Particulate Trap Active Regeneration Inhibited Due to Inhibit Switch - Condition Exists</td>
</tr>
<tr>
<td>3713</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6596</td>
<td>Diesel Particulate Filter Active Regeneration Inhibited Due to</td>
<td>Diesel Particulate Filter Active Regeneration Inhibited Due to System Timeout - Condition exists</td>
</tr>
<tr>
<td>3750</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5938</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration – Condition exists</td>
</tr>
<tr>
<td>3936</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6265</td>
<td>Aftertreatment 1 Diesel Particulate Filter System</td>
<td>Aftertreatment 1 Diesel Particulate Filter System - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>3936</td>
<td>14</td>
<td>Stop Engine</td>
<td>Red</td>
<td>4584</td>
<td>Aftertreatment Diesel Particulate Filter System</td>
<td>Aftertreatment Diesel Particulate Filter System - Special Instructions</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>3936</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1981</td>
<td>Aftertreatment Diesel Particulate Filter System - Data valid but above normal operating range - Level</td>
<td></td>
</tr>
<tr>
<td>4094</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3543</td>
<td>NOx limits exceeded due to Insufficient Diesel Exhaust Fluid Quality</td>
<td>NOx limits exceeded due to Insufficient Reagent Quality - Condition Exists</td>
</tr>
<tr>
<td>4096</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3547</td>
<td>NOx limits exceeded due to Empty Diesel Exhaust Fluid Tank</td>
<td>Aftertreatment Diesel Exhaust Fluid Tank Empty - Condition Exists</td>
</tr>
<tr>
<td>4185</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1427</td>
<td>Overspeed Shutdown Relay Driver</td>
<td>Overspeed Shutdown Relay Driver Diagnostic has detected an error - Condition Exists</td>
</tr>
<tr>
<td>4186</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1428</td>
<td>Low Oil Pressure Shutdown Relay Driver</td>
<td>Low Oil Pressure (LOP) Shutdown Relay Driver Diagnostic has detected an error - Condition Exists</td>
</tr>
<tr>
<td>4187</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1429</td>
<td>High Engine Temperature Shutdown Relay Driver</td>
<td>High Engine Temperature (HET) Shutdown Relay Driver Diagnostic has detected an error - Condition Exists</td>
</tr>
<tr>
<td>4188</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1431</td>
<td>Pre-Low Oil Pressure Indicator Relay Driver</td>
<td>Pre-Low Oil Pressure Warning Relay Driver Diagnostic has detected an error - Condition exists</td>
</tr>
<tr>
<td>4223</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1432</td>
<td>Pre-High Engine Temperature Warning Relay Driver</td>
<td>Pre-High Engine Temperature Warning Relay Driver Diagnostic has detected an error - Condition exists</td>
</tr>
<tr>
<td>4334</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3596</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Pressure Sensor - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>4334</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3571</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Pressure Sensor - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4334</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3572</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Pressure Sensor - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4334</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3575</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Pressure Sensor - Data valid but above normal operating range</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>4334</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3574</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Pressure Sensor - Data Valid But Below Normal Operating Range</td>
</tr>
<tr>
<td>4337</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4249</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Temperature - Abnormal Rate of Change</td>
</tr>
<tr>
<td>4340</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6531</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 State</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4340</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6532</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 State</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4340</td>
<td>5</td>
<td>Check Engine</td>
<td>None</td>
<td>6482</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 State</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>4342</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6533</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 State</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4342</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6534</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 State</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4342</td>
<td>5</td>
<td>Check Engine</td>
<td>None</td>
<td>6483</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 State</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>4344</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6535</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 3 State</td>
<td>Aftertreatment Diesel Exhaust Fluid Line Heater 3 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4344</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6536</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 3 State</td>
<td>Aftertreatment Diesel Exhaust Fluid Line Heater 3 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4344</td>
<td>5</td>
<td>Check Engine</td>
<td>None</td>
<td>6484</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 3 State</td>
<td>Aftertreatment Diesel Exhaust Fluid Line Heater 3 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------------</td>
<td>------</td>
<td>--------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3229</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3144</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3142</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3143</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>3164</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3231</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4363</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3165</td>
<td>Aftertreatment 1 SCR Catalyst Outlet Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4363</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3148</td>
<td>Aftertreatment 1 SCR Catalyst Outlet Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4363</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6569</td>
<td>Aftertreatment 1 SCR Catalyst Outlet Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4363</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6571</td>
<td>Aftertreatment 1 SCR Catalyst Outlet Gas Temperature</td>
<td></td>
</tr>
<tr>
<td>4363</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3235</td>
<td>Aftertreatment 1 SCR Catalyst Outlet Gas Temperature</td>
<td></td>
</tr>
</tbody>
</table>
Reference

<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Telltale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>4364</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6517</td>
<td>Aftertreatment 1 SCR Conversion Efficiency</td>
<td>Aftertreatment SCR Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4364</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3582</td>
<td>Aftertreatment 1 SCR Conversion Efficiency</td>
<td>Aftertreatment SCR Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4376</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3577</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Return Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Return Valve - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4376</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3578</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Return Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Return Valve - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4376</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6527</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Return Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Return Valve - Mechanical system not responding or out of adjust</td>
</tr>
<tr>
<td>4765</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6539</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Intake Temperature - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>4765</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3314</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Intake Temperature - Data valid but above normal operating range - Most Severe Level</td>
</tr>
<tr>
<td>4765</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3313</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Intake Temperature - Data valid but above normal operating range - Most Severe Level</td>
</tr>
<tr>
<td>4765</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3251</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Intake Temperature - Data valid but above normal operating range - Most Severe Level</td>
</tr>
<tr>
<td>4766</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>5387</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature - Data valid but above normal operating range - Most Severe Level</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>4766</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5386</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature - Data Erratic, Intermittent, or Incorrect</td>
</tr>
<tr>
<td>4766</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4533</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature Sensor Circuit</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4766</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4534</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature Sensor Circuit</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4766</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5389</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>4766</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>5388</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4792</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>3751</td>
<td>Aftertreatment SCR Catalyst System</td>
<td>Aftertreatment SCR Catalyst System - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>4792</td>
<td>14</td>
<td>Stop Engine</td>
<td>Red</td>
<td>4585</td>
<td>Aftertreatment 1 SCR Catalyst System</td>
<td>Aftertreatment 1 SCR Catalyst System - Special Instructions</td>
</tr>
<tr>
<td>4794</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3151</td>
<td>Aftertreatment 1 SCR Catalyst System</td>
<td>Aftertreatment 1 SCR Catalyst System - Condition exists</td>
</tr>
<tr>
<td>4795</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1993</td>
<td>Aftertreatment 1 Diesel Particulate Filter Missing</td>
<td>Aftertreatment 1 Diesel Particulate Filter Missing - Condition exists</td>
</tr>
<tr>
<td>4796</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>6621</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Missing</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Missing - Condition exists</td>
</tr>
<tr>
<td>5018</td>
<td>11</td>
<td>Check Engine</td>
<td>None</td>
<td>2637</td>
<td>Aftertreatment Diesel Oxidation Catalyst</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Face Plugged - Root cause not known</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>5024</td>
<td>10</td>
<td>Check</td>
<td>Amber</td>
<td>3649</td>
<td>Aftertreatment 1 Intake Gas NOx Sensor Heater Ratio</td>
<td>Aftertreatment 1 Intake NOx Sensor Heater - Abnormal rate of change</td>
</tr>
<tr>
<td>5031</td>
<td>10</td>
<td>Check</td>
<td>None</td>
<td>6581</td>
<td>Aftertreatment 1 Outlet Gas NOx Sensor Heater Ratio</td>
<td>Aftertreatment 1 Outlet NOx Sensor Heater - Abnormal rate of change</td>
</tr>
<tr>
<td>5125</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>3419</td>
<td>Sensor supply voltage 7</td>
<td>Sensor Supply 7 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>5125</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>3421</td>
<td>Sensor supply voltage 7</td>
<td>Sensor Supply 7 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5245</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>4863</td>
<td>Aftertreatment Selective Catalytic Reduction Operator Inducement Active</td>
<td>Aftertreatment Diesel Exhaust Fluid Tank Low Level Indicator</td>
</tr>
<tr>
<td>5246</td>
<td>0</td>
<td>Stop</td>
<td>Red</td>
<td>3712</td>
<td>Aftertreatment SCR Operator Inducement Severity</td>
<td>Aftertreatment SCR Operator Inducement - Data valid but above normal operational range - Most Severe level</td>
</tr>
<tr>
<td>5298</td>
<td>17</td>
<td>Check</td>
<td>None</td>
<td>2638</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>5298</td>
<td>18</td>
<td>Check</td>
<td>Amber</td>
<td>1691</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>5319</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>3376</td>
<td>Aftertreatment 1 Diesel Particulate Filter Incomplete Regeneration</td>
<td>Aftertreatment Diesel Particulate Filter Incomplete Regeneration - Condition Exists</td>
</tr>
<tr>
<td>5394</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>3755</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve - Data erratic, intermittent or incorrect</td>
</tr>
<tr>
<td>5394</td>
<td>5</td>
<td>Check</td>
<td>Amber</td>
<td>3567</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve - Current below normal or open circuit</td>
</tr>
<tr>
<td>5394</td>
<td>7</td>
<td>Check</td>
<td>Amber</td>
<td>3568</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5397</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3375</td>
<td>Aftertreatment 1 Diesel Particulate Filter Regeneration too Frequent</td>
<td></td>
</tr>
<tr>
<td>5484</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6456</td>
<td>Engine Fan Clutch 2 Control Circuit - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>5484</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6457</td>
<td>Engine Fan Clutch 2 Control Circuit - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>5491</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6477</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay</td>
<td></td>
</tr>
<tr>
<td>5491</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6478</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay</td>
<td></td>
</tr>
<tr>
<td>5491</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6537</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay</td>
<td></td>
</tr>
<tr>
<td>5571</td>
<td>0</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3741</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve</td>
<td></td>
</tr>
<tr>
<td>5571</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4262</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve</td>
<td></td>
</tr>
<tr>
<td>5571</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4263</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve</td>
<td></td>
</tr>
<tr>
<td>5571</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>3727</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve</td>
<td></td>
</tr>
<tr>
<td>5571</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5585</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Tell tale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>5571</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4867</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve</td>
<td>High Pressure Common Rail Fuel Pressure Relief Valve - Condition Exists</td>
</tr>
<tr>
<td>5603</td>
<td>9</td>
<td>Check Engine</td>
<td>None</td>
<td>3843</td>
<td>Cruise Control Disable Command</td>
<td>Cruise Control Disable Command - Abnormal update rate</td>
</tr>
<tr>
<td>5603</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>3845</td>
<td>Cruise Control Disable Command</td>
<td>Cruise Control Disable Command - Condition Exists</td>
</tr>
<tr>
<td>5605</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>3844</td>
<td>Cruise Control Pause Command</td>
<td>Cruise Control Pause Command - Condition Exists</td>
</tr>
<tr>
<td>5742</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4161</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Voltage Above Normal, or Shorted to high source</td>
</tr>
<tr>
<td>5742</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4162</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5742</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4151</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Abnormal update rate</td>
</tr>
<tr>
<td>5742</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4259</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Root Cause Not Known</td>
</tr>
<tr>
<td>5742</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4158</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Bad intelligent device or component</td>
</tr>
<tr>
<td>5742</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4163</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Data valid but above normal operating range</td>
</tr>
<tr>
<td>5743</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4164</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Voltage Above Normal, or Shorted to high source</td>
</tr>
<tr>
<td>5743</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4165</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Voltage below normal, or Shorted to low source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>5743</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4152</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Abnormal update rate</td>
</tr>
<tr>
<td>5743</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4261</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Root Cause Not Known</td>
</tr>
<tr>
<td>5743</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4159</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Bad intelligent device or component</td>
</tr>
<tr>
<td>5743</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4166</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Data valid but above normal</td>
</tr>
<tr>
<td>5745</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4168</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater - Voltage above normal, or shorted to high</td>
</tr>
<tr>
<td>5745</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4169</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5745</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6513</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater - Data valid but below normal operating range</td>
</tr>
<tr>
<td>5745</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4171</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater - Data valid but below normal operating range</td>
</tr>
<tr>
<td>5746</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6529</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater Relay</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater Relay - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>5746</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4156</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater Relay</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater Relay - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5798</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4251</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Unit Heater Temperature - Abnormal Rate of Change</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>6655</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>6511</td>
<td>ECU Power Lamp</td>
<td>Maintain ECU Power Lamp - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>6655</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6512</td>
<td>ECU Power Lamp</td>
<td>Maintain ECU Power Lamp - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>6713</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>5177</td>
<td>VGT Actuator Driver Circuit</td>
<td>VGT Actuator Driver Circuit - Abnormal update rate</td>
</tr>
<tr>
<td>6713</td>
<td>13</td>
<td>Stop</td>
<td>Red</td>
<td>4956</td>
<td>Variable Geometry Turbocharger Actuator</td>
<td>Variable Geometry Turbocharger Actuator Software - Out of Calibration</td>
</tr>
<tr>
<td>6713</td>
<td>31</td>
<td>Stop</td>
<td>Red</td>
<td>4957</td>
<td>Variable Geometry Turbocharger Actuator</td>
<td>Variable Geometry Turbocharger Actuator Software - Condition exists</td>
</tr>
<tr>
<td>6799</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>6473</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>6799</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>6471</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch Position Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>6799</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6472</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch Position Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>6799</td>
<td>7</td>
<td>Check</td>
<td>Amber</td>
<td>5185</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>6802</td>
<td>31</td>
<td>Check</td>
<td>Amber</td>
<td>5278</td>
<td>SCR Operator Inducement Override Switch</td>
<td>SCR Operator Inducement Override Switch - Abnormal Update Rate</td>
</tr>
<tr>
<td>6881</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>5653</td>
<td>SCR Operator Inducement Override Switch</td>
<td>SCR Operator Inducement Override Switch - Abnormal Update Rate</td>
</tr>
<tr>
<td>6881</td>
<td>13</td>
<td>Check</td>
<td>Amber</td>
<td>5654</td>
<td>SCR Operator Inducement Override Switch</td>
<td>SCR Operator Inducement Override Switch - Out of Calibration</td>
</tr>
<tr>
<td>6882</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>5393</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Voltage above normal or shorted to high source</td>
</tr>
<tr>
<td>6882</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>5394</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Voltage below normal or shorted to low source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6882</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5391</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Abnormal update rate</td>
</tr>
<tr>
<td>6882</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5395</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Root cause not known</td>
</tr>
<tr>
<td>6882</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5392</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Bad Intelligent Device or Component</td>
</tr>
<tr>
<td>6882</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5396</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>6918</td>
<td>31</td>
<td>Check Engine</td>
<td>Mainten ance</td>
<td>5632</td>
<td>SCR System Cleaning Inhibited Due to Inhibit Switch</td>
<td>SCR System Cleaning Inhibited Due to Inhibit Switch - Condition exists</td>
</tr>
<tr>
<td>6928</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6597</td>
<td>SCR System Cleaning Inhibited Due to System Timeout</td>
<td>SCR System Cleaning Inhibited Due to System Timeout - Condition exists</td>
</tr>
<tr>
<td>7848</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6634</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration - Condition exists</td>
</tr>
<tr>
<td>520808</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5291</td>
<td>Engine Emergency Shutdown Switch Activated</td>
<td>Engine Emergency Shutdown Switch Activated - Condition exists</td>
</tr>
<tr>
<td>520809</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5292</td>
<td>Excessive Time Since Last Engine Air Shutoff Maintenance Test</td>
<td>Excessive Time Since Last Engine Air Shutoff Maintenance Test - Condition exists</td>
</tr>
<tr>
<td>520968</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5939</td>
<td>Machine Constrained Operation - Abnormal Update Rate. No Communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the machine electronic unit.</td>
<td>Machine Constrained Operation - Abnormal Update Rate. No Communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the machine electronic unit.</td>
</tr>
</tbody>
</table>
REFERENCE

<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Telltale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>520968</td>
<td>19</td>
<td>Check Engine</td>
<td>None</td>
<td>5941</td>
<td>Machine Constrained Operation - Received Network Data in Error. The received J1939 datalink message was not valid.</td>
<td></td>
</tr>
<tr>
<td>524286</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5617</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst System</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst System - Special Instruction</td>
</tr>
</tbody>
</table>
A

A40 DX auger headers
attaching to M1 Series connecting hydraulics 149
auger run screens ... 232
run screen 1 .. 232
run screen 2 .. 233
detaching from M1 Series ... 151
knife speed
adjusting knife alarm pressure 228
adjusting knife speed alarm 229
mechanically connecting to M1 Series 143
reel speed
adjusting reel alarm pressure 224
adjusting reel speed .. 221
setting reel speed in auto mode 221
setting reel speed in manual mode 223
A40-DX header float
float options with fixed deck 230
air conditioning
A/C cover
installing cover ... 328
A/C evaporator
cleaning evaporator core ... 327
compressor
compressor belts
replacing .. 334
tensioning belts ... 259, 333
filters
fresh air intake filter .. 274
inspecting and cleaning ... 275
installing filter ... 276
removing filter .. 274
testing/troubleshooting
cab air ... 387
air filters, See filters
API
definitions .. 29
APT
definitions .. 29
assembly
attaching D1X Series header to M1240
hydraulic center-link with optional self-alignment kit .. 155
hydraulic center-link without self-alignment kit ... 155
connecting batteries .. 322
disconnecting batteries .. 321
ASTM
definitions .. 29
attaching/detaching headers
A40 DX auger headers
attaching from M1 Series .. 151
D1X or D1XL Series.. 161
attaching header
connecting center-link ... 155
attaching to windrower
connecting hydraulics .. 161
draper header supports .. 154
detaching from M1 Series .. 162
D1XL Series header to M1240
hydraulic center-link with optional self-alignment kit .. 155
hydraulic center-link without self-alignment kit ... 155
R85 16-foot
attaching to M1240 windrower 167
R85 16-foot rotary disc header
attaching to M1240 windrower 167
automated steering
autosteer engagement button 70
automated steering systems 369
B
batteries
battery cable .. 318
battery cover
closing ... 315
opening .. 314
battery safety .. 8
battery specification ... 314
boosting ... 318
charging ... 316
connecting .. 322
disconnecting .. 321
installing .. 320
maintaining .. 314
removing ... 320
beacons, See lighting
belts
A/C compressor belt
replacing .. 334
tensioning .. 259, 333
engine fan drive belt
replacing .. 332
tensioning ... 332
seat belts ... 50
bolts
definitions ... 29
break-in inspection schedule 245
break-in inspections
INDEX

break-in period .. 110

C

cab
 troubleshooting cab air 387
cab temperature, See HVAC system 2
California proposition 65 2
CanWin service tool
 harvest performance tracker (HPT) 402
center-links .. 29
definitions ... 29
self-locking center-link hook mechanism 187
CGVW
definitions ... 29
circuit breakers
 accessing circuit breakers 350
 replacing .. 351
climate control system, See HVAC system 61
climate controls ... 36
component locations .. 36
compressor
 compressor belts .. 334
 replacing .. 334
 tensioning belts .. 259, 333
consoles .. 39
conversion charts ... 401
cutting height .. 188

D

D125X headers
 knife speed
 setting knife speed .. 211
 reel speed
 adjusting draper alarm pressure 208
 adjusting draper speed 204
 draper slip warning 209
 setting draper speed in auto mode 204
 setting draper speed in manual mode 206
D1X series headers
 deck shift ... 215
 deck shift control .. 215
 float options with deck shift 217
 setting float options 217
 draper run screens ... 218
 run screen 2 .. 220
header float
 float options with deck shift 217
knife speed
 knife speed alarm
 adjusting alarm .. 214
 adjusting pressure .. 212

D1X Series headers
 attaching to windrower
 connecting hydraulics 161
 draper header supports 154
definitions ... 29
detaching from windrower
 units with hydraulic center-link 162
draper run screens
 run screen 1 ... 219
 run screen 2 ... 220
hydraulic center-link with optional self-alignment kit
 attaching to M1240 .. 155
hydraulic center-link without self-alignment kit
 attaching to M1240 .. 155
D1XL Series headers
 attaching to windrower
 connecting hydraulics 161
 draper header supports 154
deck shift ... 215
deck shift control ... 215
float options with deck shift 217
setting float options ... 217
definitions ... 29
detaching from windrower
 units with hydraulic center-link 162
draper run screens .. 218
 run screen 1 ... 219
 run screen 2 ... 220
header float
 float options with deck shift 217
header position ... 196
leveling the header ... 197
reel fore-aft position 196
reel height .. 196
hydraulic center-link with optional self-alignment kit
 attaching to M1240 .. 155
hydraulic center-link without self-alignment kit
 attaching to M1240 .. 155
knife speed
 knife speed alarm
 adjusting alarm .. 214
 adjusting pressure .. 212
 setting knife speed 211
 setting knife speed while moving 226
reel speed
 adjusting draper alarm pressure 208
 adjusting draper speed 204
 adjusting reel alarm pressure 208
 adjusting reel speed 199
draper slip warning .. 209
setting draper speed in auto mode 204
setting draper speed in manual mode 206
setting reel speed in auto mode 199
setting reel speed in manual mode 201
INDEX

decals
 fuse box and relay module decals .. 353
 GSL header switch functions ... 72
 location of safety signs .. 17
deck shift
 deck shift control ... 215
declaration of conformity .. 3
DEF, See diesel exhaust fluid (DEF) system
 definition of terms .. 29
diesel exhaust fluid (DEF) system
 DEF tank
 draining the tank ... 331
 filling the tank .. 113, 273
 exhaust system cleaning .. 121
 filters
 changing vent hose filter .. 313
 supply module filter .. 305
 checking filter .. 305
 cleaning and inspecting filter 307
 installing filter ... 307
 removing filter ... 305
DM
definitions .. 29
DOC
definitions .. 29
double windrow attachment (DWA) .. 189
deck position ... 189
draper speed ... 190
drive wheels, See wheels and tires
driving the windrower
 adjusting ground speed limit ... 126
 driving on road ... 133, 135
 engine-forward operation .. 129
 entering/exiting the windrower .. 125
 forward in cab-forward mode ... 127
 reverse in cab-forward mode .. 128
 reverse in engine-forward mode 130
 spin turn ... 131
 stopping .. 131
E
eco engine control (EEC)
 programming the EEC ... 119
 using the EEC .. 69
ECU
definitions .. 29
electrical
 replacing
 circuit breaker/relay .. 351
electrical systems
 battery
 battery cover
 closing ... 315
 opening .. 314
boosting ... 318
charging ... 316
connecting ... 322
disconnecting .. 321
installing ... 320
maintaining ... 314
removing ... 320
fuses and relays ... 353
 checking and replacing fuses ... 351
 inspecting/replacing 125A main fuses 358
 replacing circuit breakers/relays 351
troubleshooting .. 380
engaging the header .. 184
engine cooling system
 cooling module
 cleaning screens and components 281, 284
 engine coolant
 adding coolant .. 309
 checking coolant level ... 271
 checking coolant strength .. 328
 draining coolant ... 308
engine operation
 engine aftertreatment switches
 manual SCR conditioning/inhibit switches 122
 engine speed ... 334
 engine temperature .. 121
 exhaust aftertreatment system
 exhaust system cleaning ... 121
 fuelling .. 112, 272
 oil pressure ... 121
 shutting down the engine .. 120
engines
 eco engine control (EEC)
 programming the EEC .. 119
 using the EEC ... 69
engine
 belts ... 332
engine air filter
 changing secondary air filter ... 292
 cleaning primary air filter ... 292
 installing primary air filter ... 290
 maintaining filters .. 289
 removing primary air filter .. 289
engine compartment ... 251
engine controls ... 68
engine exhaust system
 inspecting exhaust system .. 295
engine gearbox maintenance
 adding lubricant ... 277
 changing lubricant .. 260, 296
 checking lubricant level ... 277
engine oil change .. 287
INDEX

draining oil .. 287
engine oil filter ... 287
engine operation
 eco engine control (EEC) programming 119
 starting the engine 115
 troubleshooting .. 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
echo engine control (EEC) programming 119
starting the engine 115
troubleshooting 117
final drives .. 141
finger tight
definitions .. 29
float booster springs
 spring with external booster spring kit 370
floats, See header float
fluids, fuel, and lubricants 241
fuel system
fuel filters
 maintaining fuel filters 298
 primary fuel filter
 installing ... 299
 removing .. 298
 secondary fuel filter
 installing ... 300
 removing .. 299
 fuel specifications 241
fuel tank
draining the fuel tank 330
filling the fuel tank 112, 272
fuel/water separator 267
removing water from fuel system 267
removing/installing fuel tank vent filter 303
clean fuel, fluids, and lubricants 241
priming the fuel system 300
fuel, fluids, and lubricants 241
fuses
accessing fuses ... 350
checking and replacing 351
inspecting/replacing 125A main fuses 358
glossary .. 29
gps automated steering systems 369
ground speed lever (GSL)
 function group switches 72
 header position 6-way switch 73
 header raise and lower rates 194
 home, back, and select buttons 82
 One-Touch-Return positions 75
 reel and disc speed switch 74
 reel position 4-way switch 74
 scroll knob, scroll wheel, and select button 81
GVW
definitions .. 29

F

clean evaporator core 327

down faults
 engine fault codes 451
FFFT
definitions .. 29
filters
 charge filter ... 261
 installing .. 262
 removing .. 262
 DEF supply module filter 305
 checking filter ... 305
 cleaning and inspecting filter 307
 installing filter 307
 removing filter .. 305
 DEF vent hose filter 313
 changing DEF vent hose filter 313
 engine air filter
 changing secondary air filter 292
 cleaning primary filter element 292
 installing primary air filter 290
 removing primary air filter 289
 engine oil filter
 replacing engine oil filter 287
 fresh air intake filter 274
 fuel filters
 maintaining fuel filters 298
 primary fuel filter
 installing ... 299
 removing .. 298
 Removing/Installing fuel tank vent filter 303
 secondary fuel filter
 installing ... 300
 removing .. 299
 HVAC filters
 fresh air intake filter
 inspecting and cleaning 275
INDEX

H

harvest performance tracker (HPT)...186
 fault codes...451
 engine fault codes..402
 windrower fault codes...89
faults and telltales...89
function buttons..104
 F1 to F4..104
HPT display..68, 78
 home, back, select buttons..82
 main menu..85
 menu icons...93
 navigating the display...81
 QuickMenu..83
 screen layout...78
 scroll knob, scroll wheel, select button...81
setting display brightness and volume...91
setting display language and units..93
setting display time and date..93
setting up the display...91
soft keys..82
machine information...100
 accessing header information ..101
 accessing performance information ..103
 accessing software information...102
 accessing windrower information ...100
settings..95
 calibrating windrower and header..95
 control locks...99
 resetting to factory defaults...94
 windrower tire size..98
symbols..107
 definitions..107
 viewing machine information ..100
harvest performance tracker display (HPT)..178
 checking header settings..178
hazard warning lights...70
header angles..186
header controls..71
 console header buttons...76
 deck shift/float presets...76
 draper speed..77
 DWA/swath roller (if installed)...77
GSL buttons..72
 header position 6-way switch..73
 One-Touch-Return positions...75
 reel and disc speed switch...74
 reel position 4-way switch...74
 header drive reverse button..71
 header engage/drive switch..71
header drive..184
header float...180
checking float..180
float operating guidelines...181
float options with deck shift (D1X series)..217
float options with deck shift (D1XL Series)..217
float options with fixed deck (R85)...237
float options with fixed deck (rotary header)...237
removing and restoring float..183
header operation..179
 center-link..179
 checking self-locking center-link hook..187
 cutting height...188
 disengaging the header...184
 engaging the header..184
 header angles..186
 adjusting header angle...186
 header drive...184
 header float..180
 float operating guidelines...181
 header safety props...179
 operating with a header...179
 A40-DX header..221
 D1X...196
 D1XL Series...196
 header float..180
 R85 rotary header..234
reverse the header...185
headers...29
 D1X Series..196
 attaching header...196
 non-self-aligning hydraulic center-link..155
 self-aligning hydraulic center-link...155
 attaching to windrower...161
 connecting hydraulics...161
 draper header supports...154
 detaching from windrower..154
 units with hydraulic center-link..162
 D1XL Series...162
 attaching header...162
 non-self-aligning hydraulic center-link..155
 with self-aligning hydraulic center-link..155
 attaching to windrower...161
 connecting hydraulics...161
 draper header supports...154
 detaching from windrower..154
 units with hydraulic center-link..162
definitions..29
 R85 16-foot disc header...239
 attaching to windrower...239
 connecting header hydraulics..172
 with self-alignment kit..167
 without self-alignment kit...167
 R85 rotary header..239
 disc run screens..239
heater shut-off valves..60
hex keys
 definitions..29
hoods
 closing ...252
 opening to lowest position251
horns..67
 horn button location ...70
HPT, See harvest performance tracker (HPT)
HVAC system
 A/C compressor
 compressor belts
 replacing ..334
 tensioning belts ..259, 333
 coolant cycling ...111
 A/C cover
 installing cover ...328
 removing cover ...326
 A/C evaporator ..325
 cleaning evaporator core327
 air distribution ...60
 fresh air intake filter274
 inspecting and cleaning275
 installing filter ...276
 removing filter ...274
 heater shut-off valve60
 return air cleaner/filter280
 testing/troubleshooting
 cab air ..387
hydraulic system
 hydraulic hoses and lines271
hydraulics
 changing hydraulic filter261
 connecting hydraulics
 A40 DX ..149
 D1X Series ..161
 D1XL Series ...161
 R85 16-foot ...172
filters
 charge filter ..261
 installing ..262
 removing ..262
 part numbers ...244
 return oil filter
 installing ..264
 removing ..263
fittings
 O-ring boss (ORB) adjustable396
 O-ring boss (ORB) non-adjustable398
 O-ring face seal (ORFS) ...399
 tapered pipe thread fittings400
hydraulic oil
 checking and adding hydraulic oil267
 draining hydraulic oil ...310
 filling hydraulic oil ...312
hydraulic safety ...6
 troubleshooting ...382
I
 ignition switch ..68
K
 knife speed ..211, 226
 A40-DX auger headers
 adjusting knife alarm pressure228
 adjusting knife speed alarm229
 knife speed chart ...226
 D1X series headers
 knife alarm pressure ...212
 knife speed alarm ...214
 D1XL Series headers
 knife alarm pressure ...212
 knife speed alarm ...214
 knife speed chart ...210
L
 lighting ...52
 beacons ..56
 replacing lights ..346
 cab-forward mode
 field ..52
 road (optional) ...53
 road lights ...53
 engine-forward mode
 road lights ...54
 field lights
 cab-forward mode ...52
 flood lights
 adjusting front work lights (field)337
 headlights
 aligning headlights (cab-forward)336
 aligning headlights (engine-forward)334
 replacing headlight bulb (engine-forward)341
 interior lights
 dome bulb ..346
 dome light assembly ..348
 LED lights
 optional lighting upgrade369
 replacing LED lights (deluxe cab)343
 red and amber lights
 replacing bulbs ..344
 stubble lights
 adjusting stubble lights (rear)338
 turn signal indicators349
INDEX

turn signal/hazard lights .. 57
work lights
 adjusting rear work lights 339
 replacing halogen bulbs 340
lubricating the windrower
 recommended fuel, fluids, and lubricants 241
lubrication .. 278
grease points and intervals 279
greasing procedure .. 278
lubricants/fluids/system capacities 242
lubricating wheel drive
 adding lubricant .. 294
 changing wheel drive lubricant 260
 checking lubricant levels 293
storing lubricants and fluids 241

M

M1 Series windrowers
 attaching header
 D1X or D1XL Series .. 154
detaching header
 A40 DX auger header ... 151
 D1X or D1XL Series .. 162
mechanically connecting header
 A40 DX auger header ... 143
maintenance
 A/C compressor belt
 replacing .. 334
 tensioning .. 259, 332–333
 break-in inspection schedule 245
 break-in inspections
 procedures ... 256
 break-in period .. 110
 checking safety systems 301
 engine interlock ... 302
 operator presence system 301
cycling air conditioning compressor coolant 111
daily checks and maintenance 112
electrical system
 batteries ... 314
electronic maintenance tool 249
engine
 engine belt ... 332
 engine oil
 checking .. 114, 265
 gearbox ... 277
general engine inspection 313
engine air filters .. 289
engine coolant .. 308
greenhouse exhaust system
 inspecting ... 295
equipment oil .. 287

filter part numbers ... 244
fuel system
 fuel filters .. 298
 priming the fuel system 300
 fuel, fluids, and lubricants 241
greasing the windrower .. 278
hydraulic oil
 checking and adding hydraulic oil 267
 draining hydraulic oil 310
 filling hydraulic oil ... 312
lighting
 adjusting field/work/flood lights (front) 337
 adjusting stubble lights (rear) 338
 adjusting work lights (rear) 339
 aligning headlights (cab-forward) 336
 aligning headlights (engine-forward) 334
 replacing beacon lights 346
 replacing cabin dome bulb 346
 replacing dome light assembly 348
 replacing halogen bulbs 340
 replacing headlight light assembly 348
 replacing halogen bulbs 340
 replacing LED lights (deluxe cab) 343
 replacing red and amber bulbs 344
 replacing red tail lights 345
maintenance schedule .. 245
maintenance schedule/record 247
preseason checks/annual service 110
safety ... 5
service intervals
 10 hours or daily ... 265
 100 hours ... 280
 1000 hours ... 303
 2000 hours ... 308
 250 hours or annually 287
 50 hours ... 274
 500 hours or annually 298
 annual service ... 314
 as required ... 330
steering link pivots .. 323
wheels and tires
 caster wheels .. 363
 drive wheels .. 359

maintenance and servicing
 platform operation, See platforms
manuals
 engine owner’s manual 313
 manual storage location 62
metric bolts
torque specifications ... 393

N

NPT
<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil (engine)</td>
<td>288</td>
</tr>
<tr>
<td>Adding</td>
<td>266, 288</td>
</tr>
<tr>
<td>Checking level</td>
<td>265</td>
</tr>
<tr>
<td>Draining oil</td>
<td>287</td>
</tr>
<tr>
<td>Replacing engine oil filter</td>
<td>287</td>
</tr>
<tr>
<td>One-Touch-Return</td>
<td>193</td>
</tr>
<tr>
<td>Operating the windrower</td>
<td>109</td>
</tr>
<tr>
<td>See also engine operation</td>
<td></td>
</tr>
<tr>
<td>See also header operation</td>
<td></td>
</tr>
<tr>
<td>Adjusting header raise and lower rates</td>
<td>194</td>
</tr>
<tr>
<td>Break-in period</td>
<td>110</td>
</tr>
<tr>
<td>Daily checks</td>
<td>112</td>
</tr>
<tr>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>Run screen 3 - performance data</td>
<td>123</td>
</tr>
<tr>
<td>Run screen 4 - cooling data</td>
<td>124</td>
</tr>
<tr>
<td>Double windrowing</td>
<td>189</td>
</tr>
<tr>
<td>Deck position</td>
<td>189</td>
</tr>
<tr>
<td>Draper speed</td>
<td>190</td>
</tr>
<tr>
<td>Driving the windrower</td>
<td></td>
</tr>
<tr>
<td>Forward in cab-forward mode</td>
<td>127</td>
</tr>
<tr>
<td>Forward in engine-forward mode</td>
<td>129</td>
</tr>
<tr>
<td>Reverse in cab-forward mode</td>
<td>128</td>
</tr>
<tr>
<td>Reverse in engine-forward mode</td>
<td>130</td>
</tr>
<tr>
<td>Spin turn</td>
<td>131</td>
</tr>
<tr>
<td>Stopping</td>
<td>131</td>
</tr>
<tr>
<td>Filling the fuel tank</td>
<td>112, 272</td>
</tr>
<tr>
<td>One-Touch-Return</td>
<td>193</td>
</tr>
<tr>
<td>Operating with a header</td>
<td>179</td>
</tr>
<tr>
<td>A40-DX header</td>
<td>221</td>
</tr>
<tr>
<td>D1X series</td>
<td>196</td>
</tr>
<tr>
<td>D1XL Series</td>
<td>196</td>
</tr>
<tr>
<td>Header float</td>
<td>180</td>
</tr>
<tr>
<td>R85 rotary header</td>
<td>234</td>
</tr>
<tr>
<td>Operational safety</td>
<td>109</td>
</tr>
<tr>
<td>Owner/operator responsibilities</td>
<td>105</td>
</tr>
<tr>
<td>Preseason checks/annual service</td>
<td>110</td>
</tr>
<tr>
<td>Distributing A/C compressor coolant</td>
<td>111</td>
</tr>
<tr>
<td>Shutting down the engine</td>
<td>120</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Accessing header information</td>
<td>101</td>
</tr>
<tr>
<td>Accessing performance information</td>
<td>103</td>
</tr>
<tr>
<td>Accessing software information</td>
<td>102</td>
</tr>
<tr>
<td>Accessing windrower information</td>
<td>100</td>
</tr>
<tr>
<td>Overview</td>
<td>100</td>
</tr>
<tr>
<td>Swath roller</td>
<td>190</td>
</tr>
<tr>
<td>Symbols</td>
<td>106</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>191</td>
</tr>
<tr>
<td>Safety props</td>
<td>179</td>
</tr>
<tr>
<td>Operator presence system</td>
<td>41</td>
</tr>
<tr>
<td>Engine and transmission</td>
<td>41</td>
</tr>
<tr>
<td>Header drive</td>
<td>41</td>
</tr>
<tr>
<td>Operator’s seat adjustments</td>
<td>42</td>
</tr>
<tr>
<td>Armrest</td>
<td>42</td>
</tr>
<tr>
<td>Armrest angle</td>
<td>43</td>
</tr>
<tr>
<td>Cushion extension fore-aft (deluxe cab)</td>
<td>47</td>
</tr>
<tr>
<td>Cushion tilt (deluxe cab)</td>
<td>46</td>
</tr>
<tr>
<td>Fore-aft isolator control</td>
<td>44</td>
</tr>
<tr>
<td>Fore-aft position</td>
<td>44</td>
</tr>
<tr>
<td>Heating/cooling switch (deluxe cooling)</td>
<td>48</td>
</tr>
<tr>
<td>Lateral isolation (deluxe cab)</td>
<td>47</td>
</tr>
<tr>
<td>Lumbar support</td>
<td>45</td>
</tr>
<tr>
<td>Seat tilt</td>
<td>45</td>
</tr>
<tr>
<td>Suspension and seat height</td>
<td>43</td>
</tr>
<tr>
<td>Vertical dampener</td>
<td>46</td>
</tr>
<tr>
<td>Operator’s station</td>
<td>39</td>
</tr>
<tr>
<td>AM/FM/CD/USB Bluetooth®-equipped radio</td>
<td>64</td>
</tr>
<tr>
<td>Climate control system</td>
<td></td>
</tr>
<tr>
<td>Fan and temperature controls</td>
<td>61</td>
</tr>
<tr>
<td>Engine controls</td>
<td>68</td>
</tr>
<tr>
<td>Eco engine control (EEC)</td>
<td>69</td>
</tr>
<tr>
<td>Engine interlock</td>
<td>302</td>
</tr>
<tr>
<td>Header controls</td>
<td></td>
</tr>
<tr>
<td>Horn</td>
<td>67</td>
</tr>
<tr>
<td>Lighting</td>
<td>52</td>
</tr>
<tr>
<td>Cab-forward - field</td>
<td>52</td>
</tr>
<tr>
<td>Cab-forward - road</td>
<td>53</td>
</tr>
<tr>
<td>Engine-forward - road</td>
<td>54</td>
</tr>
<tr>
<td>Tail / beacon lights</td>
<td>56</td>
</tr>
<tr>
<td>Turn signal / hazard lights</td>
<td>57</td>
</tr>
<tr>
<td>Operator amenities</td>
<td></td>
</tr>
<tr>
<td>Coat hook</td>
<td>62</td>
</tr>
<tr>
<td>Manual storage</td>
<td>62</td>
</tr>
<tr>
<td>Operator’s console</td>
<td>62</td>
</tr>
<tr>
<td>Window shades</td>
<td>62</td>
</tr>
<tr>
<td>Operator console</td>
<td>39</td>
</tr>
<tr>
<td>Operator presence system</td>
<td>41, 301</td>
</tr>
<tr>
<td>Engine and transmission</td>
<td>41</td>
</tr>
<tr>
<td>Header drive</td>
<td>41</td>
</tr>
<tr>
<td>Rear view mirrors</td>
<td>59</td>
</tr>
<tr>
<td>Safety systems</td>
<td>301</td>
</tr>
<tr>
<td>Seat belts</td>
<td>50, 330</td>
</tr>
<tr>
<td>Steering column and wheel</td>
<td>51</td>
</tr>
<tr>
<td>Training seat</td>
<td>49</td>
</tr>
<tr>
<td>Windrower controls</td>
<td>70</td>
</tr>
<tr>
<td>Windshield wipers</td>
<td>58</td>
</tr>
<tr>
<td>Options and attachments</td>
<td>369</td>
</tr>
<tr>
<td>360° night vision LED lighting</td>
<td>369</td>
</tr>
<tr>
<td>Automated steering systems</td>
<td>369</td>
</tr>
<tr>
<td>Ballast packages for draper headers</td>
<td>373</td>
</tr>
<tr>
<td>Booster spring kit (external)</td>
<td>370</td>
</tr>
<tr>
<td>Center-link lifter</td>
<td>371</td>
</tr>
</tbody>
</table>
conversion kit for disc ready to disc, auger, and draper ready ...370
double booster spring kit (external)...................371
double window attachment (DWA)...................371
swath compressor ...371
swath roller ...190
towing harness ...373
weight box..373
windrower lighting upgrade (LED).....................369
ORB definitions...29
owner/operator responsibilities105
P
platforms ..253
adjusting platform..254
closing platform ..253
opening platform ...253
predelivery checks
 tire pressures ..268
priming
 fuel system ..300
Q
QuickMenu system ..83
R
R85 16-foot rotary disc headers
 attaching to windrower
 hydraulic center-link167
R85 16-ft rotary headers
 detaching from M1240 windrower174
R85 rotary disc headers
 attaching to windrower
 connecting header hydraulics172
R85 rotary headers
 disc run screens ...239
 run screen 1 ..239
 run screen 2 ..240
disc speed
 disc pressure alarm235
 setting disc speed ...234
header float
 float options with fixed deck237
 operating on an M1240 windrower234
radios
 activating Bluetooth®65
 AM/FM/CD/USB Bluetooth®-equipped radio64
 pairing a Bluetooth® device66
rear view mirrors ..59
relays
 replacing ..351
 reversing the header185
RoHS
 definitions ...29
rpm
 definitions ..29
S
SAE definitions ...29
safety ..1
 battery safety ..8
 engine safety ..14
 engine electronics ..15
 high pressure rails14
 general safety ...3
 header safety props ...179
 hydraulic safety ..6
 maintenance safety ..5
 operational safety ..109
 safety alert symbols ..1
 safety sign decals ...16
 installing decals ...16
 interpreting decals19
 sign location ..17
 signal words ..2
 tire safety ..7
 safety systems ..301
screws
 definitions ...29
seat belts
 definitions ...29
 maintaining seat belts330
serial numbers
 engine serial number locationii
 windrower serial number locationii
shutting down the engine ..120
soft keys ..82
specifications
 battery specification ..314
 filter part numbers ...244
 fuel ...241
 torque specifications393
 windrower dimensions35
 windrower specifications32
spm definitions ..29
springs
 float springs
 spring with external booster spring kit370
starting the engine ...115
steering
INDEX

adjustments
 steering column ... 51
 steering link pivots .. 323
 steering wheel ... 51
storing windrowers .. 141
swath rollers .. 190
symbols
 definitions .. 106–107
 windrower operating symbols........................... 106

temperature
 cab .. 60
 engine .. 121
TFFT
 definitions ... 29
throttle ... 68
torque
 definitions ... 29
torque angles
 definitions ... 29
torque specifications ... 393
 metric bolt specifications 393
 bolting into cast aluminum 395
 O-ring boss (ORB) hydraulic fittings
 (adjustable) .. 396
 O-ring boss (ORB) hydraulic fittings (non- adjustable) .. 398
 O-ring face seal (ORFS) fittings 399
 tapered pipe thread fittings 400
torque tensions
 definitions ... 29
towing
 towing header with windrower 137
 towing the windrower (emergency) 140
training seats .. 49
troubleshooting
 cab air .. 387
 electrical .. 380
 engine .. 375
 header drive ... 383
 hydraulics ... 382
 operator’s station ... 392
 steering and ground speed control 386
 traction drive .. 384
turn signals .. 70

U

ULSD
 definitions .. 29

W

washers
 definitions .. 29
weight box, See options and attachments
wheels and tires
 caster wheels ... 363
 adjusting caster tread width 363
 caster wheel nut torque 257
 installing forked caster wheel 367
 lowering caster wheel (all) 365
 raising caster wheel (all) 365
 removing forked caster wheel 366
 tightening anti-shimmy dampener 258
checking tire pressures 268
drive wheels
 installing drive wheels 361
 lowering drive wheels 362
 raising drive wheel .. 359
 removing drive wheel 361
 tightening drive wheel nuts 256
safety ... 7
wheel drive
 adding lubricant ... 294
 changing lubricant ... 260
 checking lubricant levels 293
windrower faults
 faults and telltales .. 89
windshield wipers ... 58
Lubricants, Fluids, and System Capacities

Table .11 System Capacities

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel exhaust fluid (DEF)</td>
<td>Diesel exhaust fluid tank</td>
<td>Must meet ISO 22241 requirements.</td>
<td>28 liters (7.5 US gallons)</td>
</tr>
<tr>
<td>Grease</td>
<td>As required unless otherwise specified</td>
<td>SAE multi-purpose high temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Fuel tank</td>
<td>Ultra low sulphur diesel (ULSD) Grade No. 2, or ULSD Grade No. 1 and 2 mix(^{24}); refer to for more information</td>
<td>518 liters (137 US gallons)</td>
</tr>
<tr>
<td>Hydraulic oil</td>
<td>Hydraulic reservoir</td>
<td>Single grade trans-hydraulic oil. Recommended brands:</td>
<td>60 liters (15.8 US gallons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Petro-Canada Duratran</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• John Deere Hy-Gard J20C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Case HY-TRAN ULTRACTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AGCO Power Fluid 821XL</td>
<td></td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Gearbox</td>
<td>SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>2.1 liters (2.2 US quarts)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Wheel drive</td>
<td>SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant, (SAE J2360 preferred)</td>
<td>1.4 liters (1.5 US quarts)</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>Engine cooling system</td>
<td>ASTM D-6210 and Fleetguard ES Compleat(^{25})</td>
<td>33 liters (8.7 US gallons)</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Engine oil pan</td>
<td>SAE 15W-40 compliant with SAE specs for API Class SJ and CJ-4 engine oil</td>
<td>14 liters (14.8 US quarts)</td>
</tr>
<tr>
<td>Air conditioning refrigerant</td>
<td>Air conditioning system</td>
<td>R134A</td>
<td>2.27 kg (5 lb.)</td>
</tr>
<tr>
<td>Air conditioning refrigerant oil</td>
<td>Air conditioning system total capacity</td>
<td>PAG SP-15</td>
<td>240 cc (8.1 fl. oz.)</td>
</tr>
<tr>
<td>Windshield washer fluid</td>
<td>Windshield washer fluid tank</td>
<td>SAE J942 compliant</td>
<td>4 liters (1 US gallon)</td>
</tr>
</tbody>
</table>

\(^{24}\) Optional when operating temperature is below 0°C (32°F).

\(^{25}\) Denotes capacity of a dry system. Refill capacity is 58 liters (15 US gallons).

\(^{26}\) Equal parts with water; high quality, soft, deionized or distilled water as recommended by Supplier.