This manual contains instructions for safety, operation, maintenance, and service for the MacDon M1170 Windrower, featuring Dual Direction® and CrossFlex™ rear suspension.

Published September 2019

California Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm. Battery posts, terminals, and related accessories contain lead and lead components. Wash hands after handling.

© 2019 MacDon Industries, Ltd.

The information in this publication is based on the information available and in effect at the time of printing. MacDon Industries, Ltd. makes no representation or warranty of any kind, whether expressed or implied, with respect to the information in this publication. MacDon Industries, Ltd. reserves the right to make changes at any time without notice.
Introduction

This instruction manual contains information on the MacDon M1170 Windrower, which when coupled with one of MacDon’s D1XL Series Draper Headers, D1X Series Draper Headers, R1 Series Rotary Disc Headers, or A40DX Auger Headers, provides a package designed to cut and lay a variety of crops into fluffy, uniform windrows.

Carefully read all the material provided before attempting to use the machine.

If you follow the instructions provided, your windrower will work well for many years.

Use this manual as your first source of information about the machine. If you follow the instructions provided, it will work well for many years. Contact your Dealer if you need assistance, information, or additional copies of this manual.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise the machine function and machine life and may result in a hazardous situation.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

The following conventions are used in this document:

- The M1170 Windrower is Dual Direction®, meaning the windrower can be driven in cab-forward or engine-forward modes. Right and left designations are therefore determined from the operator’s position, facing the direction of travel. This manual uses the terms “right cab-forward”, “left cab-forward”, “right engine-forward”, and “left engine-forward” when referencing specific locations on the machine.
- Unless otherwise noted, use the standard torque values provided in Chapter 8.1 Torque Specifications, page 401 of this document.

Keep this manual handy for frequent reference and to pass on to new Operators or Owners. A manual storage case is located in the cab.

Call your MacDon Dealer if you need assistance, information, or additional copies of this manual.

NOTE:
Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).

This document is available in English only.
Declaration of Conformity

EC Declaration of Conformity

680 Morey Street,
Winnipeg, Manitoba, Canada
R3J 3J3

Christoph Martens
Product Integrity

[4] As Per Shipping Document

[6] 1030785

EN ISO 4254:1:2003
EN ISO 4254:1:2009
EN ISO 4254:2:2009
EN ISO 4254-1:2013
EN ISO 4254-2:2009
EN ISO 4254:1-2013
EN ISO 4254-2:2009

EN ISO 4254:1-2003
EN ISO 4254-2:2"
Whole Body and Hand-Arm Vibration Levels

The weighted root mean square acceleration, to which the whole body is subjected, ranges from 0.44 to 0.81 m/s² as measured on a representative machine during typical operations and analyzed in accordance with ISO 5008.

During the same operations, the weighted root mean square hand-arm vibration was less than 2.40 m/s² when analyzed in accordance with ISO 5349. These acceleration values depend on the ground roughness, operating speed, and the operator’s experience, weight, and driving habits.

Noise Levels

The A-weighted sound pressure levels inside the operator’s station ranged from 69.1 to 69.4 dB(A) as measured on several representative machines in accordance with ISO 5131. The sound pressure level depends upon the engine speed and load, field and crop conditions, and the type of platform used.
Summary of Changes

At MacDon, we’re continuously making improvements. Occasionally these improvements affect product documentation. The following list provides an account of major changes from the previous version of this document.

<table>
<thead>
<tr>
<th>Section</th>
<th>Summary of Change</th>
<th>Internal Use Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Specifications, page 32</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>Adjusting Ground Speed Limit, page 124</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>Engaging and Disengaging Final Drives, page 141</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>5.6.1 Tightening Drive Wheel Nuts, page 269</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>5.6.8 Changing Wheel Drive Lubricant – 12 Bolt (Optional), page 274</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>5.10.4 Checking Wheel Drive Lubricant Level – 12 Bolt (Optional), page 304</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>5.10.6 Adding Wheel Drive Lubricant – 12 Bolt (Optional), page 306</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
<tr>
<td>Installing Drive Wheels, page 371</td>
<td>Added 12 bolt wheel drive information</td>
<td>ECN 58568</td>
</tr>
</tbody>
</table>
Serial Numbers

If you require MacDon technical assistance, please have the machine’s serial numbers recorded and ready before you call.

Record the model number, serial number, and year of manufacture of the windrower and engine on the lines below.

The windrower serial number plate (A) is located on the left side of the main frame near the walking beam.

Windrower Model Number: _________________________
Windrower Serial Number: _________________________
Year of Manufacture: ______________________________

The engine serial number plate (A) is located on top of the engine cylinder head cover.

Engine Serial Number: ____________________________
Year of Manufacture: ______________________________

Figure 1: Windrower Serial Number Location

Figure 2: Engine Serial Number Location
TABLE OF CONTENTS

Introduction ... i
Summary of Changes .. v
Serial Numbers .. vi

Chapter 1: Safety .. 1

1.1 Safety Alert Symbols ... 1
1.2 Signal Words ... 2
1.3 General Safety ... 3
1.4 Maintenance Safety ... 5
1.5 Hydraulic Safety .. 6
1.6 Tire Safety ... 7
1.7 Battery Safety ... 8
1.8 Welding Precaution .. 9
1.9 Engine Safety .. 13
 1.9.1 High-Pressure Rail ... 13
 1.9.2 Engine Electronics ... 13
1.10 Safety Signs ... 15
 1.10.1 Installing Safety Decals .. 15
1.11 Safety Sign Locations ... 16
1.12 Understanding Safety Signs .. 18

Chapter 2: Product Overview ... 29

2.1 Definitions .. 29
2.2 Specifications ... 32
2.3 Windrower Dimensions ... 36
2.4 Component Location ... 37

Chapter 3: Operator’s Station ... 39

3.1 Console ... 39
3.2 Operator Presence System .. 41
 3.2.1 Header Drive .. 41
 3.2.2 Engine and Transmission ... 41
3.3 Operator’s Seat Adjustments ... 42
 3.3.1 Armrest .. 42
 3.3.2 Armrest Angle .. 42
 3.3.3 Suspension and Height ... 43
 3.3.4 Fore-Aft Slide Control ... 43
 3.3.5 Fore-Aft Isolator Control ... 44
 3.3.6 Tilt ... 44
 3.3.7 Lumbar Support .. 45
 3.3.8 Vertical Dampener ... 45
 3.3.9 Cushion Tilt – Deluxe Cab Only .. 46
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusting Reel Alarm Pressure</td>
<td>199</td>
</tr>
<tr>
<td>4.7.6 Adjusting Draper Speed</td>
<td>200</td>
</tr>
<tr>
<td>Setting Draper Speed in Auto Mode</td>
<td>201</td>
</tr>
<tr>
<td>Setting Draper Speed in Manual Mode</td>
<td>203</td>
</tr>
<tr>
<td>Adjusting Draper Alarm Pressure</td>
<td>204</td>
</tr>
<tr>
<td>Draper Slip Warning</td>
<td>206</td>
</tr>
<tr>
<td>4.7.7 Knife Speed</td>
<td>206</td>
</tr>
<tr>
<td>Setting Knife Speed</td>
<td>207</td>
</tr>
<tr>
<td>Adjusting Knife Alarm Pressure – Draper Header</td>
<td>208</td>
</tr>
<tr>
<td>Adjusting Knife Speed Alarm</td>
<td>210</td>
</tr>
<tr>
<td>4.7.8 Deck Shift Control</td>
<td>211</td>
</tr>
<tr>
<td>Shifting Decks</td>
<td>211</td>
</tr>
<tr>
<td>Setting Float Options with Deck Shift</td>
<td>212</td>
</tr>
<tr>
<td>4.7.9 Draper Header Run Screens</td>
<td>214</td>
</tr>
<tr>
<td>Run Screen 1</td>
<td>214</td>
</tr>
<tr>
<td>Run Screen 2</td>
<td>215</td>
</tr>
<tr>
<td>4.7.10 Swath Compressor</td>
<td>215</td>
</tr>
<tr>
<td>Controlling the Swath Compressor</td>
<td>215</td>
</tr>
<tr>
<td>Locking and Unlocking the Swath Compressor</td>
<td>217</td>
</tr>
<tr>
<td>4.8 Operating with an A40DX Auger Header</td>
<td>218</td>
</tr>
<tr>
<td>4.8.1 Reel and Auger Speed</td>
<td>218</td>
</tr>
<tr>
<td>Setting Reel Speed in Auto Mode</td>
<td>218</td>
</tr>
<tr>
<td>Setting Reel Speed in Manual Mode</td>
<td>220</td>
</tr>
<tr>
<td>Setting Auger Speed</td>
<td>221</td>
</tr>
<tr>
<td>Adjusting the Reel/Auger Alarm Pressure</td>
<td>223</td>
</tr>
<tr>
<td>4.8.2 Knife Speed</td>
<td>224</td>
</tr>
<tr>
<td>Setting Knife Speed</td>
<td>225</td>
</tr>
<tr>
<td>Adjusting Knife Alarm Pressure – Auger Header</td>
<td>226</td>
</tr>
<tr>
<td>Adjusting Knife Speed Alarm</td>
<td>227</td>
</tr>
<tr>
<td>4.8.3 Setting Float Options with Fixed Deck</td>
<td>229</td>
</tr>
<tr>
<td>4.8.4 Auger Header Run Screens</td>
<td>231</td>
</tr>
<tr>
<td>Run Screen 1</td>
<td>231</td>
</tr>
<tr>
<td>Run Screen 2</td>
<td>232</td>
</tr>
<tr>
<td>4.9 Operating with an R1 Series Rotary Disc Header</td>
<td>233</td>
</tr>
<tr>
<td>4.9.1 Disc Speed</td>
<td>233</td>
</tr>
<tr>
<td>Setting Disc Speed</td>
<td>233</td>
</tr>
<tr>
<td>Adjusting Disc Pressure Alarm</td>
<td>234</td>
</tr>
<tr>
<td>4.9.2 Setting Float Options with Fixed Deck</td>
<td>235</td>
</tr>
<tr>
<td>4.9.3 Disc Header Run Screens</td>
<td>237</td>
</tr>
<tr>
<td>Run Screen 1</td>
<td>237</td>
</tr>
<tr>
<td>Run Screen 2</td>
<td>238</td>
</tr>
</tbody>
</table>

Chapter 5: Maintenance and Servicing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Recommended Fuel, Fluids, and Lubricants</td>
<td>239</td>
</tr>
<tr>
<td>5.1.1 Storing Lubricants and Fluids</td>
<td>239</td>
</tr>
<tr>
<td>5.1.2 Fuel Specifications</td>
<td>239</td>
</tr>
<tr>
<td>5.1.3 Lubricants, Fluids, and System Capacities</td>
<td>240</td>
</tr>
<tr>
<td>5.1.4 Filter Part Numbers</td>
<td>241</td>
</tr>
<tr>
<td>5.2 Windrower Break-In Inspections and Maintenance Schedule</td>
<td>243</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

5.2.1 Break-in Inspection Schedule ... 243
5.2.2 Maintenance Schedule/Record ... 244
5.2.3 Electronic Maintenance Tool ... 246

5.3 Engine Compartment .. 247
5.3.1 Opening Hood ... 247
5.3.2 Closing Hood ... 248

5.4 Platform ... 249
5.4.1 Opening Platform .. 249
5.4.2 Closing Platform .. 249
5.4.3 Adjusting the Platform .. 250
5.4.4 Accessing Tool Box ... 251

5.5 System Maintenance Overviews ... 253
5.5.1 Diesel Exhaust Fluid System ... 253
 Draining the Diesel Exhaust Fluid Tank .. 253
 Filling the Diesel Exhaust Fluid Tank ... 254
5.5.2 Twin-Flow Cooling System ... 255
 Engine Cooling ... 256
 Inspecting Pressurized Coolant Tank Cap ... 256
 Charge Air Cooler .. 257
 Charge Air Cooling .. 258
 Hydraulic Oil Cooler ... 258
 Air Conditioning (A/C) .. 259
 Condenser .. 259
5.5.3 Air Intake System .. 259
5.5.4 Hydraulic System .. 261
 Hydraulic Oil Cooler ... 261
 Knife/Disc Drive Hydraulics .. 262
 Reel and Draper Hydraulics ... 262
 Traction Drive Hydraulics .. 262
5.5.5 Electrical System .. 263
 Module Layout ... 263
 Master Controller .. 267
 Extension Modules .. 267
 Relay Modules ... 267
 Preventing Electrical System Damage .. 268

5.6 Break-In Inspection Procedures ... 269
5.6.1 Tightening Drive Wheel Nuts ... 269
5.6.2 Tightening Caster Wheel Nuts ... 270
5.6.3 Tightening Caster Wheel Anti-Shimmy Dampeners 271
5.6.4 Tightening Walking Beam Adjustment Bolts 271
5.6.5 Tensioning Air Conditioner Compressor Belts 272
5.6.6 Changing Engine Gearbox Lubricant ... 272
5.6.7 Changing Wheel Drive Lubricant – 10 Bolt 273
5.6.8 Changing Wheel Drive Lubricant – 12 Bolt (Optional) 274
5.6.9 Return Oil Filter .. 275
 Removing Return Oil Filter ... 275
 Installing Return Oil Filter .. 276
5.6.10 Charge Filter ... 277
5.7 Every 10 Hours or Daily ... 279
 5.7.1 Checking Engine Oil Level .. 279
 Adding Engine Oil .. 280
 5.7.2 Fuel/Water Separator .. 281
 Removing Water from Fuel System ... 281
 5.7.3 Checking Hydraulic Oil .. 281
 5.7.4 Checking Tire Pressures .. 282
 5.7.5 Checking Engine Coolant Level .. 285
 5.7.6 Hoses and Lines .. 285
 5.7.7 Checking Engine Gearbox Lubricant Level and Adding Lubricant ... 286

5.8 Every 50 Hours ... 287
 5.8.1 Fresh Air Intake Filter .. 287
 Removing Fresh Air Intake Filter .. 287
 Inspecting and Cleaning Fresh Air Intake Filter Element .. 288
 Installing Fresh Air Intake Filter .. 288
 5.8.2 Greasing the Windrower .. 289
 Greasing Procedure ... 290
 Grease Points ... 291

5.9 Every 100 Hours .. 292
 5.9.1 Servicing Return Air Filter ... 292
 5.9.2 Cleaning Cooler Module .. 293
 Cleaning Left Cooling Module ... 293
 Cleaning Right Cooling Module .. 296

5.10 Every 250 Hours or Annually ... 298
 5.10.1 Changing Engine Oil .. 298
 Draining Engine Oil .. 298
 Replacing Engine Oil Filter .. 298
 Adding Engine Oil .. 299
 5.10.2 Maintaining Engine Air Filters .. 299
 Removing Engine Primary Air Filter ... 299
 Installing Engine Primary Air Filter ... 301
 Cleaning Primary Air Filter .. 303
 Replacing Secondary Air Filter .. 303
 5.10.3 Checking Wheel Drive Lubricant Level ... 304
 5.10.4 Checking Wheel Drive Lubricant Level – 12 Bolt (Optional) ... 304
 5.10.5 Adding Wheel Drive Lubricant – 10 Bolt .. 305
 5.10.6 Adding Wheel Drive Lubricant – 12 Bolt (Optional) .. 306
 5.10.7 Inspecting Exhaust System .. 306
 5.10.8 Changing Engine Gearbox Lubricant ... 308

5.11 Every 500 Hours or Annually .. 309
 5.11.1 Maintaining Fuel Filters .. 309
 Removing Primary Fuel Filter ... 309
 Installing Primary Fuel Filter ... 310
 Removing Secondary Fuel Filter .. 310
 Installing Secondary Fuel Filter ... 310
 Priming Fuel System ... 311
TABLE OF CONTENTS

5.11.2 Safety Systems .. 312
 Checking Operator Presence System .. 312
 Checking Engine Interlock ... 314

5.12 Every 1000 Hours .. 315
 5.12.1 Removing and Installing the Fuel Tank Vent Filter .. 315
 5.12.2 Diesel Exhaust Fluid Supply Module Filter ... 317
 Checking the DEF Supply Module Filter ... 317
 Removing the Supply Module Filter ... 317
 Cleaning and Inspecting the Supply Module Filter ... 318
 Installing the Supply Module Filter ... 319

5.13 Every 2000 Hours ... 320
 5.13.1 Changing Engine Coolant .. 320
 Draining Coolant ... 320
 Adding Coolant ... 321
 5.13.2 Draining Hydraulic Oil ... 322
 5.13.3 Filling Hydraulic Oil .. 323
 5.13.4 Replacing the Diesel Exhaust Fluid Vent Hose Filter ... 324
 5.13.5 General Engine Inspection ... 325

5.14 Annual Service ... 326
 5.14.1 Batteries .. 326
 Maintaining a Battery ... 326
 Opening Battery Cover .. 326
 Closing Battery Cover .. 327
 Charging a Battery .. 328
 Boosting a Battery ... 329
 Removing a Battery ... 331
 Installing a Battery ... 332
 Disconnecting a Battery .. 332
 Connecting Batteries ... 333
 Auxiliary Power Posts .. 334
 5.14.2 Checking Steering Link Pivots ... 335
 5.14.3 Air Conditioning Evaporator ... 337
 Removing Air Conditioning Cover ... 337
 Cleaning Air Conditioning Evaporator Core .. 338
 Installing Air Conditioning Cover .. 339
 5.14.4 Checking Engine Coolant Strength .. 339

5.15 Maintenance as Required ... 341
 5.15.1 Seat Belts ... 341
 5.15.2 Draining Fuel Tank .. 341
 5.15.3 Draining the Diesel Exhaust Fluid Tank .. 342
 5.15.4 Belts .. 343
 Tensioning Engine Fan Drive Belt ... 343
 Replacing Engine Fan Drive Belt ... 343
 Tensioning Air Conditioner Compressor Belts .. 344
 Replacing Air Conditioner Compressor Belts ... 344
 5.15.5 Engine Speed .. 345
 5.15.6 Lighting ... 345
 Aligning Headlights – Engine-Forward ... 345
 Aligning Headlights – Cab-Forward ... 347
Chapter 6: Options and Attachments

6.1 Hood

6.1.1 High Debris Cooler Intake (Hood Scoops)

6.2 Cab

6.2.1 Automated Steering Systems

6.2.2 High Performance Lighting – Standard on Deluxe Cab Package

6.3 Header Operation

6.3.1 Booster Spring Kit – External

6.3.2 Double Booster Spring Kit – External

6.3.3 Double Windrow Attachment

6.3.4 Double Windrow Attachment Shutoff Kit

6.3.5 Center-Link Lifter

6.3.6 Swath Compressor

6.4 Transport

6.4.1 Ballast

6.4.2 Single Side Mud Caster Wheels

6.4.3 Towing Harness

6.4.4 Weight Box
Chapter 7: Troubleshooting.. 387
 7.1 Engine Troubleshooting... 387
 7.2 Electrical Troubleshooting .. 391
 7.3 Hydraulics Troubleshooting .. 392
 7.4 Header Drive Troubleshooting .. 393
 7.5 Traction Drive Troubleshooting ... 394
 7.6 Steering and Ground Speed Control Troubleshooting .. 396
 7.7 Cab Air Troubleshooting .. 397
 7.8 Operator’s Station Troubleshooting .. 400

Chapter 8: Reference .. 401
 8.1 Torque Specifications .. 401
 8.1.1 Metric Bolt Specifications .. 401
 8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum ... 403
 8.1.3 O-Ring Boss Hydraulic Fittings – Adjustable .. 404
 8.1.4 O-Ring Boss Hydraulic Fittings – Non-Adjustable .. 406
 8.1.5 O-Ring Face Seal Hydraulic Fittings .. 407
 8.1.6 Tapered Pipe Thread Fittings ... 408
 8.2 Conversion Chart .. 409
 8.3 Windrower Fault Codes ... 410
 8.4 Engine Fault Codes ... 456

Index .. 483

Lubricants, Fluids, and System Capacities ... 497
Chapter 1: Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- **ATTENTION!**
- **BECOME ALERT!**
- **YOUR SAFETY IS INVOLVED!**

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

- Accidents disable and kill
- Accidents cost
- Accidents can be avoided
1.2 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. Two signal words, IMPORTANT and NOTE, identify non-safety related information. Signal words are selected using the following guidelines:

⚠️ DANGER
Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ CAUTION
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

IMPORTANT:
Indicates a situation that, if not avoided, could result in a malfunction or damage to the machine.

NOTE:
Provides additional information or advice.
1.3 General Safety

⚠️ CAUTION

The following general farm safety precautions should be part of your operating procedure for all types of machinery.

Protect yourself when assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for the job at hand. Do **NOT** take chances. You may need the following:

- Hard hat
- Protective footwear with slip-resistant soles
- Protective glasses or goggles
- Heavy gloves
- Wet weather gear
- Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit in case of emergencies.
- Keep a properly maintained fire extinguisher on the machine. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when the Operator is tired or in a hurry. Take time to consider safest way. **NEVER** ignore warning signs of fatigue.
• Wear close-fitting clothing and cover long hair. **NEVER** wear dangling items such as scarves or bracelets.

• Keep all shields in place. **NEVER** alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.

• Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

• Keep hands, feet, clothing, and hair away from moving parts. **NEVER** attempt to clear obstructions or objects from a machine while the engine is running.

• Do **NOT** modify the machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten the machine’s life.

• To avoid injury or death from unexpected startup of the machine, **ALWAYS** stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

• Keep service area clean and dry. Wet and/or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

• Keep work area well lit.

• Keep machinery clean. Straw and chaff on a hot engine are fire hazards. Do **NOT** allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.

• **NEVER** use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

• When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review the operator’s manual and all safety items before operation and/or maintenance of the machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit
 - Relieve pressure from hydraulic circuits before servicing and/or disconnecting the machine.
 - Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
 - Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
 - Clear the area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
 - Install transport lock or place safety stands under the frame before working under the machine.
 - If more than one person is servicing the machine at the same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lubricant fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
 - Wear protective gear when working on the machine.
 - Wear heavy gloves when working on knife components.

Figure 1.8: Safety around Equipment

Figure 1.9: Equipment NOT Safe for Children

Figure 1.10: Safety Equipment
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before leaving the operator’s seat.
- Make sure that all components in the hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high-pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Tire Safety

Service tires safely.

⚠️ WARNING

- A tire can explode during inflation, which could cause serious injury or death.
- Follow proper procedures when mounting a tire on a wheel or rim. Failure to do so can produce an explosion that may result in serious injury or death.

⚠️ WARNING

- Do NOT remove, install, or repair a tire on a rim unless you have proper equipment and experience to perform the job. Take the tire and rim to a qualified tire repair shop.
- Make sure the tire is correctly seated before inflating to operating pressure. If the tire is not correctly positioned on the rim or is overinflated, the tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can thrust the tire in any direction, endangering anyone in the area.
- Do NOT stand over the tire when inflating. Use a clip-on chuck and extension hose.
- Do NOT exceed the maximum inflation pressure indicated on the tire label.
- Never use force on an inflated or partially inflated tire.
- Make sure all air is removed from the tire before removing it from the rim.
- Never weld a wheel rim.
- Replace tires that have defects and replace wheel rims that are cracked, worn, or severely rusted.
1.7 Battery Safety

⚠️ WARNING
- Keep all sparks and flames away from batteries; an explosive gas is given off by electrolyte.
- Ventilate when charging in enclosed space.

⚠️ WARNING
- Wear safety glasses when working near batteries.
- To avoid an electrolyte loss, do NOT tip batteries more than 45°.
- Battery electrolyte causes severe burns. Avoid contact with skin, eyes, or clothing.
- Electrolyte splashed into eyes is extremely dangerous. Should this occur, force eye open, and flood with cool, clean water for 5 minutes. Call a doctor immediately.
- If electrolyte is spilled or splashed on clothing or body, neutralize it immediately with a solution of baking soda and water, then rinse with clear water.

⚠️ WARNING
- To avoid injury from a spark or short circuit, disconnect the battery ground cable before servicing any part of the electrical system.
- Do NOT operate the engine with the alternator or battery disconnected. With battery cables disconnected and the engine running, a high voltage can be built up if terminals touch frame. Anyone touching the frame under these conditions would be severely shocked.
- When working around storage batteries, remember that all of the exposed metal parts are live. Never lay a metal object across the terminals because a spark or short circuit will result.
- Keep batteries out of reach of children.
1.8 Welding Precaution

IMPORTANT:
It is very important that correct procedures be followed when welding anything connected to the windrower. If procedures are not followed, it could result in severe damage to sensitive, expensive electronics. Even if complete failure of a module doesn’t happen immediately, it is impossible to know what effect high current could have with regard to future malfunctions or shorter lifespan.

Due to the number of connectors, components to be welded should be removed from the windrower whenever possible rather than welded in place. When work needs to be completed on a header, disconnect the header completely from the windrower before welding. These same guidelines apply to plasma cutting, or any other high current electrical operation performed on the machine.

The following items need to be disconnected:

- Negative battery terminals (A) (two connections)

IMPORTANT:
Always disconnect the battery terminals first, and reconnect them last.

- Master controller (A)
 Four connectors: P231, P232, P233, and P234
 Location: Behind cab, near header lift/fan manifold
 To disconnect the connectors, press the two outer tabs, and pull the connector away from master controller.

IMPORTANT:
When reconnecting these connectors, double-check that the connectors are fully seated into the master controller, and that the two locking tabs on each end of all four connectors have popped outward. If the tabs are not popped outward, the connector is not fully seated.

IMPORTANT:
Do NOT power up or operate the windrower until these connectors are locked into place.
• Firewall extension module (A)
 Two connectors: P235 and P236
 Location: Behind cab, near header lift/fan manifold.
 To disconnect, use a small 3–6 mm (1/8–1/4 in.) blade screwdriver to insert into the connector’s locking tab. Gently pry upward (no more than 6 mm [1/4 in.]) to unlock the connector tab, and then pull the connector away from the module.

Figure 1.21: Firewall Extension Module

• Chassis extension module (A)
 Two connectors: P247 and P248
 Location: Under cab, inside left frame rail
 To disconnect, use a small 3–6 mm (1/8–1/4 in.) blade screwdriver to insert into the connector’s locking tab. Gently pry upward (no more than 6 mm [1/4 in.]) to unlock the connector tab, and then pull the connector away from the module.

Figure 1.22: Chassis Extension Module

• Engine Control Module (ECM)
 Two connectors for Cummins: P100 (A) and J1 Cummins Proprietary ECM Connector (B)
 Location: On engine
 To disconnect, pull the rubber boot off the cover, unlock the latch, and undo the main over-center latch. Remove strain relief bolts (C) so the connectors can be pulled away from the ECM.

IMPORTANT:
Be sure to disconnect both connectors. Note connector locations.

IMPORTANT:
Be sure to reconnect connectors in the proper locations. Do NOT cross connect.

Figure 1.23: Engine Control Module
NOTE:
To disconnect the remaining circular Deutsch connectors, rotate the outer collar counterclockwise.

- Cab connectors (A)
 Two round connectors: C1 and C2
 Location: Under cab

- Roof connectors (A)
 Four connectors: C10, C12, C13, and C14
 Location: Under cab at base of left cab post

- Chassis relay module (A)
 Three connectors: P240, P241, and P242
 Location: Outside left frame rail near batteries
• Engine harness (A)
 Two round connectors: C30 and C31
 Location: Inside left frame rail, at rear of windrower

• Air conditioning (A/C) box connectors (A)
 Two connectors: C15 and C16
 Location: Rear of A/C box

• Wheel motor connectors (A)
 Two round connectors: C25 and C26
 Location: Under center of frame, just behind front cross member

IMPORTANT:
To connect circular Deutsch connectors without bending the pins, align the plug with the receptacle before attempting to connect.

To align the connectors:
1. Observe the channel cuts and mating channel protrusions on the inner part of the circular walls of the connectors.
2. Face the mating connectors towards each other, and rotate connectors so that channels are aligned.
3. Press connectors together while turning the outer connector clockwise until collar locks.
1.9 Engine Safety

WARNING
Do NOT use aerosol starting aids such as ether. Such use could result in an explosion and personal injury.

CAUTION
- On initial start-up of a new, serviced, or repaired engine, always be ready to stop the engine to prevent an overspeed. Do this by shutting off the air and/or fuel supply to the engine.
- Do NOT bypass or disable automatic shutoff circuits. The circuits help prevent personal injury, and prevent engine damage. Contact your Dealer for repairs and adjustments.
- Inspect the engine for potential hazards.
- Before starting the engine, ensure no one is on, underneath, or close to the engine. Ensure that people clear the area.
- All protective guards and covers must be installed if the engine must be started to perform service procedures.
- To help prevent an accident, work around rotating parts carefully.
- If a warning tag is attached to the engine start switch or controls, do NOT start engine or move controls. Consult whoever attached the warning tag before starting the engine.
- Start the engine from the operator’s station. Follow the procedure in the Starting Engine section of the operator’s manual. Following the correct procedure will help prevent major damage to engine components and prevent personal injury.
- To ensure that the jacket water heater (if equipped) and/or lubricant oil heater (if equipped) is working correctly, check the water temperature gauge and/or oil temperature gauge during heater operation.
- Engine exhaust contains products of combustion, which can be harmful to your health. Always start and operate the engine in a well-ventilated area. If the engine is started in an enclosed area, vent exhaust to the outside.
- Engine exhaust gases become very hot during operation and can burn people and common materials. Stay clear of the rear of machine and avoid exhaust gases when engine is running.

NOTE:
If the engine will be operated in very cold conditions, then an additional cold-starting aid may be required.

1.9.1 High-Pressure Rail

WARNING
- Contact with high-pressure fuel may cause fluid penetration and burn hazards. High-pressure fuel spray may cause a fire hazard. Failure to follow these instructions may cause personal injury or death.
- Before disconnecting fuel lines or any other components under high-pressure between the fuel pump and high-pressure common rail fuel system, confirm that the fuel pressure is relieved.

1.9.2 Engine Electronics

WARNING
Tampering with electronic system installation or original equipment manufacturer (OEM) wiring installation is dangerous and could result in personal injury or death and/or engine damage.
WARNING

Electrical Shock Hazard. The electronic unit injectors use DC voltage. The engine control module (ECM) sends this voltage to the electronic unit injectors. Do NOT come in contact with the harness connector for the electronic unit injectors while engine is operating. Failure to follow this instruction could result in personal injury or death.

This engine has a comprehensive, programmable engine monitoring system. The ECM has the ability to monitor engine operating conditions. If conditions exceed the allowable range, the ECM will initiate immediate action.

The engine monitoring system can initiate the following actions:

- Warning
- Derate
- Shut down

Abnormalities in the following monitored conditions can limit engine speed and/or engine power:

- Engine coolant temperature
- Engine oil pressure
- Engine speed
- Intake manifold air temperature
- Diesel exhaust fluid (DEF) system performance
- Aftertreatment system performance
1.10 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If the original part on which a safety sign was installed is replaced, be sure the repair part displays the current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.10.1 Installing Safety Decals

1. Clean and dry the installation area.
2. Decide exactly where you are going to place the decal.
3. Remove the smaller portion of the split backing paper.
4. Place the decal in position and slowly peel back the remaining paper, smoothing the decal as it is applied.
5. Prick small air pockets with a pin and smooth out.
1.11 Safety Sign Locations

Figure 1.31: Safety Sign Locations
Table 1.1 Safety Sign Locations

<table>
<thead>
<tr>
<th>Ref</th>
<th>MD Part Number</th>
<th>Safety Sign Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>166234</td>
<td>Decal – Warning (training seat and seat belts)</td>
</tr>
<tr>
<td>B</td>
<td>166425</td>
<td>Decal – Danger</td>
</tr>
<tr>
<td>C</td>
<td>306181</td>
<td>Decal – Header lock, 2 panel (both sides)</td>
</tr>
<tr>
<td>D</td>
<td>306180</td>
<td>Decal – Header lock, 2 panel (RH)</td>
</tr>
<tr>
<td>E</td>
<td>166454</td>
<td>Decal – Read manual</td>
</tr>
<tr>
<td>F</td>
<td>166457</td>
<td>Decal – Warning, read manual steering service</td>
</tr>
<tr>
<td>G</td>
<td>166463</td>
<td>Decal – Transport</td>
</tr>
<tr>
<td>H</td>
<td>166824</td>
<td>Decal – Fill rate</td>
</tr>
<tr>
<td>J</td>
<td>166832</td>
<td>Decal – High pressure fluid</td>
</tr>
<tr>
<td>K</td>
<td>166829</td>
<td>Decal – Caution, balance</td>
</tr>
<tr>
<td>L</td>
<td>166834</td>
<td>Decal – Warning, starter jump</td>
</tr>
<tr>
<td>M</td>
<td>166835</td>
<td>Decal – Warning, battery explode</td>
</tr>
<tr>
<td>N</td>
<td>166836</td>
<td>Decal – Warning, battery burn</td>
</tr>
<tr>
<td>P</td>
<td>166837</td>
<td>Decal – Danger, fan</td>
</tr>
<tr>
<td>Q</td>
<td>166838</td>
<td>Decal – Warning, hot surface</td>
</tr>
<tr>
<td>R</td>
<td>166839</td>
<td>Decal – Warning, belt</td>
</tr>
<tr>
<td>S</td>
<td>166843</td>
<td>Decal – Steering control</td>
</tr>
<tr>
<td>T</td>
<td>167502</td>
<td>Decal – Warning, pinch hazard</td>
</tr>
<tr>
<td>U</td>
<td>306180</td>
<td>Decal – Header lock, 2 panel (LH)</td>
</tr>
</tbody>
</table>

NOTE:
For a more detailed illustration and description of safety signs, refer to *1.12 Understanding Safety Signs, page 18.*
1.12 Understanding Safety Signs

MD #113482

General hazard pertaining to machine operation and servicing

DANGER

To prevent injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do **NOT** allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety locks to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #166234

Run-over hazard

DANGER

- The training seat is provided for an experienced Operator of the machine when a new Operator is being trained.
- The training seat is **NOT** intended as a passenger seat or for use by children.
- Use the seat belt whenever operating the machine or riding as a trainer.
- Keep all other riders off the machine.
MD #166425

Run-over hazard

DANGER

To prevent machine runaway:

- Stop engine and remove key from ignition before performing maintenance or service on steering linkage or neutral interlock system,
- Read the windrower and header manuals for inspection and maintenance instructions.

MD #166454

General hazard pertaining to machine operation and servicing

DANGER

To prevent injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions.
- Do NOT allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.
MD #166457

General hazard pertaining to machine operation and servicing

DANGER

To prevent injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions.
- Do NOT allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of the machine before starting the engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

Run-over hazard

DANGER

- Machine will move if steering wheel is turned while engine is running.
- Steering response is opposite to what is normally expected when backing up. Turn bottom of steering wheel in direction you want to go.
- Always move ground speed lever to slow end of range before shifting high-low speed control.
- To prevent machine runaway: stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, unplugging the machine, or before performing maintenance or service on steering linkage or neutral interlock system.
- Read the windrower and header manuals for inspection and maintenance instructions.
Maryland: MD #166463

Collision hazard

DANGER

To prevent injury or death from collision between windrower and other vehicles when driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles front and rear of windrower if required by law.
- Use slow moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install MacDon approved weight box. For instructions, refer to the operator’s manual for safe procedure to tow header.

Maryland: MD #166824

Hot fluid spray hazard and fluid fill rate information

CAUTION

To prevent injury:

- Do NOT remove fluid fill cap when engine is hot.
- Allow engine to cool down before opening fluid fill cap.
- Fluid is under pressure and may be hot.
- Do NOT exceed 11 L/min (3 gpm)
MD #166829

Loss of control hazard

DANGER

To prevent serious injury or death from loss of control:

- It is essential that the machine be equipped such that weights are within the specified limits.
- Weight on the tail wheels should be greater than 1179 kg (2600 lb.) with the windrower positioned in the cab-forward direction.
- Ensure recommended rear ballast kits are installed for proper machine balance. When operating in hilly conditions, additional rear ballast kits may be required.

MD #166832

High-pressure oil hazard

WARNING

To prevent serious injury, gangrene, or death:

- Do NOT go near leaks.
- Do NOT use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.
- High-pressure oil can easily puncture skin, and can cause serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.

MD #166834

Run-over hazard

DANGER

To prevent machine runaway:

- Starting in gear can kill.
- Do NOT start engine by shorting across starter or starter relay terminals. Machine will start with drive engaged and move if starting circuitry is bypassed.
- Start engine only from operator’s seat. Do NOT try to start engine with someone under or near machine.
MD #166835
Battery explosion hazard

WARNING
To prevent serious bodily injury caused by explosive battery gases:

- Keep sparks and flames away from the battery and do NOT connect boosting or charging cables incorrectly.
- Refer to operator’s manual for battery boosting and charging procedures.

MD #166836
Battery acid hazard

WARNING
To prevent injury from corrosive and poisonous battery acid:

- Wear protective clothing and personal protective devices when handling battery acid.
- Acid can severely burn your body and clothing.
MD #166837

Rotating fan hazard

WARNING

To prevent injury:

- Do NOT operate engine with engine hood open.
- Stop the engine and remove the key before opening engine hood.

MD #166838

Hot surface hazard

CAUTION

To prevent injury:

- Keep a safe distance from hot surface.
MD #166839
Hand and arm entanglement hazard

WARNING
To prevent injury:

- Do **NOT** operate without shields in place.
- Stop engine and remove key before opening shield.

MD #166843
Loss of control hazard

DANGER
To prevent serious injury or death from loss of control:

- Do **NOT** make abrupt changes in steering direction.
- Anticipate turns by slowing down well in advance.
- Do **NOT** rapidly accelerate or decelerate while turning.

When travelling up steep slopes:

- Reduce speed and lower header.
- Move ground speed lever to slow end of range.
- Shift high-low speed control to low range.

With header removed, steering control is reduced if weight is not added to drive wheels. If you must drive the windrower without header or MacDon weight system:

- Operate in low-speed range.
- Avoid slopes.
- Do **NOT** tow a header.
- If control of machine is lost, immediately pull ground speed lever to neutral.
MD #167502

Pinch point hazard

CAUTION
To prevent injury:
• Do NOT reach into pinch area

MD #306179/306181

Header crushing hazard

DANGER
To prevent injury or death from fall of raised header:
• Fully raise header, stop engine, remove key, and engage safety props before going under header.
MD #306180/306181

Header crushing hazard

DANGER

To prevent injury or death from fall of raised header:

- Fully raise header, stop engine, remove key, and engage safety props before going under header.

Figure 1.50: MD #306180/306181
Chapter 2: Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Series header</td>
<td>MacDon A40D, A40DX, and Grass Seed auger headers</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with Operator and cab facing in direction of travel</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>D1X Series Header</td>
<td>MacDon D115X, D120X, and D125X rigid draper headers for M1 Series Windrowers</td>
</tr>
<tr>
<td>D1XL Series Header</td>
<td>MacDon D130XL, D135XL, D140XL, and D145XL rigid draper headers for M1 Series Windrowers</td>
</tr>
<tr>
<td>DDD</td>
<td>Double-draper drive</td>
</tr>
<tr>
<td>DEF</td>
<td>Diesel exhaust fluid; also called AdBlue in Europe, and AUS 32 in Australia</td>
</tr>
<tr>
<td>DEF Supply Module</td>
<td>Pump that supplies diesel exhaust fluid through system</td>
</tr>
<tr>
<td>DM</td>
<td>Dosing module</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DKD</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>DOC</td>
<td>Diesel oxidation catalyst</td>
</tr>
<tr>
<td>DRT</td>
<td>Aftertreatment decomposition tube</td>
</tr>
<tr>
<td>DWA</td>
<td>Double Windrow Attachment</td>
</tr>
<tr>
<td>ECM</td>
<td>Engine control module</td>
</tr>
<tr>
<td>EEC</td>
<td>Eco engine control</td>
</tr>
<tr>
<td>Engine-forward</td>
<td>Windrower operation with Operator and engine facing in direction of travel</td>
</tr>
<tr>
<td>FFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>GSL</td>
<td>Ground speed lever</td>
</tr>
<tr>
<td>GSS</td>
<td>Grass Seed</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>HDS</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>HPT display</td>
<td>Harvest Performance Tracker display module on an M1 Series Windrower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>MDS</td>
<td>Mechanical deck shift</td>
</tr>
<tr>
<td>M1 Series</td>
<td>MacDon M1170 and M1240 Windrowers</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>PARK</td>
<td>The slot opposite the NEUTRAL position on operator’s console of M1 Series windrowers</td>
</tr>
<tr>
<td>R1 SP Series</td>
<td>MacDon R113 and R116 Rotary Disc Headers for windrowers</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective catalytic reduction</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>SDD</td>
<td>Single-draper drive</td>
</tr>
<tr>
<td>SK</td>
<td>Single knife</td>
</tr>
<tr>
<td>SKD</td>
<td>Single-knife drive</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSD</td>
<td>Ultra-low sulphur diesel</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit for a header</td>
</tr>
<tr>
<td>WOT</td>
<td>Wide open throttle</td>
</tr>
</tbody>
</table>
2.2 Specifications

Specifications and design are subject to change without notice or obligation to revise previously sold units.

Table 2.1 M1170 Specifications

<table>
<thead>
<tr>
<th>Engine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cummins QSB-4.5L CM2350, 4 cylinder tier 4 final, turbo, diesel (B20 bio-diesel approved)</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.5 L (275 cu.in.)</td>
</tr>
<tr>
<td>Power</td>
<td>Rated 129 kW (173 hp) @ 2400 rpm</td>
</tr>
<tr>
<td>Maximum rpm (no load)</td>
<td>2500</td>
</tr>
<tr>
<td>Idle rpm</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery (2)</td>
<td>12 Volt, maximum dimension – 334 x 188 x 232 mm (13 x 6.81 x 9.43 in.)</td>
</tr>
<tr>
<td></td>
<td>Group rating 29H or 31A</td>
</tr>
<tr>
<td></td>
<td>Heavy duty / off road / vibration resistant</td>
</tr>
<tr>
<td>Minimum CCA per battery (cold cranking amps)</td>
<td>750</td>
</tr>
<tr>
<td>Alternator</td>
<td>200 amp</td>
</tr>
<tr>
<td>Egress lighting</td>
<td>Standard</td>
</tr>
<tr>
<td>Starter</td>
<td>Wet type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lights</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base cab</td>
<td>12 halogen: 4 road, 8 work (2 also used for egress)</td>
</tr>
<tr>
<td>High performance lighting package</td>
<td>12 lights: 4 halogen road, 8 LED work (2 LED work lights also used for egress)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traction Drive</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Hydrostatic, infinitely variable motors via electric shift</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>0–29 km/h (18 mph)</td>
</tr>
<tr>
<td>Reverse</td>
<td>9.6 km/h (6 mph)</td>
</tr>
<tr>
<td>Transport</td>
<td>Engine-forward 0–43 km/h (27 mph)</td>
</tr>
<tr>
<td></td>
<td>0–34.6 km/h (21.5 mph) (High torque drive wheel)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmission</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>2 piston pumps – 1 per drive wheel</td>
</tr>
<tr>
<td>Displacement</td>
<td>44 cc (2.65 cu. in.)</td>
</tr>
<tr>
<td>Flow</td>
<td>167 L/min (40 U.S. gpm)</td>
</tr>
<tr>
<td>Final drive</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Planetary gearbox</td>
</tr>
<tr>
<td>Ratio</td>
<td>Standard: 27.8 : 1, High Torque: 36.82 : 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Capacities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel tank</td>
<td>518 L (137 U.S. gallons)</td>
</tr>
<tr>
<td>Diesel exhaust fluid (DEF) tank capacity</td>
<td>28 L (7.5 U.S. gallons)</td>
</tr>
<tr>
<td>Coolant</td>
<td>30 L (7.9 U.S. gallons)</td>
</tr>
<tr>
<td>Hydraulic reservoir</td>
<td>60 L (15.8 U.S. gallons)</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

Header Drive

<table>
<thead>
<tr>
<th>Component</th>
<th>Pump Type</th>
<th>Max Pressure</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife/Disc</td>
<td>Piston, 53 cc (3.23 cu. in.)</td>
<td>37,921 kPa (5500 psi)</td>
<td>151.4 L/min (40 gpm)</td>
</tr>
<tr>
<td>Reel</td>
<td>Gear, 25.2 cc (1.54 cu. in.)</td>
<td>23,994 kPa (3480 psi)</td>
<td>75.7 L/min (20 gpm)</td>
</tr>
<tr>
<td>Draper</td>
<td>Gear, 19.3 cc (1.18 cu. in.)</td>
<td>23,994 kPa (3480 psi)</td>
<td>53 L/min (14 gpm)</td>
</tr>
</tbody>
</table>

Lift/Fan Drive

<table>
<thead>
<tr>
<th>Component</th>
<th>Pump Type</th>
<th>Max Pressure</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>Piston, 60 cc (3.66 cu. in.)</td>
<td>22,063 kPa (3200 psi)</td>
<td>0–170.3 L/min (45 gpm)</td>
</tr>
</tbody>
</table>

Header Lift/Tilt

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Max Lift Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Hydraulic double acting cylinders</td>
<td>3810 kg (8400 lb.)</td>
</tr>
</tbody>
</table>

Header Float

<table>
<thead>
<tr>
<th>Component</th>
<th>Adjustment</th>
<th>Automatic</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment</td>
<td>Fully in cab adjustable</td>
<td>Memory for 3 float settings (deck shift positions on draper)</td>
<td>External booster spring (1 or 2 per side)</td>
</tr>
</tbody>
</table>

Cab

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspension</td>
<td>4 point spring/shock</td>
</tr>
</tbody>
</table>
| Dimensions | Width: 1767 mm (69.6 in.)
| | Depth: 1735 mm (68.3 in.)
| | Height: 1690 mm (66.5 in.) |
| Seat | Operator: Cloth, adjustable air ride suspension, seat belt
| | Training: Cloth, folding, cab mounted, seat belt |
| Windshield wiper | Front: 990 mm (39 in.) blade, washer equipped
| | Rear: 560 mm (22 in.) frameless blade, washer equipped |
| Heater | 11.10 kW (37,900 Btu/hr) |
| Air conditioning | 8.73 kW (29,800 Btu/hr) |
| Electrical outlets | 12 V DC: 6
| | USB: 2 |
| Mirrors | Two outside (field use), one inside (engine-forward transport) |
| Radio | AM/FM/CD/USB/Bluetooth radio, antenna, microphone, and two factory-installed speakers |
Deluxe Cab Package

<table>
<thead>
<tr>
<th>Seat</th>
<th>Operator</th>
<th>Leather, adjustable air ride suspension, seat belt, heated/cooled, lateral isolation, adjustable front cushion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Leather, folding, cab mounted, seat belt</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>AM/FM/CD/USB/Bluetooth radio, antenna, microphone, and two factory-installed speakers</td>
<td></td>
</tr>
<tr>
<td>Mirrors</td>
<td>Two power adjustable outside (field use)</td>
<td></td>
</tr>
<tr>
<td>Sun shades</td>
<td>Front and rear</td>
<td></td>
</tr>
</tbody>
</table>

System Monitoring

<table>
<thead>
<tr>
<th>Display</th>
<th>7 in. LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeds</td>
<td>Ground (mph or km/h), engine (rpm), knife (spm), reel (rpm or mph/km/h), conveyor (rpm or mph/km/h), cooling fan (rpm)</td>
</tr>
<tr>
<td>Pressures</td>
<td>Knife or disc (psi or MPa), reel (psi or MPa), conveyor (psi or MPa), supercharge (psi or MPa)</td>
</tr>
<tr>
<td>Header position</td>
<td>Platform Height, angle, float</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine parameters</td>
<td>Fuel consumption, load</td>
</tr>
</tbody>
</table>

Tire Options

<table>
<thead>
<tr>
<th>Drive</th>
<th>Bar 600/65R28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf</td>
<td>580/70R26</td>
</tr>
<tr>
<td>Caster</td>
<td>Suspended 16.5 L-16.1 with independent suspension</td>
</tr>
<tr>
<td></td>
<td>Mud 11x16 with single sided caster (unsuspended)</td>
</tr>
</tbody>
</table>

Frame and Structure

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Refer to 2.3 Windrower Dimensions, page 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame to ground (crop clearance)</td>
<td>1160 mm (45.7 in.)</td>
</tr>
<tr>
<td>Walking beam max width</td>
<td>3856 mm (151.8 in.) with 3422 mm (134.7 in.) crop clearance</td>
</tr>
<tr>
<td>Weight¹</td>
<td>Base 5942 kg (13,100 lb)²</td>
</tr>
<tr>
<td></td>
<td>Max GVW 10,660 kg (23,500 lb.)</td>
</tr>
<tr>
<td></td>
<td>Max CGVW 11,794 kg (26,000 lb.)</td>
</tr>
<tr>
<td>Header compatibility</td>
<td>Draper D1XL Series</td>
</tr>
<tr>
<td></td>
<td>Auger A40DX</td>
</tr>
</tbody>
</table>

NOTE:

Specifications and design are subject to change without notice or obligation to revise previously sold units.

1. Weights do not include options.
2. Weight with 600/65R28 bar tires, no fuel/DEF. Hydraulic oil and coolant included in weight.
PRODUCT OVERVIEW

Figure 2.1: Pump Orientation

1 - Reel/Auger Drive Pump
2 - Draper Drive or Double Windrow (DWA) Drive Option
3 - Charge Pressure Pump for Pumps 4, 5, 6, and 7
4 - Knife/Disc Drive (Closed Loop System)
5 - Fan Drive and Lift Functions (Open Loop System)
6 - Traction Drive Tandem Pump (Left Wheel)
7 - Traction Drive Tandem Pump (Right Wheel)

3. DWA is used only with auger or disc header only.
2.3 Windrower Dimensions

Figure 2.2: Windrower Dimensions

A - 3304 mm (130 3/32 in.)
B - 4290 mm (168 7/8 in.)
C - 5752 mm (226 7/16 in.)
D - 4070 mm (160 1/4 in.)
E - 1160 mm (45 11/16 in.)
F - 3480 mm (137 1/32 in.)
G - 3449 mm (135 13/16 in.)
H - 3422 mm (134 3/4 in.)
J - 3856 mm (151 13/16 in.) (Max)
K - 4415 mm (173 13/16 in.)
2.4 Component Location

Figure 2.3: Front Cab-Forward View

A - Header Lift Leg B - Header Float Springs C - Operator’s Station
D - Windshield Wiper E - Turn Signal / Hazard Lights F - Tail lights Engine-Forward
G - Field/Road Lights H - Handholds J - Mirror
4 K - Door L - Maintenance Platform M - Center-Link
N - Horn

4. Standard cabs have halogen lights; deluxe cabs have LED lights.
Figure 2.4: Rear Cab-Forward View

A - Caster Wheel
B - Walking Beam
C - Taillights – Cab-Forward
D - Engine Compartment Hood
E - Windshield Wiper
F - Field Lights
G - Turn Signal / Hazard Lights
H - Field/Road Lights
I - Engine Compartment
J - Mirror
K - Door
L - Drive Wheel
M - Maintenance Platform
N - Precleaner
O - Beacons
P - Anti-Shimmy Dampeners
Q - Field lights

5. Standard cabs have halogen lights; deluxe cabs have LED lights.
Chapter 3: Operator’s Station

The operator’s station is designed for operating the windrower in cab-forward mode (working mode) or in engine-forward mode (transport mode). The operator’s station, which includes the seat, console, and steering column, pivots 180 degrees so that the Operator maintains access to the windrower controls and gauges regardless of the direction of travel.

3.1 Console

The console contains controls to operate the windrower, as well as amenities for the Operator. The console position is adjustable to suit each particular Operator.

1. Adjust fore-aft and height as follows:
 a. Pull lever (A) and slide console fore or aft to the desired position.
 b. Release lever to lock console.
2. Adjust only fore-aft as follows:
 a. Loosen nuts (A) under console.
 b. Move console as required.
 c. Tighten nuts (A).

Figure 3.3: Console Fore-Aft
3.2 Operator Presence System

The Operator Presence System is a safety feature designed to deactivate selected systems or sound an alarm when the Operator is not seated at the operator’s station.

These systems include:

- Header drive; refer to 3.2.1 Header Drive, page 41
- Engine and transmission; refer to 3.2.2 Engine and Transmission, page 41

3.2.1 Header Drive

- Requires the Operator to be in the seat in order to engage the header drive.
- Power is maintained to the header drive for 5 seconds after the Operator leaves the seat, and then the header shuts down.
- After the header has shut down automatically, the HEADER ENGAGE switch must be moved to the OFF position and back to the ON position to restart the header.

3.2.2 Engine and Transmission

- The engine will NOT start when the HEADER ENGAGE switch is engaged.
- The engine will shut down when the windrower is moving at 8 km/h (5 mph) or less, and the Operator leaves the seat, and the transmission is not locked in NEUTRAL. The Harvest Performance Tracker (HPT) will display NO OPERATOR DETECTED and ENGINE SHUT DOWN 5...4...3...2...1...0 accompanied by a steady tone. At 0, the engine shuts down.
- If the windrower is moving faster than 8 km/h (5 mph), and the Operator leaves the seat, after 2 seconds an alarm will sound and the HPT will display NO OPERATOR.
- When the seat is in between cab-forward and engine-forward positions, the engine will shut down if the transmission is not locked in the NEUTRAL position. The HPT will display LOCK SEAT BASE until the seat base is locked into position.
3.3 Operator’s Seat Adjustments

The operator’s seat has several adjustments. Refer to the following sections for a description and the location of each adjustment. Some seat features are only available with the deluxe cab option.

3.3.1 Armrest

Raise armrest for easier access to seat.

Lower armrest after seat belt is buckled.

![Figure 3.4: Operator’s Seat Armrest](image)

A - Standard Seat
B - Deluxe Seat

3.3.2 Armrest Angle

Use controls to adjust angle of armrest.

- Rotate knob (A) clockwise to increase armrest angle.
- Rotate knob (A) counterclockwise to decrease armrest angle.

![Figure 3.5: Operator’s Seat Armrest Angle Controls](image)
3.3.3 Suspension and Height

Use controls to adjust the height and stiffness of the seat suspension.

- Press upper switch (A) to increase seat stiffness and height.
- Press lower switch (A) to decrease seat stiffness and height.

3.3.4 Fore-Aft Slide Control

Use controls to adjust the seat’s fore-aft position.

1. Pull lever (A) up to release.
2. Move seat forward or rearward.
3.3.5 Fore-Aft Isolator Control

Use controls to lock the seat’s fore-aft isolator.

- Push lever (A) down to lock
- Pull lever (A) up to unlock

![Figure 3.8: Operator’s Seat Fore-Aft Isolator Controls](image1)

3.3.6 Tilt

Use controls to adjust the seat’s tilt.

1. Pull lever (A) up to release.
2. Position seat back as desired.

![Figure 3.9: Operator’s Seat Tilt Controls](image2)
3.3.7 Lumbar Support

Use controls to adjust the stiffness of the seat’s back.

- Rotate knob (A) clockwise to increase lumbar support.
- Rotate knob (A) counterclockwise to decrease lumbar support.

3.3.8 Vertical Dampener

Use controls to adjust the seat’s vertical suspension dampening.

- Turn knob (A) counterclockwise to increase vertical dampener.
- Turn knob (A) clockwise to decrease vertical dampener.
3.3.9 Cushion Tilt – Deluxe Cab Only

Use controls to adjust the deluxe seat’s cushion tilt.

1. Pull lever (A) up to release.
2. Tilt seat cushion up or down.

![Figure 3.12: Deluxe Seat Cushion Tilt Controls](image)

3.3.10 Cushion Extension – Deluxe Cab Only

Use controls to adjust seat cushion extension fore-aft.

1. Pull lever (A) up to release.
2. Move cushion forward or rearward.

![Figure 3.13: Deluxe Seat Cushion Extension Controls](image)
3.3.11 Lateral Isolation Lockout – Deluxe Cab Only

Use the controls (A) to lock or unlock the deluxe seat’s lateral isolation lockout.

3.3.12 Heating/Cooling – Deluxe Cab Only

⚠️ WARNING

- Do NOT use the seat heating or cooling system if you have a diminished ability to sense temperature, a reduced ability to feel pain, or have sensitive skin. There is a possibility that some people may suffer heat-induced burns or excessive cooling when using the system.

- Do NOT place anything on the seat that insulates against heat or cooling, such as a blanket or cushion. These items may cause the seat heating or cooling system to overheat and cause a heat-induced burn to the seat occupant, or damage to the seat itself.

Use the controls to adjust the heating/cooling of deluxe operator’s seat.

Seat heating/cooling switch (A)

- Press switch forward for COOL
- Press switch back for HEAT

Heating/cooling high/low/off switch (B)

- Press switch up for HIGH
- Press switch down for LOW
- Center switch for OFF
3.4 Training Seat

A folding wall-mounted training seat (with seat belt) is provided.

⚠️ WARNING

- The training seat is provided for use by an experienced machine Operator while training a new Operator.
- The training seat is NOT intended as a passenger seat or for use by children. Use the seat belt whenever operating the machine or riding as a Trainer.
- Keep all other riders off the machine.

To store training seat, lift seat and secure with latch (A).

To lower training seat, pull latch (A) and lower seat.

Figure 3.16: Training Seat
3.5 Seat Belts

The windrower is equipped with seat belts on the operator seat and training seat.

⚠️ WARNING

Seat belts can help ensure your safety when properly used and maintained.

- Before starting the engine, fasten your seat belt, and ensure that the training seat occupant’s seat belt is securely fastened.
- Never wear a seat belt loosely or with slack in the belt system. Never wear the belt in a twisted condition or pinched between the seat structural members.

To fasten seat belt:

1. Pull belt with metal eye (A), at right side of seat, completely across your body.
2. Push the metal eye (A) into the buckle (B) until it locks.
3. Adjust the position of the belt as low on your body as possible.

Figure 3.17: Seat Belt
To release seat belt:

1. Push the red button on the end of the buckle (B).
2. Separate the buckle (B) from the metal eye (A).

Figure 3.18: Seat Belt
3.6 Adjusting the Steering Column and Steering Wheel

The steering column and steering wheel are adjustable for the operator’s comfort and to make it easier to get in and out of the operator’s seat.

To adjust the steering column:

1. Hold onto the steering wheel, lift handle (A), and move steering column forward or backward into the desired position.
2. Release handle (A) to lock the steering column in position.

To adjust the steering wheel:

1. Hold onto the steering wheel, turn the center cap (A) counterclockwise, and move steering wheel up or down to desired position.
2. Turn center cap clockwise (A) to lock steering wheel in position.
3.7 Lighting

The field and road light switches are located on the operator’s console.

The position of the operator’s station (cab-forward or engine-forward) automatically determines which lights are active when the lighting mode is selected.

The field lights (B) do NOT turn on when the windrower is in engine-forward mode.

An LED on the switch changes from OFF to amber when the switch is on. The high beam switch has a blue LED that changes from OFF to blue when the switch is on.

3.7.1 Cab-Forward Lighting – Field

The following lights are on when FIELD LIGHT button (A) is selected and the operator’s station is locked in cab-forward mode:
• Cab-forward road lights (A) with low/high beams
• Engine-forward road lights (B) with low/high beams
• Inner work lights (C)
• Outer work lights (D)

NOTE:
Work lights (D) are also turned on when the high beams are activated in cab-forward mode.

• Rear roof work lights (E)
• Rear swath lights (F)

NOTE:
For adjustment procedures, refer to *Aligning Headlights – Cab-Forward, page 347.*

3.7.2 Cab-Forward Lighting – Road

The following lights are functional when the ROAD LIGHT button (A) is selected and the operator’s station is locked in the cab-forward mode:

• To toggle between low and high beams, press the HIGH BEAM button (B)
• To operate hazard lights, press HAZARD LIGHT button (C)
OPERATOR’S STATION

- Headlights (A) with low/high beams
- Red tail lights (B)
- Amber turn signals/hazard lights (C) on mirror supports
- Work lights (D) turn on only when high beams are on in cab-forward mode

3.7.3 Engine-Forward Lighting – Road

The following lights are functional when the ROAD LIGHT button (A) is pressed and the operator’s station is locked in the engine-forward mode.

- To toggle between low and high beams, press the HIGH BEAM button (B)
- To operate hazard lights press HAZARD LIGHT button (C)
• Engine-forward headlights (A) with low/high beams
• Red taillights (B) on the mirror supports
• Amber turn signals and hazard lights (C) on mirror supports (viewed from the front)
• Work lights (D) turn on only when high beams are activated in engine-forward mode

NOTE:
To align headlights (A), refer to *Aligning Headlights – Engine-Forward, page 345.*

3.7.4 Tail/Beacon Lighting

The beacons (A) are functional when the IGNITION is ON and the BEACON button (B) is selected.

NOTE:
In some areas, the law requires the use of beacon lights when driving on the road.
3.7.5 Turn Signal / Hazard Lighting

The following lights are on when the LEFT and RIGHT turn signal switches (A) are pressed. Press the switches again to turn the lights off.

- Amber turn signal lights (C) are visible from both front and rear.

NOTE:
Turn signals can also be controlled with the REEL/DISC SPEED switches on the ground speed lever (GSL) when the header is disengaged.

The following lights are on when the HAZARD switch (B) is pressed. Press the switch again to turn the lights off.

- Amber hazard lights (C) which are visible from both front and rear.
3.8 Windshield Wipers

The windshield wiper controls are located on the console. The illustration shows the controls in cab-forward mode.

Button (A) activates the front (cab-forward) wiper, and button (B) activates the rear wiper.

One window washer button (C) applies washer fluid to both the front and rear wipers as follows:

- If both wipers are on, pressing and holding the window washer button (C) will spray washer fluid onto both windows. When the button is released, the washer fluid stops, but both wipers continue to operate.

- If both wipers are NOT on, pressing and holding the window washer button (C) will spray washer fluid onto both windows, and both wipers will turn on. When the button is released, the washer fluid stops, but both wipers continue to operate for 4 seconds before automatically stopping.

- If only one wiper is on, pressing and holding the window washer button (C) will activate the other wiper and spray washer fluid onto both windows. When the button is released, the washer fluid stops, and the active wiper will continue to operate while the activated wiper operates for only 4 seconds before automatically stopping.

You can aim the rear wiper washer nozzle (A) by turning it with a flat head screwdriver.

NOTE:

The front wiper washer nozzle is nonadjustable.
3.9 Rear View Mirrors

Two outside-mounted adjustable mirrors (A) provide a rear view when the windrower is in cab-forward mode.

A single interior-mounted mirror (B) provides a rear view in the engine-forward mode.

The mirror/light assemblies (A) are designed to fold back if accidentally struck.

The deluxe cab is equipped with power adjustable exterior mirrors which can be adjusted using knob (A) located next to the radio inside the cab.
3.10 Cab Temperature

The cab environment is controlled by a climate control system that provides clean air-conditioned or heated air.

The heater/evaporator/blower assembly is located under the cab floor and is accessible from beneath the windrower.

3.10.1 Heater Shut-Off Valve

A shut-off valve (A) at the engine allows the cab heater to be isolated from the engine coolant.

The valve must be open to provide heat to the cab, but can be closed for maximum cooling.

3.10.2 Air Distribution

Cab air distribution is controlled through adjustable air vents (A) located in the cab posts.

You can adjust the vent to open/close (B) or to change the direction (C) of the air flow.

3.10.3 Climate Controls

NOTE:
When switches (A), (C), (D), and (E) are activated, the LED light on the switch will turn amber.
Auto fan speed switch (A)
Sets the climate control system to auto mode, which automatically adjusts the fan speed to maintain the set-point temperature.

Blower control toggle switch (B)
Controls the blower speed. Overrides auto fan control.
- Press + for more air flow
- Press – for less air flow

Recirculating air switch (C)
Controls the air source; stops booster fan so cab air is recirculated.

Windshield defog/defrost switch (D)
The windshield defog/defrost operates with the A/C switch (E) ON.

Air conditioning (A/C) switch (E)
Controls the A/C system.
The A/C operates with the blower switch ON and blower speed is set above 0.

Temperature control toggle switch (F)
Controls cab temperature.
- Press red (top) area to increase cab temperature.
- Press blue (bottom) area to decrease cab temperature.

IMPORTANT:
When starting the windrower after more than 1 week of storage, it may be necessary to distribute the refrigerant oil throughout the A/C system. For instructions, refer to *Air Conditioning Compressor Coolant Cycling, page 111*.
3.11 Operator Amenities

The operator’s station includes the following amenities:

Operator’s console
- Auxiliary power outlets (A)
- USB jack (B)
- Utility tray under armrest (C)
- Utility tray (D)
- Cup holder (E)

Window shades
Retractable window shades (A) are located at the front and rear windows.

Manual storage
A plastic case (A) is located behind the training seat to store the windrower manuals.
Coat hook

A coat hook (A) is located above the training seat, to the left of the Operator.

Figure 3.42: Coat Hook
3.12 Radio

The M1170 Windrower comes equipped with an AM/FM/CD/USB/Bluetooth® radio. The following procedures describe how to activate and pair Bluetooth® devices with the radio.

3.12.1 AM/FM/CD/USB Radio with Bluetooth® Wireless Technology

A radio (A) and two speakers (B) are factory-installed in the cab headliner. The radio operates in AM, FM, CD, and USB modes. It also supports Bluetooth® wireless technology audio streaming and hands-free calling. For instructions, refer to the operating instructions supplied with the radio.

To locate the operating instructions for the radio, follow this procedure:

1. Turn the latch (A) to unlock the relay module cover (B).
2. Retrieve the operating instructions for the radio from the relay module cover (B) access panel in the cab roof liner.
3. When finished with the radio manual, place the manual in the manual storage case (A) located behind the training seat.

4. Close the relay module cover (B) and turn latch (A) to lock it.

Activating Bluetooth® Feature

The Bluetooth® feature must be activated to allow mobile device pairing.

To activate the Bluetooth® feature, follow this procedure:

1. Press POWER button (A) to turn the radio on.
2. Press and hold VOL/SEL knob (B) for 2 seconds. MENU is displayed on screen (C).
3. Rotate VOL/SEL knob (B) to highlight BT SET menu and press the VOL/SEL knob to select. BLUETOOTH ON/OFF is displayed (C).
4. Press VOL/SEL knob (B) to select BLUETOOTH.
5. Rotate VOL/SEL knob (B) to display ON and press VOL/SEL knob (B) to select.
6. Rotate VOL/SEL knob (B) and select DISCOVER.
7. Rotate VOL/SEL knob (B) to display ON and press VOL/SEL to select.
Pairing a Bluetooth® Device

The installed radio allows the operator to pair a Bluetooth® phone or audio device. Before proceeding, check that Bluetooth® is enabled and radio has been set to DISCOVER mode. For instructions, refer to *Activating Bluetooth® Feature, page 64*.

To pair a mobile device, follow this procedure:

1. Press POWER button (A) to turn radio ON. This will set the radio to Bluetooth® discover mode if the Bluetooth® feature has been activated.
2. Turn the mobile device’s Bluetooth® to ON. For instructions, refer to the device’s operator’s manual. The radio appears as a discoverable device.
3. Select CD-5000 BT on the mobile device to connect.

 NOTE:
 A passkey is required to connect to the Bluetooth® radio. The default passkey is four zeros (0000).

4. Enter the default passkey 0000. The radio will display CONNECTED (B) and the Bluetooth® icon (C) appears in the upper right corner of the screen.

![Figure 3.48: Radio Display](image)
3.13 Horn

The horn is activated by pushing button (A) located on the console.

Sound the horn three times prior to starting the engine.

The horn is located under the front left corner of the cab floor when facing cab-forward.

Figure 3.49: Console
3.14 Engine Controls

The following engine controls are conveniently located on the operator’s console.

Ignition switch

- ACC (A): The windrower’s electrical accessories are turned ON without starting the engine
- OFF (B): All electrical systems OFF
- RUN (C): Engine run position
- START (D): Turn fully clockwise to crank engine, and release to return switch to RUN position.

IMPORTANT:

Remove ignition key when windrower is not in use. The ignition key also locks the doors and tool box in the left platform.

Throttle (A)

Controls engine speed range

- MAX: Push lever forward
- MIN: Pull lever back

Harvest Performance Tracker display (B)

- Fuel level monitoring
- DEF level monitoring
- High exhaust system temperature indicator (HEST)
- Exhaust system cleaning inhibit and forced indicator
- Speed monitoring (ground, engine, knife/disc, reel, conveyor, and cooling fan)
- Pressure monitoring (knife, reel, conveyor, and supercharge)
- Engine parameters (coolant temperature, fuel consumption, and engine load)
- Header position

For more information on the Harvest Performance Tracker, refer to [3.17 Harvest Performance Tracker Display, page 77](#).
3.14.1 Using Eco Engine Control

Eco Engine Control (EEC) is useful in lighter crop conditions that do not require the maximum engine rpm. The reduced engine speed lowers fuel consumption, noise levels, and exhaust emissions in addition to reducing engine wear.

The EEC limits the engine to 1900–2300 rpm when the header is engaged, and is adjustable in 100 rpm increments. Activate this feature by using the EEC button (A) on the operator’s console. The EEC symbol will display on the Harvest Performance Tracker (HPT) screen over the right side of the tachometer.

The EEC feature will only be active when the header is engaged, but can be adjusted without the header running. When the header is disengaged, EEC will be canceled and engine rpm will return to the setting determined by the throttle.

Use the QuickMenu to adjust EEC rpm. For instructions, refer to QuickMenu System, page 81.

Figure 3.52: Eco Engine Control (EEC)
3.15 Windrower Controls

Console controls:

Turn signals (A) – Activates turn signals on windrower and header.
- Push-ON/Push-OFF (activating the hazard switch also cancels the turn signal)

Ground speed lever (GSL) (B) – Controls speed and direction of movement.
- F: Forward
- N: NEUTRAL
- PARK: Engages neutral interlock, and applies park brake when steering locked in center
- R: Reverse

Hazard warning lights (C) – Activates signals on windrower and header.
- Push-ON / Push-OFF

PARK (D) – Engages neutral interlock, and applies park brake when steering locked in center.

Horn (E)

Autosteer engagement button (F) – Engages/disengages the automated steering system (if installed).
- ENGAGE: Click to engage
- DISENGAGE: Turn steering wheel to disengage
3.16 Header Controls

All header controls are conveniently located on the operator’s console and on the ground speed lever (GSL) handle.

NOTE:
Some controls are optional equipment and may not be present in your unit. Some controls may be installed, but are not functional for certain headers.

Refer to specific header sections in this manual for detailed operating procedures for all header controls.

3.16.1 Header Engage Switch

The header engage switch (A) engages and disengages the header drive.

To engage header: Push and hold HEADER ENGAGE switch (A) down while pulling up on the collar (B).

To disengage header: Push HEADER ENGAGE switch (A) down.

NOTE:
Although not required, it is good practice to move the throttle lever back to IDLE before engaging header drive.

![Figure 3.54: Header Engage Switch](image)

3.16.2 Header Drive Reverse Button

NOTE:
R1 Series Rotary Disc Headers do **NOT** have any reverse capability.

The following header systems have reverse capability:

- D1XL Series Draper Headers: knife
- D1X Series Draper Headers: knife
- A40DX Auger Headers: knife, conditioner, auger and reel
- A40DX GSS Auger Headers: knife, auger and reel

Reverse header systems as follows:

- **Engage:** Push and hold reverser button (B) and engage header with switch (A).
- **Disengage:** Release reverser button (B).

NOTE:
To re-engage in forward operation, push switch (A) down and then up again.

![Figure 3.55: Header Drive Controls](image)
3.16.3 Ground Speed Lever Switches

The switches on the Ground Speed Lever (GSL) (A) control the most common header functions.

GSL controls — front

- One-Touch-Return position switch (A)
- One-Touch-Return position switch (B)
- One-Touch-Return position switch (C)
- Reel or disc speed (D) (also operates turn signals when header disengaged)
- Reel position (E)
- Autosteer engagement (F) (if equipped)
- Header position (G)
- Back switch (H) – controls Harvest Performance Tracker (HPT) functions
- Select switch (J) – controls HPT functions

![Figure 3.56: Ground Speed Lever (GSL)](image)

![Figure 3.57: GSL Function Groups](image)
GSL controls — rear

- Shift switch (A)
- Scroll wheel (B)

NOTE:
When the shift switch is used with another button it performs the following shortcut functions:

- SHIFT + BACK – Home page
- SHIFT + SELECT – Main menu access
- SHIFT + SCROLL – Adjust maximum ground speed

Header Position Six-Way Switch

- To lower header slowly, press (A) lightly
- To lower header quickly, press (A) fully
- To raise header slowly, press (C) lightly
- To raise header quickly, press (C) fully
- To tilt header downward, press (B)
- To tilt header upward, press (D)

Release switch at desired position.

NOTE:
Header raise and lower rates are adjustable on the HPT display. For instructions, refer to 4.6.8 Adjusting Header Raise and Lower Rates, page 191 or header setup in Menu Icons, page 83.

NOTE:
For detailed switch operating modes, refer to the section in this manual that is specific to your header.

Reel Position Four-Way Switch

The reel position button performs different functions depending on the attached options. For specific operating instructions, refer to the following sections:

- Reel fore-aft position and height on draper headers:
 - 4.7.2 Adjusting Reel Fore-Aft Position, page 193
 - 4.7.3 Adjusting Reel Height, page 193
- Center-link assist cylinder:
 - 4.4.2 D1X or D1XL Series Draper Header, page 154
 - 4.4.1 A40DX Auger Header, page 143
- Double windrow attachment (DWA) position:
 - 4.6.6 Double Windrowing, page 189
Reel and Disc Speed Switch

- Press and hold the + button (A) to increase the reel or disc speed.
- Press and hold the – button (B) to decrease the reel or disc speed.
- Release the button at the desired speed.

For instructions, refer to the applicable header topic for detailed use of these switches.

NOTE:
The REEL and DISC SPEED switch can operate the turn signals when the header is not in use. For example, when driving in the engine-forward position, or when operating in cab-forward position with the header disengaged.

NOTE:
The reel and auger speeds are hydraulically linked on the A40DX Auger Header. When the reel speed is changed, the auger speed changes automatically. Independent reel and auger adjustment is available on the A40DX GSS (Grass Seed) using the differential auger-reel control feature. It is also available on the A40DX (not Grass Seed) as an option: the Reel Speed Control kit (MD #B6604).

IMPORTANT:
Reel speed on an A40DX Auger Header MUST NOT EXCEED 85 rpm. Auger speed MUST NOT EXCEED 320 rpm.

One-Touch-Return Buttons (A, B, C)

One-Touch-Return buttons save header configuration settings and serve as presets for quickly returning the header to specific settings.

The One-Touch-Return buttons A, B, and C always save header height settings, but the following settings can also be saved depending on the header type:

- Header tilt
- Deck position/header float selection
- Double windrow attachment (DWA) or swath compressor raise/lower
- DWA speed
- Knife speed
- Draper speed
- Reel speed
- Reel height
- Reel fore-aft
- Disc speed

To program the One-Touch-Return buttons, press and hold button A, B, or C on the GSL handle for 3 seconds until an audible tone is heard, indicating the current header settings are saved to that button.
To return header to a preset condition, tap the A, B, or C button quickly. Holding the One-Touch-Return button too long can inadvertently reprogram the current header settings.

Pressing a programmed A, B, or C button opens a run screen that shows the corresponding letter (A) on the screen for the preset.

![Figure 3.63: One-Touch-Return Buttons on GSL](image)

3.16.4 Console Header Buttons

The console header buttons (A) adjust the following header functions:

- Deck shift/float preset
- Draper speed
- Double windrow attachment (DWA) or swath compressor lift functions

![Figure 3.64: Console Header Buttons](image)
Deck Shift / Float Presets

Draper header with deck shift option:

- Controls the draper deck position for double windrowing with a draper header.
- Set header float for each deck position. For instructions, refer to *Setting the Float, page 182.*

NOTE:
The last float setting used in any deck shift position will be stored into memory automatically.

Float presets:

When used with a rotary disc header, auger header, or draper header, these buttons select header float presets. For instructions, refer to 4.9.2 Setting Float Options with Fixed Deck, page 235 to learn how to preset the float.

NOTE:
For detailed switch operating modes, refer to the section in this manual that is specific to your header.
Conveyor Speed Adjustment Buttons

Adjust header or double windrow attachment (DWA) conveyor speed by pressing switch (A) to increase the speed, or switch (B) to decrease the speed.

Conveyor speed can be adjusted in either manual or auto modes. For instructions, refer to 4.7.6 Adjusting Draper Speed, page 200 for more information.

Auxiliary Lift Switches

With double windrow attachment (DWA):

- Raise the DWA deck by pressing button (A), or lower the deck by pressing button (B).

With swath compressor attachment:

- Raise the swath compressor by pressing button (A), or lower it by pressing button (B).
3.17 Harvest Performance Tracker Display

The Harvest Performance Tracker (HPT) display settings are preset at the factory. This section explains how to adjust the settings.

3.17.1 Harvest Performance Tracker Screen Layout

The appearance and functions of the Harvest Performance Tracker (HPT) depend on the type of header attached.

Figure 3.69: Run Screen 1 – Draper Header Shown

A - Left Gauge Cluster B - Header Information C - Current Header Position D - Telltales
The HPT display is separated into the following zones:

Left gauge cluster:
- Ground speed
- Maximum ground speed
- Engine rpm
- Eco engine control (EEC) active/inactive
- High exhaust system temperature (HEST) light
- Inhibit status
- Park and turn signal status
- Level gauges for fuel and diesel exhaust fluid (DEF)
- Coolant temperature gauge
- Climate control temperature and blower speed
- Current time

Header information:
The information displayed depends on the type of header attached to the windrower and which run screen is active.

- **Run screen #1:** Displays reel, draper, knife, disc, or auger speed and pressure; alarm point; and indexing (factory-set according to header)
- **Run screen #2:** Displays draper, knife, or disc speed and pressure; reel height and fore-aft position; hydraulic pressure; and load bar
- **Run screen #3:** Displays fuel per hour/acre, acres per hour, and sub acres per hour (resettable)
- **Run screen #4:** Displays cooling fan speed, engine air intake temperature, hydraulic oil temperature, and engine coolant temperature
Current header position:

- Displays basic header functions: height and angle

Telltales:

- Telltales (A) indicate an engine or windrower fault
- Telltales are amber or red in color accompanied by a symbol for the fault
- Telltales display a short description (B) of the fault

Required maintenance indicator:

- An amber indicator (A) is displayed 50 hours before required maintenance is due
- The indicator only displays when header is disengaged
- The indicator flashes when maintenance is overdue by 50 hours

3.17.2 Navigating the Harvest Performance Tracker Display

Scroll Knob, Scroll Wheel, and Select Button

Turning the scroll knob (A) on the Harvest Performance Tracker (HPT) display highlights the available options within a menu and adjusts the settings. Pushing the scroll knob selects functions or menu items. Scroll and select functions are duplicated...
on the ground speed lever (GSL) controls. Unless otherwise specified, both buttons will perform the same function. When SELECT is used in this document, either of these buttons can be used.

- Turn scroll knob (A) clockwise to move selections down the screen, to the right (clockwise), and to increase settings. Push the scroll knob to activate the selection.
- Turn scroll knob (A) counterclockwise to move selections up the screen, to the left (counterclockwise), and to decrease settings. Push the scroll knob to activate the selection.

NOTE:
The scroll wheel (A) on the back of the GSL and the SELECT button (B) on the front of the GSL perform the same functions as the HPT rotary scroll knob.

Home, Back, and Select Buttons
- Press the BACK button (A) on the Harvest Performance Tracker (HPT) to return to the previous level within the menu structure.
- Press the HOME button (B) on the HPT to return to the last selected run screen (or header disengaged screen).
• Press the BACK button (A) on the ground speed lever (GSL) to return to the previous level within the menu structure.

• Press the SHIFT button (B) on the back of the GSL, and then press the GSL BACK button (A) to return to the last selected run screen (or header disengaged screen). Pressing the SHIFT (B) and BACK (A) buttons on the GSL at the same time produces the same result as pushing the HOME key on the HPT display.

Soft Keys

- Soft keys 1–4 (A) on the Harvest Performance Tracker (HPT) display run screens 1–4 respectively
- Soft key 5 (B) displays the main menu
- After a menu is open, soft keys 1–5 also function as buttons within menus

QuickMenu System

The QuickMenu system allows you to change certain windrower and header functions directly on the screen.

1. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) while in any run screen to open the QuickMenu system.
2. Use the HPT scroll knob or the GSL scroll wheel to move the red cursor (A) around the screen. The following selectable areas are highlighted in white and can be changed while in motion using the QuickMenu system:

- **Ground speed limit (A)** – For instructions, refer to *Adjusting Ground Speed Limit, page 124.*
- **EEC throttle limit (B)** – For instructions, refer to *Programming the Eco Engine Control, page 119.*
- **Header float (C)** – For instructions, refer to *Setting the Float, page 182.*
- **Header adjustments (when header is running [not shown])** – For instructions, refer to *4.6 Operating a Header, page 180.*
- **Knife speed** – For instructions, refer to *4.7.7 Knife Speed, page 206,* or *4.8.2 Knife Speed, page 224.*
- **Access maintenance information** – For instructions, refer to *3.17.8 Machine Information Pages, page 99.*
- **Adjust auto speed settings** – For instructions, refer to *4.7 Operating with D1X or D1XL Series Draper Header, page 193,* *4.8 Operating with an A40DX Auger Header, page 218,* or *4.9 Operating with an R1 Series Rotary Disc Header, page 233.*
- **Define header alarm speeds** – For instructions, refer to *4.7 Operating with D1X or D1XL Series Draper Header, page 193,* or *4.8 Operating with an A40DX Auger Header, page 218.*
- **Header Alarm pressure** – For instructions, refer to *4.7 Operating with D1X or D1XL Series Draper Header, page 193,* *4.8 Operating with an A40DX Auger Header, page 218,* *4.9 Operating with an R1 Series Rotary Disc Header, page 233.*
- **Manage telltales** – For instructions, refer to *Faults and Telltales, page 86.*
- **Turn auto speeds ON/OFF** – For instructions, refer to *4.7 Operating with D1X or D1XL Series Draper Header, page 193,* or *4.8 Operating with an A40DX Auger Header, page 218.*

3. Place the red cursor (red border [A]) over the function you want to adjust, and press the HPT scroll knob or GSL SELECT button to display a submenu containing the adjustable values within the selected function.

Main Menu

To display the main menu and select functions, follow these steps:
1. Press soft key 5 (A) to open the main menu or press SHIFT and SELECT on the ground speed lever.

2. Use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to place the red cursor (C) over the icon you want to select.

 NOTE:
 Using scroll knob will activate titles that explain each selection.

3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted icon.

 NOTE:
 Pressing the corresponding soft key will also work.

The main menu provides access to submenus for viewing and adjusting windrower and header settings. Refer to *Menu Icons, page 83* for details on navigating the following submenus:

- Information
- Settings
- Maintenance
- Diagnostics
- Engine aftertreatment

Menu Icons

Several menu icons are available in the main menu. Selecting a menu icon will open submenu icons, menu lists, and radio buttons for viewing and adjusting windrower and header settings.

Information: Icon (A) displays the following submenu icons:

- Windrower Information (B)
- Header Information (C)
- Module Information (D)
- Performance Information (E)

 NOTE:
 Header Information (C) has a hidden menu allowing Dealers to modify the stored list of headers. To access, hold the EEC button for 5 seconds while on the Header Information page.
Setup: Icon (A) displays the following submenu icons:
- Screen Settings (B)
- Windrower Settings (C)
- Header Setup (D)
- One-Touch-Return Settings (E)

Screen Settings: Icon (A) displays the following submenu icons:
- Brightness and Volume (B)
- Time and Date (C)
- Language and Units (D)
- Run Screen Set-Up (E)
- Reset to Defaults (F)

Windrower Settings: Icon (A) displays the following submenu icons:

NOTE:
The F3 shortcut button on the operator’s console also displays the windrower settings menu.
- Calibration (B)
- Tires (C)
- Lockout Functions (D)
- Sensors (E)
Header Setup: Icon (A) opens the SET-UP HEADER menu list.

NOTE: The F4 shortcut button on the operator’s console also displays the SET-UP HEADER menu list.

- Header Type (B)
- Hours Used (C)
- Total Acres (D)

After the header is selected, the HEADER SETUP menu opens, which includes:

- Cut Width
- Raise/Lower Rates
- Attachments

One-Touch-Return: Icon (A) displays the One-Touch-Return menu list.

NOTE: The F2 shortcut button on the operator’s console also displays the One-Touch-Return menu list.
Maintenance: Icon (A) opens the maintenance menu list (B). For instructions, refer to *5.2.3 Electronic Maintenance Tool, page 246.*

Diagnostics: Icon (A) displays the following submenu icons:
- Windrower Fault Codes (B)
- Engine Fault Codes (C)
- Inputs/Outputs (D)
- Can Network (E)

Engine Aftertreatment: Icon (A)
- Soft key 4 (B) activates the initiate manual SCR conditioning command, and the initiate icon (D) will become highlighted on the display
- Soft key 5 (C) activates the inhibit SCR conditioning command, and the inhibit icon (E) will become highlighted on the display

Faults and Telltales
Faults and telltales displayed on the Harvest Performance Tracker (HPT) provide important information about the windrower and the engine. Telltales (A) include a symbol indicating the affected area (refer to *4.2 Symbol Definitions, page 106*) and a short description of the fault (B).
• Red faults (displayed on the top line) indicate that a major fault has occurred and will cause progressive damage or affect the safe operation of the machine. The machine should be shut down as soon as possible.

• Yellow faults (displayed on the bottom line) indicate that a failure has occurred, and the machine should be serviced as soon as possible to diagnose the failure.

To display a more detailed fault page, use the HPT scroll knob (E) to select the question mark symbol (C).

To close the short description (B), use the HPT scroll knob (E) to select the close symbol (D). Telltales (A) remain on the screen until the fault is corrected.

NOTE:
Closing the short description of a yellow fault will mute the alarm tone associated with that fault. Alarm tones associated with red faults cannot be muted.

Figure 3.93: HPT Run Screen Displaying Faults

If multiple faults are detected, the number of faults will appear in the corner of the telltale icon (A).
Using the HPT scroll/select knob, select the question mark symbol next to the short description to display a detailed description of the fault. If there are multiple faults, the icons (A) will appear in a row. To display a detailed description of each fault, use the HPT scroll/select knob to select the icon.

Figure 3.95: HPT Fault Description Page

3.17.3 Setting up the Harvest Performance Tracker Screen

The setup menu configures the Harvest Performance Tracker (HPT) for specific operations. The following settings should be checked before initial operation of the windrower.

The key must be turned to the ON position to enter the setup menu, but the engine does not have to be running.

Setting Screen Brightness and Volume

Follow this procedure to adjust the factory set screen brightness and alarm volume.

Setting screen brightness:

The screen brightness is shown with a 10-segment bar graph and is adjustable down to 10%. The brightness automatically adjusts for daytime and nighttime operation. Day mode is defined as having the headlights or work lights OFF (or having only the clearance lights ON). Night mode is defined as having either the headlights or work lights ON.

1. Navigate to the SETTINGS Menu with soft key 5 and the Harvest Performance Tracker (HPT) scroll knob. Refer to 3.17.2 Navigating the Harvest Performance Tracker Display, page 79 if required.
2. Scroll to the SCREEN icon (A) and select it.
3. Scroll to the BRIGHTNESS AND VOLUME icon (B), and select it to open adjustment window.

Figure 3.96: Brightness and Volume
4. Scroll through the following four brightness modes, and select the mode that requires adjustment:
 - DAY mode (A) (default setting is 70%)
 - NIGHT mode (B) (default setting is 20%)
 - KEYPAD DAY mode (C) (default setting is 70%)
 - KEYPAD NIGHT mode (D) (default setting is 20%)

5. Adjust the selected value by scrolling and previewing the brightness as you scroll.

Setting volume:

The volume control adjusts the audible alarms. It is depicted with a 10-segment bar graph and is adjustable down to 10%. The default volume is factory-set to 50%.

Adjust the volume as follows:

1. Navigate to SETTINGS Menu (C) with soft key 5 (A) and the HPT scroll knob (B). Refer to 3.17.2 Navigating the Harvest Performance Tracker Display, page 79 if required.

2. Scroll to the SCREEN icon (A) and select it.

3. Scroll to the BRIGHTNESS AND VOLUME icon (B), and select it to open adjustment window.
4. Scroll to the VOLUME option (A) and select it.
5. Adjust volume by scrolling.

Setting Time and Date
Whenever the Harvest Performance Tracker (HPT) boots up, the time and date will display according to your selected configuration.

1. Navigate to the SETTINGS Menu with soft key 5 and the HPT scroll knob. For instructions, refer to 3.17.2 Navigating the Harvest Performance Tracker Display, page 79.
2. Scroll to the SCREEN option (A) and select it.
3. Scroll to the TIME AND DATE option (B), and select it to open the adjustment window.
4. Scroll through the available options on the HPT display, select the desired option, and scroll to adjust.
Setting Language and Units of Measurement

To set the language and units of measurement displayed, follow these steps:

1. Navigate to the SETTINGS menu with soft key 5 and the Harvest Performance Tracker (HPT) scroll knob. For instructions, refer to 3.17.2 Navigating the Harvest Performance Tracker Display, page 79.

2. Scroll to SCREEN icon (A) and select it.

3. Scroll to LANGUAGE AND UNITS icon (B), and select it to open the adjustment window.

4. Scroll through the available options on the HPT, select desired item, and scroll to adjust:

 LANGUAGE
 - ENGLISH (default)
 - SPANISH

 UNITS
 - METRIC
 - USA (default)

Refer to 8.2 Conversion Chart, page 409 for a comprehensive list of U.S. and metric units.

Resetting to Factory Defaults

To change any Harvest Performance Tracker (HPT) settings back to the defaults set in the factory, follow these steps:

1. Press soft key 5 (A), and use the HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to place the red cursor over the SETTINGS icon (C).

2. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the main menu (C) options.
3. Scroll to the DISPLAY SETTING icon (A) and press SELECT.

4. Scroll to the RESET TO DEFAULTS icon (B), and press SELECT to open the adjustment window.

Figure 3.105: Opening the Reset to Defaults Page

5. Scroll through the available options, and press SELECT to reset to default. Refer to the following list for factory default options:
 - Select all
 - Display brightness
 - Keypad brightness by day
 - Display volume
 - Language (English)
 - Units (USA)
 - Eco engine control speed (4 and 6 cylinders have different speeds)
 - Max cab-forward speed 14 mph
 - Max engine-forward speed 27 mph
 - Header speed settings
 - Header alarm pressures
 - Knife alarm speed
 - Manual (not auto) knife speed mode
 - Manual (not auto) reel speed mode
 - Manual (not auto) draper speed mode
 - All functions unlocked
 - All sensors enabled
 - Cut width
 - Swath roller selection off
 - Max header raise/lower rates
 - One-touch-return presets (reset to default option available also within this menu)
 - DWA speed
 - DWA alarm pressure

6. Press the HOME or BACK button. The CONFIRM YES/NO dialog box is displayed.
7. Select YES to save changes and close the dialog box, or select NO to close the dialog box without saving changes.

3.17.4 Calibrating the Header Systems

When a header is attached to the windrower, the Harvest Performance Tracker (HPT) will recognize the header ID and determine the appropriate systems to calibrate. The following sensors may require calibration depending on header type:

- Header height
- Header angle
- Header float left
- Header float right
- Reel height
- Reel fore-aft
- Swath compressor

Recalibration is required if the HPT is replaced, a position sensor is replaced, sensor readouts are erratic, or a new header type or attachment is connected to the windrower.

NOTE:
To calibrate the knife drive, the header must be attached and engaged. If the header is disengaged when calibration is selected, the message ENGAGE HEADER will appear on the screen.

NOTE:
Calibrations **MUST** be performed with the engine running. Some calibrations will **NOT** be available with engine off.

CAUTION

Before starting the machine, check to be sure all bystanders have cleared the area.

1. Start the engine, and engage the header.
2. Press soft key 5 (A) to open the HPT main menu.
3. Use HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel to scroll to settings icon (C).
4. Press HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the settings menu options.

![Figure 3.106: Opening the Main Menu](image-url)
5. Scroll to WINDROWER SETTINGS icon (A) and press SELECT.

6. Scroll to CALIBRATION icon (B), and press SELECT to open the adjustment page.

NOTE:
The F3 shortcut button on the operator’s console will also open the WINDROWER SETTINGS menu.

7. Select POSITION SENSORS (A).

8. Select CALIBRATION WITH HEADER ENGAGED to display the calibration page as shown at right.

9. Press the PLAY button on the screen to begin the calibration process.

NOTE:
If the engine speed is less than 1500 rpm when you press the PLAY button, the calibration system will accelerate the engine to 1500 rpm.
10. When Stage 1 of the calibration is complete, press the PLAY button (A) on the screen to continue with Stage 2 of the calibration process.

11. When Stage 2 of the calibration is complete, press the RESUME button (A) on the screen to set HEADER FLOAT, or press the HOME or BACK button (not shown) to exit without setting the float.

NOTE:
Press the X button (A) on the screen (or press the HOME, BACK, or any GSL button [buttons not shown]) at any time during the calibration process to EXIT calibration without saving. The engine speed will return to the original rpm prior to starting the calibration process.

NOTE:
If a sensor goes out of its normal operating range during the calibration process, calibration will stop, and a message will appear on the screen indicating that the sensor is out of range. A flashing amber question mark will appear on the calibration icon in the menu system. If a sensor is out of range, adjust the sensor and restart the calibration process.

3.17.5 Calibrating Knife Drive on Harvest Performance Tracker

NOTE:
Calibration of the knife drive must be completed with the header attached; the header must be engaged to perform the calibration procedure. If the header is disengaged when calibration is selected, the message ENGAGE HEADER will appear on the screen.
CAUTION

Check to be sure all bystanders have cleared the area.

1. Start the windrower and engage the header.
2. Press soft key 5 (A) to open the main menu.
3. Use HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to highlight SETTINGS icon (C).
4. Press HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the settings menu options.

5. Scroll to WINDROWER SETTINGS icon (A) and press SELECT.
6. Scroll to CALIBRATION icon (B), and press SELECT to open the adjustment page.

NOTE:
The F3 shortcut button on the operator’s console will also open the WINDROWER’S SETTINGS menu.

7. Select KNIFE DRIVE.

8. Press the PLAY button on the screen to begin the calibration process.

NOTE:
During the calibration sequence, the engine rpm and header speed will increase and decrease multiple times.

NOTE:
Press X button (A) on the screen or use the Header Disengage Switch at any time during the calibration process to EXIT calibration without saving. The engine speed will return to the original rpm prior to starting the calibration process.
3.17.6 Setting Windrower Tire Size

The Harvest Performance Tracker (HPT) is factory-set for 600/65R28 bar tires. If the windrower has a different tire type, you need to change this setting. Setting the proper tire size is important for accurate tracking of ground speed, acres, and productivity data.

1. Navigate to the SETTINGS menu with soft key 5 and the HPT scroll knob. For instructions, refer to 3.17.2 Navigating the Harvest Performance Tracker Display, page 79.

2. Scroll to the WINDROWER SETTINGS icon (A) and select it.

3. Scroll to the TIRES icon (B), and select it to display the adjustment window.

 NOTE:
 The F3 shortcut button on the operator’s console will also display the WINDROWER SETTINGS menu.

4. Scroll to highlight the appropriate tire size (A) and select it. The new selection will be displayed with a shaded green radio button.
3.17.7 Activating Control Locks

All header functions are factory-set to the unlocked position, but certain functions can be locked to prevent changes. This feature can be used to maintain preferred settings when there are multiple Operators.

1. Press soft key 5 (A) to display the main menu.

2. To scroll to the setting icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).

3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to activate the settings menu options.

4. Scroll to the WINDROWER SETTINGS icon (A) and press SELECT.

5. Scroll to the CONTROL LOCKS icon (B), and press SELECT to display the adjustment window.

 NOTE:
 The F3 shortcut button on the operator’s console will also display the windrower settings menu.

6. On the LOCKOUT FUNCTIONS PAGE, use the scroll knob on the HPT to move the cursor (A) to the desired function(s) to lock.

7. Press SELECT to activate the lock.
3.17.8 Machine Information Pages

Selecting the INFORMATION icon (A) from the main menu provides access to the following submenu icons:

- Windrower information (B) – Refer to Accessing Windrower Information, page 99.
- Header information (C) – Refer to Accessing Header Information, page 100.
- Software information (D) – Refer to Accessing Software Information, page 101.
- Performance information (E) – Refer to Accessing Performance Information, page 102.

Accessing Windrower Information

To access information about the windrower on the Harvest Performance Tracker (HPT) display, follow these steps:

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.
4. Scroll to the WINDROWER INFORMATION submenu icon (A), and press SELECT to display the windrower information menu.
The windrower information menu displays the following information:

- Engine hours (A)
- Windrower total hours (B)
- Total acres (C)
- Windrower total header hours (D)

Accessing Header Information

To access information about the header on the Harvest Performance Tracker (HPT) display, follow these steps:

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.
4. Scroll to the HEADER INFORMATION submenu icon (A), and press SELECT to display the header information menu.
The header information menu displays the following information:

- Header (A)
- Header hours (B)
- Total acres (C)
- Sub acres (D) (resettable)

NOTE:

If you select any particular value (E), the message RESET YES/NO appears on the display. Select YES to reset the sub acres to zero and return to the same highlighted sub acres. Select NO or press the BACK or HOME button to dismiss the message without resetting the sub acres. The sub acres are also resettable from run screen 3. For instructions, refer to *Viewing Performance Data, page 131.*

Accessing Software Information

To access software information on the Harvest Performance Tracker (HPT) display, follow these steps:

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.
4. Scroll to the SOFTWARE INFORMATION submenu icon (A), and press SELECT to display the module information menu.
The HPT display reports the component make, software ID, and software installation date in the software information menu. In addition, the software versions and make, model, and serial numbers of the following modules are also displayed on the screen:

- Master controller (A)
- Display (B)
- Console (C)
- Ground speed lever (D)
- Engine control module (E)
- Roof relay module (F)
- Chassis relay module (G)
- HVAC module (not shown)
- Firewall extension module (not shown)

Accessing Performance Information

To access information on the Harvest Performance Tracker (HPT) about how the machine has performed to date, follow these steps:

1. Press soft key 5 (A) to open the main menu.
2. To scroll to the INFORMATION icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the highlighted INFORMATION icon.
4. Scroll to the WINDROWER PERFORMANCE submenu icon (A), and press SELECT to display the performance information menu.

The performance information menu displays two columns: one column displays the accumulated data over the machine’s lifetime (A) and is not resettable, the other displays the data accumulated per field (B) and is resettable.

The performance information menu displays the following information:

- Engine hours (C)
- Engine % idle time (D)
- Average % load (E)
- Gal/Hr (F)
- Acres (G)
- Acres/Gal (H)
- Gal/Acre (J)
- Windrower header hours (K)

NOTE:
To reset all of the field values to zero, use the scroll knob to highlight the FIELD column (B) and press the SELECT button.
3.17.9 F1 to F4 Function Buttons

The following functions have been assigned to the function buttons on the operator’s console:

- **F1 (A)** – Float menu
- **F2 (B)** – One-Touch-Return
- **F3 (C)** – Windrower settings
- **F4 (D)** – Header settings

Press a function button to override the existing screen and display the function.

Press the function button again or press the Back button to return to the previous screen.

Press the Home button to return to the run screen.

NOTE:

F5 and F6 buttons are not assigned to any functions.
Chapter 4: Operation

4.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the windrower. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety signs on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the windrower, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators every year.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do NOT modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.
- The safety information given in this manual does NOT replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
4.2 Symbol Definitions

The following symbols are used to depict functions or reactions of the various instruments and controls. Learn the meaning of these symbols before operating the windrower.

4.2.1 Windrower Operating Symbols

These are the symbols used on the console for windrower operation.

Figure 4.1: Windrower Operating Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Signal Lights</td>
</tr>
<tr>
<td>B</td>
<td>Hazard Lights</td>
</tr>
<tr>
<td>C</td>
<td>Forward</td>
</tr>
<tr>
<td>D</td>
<td>Neutral</td>
</tr>
<tr>
<td>E</td>
<td>Reverse</td>
</tr>
<tr>
<td>F</td>
<td>Road Lights</td>
</tr>
<tr>
<td>G</td>
<td>High Beams</td>
</tr>
<tr>
<td>H</td>
<td>Cab-forward Field Lights</td>
</tr>
<tr>
<td>I</td>
<td>Windshield Wiper</td>
</tr>
<tr>
<td>J</td>
<td>Blower Speed (Manual Mode)</td>
</tr>
<tr>
<td>K</td>
<td>Air Conditioning</td>
</tr>
<tr>
<td>L</td>
<td>Wiper Fluid</td>
</tr>
<tr>
<td>M</td>
<td>Wiper Fluid</td>
</tr>
<tr>
<td>N</td>
<td>Float Menu</td>
</tr>
<tr>
<td>P</td>
<td>Windrower Settings</td>
</tr>
<tr>
<td>Q</td>
<td>Slow</td>
</tr>
<tr>
<td>R</td>
<td>One-Touch-Return</td>
</tr>
<tr>
<td>S</td>
<td>Header Settings</td>
</tr>
<tr>
<td>T</td>
<td>Fast</td>
</tr>
<tr>
<td>U</td>
<td>Electrical Power / Accessories</td>
</tr>
</tbody>
</table>

OPERATION
4.2.2 Harvest Performance Tracker Symbols

Figure 4.2: Harvest Performance Tracker (HPT) Symbols

- A - Knife
- B - Knife Pressure
- C - Reel
- D - Reel Speed
- E - Reel Height
- F - Reel Fore-Aft
- G - Draper
- H - Draper Pressure
- J - Draper Speed
- K - Header Height
- L - Header Tilt
- M - Header Float
- N - DWA Raise
- P - DWA Lower
- Q - Disc
- R - Disc Pressure
- S - Disc Speed
- U - SCR Conditioning Manual
- V - SCR Conditioning Inhibit
- W - High Exhaust System Temperature
- X - Engine rpm
- Y - Fuel
- Z - Water in Fuel
- AA - Parking Brake
- AB - Climate Control
- AC - Raising Swath Compressor
- AD - Swath Compressor Raised
- AE - Lowering Swath Compressor
- AF - Swath Compressor Lowered
Figure 4.3: HPT Symbols

A - Acres/Hour
B - Sub Acres
C - Fuel/Acre
D - Fuel/Hour
E - Engine Power Kilowatt
F - Engine Power Horsepower
G - Engine Malfunction
H - Wait to Start
J - Engine Coolant Temperature
K - Engine Intake Air Filter
L - Engine Oil Pressure
M - Engine Oil Level
N - Engine Oil Filter
P - Engine Coolant Level
Q - Engine Air Intake Temperature
R - Hydraulic Oil Pressure
S - Hydraulic Oil Temperature
T - Transmission Oil Pressure
U - Battery/Voltage
V - Fan Speed
W - Caution (Yellow) / Danger (Red)
X - Function Locked
Y - Time
Z - Date
AA - Alarm
AB - Alarm Off
AC - Volume Level
AD - Sensor Disabled
AE - Night
AF - Day
4.3 Operating the Windrower

4.3.1 Operational Safety

⚠️ CAUTION

Follow these safety precautions:

- Wear close-fitting clothing and protective shoes with slip-resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that could be necessary through the day. DO NOT take chances.

You may need:

- A hard hat
- Protective glasses or goggles
- Heavy gloves
- A respirator or filter mask
- Wet weather gear
- Protect against noise. Wear suitable hearing protection such as ear muffs or ear plugs to protect against loud noises.
- Follow all safety and operational instructions given in your operator’s manuals. If you do not have a header manual, get one from your Dealer and read it thoroughly.
- NEVER attempt to start the engine or operate the machine except from the operator’s seat.
- Check the operation of all controls in a safe clear area before starting work.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure. For instructions, refer to Shutting down the Engine, page 120.
- Operate only in daylight or good artificial light.

4.3.2 Break-in Period

From the factory the windrower is ready for normal operation. However, there are several items to check and watch out for during the first 150 hours.

⚠️ DANGER

Before investigating an unusual sound or attempting to correct a problem, place ground speed lever (GSL) in PARK, shut off engine, and remove key.

IMPORTANT:

Until you become familiar with the sound and feel of your new windrower, be extra alert and attentive.
OPERATION

- Avoid unnecessary idling. If engine will be idling longer than 5 minutes after reaching operating temperature, turn ignition key OFF to stop the engine.

- Before taking the GSL out of PARK, let the hydraulic oil warm up to 32°C (90°F). You can view the hydraulic oil temperature on Run Screen 4 on the Harvest Performance Tracker (HPT) display. For instructions, refer to Viewing Engine Cooling Data, page 132.

- Check engine oil level frequently. Watch for any signs of leakage. If oil must be added, refer to Checking Engine Oil Level, page 113.

- Watch coolant gauge in cab for temperature rising beyond normal operating range. Check that coolant level at reserve tank (mounted next to radiator) stays between HOT and COLD marks on tank. For instructions, refer to 5.7.5 Checking Engine Coolant Level, page 285.

 NOTE:
 If overheating problems occur, check for coolant leaks.

- Perform the break-in inspections specified in 5.2.1 Break-in Inspection Schedule, page 243.

 NOTE:
 During the break-in period, a higher than usual oil consumption should be considered normal.

 NOTE:
 If windrower must be driven in cold weather (below freezing), let engine idle for 3 minutes, and then operate at moderate speed until oil has warmed up.

4.3.3 Preseason Checks / Annual Service

Follow these steps at the beginning of each season.

⚠️ CAUTION

- Review the operator’s manual to refresh your memory on safety and operating recommendations.

- Review all safety signs and other decals on the windrower and note hazard areas.

- Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.

- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.

- Store a properly stocked first aid kit and charged fire extinguisher on the windrower.

1. Drain off excess hydraulic oil added for storage. For instructions, refer to 5.13.2 Draining Hydraulic Oil, page 322.

2. Remove any plastic bags and/or tape from all sealed openings (air cleaner intake, exhaust pipe, fuel tank).

3. Charge and install the batteries. Be sure the terminals are clean and cables are connected securely.

4. Adjust the tension on the air conditioning (A/C) compressor belt. For instructions, refer to 5.6.5 Tensioning Air Conditioner Compressor Belts, page 272.

5. Distribute A/C refrigerant by cycling the A/C switch. For instructions, refer to Air Conditioning Compressor Coolant Cycling, page 111.

6. Check the entire A/C system for leakage.

7. Perform annual maintenance. For instructions, refer to 5.2 Windrower Break-In Inspections and Maintenance Schedule, page 243.
Air Conditioning Compressor Coolant Cycling

IMPORTANT:
Perform the following steps whenever the machine is first started after storage for more than one week:

1. Press the reduce (–) BLOWER SPEED switch (A) repeatedly until the lowest fan setting is reached.
2. Press the red area on the TEMPERATURE CONTROL switch (F) repeatedly until maximum heating is reached.
3. Press the A/C control (E) to OFF.
4. Start the engine. For instructions, refer to *Starting the Engine, page 115.*
5. Operate the windrower at low idle until engine is warm.

![Figure 4.6: Climate Control](image)

Figure 4.6: Climate Control
A - Blower Toggle Button B - Outside Air Button
C - Recirculating Air Button D - Windshield Defog/Defrost
E - Air Conditioning Button F - Temperature Control

4.3.4 Daily Checks and Maintenance

Perform the following checks and recommended maintenance before operating the windrower every day:

1. Check the machine for leaks.

 NOTE:
 Use proper procedure when searching for pressurized fluid leaks. For instructions, refer to *5.7.6 Hoses and Lines, page 285.*

2. Check for missing or broken parts.
3. Clean the windows and mirrors to ensure good visibility in all directions. Stand on the platform to access the rear window. Hold onto the handholds on the cab front corners and stand on the header anti-slip strips to wash the front window.
4. Clean all lights and reflective surfaces to maintain visibility to others.
5. Perform daily maintenance. For instructions, refer to *5.2 Windrower Break-In Inspections and Maintenance Schedule, page 243.*
Filling Fuel Tank

The symbol inside the fuel gauge on the Harvest Performance Tracker (HPT) display will signal the Operator when the fuel level is low. Fill fuel tank daily, preferably at the end of the day’s operation to help prevent condensation in the tank.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING
- To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.
- NEVER refuel the windrower when the engine is hot or running.
- To avoid electric discharge and the risk of a fire or explosion, ensure that the fuel delivery system is properly bonded and grounded. A bonded fuel delivery system has an electrically conductive and unbroken connection between all components of the fuel delivery system (fuel supply tank, transfer pump, transfer hose, nozzle, and others). A wire connection from the fuel delivery system to the machine chassis will equalize the static electric potential between the two machines, further reducing the chance of a static electric discharge. A properly grounded fuel delivery system has an electrically conductive connection from the fuel delivery system tank to earth ground to allow static and electrical charge dissipation.

IMPORTANT:
Do NOT allow tank to empty. Running out of fuel can cause air locks and/or contamination of the fuel system. For instructions, refer to Priming Fuel System, page 311.

1. Stop the windrower and remove the key from the ignition.
2. Clean the area around the fuel filler cap (A).
3. Turn fuel filler cap (A) counterclockwise until loose. Remove cap.
4. Fill tank with approved fuel. For fuel type and quantity, refer to the manual’s inside back cover.
 ✅ IMPORTANT:
 Do NOT completely fill the tank as space is required for expansion. A filled tank could overflow if exposed to a rise in temperature, such as direct sunlight.
5. Replace fuel tank filler cap (A), and turn cap clockwise until it clicks.

Filling the Diesel Exhaust Fluid Tank

The symbol inside the diesel exhaust fluid (DEF) gauge on the Harvest Performance Tracker (HPT) display will signal the Operator when DEF level is low.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Shut down the engine, and remove the key from the ignition.

2. Clean around filler cap (A).

3. Turn cap (A) counterclockwise until loose and remove cap.

 NOTE:
 Filler cap for DEF tank is blue and the nozzle dispenser is smaller than that of the fuel tank.

CAUTION

Avoid contact with eyes. In case of contact, rinse immediately with water for 15 minutes.

4. Fill tank with approved DEF. For specifications, refer to the inside back cover.

 IMPORTANT:
 DEF is corrosive. Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand, and then shovelled into a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water.

 IMPORTANT:
 If the windrower temperature is going to be below 0°C (32°F), do **NOT** fill the DEF tank more than 75% full. When freezing, the DEF fluid will expand by approximately 7%. For storage information, refer to 5.1.1 Storing Lubricants and Fluids, page 239.

5. Replace filler cap (A) and turn clockwise until tight.

Checking Engine Oil Level

Check engine oil level frequently and watch for any signs of leakage.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
During the break-in period, a higher than usual oil consumption should be considered normal.

NOTE:
Oil can be checked without opening the hood.
1. Operate the engine at low idle and check for leaks at the filter and drain plug.
2. Shut down the engine, and remove the key from the ignition.
3. Wait about 5 minutes.
4. Remove dipstick (A) by turning it counterclockwise to unlock.
5. Wipe dipstick clean and reinsert it into engine.

6. Remove dipstick again and check oil level. Oil level should be between LOW (L) and HIGH (H). If below the LOW mark, add oil.

 NOTE:
 Adding 1.9 liters (2 U.S. quarts) will raise the level from LOW to HIGH. To add oil, refer to *Adding Engine Oil, page 280.*

7. Replace dipstick and turn it clockwise to lock.

8. Grasp hood by louver (A) and lower until hood engages latch.

 NOTE:
 Check that latch lever is not tilted to ensure hood is latched.
4.3.5 Engine Operation

Starting the Engine

⚠️ DANGER

- Avoid possible injury or death from a runaway machine.
- This machine has safety devices which allow the engine to start only when the ground speed lever (GSL) is in PARK, the steering wheel is locked in the PARK position, and the HEADER ENGAGE switch is in the OFF position. Under NO circumstances are these devices to be deliberately rewired or misadjusted so that the engine can be started with controls out of NEUTRAL.
- Do NOT start the engine by shorting across the starter or starter relay terminals. If normal starting circuitry is bypassed, the machine will start with the drive engaged and move.
- Start the engine only from operator’s seat with controls in PARK. NEVER start the engine while standing on ground. NEVER try to start the engine with someone under or near the machine.
- Before starting the engine, be sure there is plenty of ventilation to avoid asphyxiation.

IMPORTANT:
Before starting the windrower, check fluid level of the following, and add fluid if necessary:

- Engine oil – refer to Checking Engine Oil Level, page 113
- Hydraulic oil – refer to 5.7.3 Checking Hydraulic Oil, page 281
- Gearbox oil – refer to 5.7.7 Checking Engine Gearbox Lubricant Level and Adding Lubricant, page 286

IMPORTANT:
Do NOT tow the machine to start the engine. Damage to hydrostatic drives will result.

NOTE:
Before taking the GSL out of PARK, let the hydraulic oil warm up to 32°C (90°F). You can view the hydraulic oil temperature on Run Screen 4 on the Harvest Performance Tracker (HPT) display. For instructions, refer to Viewing Engine Cooling Data, page 132.

NOTE:
When the console receives a wake-up signal, the console awakens from sleep mode and closes the battery disconnect relay. The Harvest Performance Tracker (HPT) goes into a boot-up sequence that takes approximately 40 seconds. The following items trigger a wake-up signal for the console:

- Key switch ignition or accessory positions
- Cab door switch
- Horn button
- Hazards button
- Field lights button
- Clearance lights button
- Road lights button
- High beam button
1. Before starting the engine, ensure engine exhaust pipe (A) is not covered or obstructed.

2. Ensure the cab-forward or engine-forward directional lock (A) is engaged at the base of the steering column.

3. Move GSL (A) into PARK (C).

4. Turn the steering wheel until it locks. It may be possible to move the steering wheel slightly in the locked position.

 IMPORTANT:
 Do **NOT** attempt to force the wheel out of the locked position or damage to the steering system may occur.

5. Fasten seat belt.

6. Push HEADER ENGAGE switch (B) to ensure it is in the OFF position.
7. Turn IGNITION switch (A) to the ON position; the Harvest Performance Tracker (HPT) display (B) will illuminate. If the HPT is still booting up, wait for WAIT TO START (WTS) symbol (C) to disappear before trying to start engine.

8. Check that red PARK symbol light (D) is ON and that there are no error messages on screen.

9. Press HORN button (E) three times prior to starting the engine.

10. Turn the IGNITION switch to crank (A).

NOTE:
When the engine starts and the header is not engaged, the HPT will display the header disengaged page (B).

IMPORTANT:
- Do NOT operate the starter for longer than 15 seconds at a time.
- If the engine does not start, wait at least 2 minutes before trying again.
- If you crank the engine for more than 30 seconds within a 2-minute period, the engine will lock the starter circuit to prevent overheating, and a flashing WTS symbol will appear on the display. Wait for the WTS symbol to stop flashing before attempting to crank engine again.
- If the engine still does not start, refer to Engine Start Troubleshooting Tips, page 118.
NOTE:
When the engine temperature is below 5°C (40°F), the engine will cycle through a period where it appears to labor until it warms up. Do NOT operate the engine above 1500 rpm until the HPT engine temperature gauge is above the blue range (A).

![Figure 4.18: HPT No Header Screen](image)

Engine Start Troubleshooting Tips

If the windrower will not start normally, refer to the following troubleshooting table:

IMPORTANT:
Do NOT tow the machine to start engine. Damage to the hydrostatic drives will result.

Table 4.1 Engine Start Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls not in NEUTRAL</td>
<td>• Move GSL to NEUTRAL</td>
</tr>
<tr>
<td></td>
<td>• Move steering wheel to locked (centered) position</td>
</tr>
<tr>
<td></td>
<td>• Disengage HEADER switch</td>
</tr>
<tr>
<td>Operator’s station not locked</td>
<td>• Adjust position of operator’s station</td>
</tr>
<tr>
<td></td>
<td>• Ensure lock is engaged</td>
</tr>
<tr>
<td>Neutral interlock misadjusted</td>
<td>• Contact MacDon Dealer</td>
</tr>
<tr>
<td>No fuel to engine</td>
<td>• Fill empty fuel tank</td>
</tr>
<tr>
<td></td>
<td>• Replace clogged filter</td>
</tr>
<tr>
<td></td>
<td>• Check for blocked or damaged fuel lines</td>
</tr>
<tr>
<td>Old fuel in tank</td>
<td>• Drain tank</td>
</tr>
<tr>
<td></td>
<td>• Refill with fresh fuel</td>
</tr>
<tr>
<td>Water, dirt, or air in fuel system</td>
<td>• Drain, flush, fill, and prime system</td>
</tr>
<tr>
<td>Improper type of fuel</td>
<td>• Drain tank</td>
</tr>
<tr>
<td></td>
<td>• Refill with correct fuel</td>
</tr>
<tr>
<td>Crankcase oil too heavy</td>
<td>• Replace with recommended oil</td>
</tr>
<tr>
<td>Low battery output</td>
<td>• Test the battery</td>
</tr>
<tr>
<td></td>
<td>• Check battery electrolyte level</td>
</tr>
</tbody>
</table>
Table 4.1 Engine Start Troubleshooting (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor battery connection</td>
<td>• Clean and tighten loose connections</td>
</tr>
<tr>
<td>Faulty starter</td>
<td>• Contact MacDon Dealer</td>
</tr>
<tr>
<td>Wiring shorted, circuit breaker open</td>
<td>• Check continuity of wiring and breaker (manually reset)</td>
</tr>
<tr>
<td>Faulty injectors</td>
<td>• Contact MacDon Dealer</td>
</tr>
</tbody>
</table>

Programming the Eco Engine Control

Engine speed can be programmed to operate at reduced rpm to lower fuel and diesel exhaust fluid (DEF) consumption, and to reduce in-cab noise levels. The set-point for engine speed can be adjusted in increments of 100 rpm from 1800 to 2400 rpm in the Harvest Performance Tracker (HPT) QuickMenu. While the header is engaged, the system can easily be activated and deactivated (depending on field conditions) using the Eco Engine Control (EEC) button (A) on the console. When the engine is running at less than full speed, you will notice a small reduction in the maximum reel, draper, and ground speeds.

The EEC feature is turned ON or OFF by pressing the EEC button (A) on the operator’s console. EEC will only be available when the header is engaged. The GREEN LEAF symbol on the HPT display indicates that the EEC is active. If EEC is turned OFF, or the header is disengaged, the LEAF symbol will appear grayed out. The EEC throttle limit can be adjusted at any time.

1. To open the QuickMenu system while in any run screen, press the scroll knob (A) on the HPT.

![Figure 4.19: Eco Engine Control (EEC) Button](image1)

![Figure 4.20: HPT Scroll Knob/Select Button](image2)
2. Use the HPT scroll knob to move the red cursor to the ECO THROTTLE LIMIT (A) value.
3. Press the HPT scroll knob to select the ECO THROTTLE LIMIT (A) adjustment function.
4. Adjust the ENGINE rpm value using the HPT scroll knob.
5. Press the HPT scroll knob to program the adjusted value.

Shutting down the Engine

⚠️ CAUTION

Park on a flat, level surface with the header on the ground, the ground speed lever (GSL) in PARK position, and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

IMPORTANT:

Before stopping the engine, run at low idle for approximately 5 minutes to cool hot engine parts (and allow turbocharger to slow down while engine oil pressure is available).

1. Lower the header.
2. Place ground speed lever (GSL) (B) into PARK.
3. Lock the steering wheel.
4. Turn ignition key (A) counterclockwise to the OFF position.
Engine Temperature

The engine temperature gauge (A) is displayed in the lower left corner of the Harvest Performance Tracker (HPT) display.

Normal engine operating temperature is indicated when the needle is in the green range of the gauge.

If the engine temperature exceeds 105°C (221°F), the needle will move to the red range of the gauge. Depending on the temperature, the engine will trigger a fault code and an amber caution or red stop light will illuminate on the HPT display.

When the engine temperature is below 5°C (40°F), the engine will cycle through a period where it appears to labor until the engine warms up. Do **NOT** operate engine above 1500 rpm until the HPT engine temperature gauge is above the blue range.

NOTE:

Before taking the ground speed lever (GSL) out of PARK, let the hydraulic oil warm up to 32°C (90°F). You can view the hydraulic oil temperature on Run Screen 4 on the Harvest Performance Tracker (HPT) display. For instructions, refer to Viewing Engine Cooling Data, page 132.

Engine Oil Pressure

The nominal engine oil pressure is 69 kPa (10 psi) at low idle and 380 kPa (55.1 psi) at maximum rated speed.

If the oil pressure drops below the preset level of 52 kPa (7.5 psi), the Harvest Performance Tracker (HPT) displays an engine telltale fault code to identify the issue.

If the red STOP ENGINE light illuminates, stop the engine **IMMEDIATELY** and investigate.

If the amber CAUTION light illuminates, stopping immediately is optional. You may continue operations and investigate later, but you are **STRONGLY** advised to monitor the situation carefully.

Exhaust System Cleaning

The exhaust aftertreatment system uses diesel exhaust fluid (DEF) and selective catalyst reduction (SCR) technology to reduce the emission of nitrogen oxides (NOx). The process involves injecting DEF (a nitrogenous compound which decomposes into ammonia) into the exhaust over a catalyst. The ammonia reacts with NOx, producing harmless nitrogen and water.

Automatic exhaust system cleaning events maintain the performance of the aftertreatment system by increasing exhaust temperatures in order to remove the buildup of crystallized DEF. Automatic cleaning occurs any time during machine operation as long as the INHIBIT SCR CONDITIONING switch is OFF. Turn on the INHIBIT SCR CONDITIONING switch if the environment is not suitable for high exhaust temperatures (e.g., inside a building). The INHIBIT SCR CONDITIONING switch is intended as a temporary measure. If the INHIBIT switch is left on for an extended period, the engine will derate until manual SCR conditioning is performed.

Activate the MANUAL SCR CONDITIONING exhaust system cleaning if the automatic exhaust system cleaning was deactivated during normal operation. Engine speed may vary between 1000 and 1400 rpm during manual exhaust system cleaning.
Activating the Exhaust Aftertreatment Functions

Follow these steps to access the exhaust aftertreatment functions on the Harvest Performance Tracker (HPT) display.

1. To display the main menu, press the soft key 5 / menu button (A) on the HPT.

2. To display the manual / inhibit SCR conditioning switches, press soft key 5 / menu button (A) next to the EXHAUST AFTERTREATMENT icon (B).

3. To inhibit SCR conditioning, press soft key 5 / menu button (A) next to the INHIBIT SCR CONDITIONING icon (B), and hold for 3 seconds. The SCR CONDITIONING INHIBIT icon (C) will appear under the engine rpm display.

4. To select manual SCR conditioning, press soft key 4 (A) next to the MANUAL SCR CONDITIONING icon (B), and hold for 3 seconds. The high exhaust system temperature (HEST) icon (C) appears highlighted under the rpm display during system cleaning.

NOTE:
The HEST icon also appears during normal operation when exhaust temperature exceeds the maximum temperature threshold. The icon remains on until the exhaust temperature drops below the minimum temperature threshold.
Operator Console Buttons

Figure 4.27: Operator Console Buttons

A - Double Window Attachment (DWA) / Swath Roller
B - Deck Shift Draper Right Side Delivery
C - Deck Shift Draper Center Delivery
D - Deck Shift Draper Left Side Delivery
E - Draper / Double Windrow Attachment (DWA) Speed
F - Cab-Forward Field Lights
G - Beacon Lights
H - Turn Signals
K - Hazard Lights
L - Clearance Lights
M - Road Lights
N - High Beams
P - Windshield Defog/Defrost
Q - Air Conditioning
R - Temperature
S - Blower Speed (Manual Mode)
T - Horn
U - Auto Fan Speed
V - Cab Air Recirculation
W - Eco Engine Control (EEC)
X - Windshield Wiper (Rear)
Y - Wiper Fluid
Z - Windshield Wiper (Front)
AA - Harvest Performance Tracker (HPT) Shortcuts
AB - Float Menu Shortcut
AC - One-Touch-Return Shortcut
AD - Windrower Settings Shortcut
AE - Header Settings Shortcut
Entering and Exiting the Windrower

CAUTION

To prevent slipping and possible injury, ALWAYS face the windrower and use the hand rail when dismounting (or mounting). NEVER attempt to get on or off a moving windrower. Before leaving the operator’s seat for any reason:

- Park on a flat, level surface with the ground speed lever in PARK position and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.
- Fully lower the header and reel.
- Disengage the header drives.
- To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition.
- Turn off the lights unless required for inspection purposes.
- Release the seat belt.
- Turn off the wipers.
- Raise the armrest and steering wheel for easier exit and re-entry.
- Lock the cab door when leaving the windrower unattended. (When the door is locked, it can still be opened from inside the cab.)

A swing-away platform with stairs (A) is provided on the left side of the windrower to accommodate cab-forward and engine-forward access to the operator’s station as well as several maintenance tasks.

Two doors (B) are provided for cab entry and exit in either cab-forward mode or engine-forward mode. Enter the cab using the door opposite the operator’s console.

Adjusting Ground Speed Limit

The windrower has the following selectable ground speed limits depending on seat position:

<table>
<thead>
<tr>
<th>Direction of Travel</th>
<th>Selectable Ground Speed Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cab-forward (Standard drive wheel)</td>
<td>16, 19, 23, 29 km/h (10, 12, 14, 16, 18 mph)</td>
</tr>
<tr>
<td>Engine-forward (Standard drive wheel)</td>
<td>16, 29, 43 km/h (10, 18, 27 mph)</td>
</tr>
<tr>
<td>Cab-forward (High torque drive wheel)</td>
<td>13, 19, 23, 29 km/h (8, 12, 14, 16, 18 mph)</td>
</tr>
<tr>
<td>Engine-forward (High torque drive wheel)</td>
<td>16, 34.6 km/h (10, 21.5 mph)</td>
</tr>
</tbody>
</table>

To adjust the ground speed limit, follow these steps:
1. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) while in any run screen to open the QuickMenu system.

2. To scroll to the GROUND SPEED LIMIT selectable area (A), use the HPT scroll knob to move the red cursor.

3. Press the HPT scroll knob to select, and scroll to adjust the ground speed limit values.

 NOTE:

 Ground speed limit is also changed by simultaneously pressing the GSL shift button on back of GSL and scrolling.

Driving Forward in Cab-Forward Mode

CAUTION

Operate both steering wheel and ground speed lever slowly for familiarization. Avoid the common tendency of new Operators to oversteer.

In cab-forward mode, the operator’s station is facing away from the engine. If necessary, swivel operator’s seat to cab-forward position as follows:

WARNING

Do NOT drive windrower on road in cab-forward configuration unless it is equipped with the proper lighting and markings for cab-forward road travel.

WARNING

Outside of North America, do NOT drive windrower on the road in cab-forward mode, as lighting/reflecter visibility will not be compliant with road regulations.
1. Place ground speed lever (GSL) (A) in PARK. Engine can be running.

IMPORTANT:
If GSL is NOT in PARK, damage to the GSL cable may result when swivelling operator’s station.

2. Pull up on knob (B) and hold to release latch (C) at base of steering column.

3. Turn steering wheel counterclockwise to pivot operator’s station clockwise 180° until pin engages latch to secure operator’s station in new position.

4. Ensure seat belt is fastened.

5. Start the engine. For instructions, refer to *Starting the Engine, page 115.*

6. Set the desired ground speed limit. For instructions, refer to *Adjusting Ground Speed Limit, page 124.*

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

7. Slowly push throttle (A) to full forward (operating speed).

8. Move the GSL (B) out of PARK and slowly forward to desired speed.

NOTE:
The transmission is most efficient with the engine at full speed and the GSL fully forward. The windrower can be equipped with an automatic steering system for use in the field. An automated steering system is available as an option and can be installed by a MacDon Dealer. The GSL has been pre-wired at the factory with a switch. For more information, refer to **6.2.1 Automated Steering Systems, page 380.**

Driving in Reverse in Cab-Forward Mode

⚠️ **WARNING**
Back up slowly. Steering is opposite to normal when reversing. Hold steering wheel at the bottom and turn wheel in direction you want the rear of the machine to travel.
1. Move throttle lever (A) to a mid-range position.

 NOTE:
 Reversing in low speed range and at reduced engine speed is recommended since steering will be less sensitive than at higher speed settings.

 CAUTION
 Check again to be sure all bystanders have cleared the area.

2. Move the ground speed lever (GSL) (B) rearward to desired speed.

3. Steer as shown.

Driving Forward in Engine-Forward Mode

In the engine-forward mode, the operator’s station is facing toward the engine. If necessary, swivel the operator’s station to engine-forward position as follows:

CAUTION

Park on a flat, level surface with the ground speed lever (GSL) in PARK position and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.
1. Place ground speed lever (GSL) (A) in PARK and lock (center) the steering wheel. The engine can be running.

IMPORTANT:
If GSL is NOT in PARK, damage to the GSL cable may result when swivelling operator’s station.

2. Pull up on knob (B) and hold to release latch (C) at the base of the steering column.

3. Turn the steering wheel clockwise to pivot the operator’s station counterclockwise 180° until the pin engages the latch to secure the operator’s station in the new position.

4. Start the engine (if not already running). For instructions, refer to *Starting the Engine, page 115*.

5. Use the Harvest Performance Tracker (HPT) to adjust the maximum speed setting to 43 km/h (27 mph). For instructions, refer to *Adjusting Ground Speed Limit, page 124*.

6. Slowly push throttle (A) to full forward (operating speed).

![Figure 4.37: Engine-Forward – Seat Faces Engine](image)

CAUTION
Check to be sure all bystanders have cleared the area.

7. Slowly move the GSL (B) forward to the desired speed.

NOTE:
The transmission is most efficient with the engine at full speed and the GSL fully forward.

![Figure 4.38: Console](image)

CAUTION
Operate both steering wheel and ground speed lever slowly while becoming familiar with the machine. Steering can be sensitive; avoid the tendency of new Operators to overcorrect.

8. If more tractive (lugging) power is required (e.g., when driving up a ramp, up a hill, or out of a ditch):
 a. Move the GSL (B) closer to NEUTRAL.
 b. Reduce max speed setting to 16 km/h (10 mph) by holding the shift button on the GSL while scrolling downwards, or by reducing the max speed setting using the QuickMenu. For instructions, refer to *Adjusting Ground Speed Limit, page 124*.

9. Once the lugging condition no longer exists:
 a. Set GSL (B) to **NOT MORE THAN HALF** maximum forward speed.
 b. For standard drive wheel: Adjust the maximum speed setting back to 43 km/h (27 mph). For instructions, refer to *Adjusting Ground Speed Limit, page 124*. For high torque drive wheel: Adjust the maximum speed setting back to 34.6 km/h (21.5 mph). For
Driving in Reverse in Engine-Forward Mode

WARNING

Back up slowly. Steering is opposite to normal when reversing. Hold steering wheel at the bottom and turn wheel in direction you want the rear of the machine to travel.

1. Move throttle lever (A) to a mid-range position.

 NOTE:
 Reversing in low speed range and at reduced engine speed is recommended since steering will be less sensitive than at higher speed settings.

2. Move the ground speed lever (GSL) (B) rearward to desired speed.

CAUTION

Check to be sure all bystanders have cleared the area.

3. Steer as shown.

Spin Turning

Hydrostatic steering provides significantly more maneuverability than mechanical steering.

CAUTION

Be sure area is clear before making turns. Although windrower pivots on the spot, the ends of the header travel faster and in a large arc.
1. Move ground speed lever (GSL) (A) out of PARK towards the seat and hold.
2. Slowly turn the steering wheel in the desired direction of turn. The windrower will pivot between the drive wheels.
3. To increase the turn radius, slowly move the GSL away from NEUTRAL. Remember that this will increase ground speed as well.
4. To stop the turn, slowly turn the steering wheel back to its centered position.

Stopping

⚠️ **WARNING**

Do NOT move the ground speed lever (GSL) rapidly back to NEUTRAL. You may be thrown forward by a sudden stop and the wheels may skid, reducing steering control. Always wear a seat belt when operating the windrower.

⚠️ **CAUTION**

Park on a flat, level surface with the ground speed lever (GSL) in PARK position and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

1. Anticipate stopping and SLOWLY return the ground speed lever (GSL) (A) to NEUTRAL and into PARK.
2. Turn the steering wheel until it locks.
3. Move throttle lever (B) to low-idle position.

IMPORTANT:

Before stopping the engine, run at low idle for approximately 5 minutes to cool hot engine parts and allow the turbocharger to slow down while engine oil pressure is available.

NOTE:

Avoid unnecessary idling. Stop the engine if it will be idling for longer than 5 minutes.

NOTE:

Brakes are automatically engaged when steering wheel is locked in PARK position.
4. Turn the ignition key counterclockwise to OFF position.
Viewing Performance Data

You can check current performance information on Run Screen 3 on the Harvest Performance Tracker (HPT) display.

Figure 4.44: Run Screen 3 – Performance Data

To display the windrower’s performance data:

1. Press soft key 3 (A) on the Harvest Performance Tracker (HPT) to open the PERFORMANCE DATA display.

 NOTE:
 Soft keys 1–5 also function as buttons within menus.

 NOTE:
 The sub acres can also be reset from this screen. Press the HPT scroll knob to highlight and select the sub acres. If you press the HPT scroll knob a second time, the message RESET OR EXIT appears on the display. Select RESET to reset the sub acres to zero and return to the same highlighted sub acres. Select EXIT or press the BACK or HOME button to dismiss the message without resetting the sub acres.

You can view:

- Sub acres (A)
- Acres per hour (B)
- Fuel used per hour (C)
- Fuel used per acre (D)

Figure 4.45: HPT Display
Viewing Engine Cooling Data

You can check current engine cooling information on Run Screen 4 on the Harvest Performance Tracker (HPT) display.

Figure 4.46: Run Screen 4 – Cooling Data

To display the windrower’s cooling data:

1. Press soft key 4 (A) on the Harvest Performance Tracker (HPT) to open the COOLING DATA display.

 NOTE:
 Soft keys 1–5 also function as buttons within menus.

 NOTE:
 The engine fan speed will increase/decrease, depending on cooling requirements. A small fan icon will appear beside the icon of the parameter that is currently controlling the fan.

 NOTE:
 The engine fan will automatically reverse on a set time interval, or when one of the system temperatures gets high enough. No operator input is required to reverse the fan.

You can view

- Fan speed
- Engine air intake temperature
- Engine coolant temperature

Figure 4.47: HPT Display
4.3.6 Transporting

Driving on Road in Engine-Forward Mode

The M1170 Windrower is designed to be driven on the road with the engine facing forward to provide better visibility for the Operator and improved stability for the machine.

Windrowers sold in North America can also be driven on roads in cab-forward mode, with or without a header attached, but at a reduced speed, under restricted conditions. For instructions, refer to Driving on Road in Cab-Forward Mode, page 135.

⚠️ CAUTION

Windrowers sold outside of North America: Do NOT drive windrower on the road in cab-forward mode, as lighting and marking will not be compliant with road regulations.

⚠️ WARNING

Collision between windrower and other vehicles may result in injury or death.

⚠️ WARNING

When driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles in front and rear of windrower if required by law.
- Use slow-moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box.

⚠️ WARNING

Do NOT drive windrower on a road or highway at night or in conditions that reduce visibility, such as fog or rain. The width of the windrower may not be apparent under these conditions.

⚠️ CAUTION

Check local laws for width regulations and lighting and marking requirements before transporting on roads.

Before driving windrower on a roadway:

1. Ensure header engage switch (A) is off (down position).
2. Clean and ensure flashing amber lights, red tail lights, and head lights are working properly.
3. Clean all reflective surfaces and slow moving vehicle signs.
4. Adjust interior rear view mirror and clean windows.
5. Ensure header (if attached) is fully raised and header lift safety props are engaged.
6. If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box. For instructions, refer to Preparing Windrower to Tow a Header, page 139.
7. If towing a header, refer to *Towing Header with Windrower, page 138.*

8. Press switch (A) for road lights. Always use these lights when driving windrower on roads.

9. Press switch (B) for high/low beams as required when other vehicles are approaching.

IMPORTANT:
Do NOT use field lights on the road; other drivers may be confused by them.

10. Press switch (C) to activate beacons.

11. Press switch (D) to activate hazard lights.

12. Set the desired maximum ground speed limit. For instructions, refer to *Adjusting Ground Speed Limit, page 124.*

NOTE:
Maximum ground speed can be set while the windrower is moving. Anticipate acceleration or deceleration if changing maximum speed while moving.

13. Slowly push throttle (A) to full forward (operating speed).

CAUTION
Check to be sure all bystanders have cleared the area.

15. Move the GSL (B) out of PARK and slowly forward to desired speed.

16. If towing a header, refer to *Towing Header with Windrower, page 138.*
WARNING

To avoid serious injury or death from loss of control:

- Do NOT make abrupt changes in steering direction.
- Anticipate turns and steep slopes by slowing down well in advance. Before making an abrupt turn, pull back on the ground speed lever (GSL) as steering is more responsive at reduced speeds.
- Do NOT rapidly accelerate or decelerate while turning.

When traveling on steep slopes:

- Move GSL closer to NEUTRAL to reduce speed.
- Lower header.
- If the ground speed is greater than or equal to 51 km/h (30 mph), the HPT will display a warning message (SLOW DOWN) with an audible alert. Move GSL closer to NEUTRAL to reduce speed.

With header removed, steering control is reduced if weight is not added to drive wheels. If you must drive the windrower without header or MacDon weight system:

- Do NOT exceed minimum speed setting.
- Avoid loose gravel and slopes.
- Do NOT tow a header.
- If control of machine is lost, immediately pull GSL to NEUTRAL.

Driving on Road in Cab-Forward Mode

The M1170 Windrower is capable of being driven on the road in cab-forward mode, with or without a header attached, but at a reduced speed, under restricted conditions, and only for models sold in North America.

WARNING

Windrowers sold outside of North America: Do NOT drive windrower on the road in cab-forward mode, as lighting/reflector visibility will not be compliant with road regulations.

WARNING

Collision between windrower and other vehicles may result in injury or death.

WARNING

When driving windrower on public roadways:

- Obey all highway traffic regulations in your area. Use pilot vehicles in front and rear of windrower if required by law.
- Use slow-moving vehicle emblem and flashing warning lights unless prohibited by law.
- If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box.

WARNING

Do NOT drive windrower on a road or highway at night or in conditions that reduce visibility, such as fog or rain. The width of the windrower may not be apparent under these conditions.
CAUTION

Check local laws for width regulations and lighting and marking requirements before transporting on roads.

Before driving windrower on a roadway:

1. Clean flashing amber lights, red tail lights, and head lights, and check that they work properly.
2. Clean all reflective surfaces and slow moving vehicle emblems.
3. Adjust interior rear view mirror and clean windows.
4. Ensure header engage switch (A) is off (down position).

CAUTION

Do NOT raise the header too high. Make sure you have good visibility out of the cab and that motorists are able to see the header lights.

5. Raise the header (if attached) enough to clear common obstacles, and then engage the header lift safety props.
6. If width of attached header impedes other vehicle traffic, remove header and install a MacDon approved weight box. For instructions, refer to Preparing Windrower to Tow a Header, page 139.
7. Press switch (A) to turn on lights. Always use these lights on roads to provide warning to other vehicles.
8. Use high/low switch (B) as required when other vehicles are approaching.
 IMPORTANT:
 Do NOT use field lights on the road; they may confuse other drivers.
9. Press switch (C) to turn on beacons.
10. Press switch (D) to turn on hazard lights.
11. Set the desired maximum ground speed limit. For instructions, refer to *Adjusting Ground Speed Limit, page 124*.

NOTE:
Maximum ground speed can be set while the windrower is moving. Anticipate acceleration or deceleration if changing maximum speed while moving.

12. Slowly push throttle (A) to full forward (operating speed).

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

13. Move the GSL (B) out of PARK and slowly forward to desired speed.

⚠️ **WARNING**
To avoid serious injury or death from loss of control:
- Do NOT make abrupt changes in steering direction.
- Anticipate turns and steep slopes by slowing down well in advance. Before making an abrupt turn, pull back on the ground speed lever (GSL) as steering is more responsive at reduced speeds.
- Do NOT rapidly accelerate or decelerate while turning.

When traveling on steep slopes:
- Move GSL closer to NEUTRAL to reduce speed.
- Lower header.
- If the ground speed is greater than or equal to 51 km/h (30 mph), the HPT will display a warning message (SLOW DOWN) with an audible alert. Move GSL closer to NEUTRAL to reduce speed.

With header removed, steering control is reduced if weight is not added to drive wheels. If you must drive the windrower without header or MacDon weight system:
- Do NOT exceed minimum speed setting.
- Avoid loose gravel and slopes.
- Do NOT tow a header.
- If control of machine is lost, immediately pull ground speed lever (GSL) to NEUTRAL.
Towing Header with Windrower

The windrower can be used to tow a MacDon draper header that has the Slow Speed Transport option installed. Ensure the optional weight box is installed on the windrower to transfer weight to the lift arms. For instructions, refer to Preparing Windrower to Tow a Header, page 139.

WARNING

- A windrower without a header or weight box must NOT be used to tow headers due to reduced traction and possible loss of control.
- For towed equipment without brakes, do NOT exceed 32 km/h (20 mph).

CAUTION

- To tow a header with an M1170 Windrower, the header must be equipped with the appropriate equipment to comply with local regulations.
- Before towing, verify signal lighting and safety equipment is installed and functioning properly.
- Do NOT exceed the combined gross vehicle weight (CGVW) specified in Table 4.2, page 138.
- To prevent damage and/or loss of control, ensure the machine and attached equipment are within the following weight limits:

<table>
<thead>
<tr>
<th>Table 4.2 Maximum Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Maximum GVW (includes mounted implements)</td>
</tr>
<tr>
<td>Maximum CGVW (includes towed and mounted implements)</td>
</tr>
<tr>
<td>Weight on both drive wheels (A)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maximum weight on both caster tires (B)</td>
</tr>
</tbody>
</table>
Preparing Windrower to Tow a Header

1. Attach the header to the windrower. For instructions, refer to *Attaching a D1X or D1XL Series Draper Header, page 155.*

![Figure 4.57: Windrower with Header](image)

2. Convert header to transport mode. For instructions, refer to header operator’s manual.

3. Detach the header from the windrower. For instructions, refer to *Detaching a D1X or D1XL Series Draper Header, page 163.*

4. Remove hairpin (D) and clevis pin (C) securing header support (B) to leg (A). Retain pins for attaching weight box.

5. Remove header support (B) from windrower lift leg (A).

6. Repeat above step for opposite support.

![Figure 4.58: Draper Header Support](image)

7. Drive windrower so that lift legs (A) are positioned into the weight box (B) pockets. Raise lift legs slightly.

8. Shut down the engine, and remove the key from the ignition.

9. Install locking pin (C) into pocket and secure with hairpin (D). Repeat for opposite leg.

NOTE:
Pins were previously removed from the header supports.

![Figure 4.59: Windrower Lift Linkage](image)
10. Attach slow speed transport hitch (A) to the weight box tongue (B) with drawbar pin, and secure with lynch pin. Attach safety chain (C).

11. Connect hitch harness to electrical socket at front of weight box.

12. Start the engine. For instructions, refer to Starting the Engine, page 115.

13. Raise weight box until tow bar is level. The header is now ready for transport. For instructions, refer to Towing Header with Windrower, page 138.

Towing the Windrower – Emergency

Towing the windrower is NOT recommended. If the windrower gets stuck, or must be towed onto a truck or trailer, follow these steps:

IMPORTANT:

- NEVER attempt to start the windrower by towing it. Serious damage to the final drives may occur.
- Failure to disengage final drives before towing will result in serious transmission damage.
- Only tow the windrower for a short distance, on level ground, and at slow speed.

⚠️ DANGER

Uncontrolled heavy equipment. With final drives disengaged (turned inward), brakes and steering do NOT work. After towing, place blocks under front and rear wheels to prevent uncontrolled movement.
1. Before towing the vehicle, disengage the final drives. For instructions, refer to *Engaging and Disengaging Final Drives, page 141.*

2. Use attachment points (A) to tow if windrower gets stuck, or when pulling onto a truck or trailer for transport.

3. When towing is complete, place blocks under front and rear wheels to prevent uncontrolled movement.

4. Engage final drives. For instructions, refer to *Engaging and Disengaging Final Drives, page 141.*

Engaging and Disengaging Final Drives

Disengage and engage final drives as follows:

⚠️ **WARNING**

Park on a flat, level surface, and chock wheels to prevent unexpected rolling when disengaging final drive.

1. Remove two bolts (A) at the center of the drive wheel.

2. Remove cap (B) and flip it over so that the convex side faces in. The cap presses a pin that disengages the gearbox.

3. Reinstall bolts (A) to secure cap (B).

4. Repeat the previous steps on the other drive wheel.

5. After towing, reverse cap (B) to engage the final drives. Be sure the pin at the center of the wheel pops out to engage the drive.

NOTE:

Engaging the final drives may require rocking the wheels slightly.
4.3.7 Storing the Windrower

Follow these steps to prepare your windrower for storage at the end of the season:

WARNING
NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials are toxic and can be flammable.

CAUTION
NEVER operate engine in a enclosed building. Proper ventilation is required to avoid exhaust gas hazards.

CAUTION
When working with batteries, remove metal jewelry and NEVER allow a metal object (such as a wrench) to touch across the battery terminals. A short circuit can produce an extremely hot spark causing severe injuries.

1. Retract all cylinders to protect the cylinder rods from corrosion during storage:
 - Header lift cylinders
 - Float cylinders
 - Header tilt cylinder
2. Check for broken components and order replacements from your Dealer. Attending to these items right away will save time and effort at beginning of next season.
3. Tighten loose hardware and replace any missing hardware. Refer to 8.1 Torque Specifications, page 401.
4. Clean the windrower thoroughly.
5. Repaint all worn or chipped painted surfaces to prevent rust.
6. Fill the fuel tank to prevent condensation.
7. Drain the diesel exhaust fluid (DEF) tank when storing for 6 MONTHS OR LONGER. For instructions, refer to Draining the Diesel Exhaust Fluid Tank, page 253.
8. Change the oil at the end of the season to remove acids and other by-products of combustion from the engine.
9. Test engine coolant antifreeze concentration to ensure it is sufficient to protect engine against lowest expected temperature.
10. Drain the windshield washer tank or ensure the fluid can endure the lowest expected temperatures.
11. Lubricate the windrower thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads and sliding surfaces of components.
12. Remove the batteries. For instructions, refer to Removing a Battery, page 331. Bring batteries to full charge, and store in a cool, dry place not subject to freezing.
13. If possible, block up windrower to take weight off tires. If this is not possible, increase tire pressure by 25% for storage. Adjust to recommended operating pressure before next use.
 IMPORTANT:
 Do NOT exceed the maximum pressure specified on the tire sidewall.
14. Store the windrower in a dry, protected place.
15. If stored outside, seal the air cleaner intake and exhaust pipe with plastic bags and/or waterproof tape.
16. If stored outside, cover the windrower with a breathable cover. Avoid plastic covers that can trap humidity.
4.4 Attaching and Detaching a Header

4.4.1 A40DX Auger Header

Attaching an A40DX Auger Header

The windrower may have an optional self-aligning hydraulic center-link that allows vertical position control of the center-link from the cab.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove hairpin (A) from pin (B), and remove the pin from header supports (C) on both sides of the header.

CAUTION

Check to be sure all bystanders have cleared the area.

2. Start the engine. For instructions, refer to *Starting the Engine, page 115.*

IMPORTANT:

When lowering the header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released to prevent damage to the header lift linkages.

NOTE:

If not prompted by the Harvest Performance Tracker (HPT) display to remove float, remove float manually by doing the following:
3. Press HPT scroll knob (A) to highlight QuickMenu options.

4. Rotate HPT scroll knob (A) to highlight the HEADER FLOAT symbol (B) and press the scroll knob to select.

5. On FLOAT ADJUST PAGE, press soft key 3 (A) to remove float.

6. Press the HEADER DOWN switch (A) on the ground speed lever (GSL) to fully retract header lift cylinders.

7. For hydraulic center-link with self-alignment, press the REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
8. If the hydraulic center-link self-alignment kit is not installed, relocate pin (A) in frame linkage as required to raise the center-link (B) until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

9. Drive the windrower slowly forward so feet (A) on the windrower enter supports (B) on the header. Continue to drive slowly forward until the feet engage the supports, and the header nudges forward.

10. If the hydraulic center-link self-alignment kit is installed, adjust position of the center-link cylinder (A) with switches on the GSL until the hook (B) is above the header attachment pin.

11. For hydraulic center-link without self-alignment, push down on the rod end of link cylinder (C) until the hook engages and locks onto the header pin.

IMPORTANT:
Hook release (D) must be down to enable the self-locking mechanism. If the release is open (up), manually push it down after the hook engages the header pin.

12. For hydraulic center-link with self-alignment, lower center-link (A) onto the header with REEL DOWN switch on the GSL until it locks into position (hook release [D] is down).

13. For hydraulic center-link with self-alignment, check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

CAUTION

Check to be sure all bystanders have cleared the area.

14. Press the HEADER UP switch (A) to raise header to maximum height.

15. If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:

 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.

 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

 NOTE:

 This procedure may have to be repeated if there is air in the system.

16. Shut down the engine, and remove the key from the ignition.

17. Engage the safety props on both lift cylinders as follows:

 a. Pull lever (A) toward you to release, and then rotate toward header to lower the safety prop onto the cylinder.

 b. Repeat for the opposite lift cylinder.

 IMPORTANT:

 Ensure the safety props engage over the cylinder piston rods. If the safety prop does **NOT** engage properly, raise the header until the safety prop fits over the rod.

18. Install clevis pin (A) through the support and foot, and secure with a hairpin. Repeat for the opposite support.

 IMPORTANT:

 Ensure clevis pin (A) is fully inserted and the hairpin is installed behind bracket.
19. Remove the lynch pin from clevis pin (A) in stand (B).
20. Hold stand (B) and remove pin (A).
21. Move the stand to storage position by inverting and relocating onto bracket as shown. Reinsert clevis pin (A) and secure with the lynch pin.

22. Disengage the safety props on both lift cylinders as follows:

 NOTE:
 If the safety prop will **NOT** disengage, raise the header to release the prop.
 a. Turn lever (A) away from the header to raise the safety prop until the lever locks into the vertical position.
 b. Repeat for the opposite cylinder.
23. Repeat for the opposite side.

CAUTION

check to be sure all bystanders have cleared the area.

24. Start the engine and press HEADER DOWN switch (A) on GSL to fully lower the header.
25. Press rotary scroll knob (A) on the HPT to highlight the QuickMenu options.

26. Rotate scroll knob (A) to highlight the HEADER FLOAT symbol (B). Press the scroll knob to select.

27. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

28. Rotate scroll knob (A) to adjust the float setting and press the knob when finished.

IMPORTANT:
Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust the float in increments of 0.05 to optimize field performance.

29. Shut down the engine, and remove the key from the ignition.

30. Grasp one end of the auger header and lift. Lifting force should be 335–380 N (75–85 lbf) at both ends.

31. Proceed to *Connecting A40DX Auger Hydraulics, page 148.*

Connecting A40DX Auger Hydraulics

CAUTION
Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

1. Approach platform/stair unit (A) on the left cab-forward side of the windrower and ensure the cab door is closed.

2. Push latch (B), and pull platform (A) toward the walking beam until it stops and the latch engages.
3. Retrieve hydraulic multicouplers (A) and electrical harness (B) from the header.

4. Route the hose/harness bundle toward the windrower through support (C).

5. Insert hose support (B) into hole (A) in the windrower left leg, and route the header hose bundle (C) under the windrower to the hydraulic and electrical couplers.

6. Clean the multicouplers and receptacles to prevent contamination.

7. Push button (A) on the rear multicoupler receptacle and rotate handle (B) away from the windrower.

8. Open cover (C) and position multicoupler (D) onto the receptacle. Align the pins in the coupler with slots in handle (B), and rotate the handle toward the windrower so that the coupler is locked onto the receptacle and button (A) snaps out.

9. Push button (E) on the front multicoupler receptacle and rotate handle (F) away from the windrower.

10. Open cover (G) and position multicoupler (H) onto the receptacle. Align the pins in the coupler with slots in the handle, and rotate the handle toward the windrower so that the coupler is locked onto the receptacle and button (E) snaps out.
OPERATION

M1170 configured with R1 Hydraulic Drive Bundle (B6621):

11. If switching from a rotary header to an auger header, remove hose (A) from storage location (B) and connect to knife pressure receptacle (C) on the frame.

12. Remove cover from receptacle (A), and connect the electrical harness from the header.

Detaching an A40DX Auger Header

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **DANGER**

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.
1. Start engine and press HEADER UP button (A) on ground speed lever (GSL) to raise header to maximum height.

2. If one end of the header does **NOT** raise fully, rephase the cylinders as follows:
 a. Press and hold the HEADER UP (A) switch until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

3. Shut down the engine, and remove the key from the ignition.

4. Engage the safety props on both lift cylinders as follows:
 a. Pull lever (A) toward you to release, and then rotate toward header to lower the safety prop onto the cylinder.
 b. Repeat for the opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over the cylinder piston rods. If the safety prop does **NOT** engage properly, raise the header until the safety prop fits over the rod.

5. Remove hairpin from the clevis pin (A) and remove clevis pin from header support (B) on both sides.
6. Lower stand (A) by pulling clevis pin (B), inverting stand, and relocating on bracket. Reinsert pin (B) and secure with hairpin.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

7. Disengage the safety props on both lift cylinders as follows:

 NOTE:
 If the safety prop will NOT disengage, raise the header to release the prop.
 a. Turn lever (A) away from the header to raise the safety prop until the lever locks into the vertical position.
 b. Repeat for the opposite cylinder.

8. Start the engine. For instructions, refer to Starting the Engine, page 115.

9. Lower the header fully.

10. Activate HEADER TILT UP (A) and HEADER TILT DOWN (B) cylinder switches on GSL to release the load on center-link cylinder.

11. Shut down the engine, and remove the key from the ignition.
12. Lift hook release (A) and lift hook (B) off header pin.

NOTE:
If optional center-link self-alignment kit is installed, lift release (A) and then operate the link lift cylinder with the REEL UP switch on the GSL to disengage the center-link from the header.

13. Disconnect header drive hydraulics (A) and electrical harness (B) from the windrower.

14. Place the hydraulics/electrical bundle (A) in storage position on the header.

15. Back windrower slowly away from header.
16. Reinstall clevis pin (B) into header support (C) and secure with hairpin (A). Repeat for opposite side.

Figure 4.96: Header Support

4.4.2 D1X or D1XL Series Draper Header

Attaching Draper Header Supports

Draper header supports are required to attach a D1X or D1XL Series Draper Header to the windrower.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

If not installed, attach the draper header support (supplied with the header) to the windrower lift linkage as follows:

1. Remove the hairpin and clevis pin (B) from draper header support (A).

Figure 4.97: Draper Header Support
2. Position draper header support (B) on lift linkage (A), and reinstall clevis pin (C).

NOTE:
To avoid the pin snagging the windrow, install the clevis pin on the outboard side of the draper header support.

3. Secure clevis pin (C) with hairpin (D).
4. Repeat for the opposite lift linkage.

Attaching a D1X or D1XL Series Draper Header

The windrower may have an optional self-aligning hydraulic center-link that allows vertical position control of the center-link from the cab.

NOTE:
Draper header supports must be installed onto the windrower lift linkage before starting this procedure. For instructions, refer to *Attaching Draper Header Supports, page 154.*

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. **For windrowers without the self-aligning center-link kit:**
 Relocate pin (A) in the frame linkage as required to raise the center-link (B) until the hook is above the attachment pin on the header.

IMPORTANT:
If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.
3. Remove hairpin (A) from pin (B), and remove pin (B) from header leg. Repeat on the opposite header leg.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

4. Start the engine. For instructions, refer to *Starting the Engine, page 115.*

⚠️ **CAUTION**
When lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released to prevent damage to the header lift linkages.

NOTE:
If not prompted by the Harvest Performance Tracker (HPT) display to remove float, remove float manually as follows:

5. Press scroll knob (A) on the HPT to display the QuickMenu system.
6. Rotate scroll knob (A) to highlight HEADER FLOAT symbol (B), and press the scroll knob to select.
7. On the FLOAT ADJUST page, press soft key 3 (A) to remove float.

8. For windrowers equipped with the self-aligning center-link kit:
 a. Press the HEADER DOWN switch (E) on the ground speed lever (GSL) to fully retract the header lift cylinders.
 b. Press the REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

9. Drive the windrower slowly forward until draper header supports (A) enter header legs (B). Continue driving slowly forward until lift linkages contact the support plates in the header legs and the header nudges forward.

10. Ensure that lift linkages are properly engaged in the header legs and are contacting the support plates.
11. **Self-Aligning Hydraulic Center-Link:**

 a. Adjust the position of center-link cylinder (A) with the switches on the GSL until hook (B) is above the header attachment pin.

 IMPORTANT:
 Hook release (C) must be down to enable the self-locking mechanism.

 b. If hook release (C) is open (up), shut down the engine, and remove the key from the ignition. Manually push hook release (C) down after the hook engages the header pin.

 c. Lower center-link (A) onto the header with REEL DOWN switch on the GSL until the center-link locks into position and hook release (C) is down.

 d. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.

12. **Hydraulic Center-Link without Self-Alignment:**

 a. Press HEADER TILT UP or HEADER TILT DOWN cylinder switches on the GSL to extend or retract center-link cylinder until the hook is aligned with the header attachment pin.

 b. Shut down the engine, and remove the key from the ignition.

 c. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:
 Hook release must be down to enable self-locking mechanism. If the hook release is open (up), manually push it down after hook engages pin.

 d. Check that center-link (A) is locked onto header by pulling upward on rod end (B) of cylinder.

 CAUTION
 Check to be sure all bystanders have cleared the area.

 e. Start the engine.
13. Press HEADER UP switch (A) to raise header to maximum height.

NOTE:
If one end of the header does **NOT** fully raise, rephase the lift cylinders as follows:

a. Press and hold HEADER UP switch (A) until both cylinders stop moving.

b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

14. Shut down the engine, and remove the key from the ignition.

15. Engage the safety props on both lift cylinders as follows:

a. Pull lever (A) toward you to release, and then rotate toward header to lower the safety prop onto the cylinder.

b. Repeat for the opposite lift cylinder.

IMPORTANT:
Ensure the safety props engage over the cylinder piston rods. If the safety prop does **NOT** engage properly, raise the header until the safety prop fits over the rod.

16. Install pin (B) through the header leg (engaging U-bracket in draper header support) on both sides and secure with a hairpin (A).

17. Raise header stand (D) to storage position by pulling spring pin (C) and lifting stand into uppermost position. Release spring pin.
18. Disengage the safety props on both lift cylinders as follows:

NOTE:
If the safety prop will NOT disengage, raise the header to release the prop.

a. Turn lever (A) away from the header to raise the safety prop until the lever locks into the vertical position.
b. Repeat for the opposite cylinder.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

19. Start engine and press HEADER DOWN switch (A) on GSL to fully lower header.

Connecting D1X or D1XL Series Draper Header Hydraulics

IMPORTANT:
To prevent contamination of the hydraulic system, use a clean rag to remove dirt and moisture from all (fixed and movable) hydraulic couplers.

1. Push link on latch (C) and pull handle (A) on hose management system (B) rearward to disengage arm from the latch.

2. Move hose management system (B) toward the left cab-forward side of the windrower.
3. Connect hydraulic hose management system (A) to the windrower by securing ball joint (B) into latch support (C) on the windrower leg.

4. Open the platform. For instructions, refer to 5.4.1 Opening Platform, page 249.

M1170 configured with R1 Hydraulic Drive kit (MD #B6621):

5. If switching from a rotary header to a draper header, remove hose (A) from storage location (B) and connect to knife pressure receptacle (C) on the frame.

Figure 4.14: Hydraulic Hose Management System

Figure 4.15: Knife Pressure Hose Positions
1 - Hose in Storage Position (Rotary Configuration)
2 - Hose to Knife Pressure Receptacle (Auger/Draper Configuration)
6. Retrieve draper drive and reel control multicoupler (A) from the hose management system.

7. Push knob (B) on hydraulic receptacle and pull handle (C) fully away from the windrower.

8. Open cover (D) and position coupler onto the receptacle. Align the pins in the coupler with slots in handle (C) and push the handle toward the windrower so that the coupler locks onto the receptacle and knob (B) snaps out.

9. Remove hose quick-disconnect (F) from the storage location and connect to receptacle on the frame.

NOTE:
Hose quick-disconnect (F) is only present on M1240 machines configured for draper headers, and on M1170 machines with the R1 Series Hydraulic Drive kit (MD #B6621) installed.

10. Remove the cover from electrical connector (E), push the electrical connector onto the receptacle, and secure it by turning the collar on the electrical connector clockwise.

11. Retrieve knife and reel drive multicoupler (A) from the hose management system.

12. Push knob (B) on the hydraulic receptacle and pull handle (C) fully away from the windrower.

13. Open cover (D) and position the coupler onto the receptacle. Align the pins in the coupler with the slots in handle (C), and push the handle toward the windrower so that the coupler locks onto the receptacle and knob (B) snaps out.

14. Close the platform. For instructions, refer to 5.4.2 Closing Platform, page 249.

15. Ensure hydraulic hose routing is as straight as possible and avoids potential rub/wear points.
Detaching a D1X or D1XL Series Draper Header

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Lower the header fully.
2. Raise the header fully.
3. Shut down the engine, and remove the key from the ignition.
4. Open the platform. For instructions, refer to 5.4.1 Opening Platform, page 249.
5. Push lock button (A) and pull handle (B) to disengage multicoupler (C). Disconnect the hydraulics from the rear knife/reel drive receptacle.

NOTE:
Firmly hold handle (B) when disconnecting the multicoupler (C). Pressure may cause the handle to kick back with force.

6. Route knife/reel drive hose bundle back to the storage position (D) on the hydraulic hose management system.
7. Remove any debris that may have accumulated on the receptacle. Close the cover (E).

8. Push lock button (B), and pull handle (C) to disengage multicoupler (A). Disconnect the hydraulics from the windrower draper drive/reel lift receptacle.
9. Disconnect electrical connector (E).
10. Remove any debris that may have accumulated on the windrower front receptacle, and close cover (D).
11. Route draper drive/reel hose bundle back to the storage position (A) on the hydraulic hose management system (B).

12. Insert electrical connector into storage cup (C).

13. Close the platform. For instructions, refer to 5.4.2 Closing Platform, page 249.

14. Disconnect hose management system (A) from windrower by pulling latch lever (B) to open the latch. Keep latch open and move hose management system (A) away from header with handle (C).

15. Pivot hose management system (B) forward with handle (A), and engage hook (D) into latch (C) on header.
16. Remove the header leg pin (B) by removing the hairpin (A) from header leg on both sides.

17. Lower header stand (D) by pulling spring loaded pin (C). Release spring pin to lock stand.

18. **Windrowers with self-aligning center-link:** Release the center-link latch (A) before returning to the cab.

19. Disengage the safety props on both lift cylinders as follows:

 NOTE:
 If the safety prop will **NOT** disengage, raise the header to release the prop.

 a. Turn lever (A) away from the header to raise the safety prop until the lever locks into the vertical position.
 b. Repeat for the opposite cylinder.

20. Repeat for the opposite side.

![Figure 4.124: Header Stand](image)

![Figure 4.125: Center-Link](image)

![Figure 4.126: Safety Prop Lever](image)

CAUTION

Check to be sure all bystanders have cleared the area.
21. Start the engine.

22. Remove header float when prompted by the Harvest Performance Tracker (HPT).

NOTE:
If not prompted by the HPT to remove float, remove float manually. For instructions, refer to *Removing and Restoring Float, page 184.*

23. Lower the header to the ground with HEADER DOWN switch (A).

24. Press HEADER TILT switches (B) as required on GSL to release load on center-link.

25. **Windrowers with self-aligning center-link:**
 a. Press the REEL UP switch (C) to disengage center-link from header.
 b. Proceed to Step 27, *page 166.*

26. **Windrowers without self-aligning center-link:**
 a. Shut off the engine and remove the key.
 b. Disconnect center-link by lifting release (B) and lift hook (A) off header.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

 c. Start the engine.

27. Back windrower away from header.

28. Reinstall pin (A) into header leg, and secure with hairpin (B).
4.4.3 R1 Series Rotary Disc Header

Attaching R1 Series Rotary Disc Header

The windrower may have an optional self-aligning hydraulic center-link that allows vertical position control of the center-link from the cab.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. **Hydraulic Center-Link without Self-Alignment**: Remove pin (A) and raise center-link (B) until hook is above the attachment pin on header. Replace pin (A) to hold center-link in place.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

2. Remove hairpin (A) from clevis pin (B), and remove pin from header support (C) on both sides of the header.

3. Start the engine. For instructions, refer to *Starting the Engine, page 115*.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.
CAUTION

When lowering header lift legs without a header or weight box attached to the windrower, ensure the float springs tension is fully released to prevent damage to the header lift linkages.

If not prompted by the Harvest Performance Tracker (HPT) display to remove float, remove float manually by doing the following:

4. Press rotary scroll knob (A) on HPT display to highlight QuickMenu options.

5. Rotate scroll knob (A) to highlight the HEADER FLOAT symbol (B), and press scroll knob to select. The header float adjust screen displays.

6. Press soft key 3 (A) to remove the header float.

NOTE:
If the header float is active, the icon at soft key 3 will display REMOVE FLOAT; if header float has been removed, the icon will display RESUME FLOAT.
7. Press HEADER DOWN switch (E) on ground speed lever (GSL) to fully retract header lift cylinders.

8. **Self-Aligning Hydraulic Center-Link**: Press REEL UP switch (B) on the GSL to raise the center-link until the hook is above the attachment pin on the header.

 IMPORTANT:
 If the center-link is too low, it may contact the header as the windrower approaches the header for hookup.

9. Drive the windrower slowly forward until feet (A) enter supports (B). Continue to drive slowly forward until feet engage the supports and header nudges forward.

10. Ensure feet (A) are properly engaged in supports (B).

11. **Self-Aligning Hydraulic Center-Link**:

 a. Adjust the position of center-link cylinder (A) with the switches on the GSL until hook (B) is above the header attachment pin.

 IMPORTANT:
 Hook release (C) must be down to enable the self-locking mechanism.

 b. If hook release (C) is open (up), shut down the engine, and remove the key from the ignition. Manually push hook release (C) down after the hook engages the header pin.

 c. Lower center-link (A) onto the header with REEL DOWN switch on the GSL until the center-link locks into position and hook release (C) is down.

 d. Check that center-link is locked onto header by pressing the REEL UP switch on the GSL.
12. **Hydraulic Center-Link without Self-Alignment:**

 a. Press HEADER TILT UP or HEADER TILT DOWN cylinder switches on the GSL to extend or retract center-link cylinder until the hook is aligned with the header attachment pin.

 b. Shut down the engine, and remove the key from the ignition.

 c. Push down on rod end of link cylinder (B) until hook engages and locks onto header pin.

 IMPORTANT:

 Hook release must be down to enable self-locking mechanism. If the hook release is open (up), manually push it down after hook engages pin.

 d. Check that center-link (A) is locked onto header by pulling upward on rod end (B) of cylinder.

 ![Figure 4.138: Hydraulic Center-Link](image)

CAUTION

Check to be sure all bystanders have cleared the area.

 e. Start the engine.

13. Press HEADER UP switch (A) to raise the header to maximum height.

 NOTE:

 If one end of the header does NOT fully raise, rephase the lift cylinders as follows:

 a. Press and hold HEADER UP switch (A) until both cylinders stop moving.

 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

14. Shut down the engine, and remove the key from the ignition.

15. Engage the safety props on both lift cylinders as follows:

 a. Pull lever (A) toward you to release, and then rotate toward header to lower the safety prop onto the cylinder.

 b. Repeat for the opposite lift cylinder.

 IMPORTANT:

 Ensure the safety props engage over the cylinder piston rods. If the safety prop does NOT engage properly, raise the header until the safety prop fits over the rod.
16. Install clevis pin (A) through support and windrower lift arm and secure with hairpin (B). Repeat for the opposite side of the header.

IMPORTANT:
Ensure clevis pin (A) is fully inserted, and hairpin is installed behind bracket.

17. Disengage the safety props on both lift cylinders as follows:

NOTE:
If the safety prop will **NOT** disengage, raise the header to release the prop.

a. Turn lever (A) away from the header to raise the safety prop until the lever locks into the vertical position.

b. Repeat for the opposite cylinder.

18. Start the engine and press HEADER DOWN switch (A) on GSL to fully lower header.

NOTE:
If not prompted by the HPT display to restore float, restore float manually.

19. Shut down the engine, and remove the key from the ignition.

Connecting R1 Series Rotary Disc Header Hydraulics to an M1170

IMPORTANT:
To prevent contamination of the hydraulic system, use a clean rag to remove dirt and moisture from all (fixed and movable) hydraulic couplers.
1. Approach platform/stair unit (A) on the left cab-forward side of the windrower and ensure the cab door is closed.

2. Push latch (B), and pull platform (A) toward the walking beam until it stops and the latch engages.

3. Open the platform. For instructions, refer to 5.4.1 Opening Platform, page 249.

4. Retrieve the hydraulic hoses from the header.

5. Attach hose support (A) to the frame near the windrower left cab-forward leg, and route hoses under frame.

 NOTE:
 Route hydraulic hoses as straight as possible, and avoid rub/wear points that could cause damage.
If switching from an auger/draper header to a rotary header:

6. Disconnect hose (A) from knife pressure receptacle (C) on frame, and move to storage location (B).

7. Attach couplers to receptacles on windrower as follows:
 a. Connect pressure hose female coupler to receptacle (A)
 b. Connect return hose male coupler to receptacle (B)
 c. Connect case drain hose coupler to receptacle (C)
 d. Connect the electrical harness to receptacle (D)

IMPORTANT:
The hydraulic hoses should have enough slack to pass by multicoupler (E) without coming into contact with it. This will protect the hoses from rubbing against the multicoupler and becoming damaged. You can increase slack in the hoses by loosening and adjusting the hose holder on the front windrower leg, and pulling the hoses backward toward the windrower.
8. Push latch (B) to unlock platform (A).

9. Pull platform (A) towards the cab until it stops and latch engages.

10. Close the platform. For instructions, refer to 5.4.2 Closing Platform, page 249.

Detaching R216 Rotary Disc Header from M1240 Windrower

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.
1. Start the engine, and press switch (A) to lower the header to the ground.

2. Shut down the engine, and remove the key from the ignition.

3. Open the left platform. For instructions, refer to the windrower operator's manual.

4. Disconnect hydraulic hoses (A), (B), and (C) from the windrower.

5. Install caps and plugs on open lines to prevent buildup of dirt and debris while in storage.

6. Remove hose support (A) and hose bundle from windrower frame.
7. Rest hydraulic hose bundle (A) on header for storage as shown.

8. Disconnect main header harness (A) from adapter harness (B).

9. Disconnect electric baffle control harness (C) from adapter harness (D) if installed.

10. Secure adapter harness (A) on the center link with an adjustable strap (B).
11. Remove hairpin (B) from clevis pin (A). Remove clevis pin from header support (C) on both sides of header.

Windrowers with center-link self-alignment kit only:

12. Release center-link latch (A) before returning to the cab.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

13. Start the engine. For instructions, refer to Starting the Engine, page 115.

14. Remove header float when prompted by the Harvest Performance Tracker (HPT).

NOTE:
If not prompted by the HPT to remove float, remove float manually.
Self-aligning center-link (if installed):

15. Use HEADER TILT cylinder switches (A) on GSL to release load on center-link cylinder.

16. Operate the link lift cylinder with REEL UP switch (B) to disengage the center-link from the header.

Non-self-aligning center-link:

17. Shut down the engine, and remove the key from the ignition.

18. Lift hook release (A) and lift hook (B) off header pin.

CAUTION

Check to be sure all bystanders have cleared the area.

19. Start the engine. For instructions, refer to Starting the Engine, page 115.

20. Back the windrower slowly away from header.

21. Reinstall clevis pin (A) through support (C) and secure with hairpin (B). Repeat for opposite side.
4.5 Adjusting Header Settings on the Harvest Performance Tracker

Before operating the header, ensure the Harvest Performance Tracker (HPT) settings are appropriate for your header.

1. Navigate to SETTINGS menu with soft key 5 and HPT scroll knob. For instructions, refer to 3.17.2 Navigating the Harvest Performance Tracker Display, page 79 if required.

2. Scroll to SET-UP HEADER option (A) and press the scroll knob to select it.

 NOTE:
 Settings vary depending on the header type.

3. Scroll to highlight appropriate option and press the scroll knob to select it.
 - For example, if a draper header is attached, and ATTACHMENTS (B) is selected, the available choice is DOUBLE DRAPER DRIVE.

4. Press BACK button (A) on the HPT to return to the previous level within the menu structure.

5. Press HOME button (B) on the HPT to return to the last selected run screen (or header disengaged screen).
4.6 Operating a Header

This section describes the operating instructions for the following header types when attached to a MacDon M1170 Windrower: A40DX Auger Header, D1XL Series Draper Header, D1X Series Draper Header, or R1 Series Rotary Disc Header. A variety of header options and attachments are available for use on headers powered by an M1170 Windrower. Refer to the header operator’s manual for a list of available options and attachments.

4.6.1 Engaging and Disengaging Header Safety Props

Safety props are located on both header lift cylinders on the windrower. Follow these steps to engage or disengage the header safety props:

⚠️ DANGER

To avoid bodily injury from fall of raised header, always engage safety props when working on or around raised header, and before going under header for any reason.

1. Start the engine. For instructions, refer to Starting the Engine, page 115.

2. Press the HEADER UP (A) switch to raise header to maximum height.

 NOTE:
 If one end of the header does NOT fully raise, rephase the lift cylinders as follows:
 a. Press and hold the HEADER UP switch (A) until both cylinders stop moving.
 b. Continue to hold the switch for 3–4 seconds. Cylinders are now phased.

3. Shut down the engine, and remove the key from the ignition.

4. Engage the safety props on both lift cylinders as follows:
 a. Pull lever (A) toward you to release, and then rotate toward header to lower the safety prop onto the cylinder.
 b. Repeat for the opposite lift cylinder.

 IMPORTANT:
 Ensure the safety props engage over the cylinder piston rods. If the safety prop does NOT engage properly, raise the header until the safety prop fits over the rod.
5. Disengage the safety props on both lift cylinders as follows:

 NOTE:
 If the safety prop will **NOT** disengage, raise the header to release the prop.

 a. Turn lever (A) away from the header to raise the safety prop until the lever locks into the vertical position.

 b. Repeat for the opposite cylinder.

6. Start the engine. For instructions, refer to *Starting the Engine, page 115*.

7. Lower the header fully.

8. Shut down the engine, and remove the key from the ignition.

4.6.2 Using Header Float

The windrower is equipped with float springs that are fully adjustable with hydraulic cylinders. Spring tension is adjustable from 0 to maximum tension through the Harvest Performance Tracker (HPT). The header float feature allows the header to closely follow ground contours and to respond quickly to sudden changes or obstacles. The float setting is ideal when the cutterbar is on the ground with minimal bouncing, scooping, or pushing soil.

IMPORTANT:
- Set header float as light as possible—without excessive bouncing—to avoid frequent breakage of knife components, scooping soil, or soil build-up at the cutterbar in wet conditions.
- Avoid excessive bouncing (resulting in a ragged cut) by operating at a slower ground speed when the float setting is light.
- Before setting header float, install header options (upper cross auger, skid shoes, transport kit, etc.). If the Slow Speed Transport (SST) tow bar will be stored on the header during operation, set float with tow bar in place.
- Adjust the float when adding or removing optional attachments that affect the weight of the header.

Checking Float

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION

Before starting the machine, check to be sure all bystanders have cleared the area.
1. Start the engine.

2. Use HEADER TILT switches (A) on the ground speed lever (GSL) to set the center-link to the mid-range position (5.0 on the Harvest Performance Tracker [HPT]).

3. If checking float with a draper header attached, set the reel to the normal operating position.

4. Using HEADER DOWN switch (B), lower the header fully and with the header lift cylinders fully retracted.

NOTE:
Ensure the header is level with the ground with zero tilt.

5. Turn the engine off, and remove the ignition key.

6. Grasp one end of the header and lift. The force required to lift the header should be the same at both ends (refer to Table 4.3, page 182).

Table 4.3 Target Header Float Values

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Force Required to Lift Header at the Ends with Lift Cylinder Fully Retracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper</td>
<td>335–380 N (75–85 lbf) with stabilizer/transport wheels raised (if equipped)</td>
</tr>
<tr>
<td>Auger</td>
<td>335–380 N (75–85 lbf)</td>
</tr>
<tr>
<td>Rotary Disc</td>
<td>426–471 N (95–105 lbf)</td>
</tr>
</tbody>
</table>

7. Restart the engine, and adjust float as required. For instructions, refer to Setting the Float, page 182.

NOTE:
Increasing the float value on the HPT makes the header feel lighter.

Setting the Float

The float can be set for windrowing with the cutterbar on the ground or with the cutterbar off the ground (normally used with the draper header).

Cutterbar on ground

The optimum float setting lets the header follow the contour of the terrain. Proceed as follows:

1. Press rotary scroll knob (A) on the HPT to display the QuickMenu system.

2. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.
3. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

4. Rotate scroll knob (A) to adjust float setting and press knob when finished. Float is now set.

NOTE:
Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments of 0.05 to optimize field performance.

5. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.

Cutterbar off ground – draper header only

The optimum float setting and stabilizer wheel setting lets the header cut the crop evenly with minimal bouncing. Proceed as follows:

1. Set center-link to mid-range position (5.0 on the Harvest Performance Tracker [HPT]). For instructions, refer to 4.6.4 Adjusting Header Angle, page 186.

2. Set cutting height with header height controls on the GSL. For instructions, refer to 4.6.5 Setting Cutting Height, page 188.

3. Press rotary scroll knob (A) on HPT to display the QuickMenu system.

4. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.
5. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.

6. Turn scroll knob (A) to adjust float setting and press knob when finished.

IMPORTANT:
Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments of 0.05 to optimize field performance.

7. The float is now set.

8. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.

Removing and Restoring Float

Follow these steps to remove and restore the header float settings:

1. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to display the QuickMenu system or press F1 on the console.

2. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.

3. Press soft key 3 (A) to remove or restore the header float.

NOTE:
If the header float is active, the icon at soft key 3 will say REMOVE FLOAT; if header float has been removed, the icon will say RESTORE FLOAT.

4.6.3 Header Drive

All header controls are conveniently located on the operator’s console and on the ground speed lever (GSL) handle.
NOTE:
Some controls are optional equipment and may not be present in your unit. Some controls may be installed, but will be nonfunctional for certain headers.

Engaging and Disengaging the Header
The HEADER ENGAGE switch engages and disengages the header drive.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

To engage header: Push and hold HEADER ENGAGE switch (A) down, while pulling up on the collar (B).

To disengage header: Push HEADER ENGAGE switch (A) down.

Reversing the Header

NOTE:
R1 Series Rotary Disc Headers do NOT have any reverse capability.

When reversing, the following header functions will turn in reverse:

- D1XL Series Draper Headers: knife
- D1X Series Draper Headers: knife
- A40DX Auger Headers: knife, conditioner, auger and reel
- A40DX GSS Auger Headers: knife, auger and reel

Reverse the header as follows:
OPERATION

1. Press and hold the HEADER DRIVE REVERSE button (A).
2. Press and hold HEADER ENGAGE switch (B). Pull up on collar (C), until switch (B) is in the ENGAGED position.
3. When you are ready to return to forward operation, release HEADER DRIVE REVERSE button (A) to stop the header.
4. Push down HEADER ENGAGE switch (B) to OFF position. The header can now be restarted. For instructions, refer to Engaging and Disengaging the Header, page 185.

Figure 4.175: Header Drive Controls

4.6.4 Adjusting Header Angle

Header angle is the angle between the ground and the drapers/cutterbar. It is adjustable to accommodate crop conditions and soil types.

Refer to the appropriate header operator’s manual for the range of adjustment and recommended settings for your particular header.

Figure 4.176: HPT Display and GSL

The header angle can be hydraulically adjusted from the cab without shutting down the windrower. A readout on the Harvest Performance Tracker (HPT) display indicates the header height (A) and header angle (B).
OPERATION

IMPORTANT:

- Changing header angle affects header float because it has the effect of making the header lighter or heavier. Adjust float as required. For instructions, refer to Setting the Float, page 182.

- To prevent excessive guard breakage when conditions are suited to lighter float (e.g., rocky), do NOT use the ground speed lever (GSL) tilt control (C) and (D) while in motion. Instead, use the header height (E) and (F) control.

Adjust the header angle as follows:

- To decrease (flatten) header angle, operate the HEADER TILT UP switch (C) on the GSL to retract the cylinder.
- To increase (steepen) header angle, operate the HEADER TILT DOWN switch (D) on the GSL to extend the cylinder.

NOTE:
The HEADER TILT switches (C) and (D) can be locked out to prevent unintentional header angle changes when pressing the header height control switches (E) and (F). For instructions, refer to 3.17.7 Activating Control Locks, page 98.

Checking Self-Locking Center-Link Hook

Periodically check the operation of the hook locking mechanism as follows and ensure that it is working properly:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. If a header is attached to the windrower, lower header to the ground.
2. Turn off the engine and remove the key from the ignition.
3. Pull up on handle (A) to release the locking device, and lift the hook off the header pin.
4. Lower handle (A) into the locked position.
5. Push up on lock pin (B) only (not the actuator rod [C]). Handle should catch on casting and pin should NOT lift.

Figure 4.177: Center-Link

Figure 4.178: Center-Link Hook
6. Push up on the actuator rod. The lock pin should lift with the handle.

4.6.5 Setting Cutting Height

Cutting height is adjusted by raising or lowering the header with the HEADER UP (A) or HEADER DOWN (B) switches on the ground speed lever (GSL).

Cutting height (A) is always displayed on the Harvest Performance Tracker (HPT) screen.
4.6.6 Double Windrowing

The Double Windrow Attachment (DWA) allows two conditioned windrows from an A40DX Auger Header to be laid down side-by-side for faster pickup.

Conditioned crop is deposited onto the side delivery draper and delivered beside the windrower.

Raising the side delivery system shuts off the draper and allows the crop to be deposited between the windrower wheels—as it would be without the side delivery system.

Refer to the MacDon Double Windrow Attachment (DWA) for M1 Series Windrowers Manual for complete setup, operating, and maintenance instructions. The manual is shipped with the DWA kit.

Double Windrow Attachment Deck Position

1. Raise and lower the Double Windrow Attachment (DWA) deck with REEL UP (A) and REEL DOWN (B) switches on ground speed lever (GSL), or on the operator’s console.

 NOTE:
 This can also be done with the One-Touch-Return. For instructions, refer to One-Touch-Return Buttons (A, B, C), page 73.
Double Windrow Attachment Conveyor Speed

The Double Windrow Attachment (DWA) conveyor speed is adjustable from the operator’s console. Press button (A) to increase the speed or button (B) to decrease the speed.

NOTE:
When DWA is attached, the conveyor speed adjustment buttons also control header draper speeds.

The DWA conveyor speed is also adjustable with the reel fore-aft switches on the GSL. Press switch (A) to increase speed or switch (B) to decrease speed.

4.6.7 One-Touch-Return

One-Touch-Return allows you to choose and apply three presets to the A, B, and C keys (A) on the ground speed lever (GSL). The presets can be set to control variables such as height, tilt, reel position, and speeds. For instructions, refer to *One-Touch-Return Buttons (A, B, C), page 73*.
4.6.8 Adjusting Header Raise and Lower Rates

To adjust header raise and lower rates, follow these steps:

1. On the Harvest Performance Tracker (HPT) press soft key 5 (A) to display the Header Lower/Raise menu.
2. Use the HPT scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown) to place the red cursor over the SETTINGS icon (C).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the SETTINGS icon (C).
4. Use the HPT scroll knob or the GSL scroll wheel to move the red cursor to the HEADER SETTINGS icon (A).
5. Press the HPT scroll knob or GSL SELECT button to display the SET-UP HEADER menu list.

NOTE:
The F4 shortcut button on the operator’s console also will display the SET-UP HEADER menu list.
6. Scroll to the HEADER LOWER/RAISE menu item (B), and press SELECT. A menu for adjusting header lower/raise rates opens with the last header setting as the default starting point.
7. The header lift/lower rate is adjustable in two stages. A half button press adjusts stage one: the slow rate, and a full button press adjusts stage two: the fast rate.

Scroll through the RAISE FIRST/RAISE SECOND and LOWER FIRST/LOWER SECOND menu selections, and program the following GSL buttons:

- HEADER RAISE (D): half press adjusts first (slow rate) stage, full press adjusts second (fast rate) stage
- HEADER LOWER (E): half press adjusts first (slow rate) stage, full press adjusts second (fast rate) stage
- ONE-TOUCH-RETURN buttons (A), (B), and (C): trigger header raise or lower presets.
4.7 Operating with D1X or D1XL Series Draper Header

For attachment instructions, refer to *Attaching a D1X or D1XL Series Draper Header, page 155.*

4.7.1 Header Position

For instructions, refer to *4.6 Operating a Header, page 180* for procedures for controlling header height, header tilt, and float.

4.7.2 Adjusting Reel Fore-Aft Position

The reel fore-aft position is adjusted with the multi-function switches on the ground speed lever (GSL).

Press and hold the switch for the desired movement; FORWARD (A) or AFT (B).

![Figure 4.191: Ground Speed Lever](image1.png)

4.7.3 Adjusting Reel Height

Press and hold the switch for the desired movement of the reel; UP (A) or DOWN (B).

![Figure 4.192: Ground Speed Lever](image2.png)

4.7.4 Leveling the Header

The windrower lift linkages are factory-set to provide the proper header level, and should not normally require adjustment. If leveling is required, follow these steps:

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
Before adjusting the header level, remove the float spring tension to ensure that lift linkages are not affected by the springs.

1. Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to display the QuickMenu system.

2. Rotate scroll knob (A) to highlight the header float symbol (B) and press scroll knob to select. The SET-UP FLOAT page displays.

3. Press soft key 3 (A) to remove float.

4. Park the windrower on level ground.

5. Press the header raise button (A) on the ground speed lever (GSL) until the header reaches maximum height. Continue to hold the header raise button for 3–4 seconds to rephase the lift cylinders.
6. Lower the header to approximately 150 mm (6 in.) off the ground.
7. Ensure that member (A) is against link (B).
8. Stop engine and remove the key from the ignition.
9. Measure the distance to the ground at both ends of the header to determine if the header is level.

CAUTION

Check to be sure all bystanders have cleared the area.

10. If adjustment is necessary, start engine and resume float. Lower the header onto the ground until member (A) lifts away from the link (B) on both sides.
11. Turn off the engine and remove the key.

12. On the side that is higher, remove nut, washer, and bolt (A) that attaches shims (B) to the linkage.
13. Remove one or both of the shims (B) and reinstall the hardware (A).

CAUTION

Check to be sure all bystanders have cleared the area.

14. Repeat Step 5, page 194 to Step 9, page 195 to rephase the cylinders and check the header level.
15. If additional adjustment is required, repeat Step 10, page 195 to Step 13, page 195, and install one of the removed shims on the opposite linkage.

16. Reset the header float. Refer to Setting the Float, page 182.

NOTE:
Additional shims are available from your Dealer.
4.7.5 Adjusting Reel Speed

Reel speed is displayed in either rpm, mph, or km/h (depending on the global units selection). The default reel speed is 60 rpm and can be set to auto or manual mode.

- AUTO mode: Minimum reel speed and operating reel speed differential relative to ground speed are set, and reel speed is maintained relative to ground speed. For instructions, refer to Setting Reel Speed in Auto Mode, page 196.
- MANUAL mode: Reel speed is set and is maintained regardless of ground speed. For instructions, refer to Setting Reel Speed in Manual Mode, page 198.

NOTE:
Both speed modes work with the One-Touch-Return feature. For example, button A on the GSL can be set for MANUAL mode and button B can be set for AUTO mode. For instructions, refer to One-Touch-Return Buttons (A, B, C), page 73.

Setting Reel Speed in Auto Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.
3. Turn knob to scroll to REEL setting (A) on the QuickMenu, and press knob to select it. The next page opens.

4. Scroll to mode field (A) and select it.

5. Scroll in pop-up window to AUTO and select it.

 NOTE:
 In AUTO mode, the speed is displayed in km/h or mph (B) which cannot be changed.

6. Scroll to and select the MINIMUM REEL SPEED setting (A) (this setting is grayed out in manual mode).

7. Turn scroll knob to adjust reel minimum speed to 1.6–8 km/h (1–5 mph) with 5 km/h (3.0 mph) as the default. Press scroll knob to select desired setting.

8. Scroll to INDEX value (C) and select it.

9. Turn scroll knob to set index value. The index range is +/- 8 km/h (5 mph) (zero, that is equal to ground speed, is the default). Press scroll knob to select desired setting.

 NOTE:
 The reel operates at reel minimum speed when the ground speed is less than the set minimum speed. Minimum reel speed is displayed (A) and MIN will replace the AUTO (B) +1.7 (C).
Setting Reel Speed in Manual Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

![Figure 4.204: Header Run Screen 1](image)

2. Press the scroll knob (A) or the SELECT button (B) on the ground speed lever (GSL) to display the QUICKMENU PAGE.

![Figure 4.205: HPT and GSL](image)

3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next page opens.

![Figure 4.206: Header QuickMenu](image)
4. Turn scroll knob to mode window (A) and press scroll knob to select it.
5. Scroll in pop-up window to MANUAL and press scroll knob to select it.
6. Scroll to units (B) and select desired unit (rpm, mph, or km/h).
7. Proceed to next step to adjust reel speed (C).

8. Use reel speed switches (A) on GSL to set reel speed. The desired speed increases 1 rpm (0.1 mph or 0.2 km/h if in mph / km/h) per momentary press, or continuous scrolling if switch is pressed and held.

Adjusting Reel Alarm Pressure

Adjusting the reel alarm allows the operator to set an alert to inform them that the reel is operating at a desired pressure. A lower setting will cause the alarm to be set off more often; a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Turn scroll knob to highlight reel pressure ALARM (A), and press knob to select it.

5. Turn knob to change the ALARM set-point in window (A). Scrolling past the highest setting turns the alarm off. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust reel alarm pressure set-point to desired value, and press knob to select it. Factory setting is 19,995 kpa (2900 psi).

4.7.6 Adjusting Draper Speed

Draper speed is displayed in mph or km/h (depending on the global units selection); the default is rpm, and can be set to auto or manual mode.

- AUTO mode: Draper speed is maintained relative to ground speed. For instructions, refer to Setting Draper Speed in Auto Mode, page 201.
MANUAL mode: Draper speed is manually set and is maintained independently of ground speed. For instructions, refer to Setting Draper Speed in Manual Mode, page 203.

NOTE:
Both speed modes work with the One-Touch-Return feature. For example, button A on the GSL can be set for MANUAL mode and button B can be set for AUTO mode. For instructions, refer to One-Touch-Return Buttons (A, B, C), page 73.

Setting Draper Speed in Auto Mode
This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) while in any run screen to display the QuickMenu system.
3. Turn knob and scroll to the DRAPER setting (A) on QuickMenu, and press knob to select it. The next page opens.

Figure 4.215: Header QuickMenu

4. Scroll to mode window (A) and select it.

5. Scroll in pop-up window to AUTO and select it.

NOTE:
In AUTO mode, the speed is displayed in km/h or mph (B).

Figure 4.216: Draper Header Draper Page

6. Scroll to and select the MINIMUM DRAPER SPEED setting (A) (this setting is grayed out in manual mode).

7. Turn scroll knob to adjust draper minimum speed to 1.6–8 km/h (1–5 mph) with 5 km/h (3.0 mph) as the default). Press knob to select desired setting.

8. Scroll to INDEX value (C) and select it.

9. Turn scroll knob to set index value. The index range is +/- 8 km/h (5 mph) (zero, i.e. equal to ground speed, is the default). Press knob to select desired setting.

NOTE:
The draper operates at MINIMUM SPEED when the ground speed + the reel index value is less than the set minimum speed. Minimum reel speed is displayed (A) and MIN will replace the AUTO +1.7 (B).

Figure 4.217: Draper Header Draper Page
Setting Draper Speed in Manual Mode

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.

3. Turn knob to scroll to DRAPER setting (A) on QuickMenu, and press knob to select it. The next page opens.
4. Turn scroll knob to mode window and press scroll knob to select it.

5. Scroll in the pop-up window to MANUAL (A) and press scroll knob to select it.

6. Set draper speed with console controls as follows:
 a. Press and quickly release DRAPER SPEED switch (A) to increase draper speed in 0.2 km/h (0.1 mph) intervals.
 b. Press and hold DRAPER SPEED switch (A) to increase draper speed in 2 km/h (1 mph) intervals.
 c. Similarly decrease draper speed with switch (B).

Adjusting Draper Alarm Pressure

Adjusting the draper alarm allows the operator to set an alert to inform them that the draper is operating at a desired pressure. A lower setting will cause the alarm to be set off more often; a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.

3. Turn knob to scroll to DRAPER setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Scroll to the DEFAULT DRAPER ALARM PRESSURE (A), and select it.

5. Change the alarm set-point by scrolling.Scrolling past the highest setting turns off the alarm. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust draper alarm pressure set-point to desired value, and press knob to select it. Factory setting is 19,995 kpa (2900 psi).
Draper Slip Warning

If the left or right draper idler roller begins to slip, a warning tone will sound and one of the following messages (A) will appear on the Harvest Performance Tracker (HPT) screen:

- Left draper slipping. Disengage header.
- Right draper slipping. Disengage header.

The Operator cannot cancel the message.

NOTE:
A slipping draper can severely damage the draper belts. Slippage is typically caused by debris inside the draper.

NOTE:
A draper slip sensor failure will disable the sensor and a fault will appear on the Harvest Performance Tracker (HPT) screen. Contact your MacDon Dealer for service.

NOTE:
Draper slip warning is disabled when a double draper drive kit is installed.

4.7.7 Knife Speed

The ideal cutting speed of the knife should achieve a clean cut. Crop types and conditions usually influence the knife and forward speeds.

Table 4.4 Knife Speed

<table>
<thead>
<tr>
<th>Header Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rpm<sup>6</sup></td>
<td>spm<sup>7</sup></td>
</tr>
<tr>
<td>Type</td>
<td>rpm<sup>6</sup></td>
<td>spm<sup>7</sup></td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>6.1 (20)</td>
<td>700</td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>7.6 (25)</td>
<td>700</td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>9.1 (30)</td>
<td>600</td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>10.7 (35)</td>
<td>600</td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>12.2 (40)</td>
<td>550</td>
</tr>
<tr>
<td>Draper with double knife</td>
<td>13.7 (45)</td>
<td>550</td>
</tr>
</tbody>
</table>

When the header is first attached to the windrower, the Harvest Performance Tracker (HPT) receives a code from the header that determines the knife speed range and the minimum speed.

6. Revolutions per minute is the speed of knife drive box pulley
7. Strokes per minute of knife (rpm x 2)
The desired speed can be programmed and stored in the HPT so the knife will operate at the original set-point after the header is detached and reattached to the windrower.

Refer to the header operator’s manual for the suggested knife speed for a variety of crops and conditions.

NOTE:
The knife speed cannot be programmed outside the range specified for each header.

Setting Knife Speed
Knife speed is displayed in strokes per minute (spm).

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the HPT or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.
3. Scroll to the KNIFE setting (A) on the QuickMenu page, and select it.

4. Scroll to and select the KNIFE SPEED setting (A).
5. Adjust knife speed using the HPT scroll knob.
6. Press the scroll knob to select.

Adjusting Knife Alarm Pressure – Draper Header

Adjusting the knife alarm allows the operator to set an alert to inform them that the knife is operating at a desired pressure. A lower setting will cause the alarm to be set off more often; a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.
2. Press the scroll knob (A) on the HPT, or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.

3. Turn knob to scroll to the KNIFE setting (A) on the QuickMenu page, and press knob to select it.

4. Scroll to the knife alarm pressure setting (A), and press knob to select it.

5. Turn knob to change the ALARM set-point in window (A). Scrolling past the highest setting turns the alarm off. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust knife alarm pressure set-point to desired value, and press knob to select it. Factory setting is 23,442 kpa (3400 psi).
Adjusting Knife Speed Alarm

The knife speed alarm informs the operator when knife speed is outside the desired range. A lower setting will cause the alarm to be set off less often; a higher setting will cause the alarm to be set off more frequently. The header must be in operation for this adjustment.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the HPT or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to the KNIFE setting (A) on the QuickMenu page, and press knob to select it.
4. Scroll to and select the KNIFE SPEED ALARM setting (A).

5. Turn scroll knob to adjust knife speed alarm as desired. Default is 70% and minimum value is 50%. For example, at a setting of 75%, an alarm will sound when knife speed decreases to 75% of preset knife speed due to overload.

4.7.8 Deck Shift Control

When connected to a draper header with the deck shift option, hydraulic deck shift control allows you to select the deck position and draper rotation of the header from the operator’s station. Deck shift allows you to select crop delivery from the left side, center, or right side of the header.

Shifting Decks

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

Shift decks as follows:

1. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on collar (B).
2. Push the HEADER DECK SHIFT switch to the desired delivery position. Deck(s) will move and direction of drapers will change accordingly.

Setting Float Options with Deck Shift

Header float should be set for each deck position. To program a float setting for each of the deck shift positions, follow these steps:

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Start the engine, and use the HEADER TILT switches (A) and (B) on the ground speed lever (GSL) to set header tilt to the MID-RANGE position.
2. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on the collar (B).

3. Select one of the following deck positions using the DECK SHIFT switches on the operator’s console:
 - Right-side delivery (A)
 - Center delivery (B)
 - Left-side delivery (C)

4. After deck(s) have stopped moving, disengage header with HEADER ENGAGE switch (A).

5. To adjust the float setting for the selected deck position refer to Setting the Float, page 182.

6. Repeat above procedure for the other deck positions.
4.7.9 Draper Header Run Screens

Two draper header specific run screens are viewable when operating the windrower with a draper header attached. The screens are accessed by pressing the applicable soft keys on the Harvest Performance Tracker (HPT).

1. Press soft key 1 (A) to access RUN SCREEN 1.
2. Press soft key 2 (B) to access RUN SCREEN 2.

Run Screen 1

This is what Run Screen 1 looks like when operating a draper header.

Figure 4.247: Run Screen 1 – Draper Header Display

A - Reel Speed
B - Draper Speed
C - Knife Speed
D - Reel Pressure
E - Draper Pressure
F - Knife Pressure
G - Indexing
H - Alarm Point
Run Screen 2

This is what Run Screen 2 looks like when operating a draper header.

Figure 4.248: Run Screen 2 – Draper Header Display

4.7.10 Swath Compressor

The swath compressor is a large, formed polyethylene sheet designed to mount to the underside of the windrower. The swath compressor is designed for use with D1X and D1XL Series Draper Headers cutting canola.

The swath compressor shapes the windrow and anchors it into the stubble behind the header to help prevent shelling and swath damage from wind. Excessive compression by a swath compressor or roller can increase losses from crop shelling, and may increase drying time; inadequate compression can leave a windrow prone to wind damage.

Controlling the Swath Compressor

The following topic explains how the windrower controls the swath compressor, and describes the automated raise/lower functions.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
Swath compressor height (A) is displayed on the Harvest Performance Tracker (HPT) with a scale from 0–10.

NOTE:
The swath compressor icon (B) is displayed on the HPT when the swath compressor is activated in the attachments menu. If the sensor is disabled, the height number (A) is replaced by a sensor disabled icon. For instructions on enabling the sensor, refer to the Swath Compressor for M1 Series Windrowers Setup, Operation, and Parts Manual.

Switches (A) and (B) on the operator’s console are used to adjust the position (height). Releasing the switch stops the movement.

NOTE:
Each momentary press of the switch changes the value by one. Pressing and holding changes the value by one increment per second.

NOTE:
The last position set with the console switches becomes the target height. When an adjustment is made, the display shows the target value. The system immediately adjusts to attain the target position. After the last adjustment, the display shows target value for 5 seconds then reverts to the actual position.

Display functions
- As the swath compressor moves up or down, the target value (A) changes, the windrower icon (B) appears as an outline, and the swath compressor icon (C) flashes.
- Windrower icon (B) is solid when the target height is achieved.
- Value (A) is 0, and image (B) is an outline with the swath compressor fully raised.
- Icon (B) is not visible and automation is disabled without a header attached. Swath compressor height can still be adjusted.

Swath compressor automated functions: header engaged
- The swath compressor lowers to target height at a ground speed higher than 2.5 km/h (1.6 mph).
- The swath compressor fully raises as the ground speed transitions through 1.6 km/h (1 mph) during deceleration.
- The swath compressor fully raises when the header is disengaged at a ground speed higher than 1.6 km/h (1 mph).
• An IMPORTANT message to raise the swath compressor appears on the HPT accompanied by a tone when the GSL is moved out of PARK in engine-forward mode if the swath compressor is not fully raised.

Engage the swath compressor lock when the swath compressor is not in use, or when the windrower is in engine-forward mode. For instructions, refer to Locking and Unlocking the Swath Compressor, page 217.

Locking and Unlocking the Swath Compressor

The swath compressor lock is located on the left cab-forward side of the swath compressor frame. When engaged, the lock prevents the compressor shield from lowering.

1. Turn lock handle (A) clockwise to engage the swath compressor lock under the following conditions:
 • Swath compressor is not in use
 • Windrower is being serviced
 • Windrower is in engine-forward mode

2. Turn handle (A) counterclockwise to disengage the lock before operating the swath compressor.

![Figure 4.252: Swath Compressor Lock](attachment:swath_compressor_lock.png)
4.8 Operating with an A40DX Auger Header

For attachment instructions, refer to Attaching an A40DX Auger Header, page 143.

4.8.1 Reel and Auger Speed

Reel speed is displayed in either rpm, mph, or km/h (depending on the global units selection). The default reel speed is 60 rpm, but it can be adjusted using either AUTO or MANUAL mode.

If the differential auger-reel control is enabled, you can adjust the auger speed separately from the reel speed. If the differential auger-reel control is not enabled, the reel and auger speeds are hydraulically linked and you cannot adjust the auger speed separately.

IMPORTANT:
Reel speed on an A40DX Auger Header MUST NOT EXCEED 85 rpm. Auger speed MUST NOT EXCEED 320 rpm.

- AUTO mode: Minimum reel speed and operating reel speed differential relative to ground speed are set, and reel speed is maintained relative to ground speed. For instructions, refer to Setting Reel Speed in Auto Mode, page 218.

- MANUAL mode: Reel speed is set and is maintained regardless of ground speed. For instructions, refer to Setting Reel Speed in Manual Mode, page 220.

- Differential auger-reel control engaged: Auger speed is adjusted separately from reel speed. For instructions, refer to Setting Auger Speed, page 221.

NOTE:
Differential auger-reel control is a standard feature on A40DX GSS Auger Headers. If you are operating an A40DX Auger Header without the grass seed option, it is optional. Order Reel Speed Control kit (MD #B6604).

Setting Reel Speed in Auto Mode

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next page opens.

4. Scroll to mode window (A) and select it.

5. Scroll to AUTO in the pop-up window, and select it.

NOTE:
In AUTO mode, the speed is displayed in km/h or mph (B) which cannot be changed.
6. Scroll to the MINIMUM REEL SPEED setting (A) and select it (this setting is grayed out in manual mode).

7. Turn scroll knob to adjust minimum reel speed between 0–8 km/h (5 mph). Press knob to select desired setting.

8. Scroll to INDEX value (C) and select it.

9. Turn scroll knob to set index value. The index range is +/- 8 km/h (5 mph) (zero, i.e. equal to ground speed, is the default). Press knob to select desired setting.

NOTE:
The reel operates at reel minimum speed when the ground speed is less than the set minimum speed. Minimum reel speed is displayed (A) and MIN will replace the AUTO +1.7 (B).

Setting Reel Speed in Manual Mode
This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.
3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next screen opens.

4. Scroll to mode window (A) and select it.

5. Scroll in pop-up window to MANUAL and select it.

6. Scroll to UNITS (B) and select desired unit (i.e., rpm, mph, or km/h).

7. Scroll to SPEED VALUE (C) and select it.

8. Use REEL SPEED switches (A) on GSL to set reel speed. The desired speed increases 1 rpm (0.1 mph or 0.2 km/h if set to mph or km/h) per momentary press, or continuous scrolling if switch is pressed and held.

Setting Auger Speed

The auger speed can only be adjusted independently if the differential auger-reel control is engaged. This is a standard feature on A40DX GSS Auger Headers, but an option on A40DX Auger Headers without the Grass Seed option. To acquire this option, order Reel Speed Control kit (MD #B6604) from your Dealer.

If the differential auger-reel control is not engaged, the auger speed is automatically adjusted when you adjust reel speed.
NOTE:
When the differential auger-reel control is engaged, the minimum/maximum reel speed is dependent on the auger speed. In some cases, in order to have the reel run slower or faster, you may have to decrease or increase the auger speed.

1. To adjust the auger speed, press soft key 2 on the HPT to display RUN SCREEN 2.

2. Press the scroll knob (A) on the HPT or the SELECT button (B) on the ground speed lever (GSL) to display the Quick Menu system.

3. Scroll to the auger speed tile (A) and select it.
4. The auger speed (A) can now be adjusted between 150 and 340 rpm.

NOTE:
Auger speed can be displayed in rpm or mph / km/h (depending on global Units selection) and can be switched by navigating the QuickMenu and selecting the speed symbol.

Adjusting the Reel/Auger Alarm Pressure

Adjusting the reel/auger alarm allows the operator to set an alert to inform them that the reel is operating at a desired pressure. A lower setting will cause the alarm to be set off more often; a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.
3. Turn knob to scroll to REEL setting (A) on QuickMenu, and press knob to select it. The next screen opens.

![Figure 4.269: Header QuickMenu Screen](image1)

4. Turn scroll knob to highlight reel pressure ALARM (A), and press knob to select it.

5. Turn knob to change the ALARM set-point in window (A). Scrolling past the highest setting turns off alarm. When the alarm point is off, the digital value is replaced with three dashed lines.

6. Adjust reel alarm pressure set-point to desired value, and press knob to select it. Factory setting is 19,995 kpa (2900 psi).

![Figure 4.270: Setting Reel Alarm Pressure](image2)

4.8.2 Knife Speed

The ideal cutting speed of the knife should achieve a clean cut. Crop types and conditions usually influence the knife and forward speeds.

Table 4.5 Knife Speed Table

<table>
<thead>
<tr>
<th>Header Description</th>
<th>Size m (ft.)</th>
<th>Knife Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rpm<sup>8</sup></td>
</tr>
<tr>
<td>Auger A40DX</td>
<td>All</td>
<td>700</td>
</tr>
<tr>
<td>Grass Seed</td>
<td>All</td>
<td>700</td>
</tr>
</tbody>
</table>

When the header is first attached to the windrower, the Harvest Performance Tracker (HPT) receives a code from the header that determines the knife speed range and the minimum speed.

The desired speed can be programmed and stored in the HPT so the knife will operate at the original set-point after the header is detached and reattached to the windrower.

8. Revolutions per minute is the speed of knife drive box pulley.
9. Strokes per minute of knife (rpm x 2).
Refer to the header operator’s manual for the suggested knife speed for a variety of crops and conditions.

NOTE:
The knife speed cannot be programmed outside the range specified for each header.

Setting Knife Speed
Knife speed is displayed in strokes per minute (spm).

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the HPT or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu page.
3. Scroll to the KNIFE setting (A) on the QuickMenu page, and select it.

4. Scroll to and select the KNIFE SPEED setting (A).
5. Adjust knife speed using the HPT scroll knob.
6. Press the scroll knob to select.

Adjusting Knife Alarm Pressure – Auger Header

Adjusting the knife alarm allows the operator to set an alert to inform them that the knife is operating at a desired pressure. A lower setting will cause the alarm to be set off more often; a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display auger RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Scroll to the KNIFE ALARM PRESSURE setting (A), and use the knob to select it.

4. Turn knob to change the ALARM set-point in window (A). Scrolling past the highest setting turns the alarm off. When the alarm point is off, the digital value is replaced with three dashed lines.

5. Adjust reel alarm pressure set-point to desired value, and press knob to select it. Factory setting is 24,821 kPa (3600 psi).

Adjusting Knife Speed Alarm

This adjustment requires the header to be in operation.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.
2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

3. Scroll to the KNIFE setting (A) on the QuickMenu screen, and select it.

4. Scroll to and select the KNIFE SPEED ALARM setting (A), displayed as a % of the preset knife speed.

5. Adjust knife speed alarm % as desired. Default is 70% and range is 50–90%.
4.8.3 Setting Float Options with Fixed Deck

When using an auger, the DECK SHIFT buttons can be used to store three different float settings. This is useful when cutting in varying ground conditions, or when having one side lighter is desirable (such as cutting along wheel tracks or irrigation borders).

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Start the engine and use the HEADER TILT switches (A) and (B) on the ground speed lever (GSL) to set header tilt to the MID-RANGE position.

2. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on collar (B).
3. Select one of the following deck positions using the DECK SHIFT switches on the operator’s console:
 - Right-side delivery (A)
 - Center delivery (B)
 - Left-side delivery (C)

4. Disengage the header by pushing down on HEADER ENGAGE switch (A).

5. Adjust the float setting for the selected deck position. For instructions, refer to Setting the Float, page 182.

6. Repeat steps for the other deck positions.
4.8.4 Auger Header Run Screens

Two auger header specific run screens are viewable when operating windrower with an auger header attached. The screens are accessed by pressing the applicable soft keys on the Harvest Performance Tracker (HPT).

Run Screen 1

This is what Run Screen 1 looks like when operating an auger header.

Figure 4.286: Run Screen 1 – Auger Header Display

A - Reel/Auger Speed B - Knife Speed C - Reel/Auger Pressure D - Knife Pressure
Run Screen 2

This is what Run Screen 2 looks like when operating an auger header.

Figure 4.287: Run Screen 2 – Auger Header Display

```
A - Knife Speed       B - Knife Pressure       C - Reel/Auger Speed
D - Index Value       E - Engine Load          
```
4.9 Operating with an R1 Series Rotary Disc Header

An R1 Series Rotary Disc Header is shipped without the motor and hoses installed.

If necessary, obtain kit MD #B6621 from your MacDon Dealer. Install the kit in accordance with the instructions supplied.

4.9.1 Disc Speed

The ideal disc speed should achieve a clean cut. Crop types and conditions affect disc and ground speeds. Refer to the header operator’s manual for the suggested disc speed for a variety of crops and conditions.

Setting Disc Speed

Default disc speed is 2000 rpm. Follow these steps to adjust the disc speed.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Engage the header. For instructions, refer to Engaging and Disengaging the Header, page 185.

2. Adjust the disc speed with the DISC SPEED INCREASE (A) or DISC SPEED DECREASE (B) buttons on the ground speed lever (GSL).

 NOTE:
 Disc speed increases 50 rpm per momentary button push, or at a rate of 100 rpm/sec if the button is pushed and held.
Adjusting Disc Pressure Alarm

Adjusting the disc alarm allows the operator to set an alert to inform them that the disc is operating at a desired pressure. A lower setting will cause the alarm to be set off more often; a higher setting will allow the alarm to be set off less frequently. This adjustment requires the header to be in operation.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. If RUN SCREEN 1 is not already displayed, press soft key 1 (A) on the Harvest Performance Tracker (HPT) to display draper RUN SCREEN 1.

2. Press the scroll knob (A) on the Harvest Performance Tracker (HPT) or the SELECT button (B) on the ground speed lever (GSL) to display the QuickMenu system.

Figure 4.290: Disc Header Run Screen 1

Figure 4.291: HPT Scroll Knob and GSL Select Button
3. Scroll to the DISC SPEED setting (A) on the QuickMenu screen, and select it.

4. Scroll to the DISC PRESSURE ALARM setting (A), and select it.

5. Scroll to the desired alarm set-point or scroll past the highest setting to turn the alarm OFF. The digital value is replaced by three dashed lines, indicating that it is possible to adjust the alarm set-point value.

6. Adjust disc alarm pressure set-point to desired value. Factory setting is 310 bar (4500 psi).

4.9.2 Setting Float Options with Fixed Deck

When using an auger or rotary header, the DECK SHIFT buttons can be used to store three different float settings. This is useful when cutting in varying ground conditions, or when having one side lighter is desirable (such as cutting along wheel tracks or irrigation borders).

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.
1. Start the engine and use the HEADER TILT switches (A) and (B) on the ground speed lever (GSL) to set header tilt to the MID-RANGE position.

2. Engage header by pushing and holding the HEADER ENGAGE switch (A) down, and pulling up on collar (B).

3. Select one of the following deck positions using the DECK SHIFT switches on the operator’s console:
 - Right-side delivery (A)
 - Center delivery (B)
 - Left-side delivery (C)
4. Disengage the header by pushing down on HEADER ENGAGE switch (A).

5. Adjust the float setting for the selected deck position. For instructions, refer to Setting the Float, page 182.

6. Repeat steps for the other deck positions.

4.9.3 Disc Header Run Screens

Two disc header specific run screens are viewable when operating windrower with an auger header attached. The screens are accessed by pressing the applicable soft keys on the Harvest Performance Tracker (HPT).

Run Screen 1

This is what Run Screen 1 looks like when operating a rotary disc header.

Figure 4.298: Run Screen 1 – Rotary Disc Header Display
Run Screen 2

This is what Run Screen 2 looks like when operating a rotary disc header.

Figure 4.299: Run Screen 2 – Rotary Disc Header Display

A - Disc rpm Digital B - Disc Pressure Digital C - Engine Load Bar
D - Hydraulic Oil Temperature
Chapter 5: Maintenance and Servicing

The following section will guide you through the windrower’s basic maintenance and service requirements.

5.1 Recommended Fuel, Fluids, and Lubricants

5.1.1 Storing Lubricants and Fluids

Your machine can only operate at top efficiency if clean fuel and lubricants are used.

- Buy good quality, clean fuel from a reputable Dealer.
- Use clean containers to handle fuel and lubricants.
- Store in an area protected from dust, moisture, and other contaminants.
- Avoid storing fuel over long periods of time. If you have a slow fuel turnover in the windrower or supply tank, add fuel conditioner and keep tank full to avoid condensation problems.
- Store fuel in a convenient place away from buildings.
- Diesel exhaust fluid (DEF) should be stored in a cool, dry, well ventilated area, out of direct sunlight, on lower shelf or on floor.
- DEF is corrosive to some metals and should only be stored in polyethylene, polypropylene, or stainless steel containers.
- DEF containers should be sealed to prevent contamination and the evaporation of water, which will affect the specified water to urea ratio.
- Diesel fuel should NEVER be mixed with DEF.

NOTE:
DEF will degrade over time depending on temperature and exposure to sunlight. Shelf life specifications, as defined by ISO Spec 22241-3, are the minimum expectations for shelf life when stored at constant temperatures. If stored between 12 to 32°C (10 to 90°F), shelf life will easily be one year. If the maximum temperature does not exceed approximately 24°C (75°F) for an extended period of time, the shelf life will be two years.

5.1.2 Fuel Specifications

Use only ultra low sulphur diesel (ULSD) from a reputable supplier. For most year-round service, No. 2 ULSD fuel meeting ASTM specification D975 Grade S15 will provide good performance.

If the vehicle is exposed to extreme cold (below -7°C [20°F]) or is required to operate at colder-than-normal conditions for prolonged periods, use climatized No. 2 diesel fuel, or dilute the No. 2 ULSD fuel with 50% No. 1 ULSD fuel. This will provide better protection from fuel gelling or wax-plugging of the fuel filters.

Table 5.1 Fuel Specifications

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Specification</th>
<th>Sulphur (by weight)</th>
<th>Water and Sediment (by volume)</th>
<th>Cetane No. °C (°F)</th>
<th>Lubricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSD Grade No. 2</td>
<td>ASTM D975</td>
<td>0.5% maximum</td>
<td>0.05% maximum</td>
<td>40 (104) minimum</td>
<td>520 Microns</td>
</tr>
<tr>
<td>ULSD Grade No. 1 and 2 mix</td>
<td>n/a</td>
<td>1% maximum</td>
<td>0.1% maximum</td>
<td>45–55 (113–130) cold weather / high altitude</td>
<td>460 Microns</td>
</tr>
</tbody>
</table>

10. Optional when operating temperature is below 0°C (32°F).
In extreme situations, when available fuels are of poor quality or problems exist which are particular to certain operations, additives can be used; however, the engine manufacturer recommends consultation with the fuel supplier or engine manufacturer before using fuel additives. Situations where additives are useful include:

- A cetane improver additive can be used with low cetane fuels.
- A wax crystal modifier can help with fuels with high cold filter plugging points (CFPP).
- An anti-icer can help prevent ice formation in wet fuel during cold weather.
- An antioxidant or storage stability additive can help with fuel system deposits and poor storage stability.
- Diesel fuel conditioner can be used to increase the lubricity of fuels so that they meet the requirements given in Table 5.1, page 239. Diesel fuel conditioner is available from your Dealer.

5.1.3 Lubricants, Fluids, and System Capacities

WARNING

To avoid injury or death, do NOT allow ANY machine fluids to enter the body.

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel exhaust fluid</td>
<td>Diesel exhaust fluid tank</td>
<td>Must meet ISO 22241 requirements.</td>
<td>28 liters (7.5 U.S. gallons)</td>
</tr>
<tr>
<td>Grease</td>
<td>As required unless otherwise specified</td>
<td>SAE multi-purpose high temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Fuel tank</td>
<td>Ultra low sulphur diesel (ULSD) Grade No. 2, or ULSD Grade No. 1 and 2 mix(^1); refer to 5.1.2 Fuel Specifications, page 239 for more information</td>
<td>518 liters (137 U.S. gallons)</td>
</tr>
</tbody>
</table>
| Hydraulic oil | Hydraulic reservoir | Single grade transmission/hydraulic fluid (THF) Recommend Viscosity:
- 60.1 cSt @ 40°C
- 9.5 cSt @ 100°C
Recommended brands:
- AGCO Power Fluid 821XL
- Case HY-TRAN ULTRACTION
- John Deere Hy-Gard J20C
- Petro-Canada Duratran | 60 liters (15.8 U.S. gallons)\(^12\) |
| Gear lubricant | Gearbox | SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant (SAE J2360 preferred) | 2.3 liters (2.4 U.S. quarts) |
| Gear lubricant | Standard Wheel drive | SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant (SAE J2360 preferred) | 1.4 liters (1.5 U.S. quarts) |

\(^1\) Optional when operating temperature is below 0°C (32°F).
\(^12\) Denotes capacity of a dry system. Refill capacity is 58 liters (15 U.S. gallons).
Table 5.2 System Capacities (continued)

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear lubricant</td>
<td>High Torque Wheel drive</td>
<td>SAE 85W-140, API service class GL-5 fully synthetic gear lubricant</td>
<td>4.5 liters (4.8 U.S. quarts)</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>Engine cooling system</td>
<td>ASTM D-6210 and Fleetguard ES Compleat®</td>
<td>31 liters (8.2 U.S. gallons)</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Engine oil pan</td>
<td>SAE 15W-40 compliant with SAE specs for API Class SJ and CJ-4 engine oil</td>
<td>11 liters (11.6 U.S. quarts)</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>Air conditioning system</td>
<td>R134A</td>
<td>2.38 kg (5.25 lb.)</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>Air conditioning system total capacity</td>
<td>PAG SP-15</td>
<td>240 cc (8.1 fl. oz.)</td>
</tr>
<tr>
<td>Windshield washer fluid</td>
<td>Windshield washer fluid tank</td>
<td>SAE J942 compliant</td>
<td>4 liters (1 U.S. gallon)</td>
</tr>
</tbody>
</table>

If Fleetguard ES Compleat® is unavailable, use a coolant concentrate or prediluted coolant intended for use with heavy duty diesel engines and with a minimum of the following chemical and physical properties:

- Provides cylinder cavitation protection according to fleet study run at or above 60% load capacity.
- Protects the cooling system metals (cast iron, aluminum alloys, and copper alloys such as brass) from corrosion.

The additive package must be part of one of the following coolant mixtures:

- Ethylene glycol or propylene glycol base prediluted (40–60%) heavy duty coolant.
- Ethylene glycol or propylene glycol base heavy duty coolant concentrate in a 40–60% mixture of concentrate with quality water.

Water quality is important to the performance of the cooling system. Distilled, deionized, or demineralized water is recommended for mixing with ethylene glycol and propylene glycol base engine coolant concentrate.

IMPORTANT:

Do **NOT** use cooling system sealing additives or antifreeze that contains sealing additives.

5.1.4 Filter Part Numbers

Table 5.3 M1170 Filter Part Numbers

<table>
<thead>
<tr>
<th>Filter</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine oil filter</td>
<td>MD #111974</td>
</tr>
<tr>
<td>Hydraulic charge oil filter</td>
<td>MD #201713</td>
</tr>
<tr>
<td>Hydraulic return oil filter</td>
<td>MD #202986</td>
</tr>
<tr>
<td>Primary fuel filter element</td>
<td>MD #205028</td>
</tr>
<tr>
<td>Secondary fuel filter element</td>
<td>MD #205029</td>
</tr>
<tr>
<td>Fuel strainer (fuel tank vent line) filter</td>
<td>MD #111608</td>
</tr>
<tr>
<td>Primary element (cab)</td>
<td>MD #111060</td>
</tr>
<tr>
<td>Primary air filter element</td>
<td>MD #111954</td>
</tr>
<tr>
<td>Secondary air filter element</td>
<td>MD #111955</td>
</tr>
<tr>
<td>Return air filter</td>
<td>MD #109797</td>
</tr>
</tbody>
</table>
Table 5.3 M1170 Filter Part Numbers (continued)

<table>
<thead>
<tr>
<th>Filter</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel exhaust fluid (DEF) – suction filter</td>
<td>MD #207478</td>
</tr>
<tr>
<td>Diesel exhaust fluid (DEF) – vent hose filter</td>
<td>MD #111608</td>
</tr>
<tr>
<td>DEF supply module filter kit</td>
<td>MD #207510</td>
</tr>
</tbody>
</table>
5.2 Windrower Break-In Inspections and Maintenance Schedule

The maintenance schedule specifies the recommended periodic maintenance procedures and service intervals. Regular maintenance is the best insurance against early wear and untimely breakdowns. Follow this schedule to maximize machine life.

For detailed instructions, refer to the various procedures in this chapter. Use the fluids and lubricants specified in 5.1 Recommended Fuel, Fluids, and Lubricants, page 239.

Service Intervals: The recommended service intervals are in hours of operation. Where a service interval is given in more than one time frame, for example 100 hours or annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operated under adverse conditions (severe dust, extra heavy loads, etc.).

⚠️ **CAUTION**
Carefully follow safety messages given in 1 Safety, page 1.

5.2.1 Break-in Inspection Schedule

<table>
<thead>
<tr>
<th>Hours</th>
<th>Item</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drive wheel nuts</td>
<td>Torque: 510 Nm (375 lbf-ft) dry Repeat checks at one hour intervals until torque stabilizes at two consecutive checks</td>
</tr>
<tr>
<td>5</td>
<td>A/C compressor belt</td>
<td>Tension</td>
</tr>
<tr>
<td>5</td>
<td>Caster wheel nuts</td>
<td>Torque: 170 Nm (125 lbf-ft)</td>
</tr>
<tr>
<td>5</td>
<td>Caster wheel anti-shimmy dampener bolts</td>
<td>Inboard bolt torque: 136 Nm (100 lbf-ft) Outboard bolt torque: 244 Nm (182 lbf-ft) Outboard jam nut: 136 Nm (100 lbf-ft)</td>
</tr>
<tr>
<td>5</td>
<td>Walking beam width adjustment bolts</td>
<td>Torque: 759 Nm (560 lbf-ft)</td>
</tr>
<tr>
<td>10</td>
<td>Walking beam width adjustment bolts</td>
<td>Torque: 759 Nm (560 lbf-ft)</td>
</tr>
<tr>
<td>50</td>
<td>Drive wheel nuts</td>
<td>Torque: 510 Nm (375 lbf-ft) dry Repeat checks at one hour intervals until torque stabilizes at two consecutive checks</td>
</tr>
<tr>
<td>50</td>
<td>Hose clamps: air intake / radiator / heater / hydraulic</td>
<td>Hand-tighten unless otherwise noted</td>
</tr>
<tr>
<td>50</td>
<td>Walking beam width adjustment bolts</td>
<td>Torque: 759 Nm (560 lbf-ft)</td>
</tr>
<tr>
<td>50</td>
<td>Caster wheel nuts</td>
<td>Torque: 170 Nm (125 lbf-ft)</td>
</tr>
<tr>
<td>50</td>
<td>Caster wheel anti-shimmy dampener bolts</td>
<td>Inboard bolt torque: 136 Nm (100 lbf-ft) Outboard bolt torque: 244 Nm (182 lbf-ft) Outboard jam nut: 136 Nm (100 lbf-ft)</td>
</tr>
<tr>
<td>50</td>
<td>Main gearbox oil</td>
<td>Change</td>
</tr>
<tr>
<td>50</td>
<td>Drive wheel lubricant</td>
<td>Change</td>
</tr>
<tr>
<td>50</td>
<td>Charge system oil filter</td>
<td>Change</td>
</tr>
<tr>
<td>50</td>
<td>Return oil filter</td>
<td>Change</td>
</tr>
</tbody>
</table>
5.2.2 Maintenance Schedule/Record

Windrower serial number: ___________________.

Combine this record with the record in the header operator’s manual. Make copies of this page to continue the record.

Refer to 5 Maintenance and Servicing, page 239 for information about each maintenance procedure.

<table>
<thead>
<tr>
<th>Maintenance Record</th>
<th>Action:</th>
<th>✓ - Check</th>
<th>✿ - Lubricate</th>
<th>△ - Change</th>
<th>● - Clean</th>
<th>★ - Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour meter reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviced by</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRST USE, refer to 5.2.1 Break-in Inspection Schedule, page 243

10 Hours or Daily

✓ Engine oil level
✓ Engine gearbox oil level
✓ Engine coolant level at reserve tank
✓ Fuel tank
✓ Drain fuel filter water trap
✓ Hydraulic hoses and lines for leaks
✓ Hydraulic oil level
✓ Tire inflation
✓ Diesel exhaust fluid (DEF) level

Annually

✓ A/C blower
✓ Antifreeze concentration
✓ Battery charge
✓ Battery fluid level
✓ Steering linkages

50 Hours

● Cab fresh air intake filter
✿ Caster pivots
✿ Forked caster wheel bearings
✓ Engine-to-pumps gearbox oil level
✿ Top lift link pivots on lift arms (2 places on both sides [x4])

13. Whichever occurs first.
14. A record of daily maintenance is not normally required but is at the Owner/Operator’s discretion.
15. Perform annual maintenance prior to start of operating season.
<table>
<thead>
<tr>
<th>Maintenance Task</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hours or Annually<sup>13, 15</sup></td>
<td></td>
</tr>
<tr>
<td>• A/C condenser</td>
<td></td>
</tr>
<tr>
<td>• Charge air cooler</td>
<td></td>
</tr>
<tr>
<td>• Hydraulic oil cooler</td>
<td></td>
</tr>
<tr>
<td>• Radiator</td>
<td></td>
</tr>
<tr>
<td>• Cab air return filter</td>
<td></td>
</tr>
<tr>
<td>250 Hours or Annually<sup>13, 15</sup></td>
<td></td>
</tr>
<tr>
<td>▲ Engine oil and filter</td>
<td></td>
</tr>
<tr>
<td>▲ Engine air cleaner primary filter element</td>
<td></td>
</tr>
<tr>
<td>▲ Single-sided caster wheel hub bearings</td>
<td></td>
</tr>
<tr>
<td>✓ Drive wheel lubricant level</td>
<td></td>
</tr>
<tr>
<td>▲ Mud caster wheel hub bearings</td>
<td></td>
</tr>
<tr>
<td>✓ Exhaust system (visually inspect for leakage point, loose clamps or loose hose)</td>
<td></td>
</tr>
<tr>
<td>▲ Engine gearbox oil</td>
<td></td>
</tr>
<tr>
<td>500 Hours or Annually<sup>13, 15</sup></td>
<td></td>
</tr>
<tr>
<td>▲ Primary and secondary fuel filters</td>
<td></td>
</tr>
<tr>
<td>▲ Hydraulic return filter and charge filter</td>
<td></td>
</tr>
<tr>
<td>✓ Safety systems</td>
<td></td>
</tr>
<tr>
<td>1000 Hours</td>
<td></td>
</tr>
<tr>
<td>• DEF supply module filter</td>
<td></td>
</tr>
<tr>
<td>1000 Hours or Annually<sup>13</sup></td>
<td></td>
</tr>
<tr>
<td>▲ Fuel tank vent line filter</td>
<td></td>
</tr>
<tr>
<td>▲ Wheel drive lubricant</td>
<td></td>
</tr>
<tr>
<td>2000 Hours</td>
<td></td>
</tr>
<tr>
<td>▲ Crankcase breather filter and gasket</td>
<td></td>
</tr>
<tr>
<td>▲ DEF tank vent hose filter</td>
<td></td>
</tr>
</tbody>
</table>
2000 Hours or Every Two Years
- Engine coolant
- General inspection

2000 Hours or Every Three Years
- Hydraulic oil

4500 Hours or Every Three Years
- DEF supply module filter

5000 Hours or Every Two Years
- Engine valve tappet clearance

5.2.3 Electronic Maintenance Tool

The Electronic Maintenance Tool contains a list of items requiring service after 250 hours or more of windrower operation. To access the maintenance tool, use the following procedure:

1. Press soft key 5 (A) to display the main menu.
2. To select the MAINTENANCE icon (C), use the Harvest Performance Tracker (HPT) scroll knob (B) or the ground speed lever (GSL) scroll wheel (not shown).
3. Press the HPT scroll knob (B) or the GSL SELECT button (not shown) to select the icon.

4. Select the MAINTENANCE icon (A) to open the maintenance menu (B). The following information can be viewed:
 - Completed maintenance
 - Selected maintenance notifications
 - Maintenance log

Figure 5.1: Opening the Main Menu

Figure 5.2: Maintenance Icon and Menu
5.3 Engine Compartment

CAUTION

- NEVER operate engine in a closed building. Proper ventilation is required to avoid exhaust gas hazards.
- Keep the engine clean. Straw and chaff on a hot engine are a fire hazard.
- NEVER use gasoline, naphtha, or any other volatile material for cleaning purposes. These materials are toxic and/or flammable.

5.3.1 Opening Hood

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Move latch (A) towards right cab-forward side of the windrower.

3. Grasp louver (B), and lift hood to open.

NOTE:

If the optional High Debris Cooler Intake kit (A) is installed, a louver can still be used to open the hood.

Figure 5.3: Hood

Figure 5.4: Hood with Optional High Debris Cooler Intake Kit
5.3.2 Closing Hood

1. Grasp hood by louver (A) and lower until hood engages latch.

 NOTE:
 Check that latch lever is not tilted to ensure hood is latched.

Figure 5.5: Engine Compartment
5.4 Platform

Swing-away platform and stair units are provided on the windrower for access to the operator’s station and engine bay maintenance.

5.4.1 Opening Platform

Only the left cab-forward side platform can be opened.

⚠️ CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

1. Approach platform/stair unit (A) on the left cab-forward side of the windrower and ensure the cab door is closed.

2. Push latch (B), and pull platform (A) toward the walking beam until it stops and the latch engages.

Figure 5.6: Left Cab-Forward Platform

5.4.2 Closing Platform

⚠️ CAUTION

Do NOT stand on an unlocked platform. It is unstable and may cause you to fall.

1. Push latch (A) to unlock platform (B).

Figure 5.7: Left Cab-Forward Platform
2. Pull platform (A) towards the cab until it stops and latch engages.

5.4.3 Adjusting the Platform

To achieve proper gap between platform and frame, latch adjustment may be required.

1. Locate latch (B) beneath the platform.
2. Adjust the latch position by loosening bolts (A) and moving the latch (B).
3. Retighten bolts (A) and close the platform.

4. The rubber bumper (B) at the cab end of the platform should measure 52–60 mm (2–2 3/8 in.) when properly compressed against the frame. Platform should also sit firmly against the front guide (A).

NOTE:
Top plate of platform removed for clarity.

5. If adjustment is required, loosen two bolts (C) and slide support as required.
6. Tighten bolts (C) to 39.5 Nm (29.1 lbf·ft).
7. To adjust the horizontal position of the platform, loosen bolts (A) and adjust bolt (B).

8. Tighten bolts (A) to 68.5 Nm (50.5 lbf·ft).

9. Use bolts (C) to adjust the platform angle. Tighten bolts (C) to 68.5 Nm (50.5 lbf·ft) after adjustment is complete.

5.4.4 Accessing Tool Box

A tool box is located inside a storage compartment under the left cab-forward platform.

1. Grasp the handle on storage compartment (A) and press latch (B). Pull the unlatched handle to open the compartment.

2. The tool box (A) is located inside storage compartment (B).

3. Swing compartment (B) under the platform to close it, and push on the handle to secure the latch.

NOTE:
The ignition key also locks the storage compartment.
5.5 System Maintenance Overviews

5.5.1 Diesel Exhaust Fluid System

IMPORTANT:
If the windrower is going to be in storage for longer than six months, the diesel exhaust fluid (DEF) tank should be drained to avoid damaging the tank. For instructions, refer to *Draining the Diesel Exhaust Fluid Tank, page 253.*

IMPORTANT:
If the windrower temperature is going to be below 0°C (32°F), do **NOT** fill the DEF tank to a full level. It should be less than 75% full. When freezing, the DEF fluid will expand by approximately 7%.

NOTE:
For DEF fluid specifications, refer to this manual’s inside back cover.

Draining the Diesel Exhaust Fluid Tank

It is necessary to drain the diesel exhaust fluid (DEF) tank when the DEF is contaminated or if storing the windrower for a period greater than six months.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Place a drain pan under the DEF tank (B). The drain pan should be large enough to hold 28 liters (7.5 U.S. gallons).

 IMPORTANT:
 Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand and then shovelled into a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water as DEF is corrosive.

3. Remove the drain plug (A) from under the tank (B) and drain.

4. Add some distilled water to the tank (B) to flush out remaining contaminants.

5. Drain the distilled water that was used to clean the tank.

6. Reinstall drain plug (A) into the tank (B).

7. Refill DEF tank. For instructions, refer to *Filling the Diesel Exhaust Fluid Tank, page 254.*

 NOTE:
 Do **NOT** refill if storing for six months or longer.
Filling the Diesel Exhaust Fluid Tank

The symbol inside the diesel exhaust fluid (DEF) gauge on the Harvest Performance Tracker (HPT) display will signal the Operator when DEF level is low.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Clean around filler cap (A).
3. Turn cap (A) counterclockwise until loose and remove cap.

NOTE:
Filler cap for DEF tank is blue and the nozzle dispenser is smaller than that of the fuel tank.

⚠️ CAUTION

Avoid contact with eyes. In case of contact, rinse immediately with water for 15 minutes.

4. Fill tank with approved DEF. For specifications, refer to the inside back cover.

IMPORTANT:
DEF is corrosive. Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand, and then shovelled into a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water.

IMPORTANT:
If the windrower temperature is going to be below 0°C (32°F), do **NOT** fill the DEF tank more than 75% full. When freezing, the DEF fluid will expand by approximately 7%. For storage information, refer to *5.1.1 Storing Lubricants and Fluids, page 239*.

5. Replace filler cap (A) and turn clockwise until tight.
5.5.2 Twin-Flow Cooling System

Figure 5.17: Twin-Flow Cooling System

NOTE:
Antifreeze is essential in any climate. It broadens the operating temperature range by lowering the coolant freezing point and by raising its boiling point. Antifreeze also contains rust inhibitors and other additives to prolong engine life.

IMPORTANT:
If antifreeze strength is not adequate, do NOT drain cooling system to protect against freezing. System may not drain completely, and damage from freezing could still result.

Refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 240 for detailed information.
Engine Cooling

Figure 5.18: Engine Cooling

A - Pressurized Coolant Tank B - Engine Inlet Hose
C - Engine Outlet Hose D - Vent Hoses

Inspecting Pressurized Coolant Tank Cap

The pressurized coolant tank cap must fit tightly, and the cap gasket must be in good condition to maintain the 97–124 kPa (14–18 psi) pressure in the cooling system.

⚠ CAUTION

To avoid personal injury from hot coolant, do NOT turn pressurized coolant tank cap until engine cools.

⚠ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Turn the cap (A) counterclockwise to the first notch to relieve pressure before removing cap completely.

4. Turn the cap (A) again and remove.

5. Check the gasket for cracks or deterioration, and replace the cap if necessary.

6. Check that the spring in the cap moves freely.

7. Replace the cap if spring is stuck.

8. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

Charge Air Cooler

Figure 5.20: Charge Air Cooler (CAC)
Charge Air Cooling

After the intake air passes through the air filter, it passes through the turbocharger (A), which boosts the air pressure. This process heats the air so it is passed through pipe (B) to a cooler (C) before entering the engine intake (D).

The cooler is located in the cooling box behind the cab. The cooler screens and components should be cleaned with compressed air every 100 hours of operation. Daily cleaning may be required if operating in heavy crop conditions. For instructions, refer to 5.9.2 Cleaning Cooler Module, page 293.

Hydraulic Oil Cooler

The hydraulic oil cooler is located inside the cooling box behind the radiator.

Clean cooler (A) with compressed air every 100 hours of operation. Daily cleaning may be required if operating in heavy debris conditions. For instructions, refer to 5.9.2 Cleaning Cooler Module, page 293.
Air Conditioning (A/C)

Figure 5.23: Air Conditioning

Condenser

The air conditioning condenser should be cleaned with compressed air every 100 hours of operation. More frequent cleaning may be necessary in severe conditions.

Cleaning the condenser can be done at the same time as the radiator, oil cooler, and charge air cooler. For instructions, refer to 5.9.2 Cleaning Cooler Screens and Components, page 293.

5.5.3 Air Intake System

The air intake system filters air used by the engine.

IMPORTANT:

- Do NOT run engine with air cleaner disconnected or disassembled.
- Over-servicing the filter element increases the risk of dirt being ingested by the engine and severely damaging the engine.
- Filter servicing should only be performed when the Harvest Performance Tracker (HPT) indicates ENGINE AIR FILTER or at the specified interval. Refer to 5.2.2 Maintenance Schedule/Record, page 244.
Figure 5.24: Air Intake System

A - Air Intake
B - Air Duct to Air Cleaner
C - Air Cleaner Intake
D - Air Cleaner
E - Turbocharger Intake
F - Aspirator Duct

Message (A) appears on the HPT when the engine air filter requires servicing.

Figure 5.25: Filter Service Required Message
5.5.4 Hydraulic System

The M1170 Windrower hydraulic system operates the windrower drive system, header lift, header drive systems, cooling systems fan, and other lift systems.

WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines.
- Tighten all connections before applying pressure. Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.

IMPORTANT:

Foreign material such as dirt, dust, and water is the major cause of damage in the hydraulic system.

If hydraulic system components must be disconnected for service, protect the ends of hoses, tubing, and ports of components from contamination with clean, lint-free towels, or clean plastic bags.

Before installing any replacement hose, flush the inside with unused diesel fuel or unused commercial petroleum cleaning solvent for ten seconds minimum. Do **NOT** use water, water soluble cleaners, or compressed air.

The hydraulic system components are built to very close tolerances and have been adjusted at the factory. Do **NOT** attempt to service these components except to maintain proper oil level, to change oil, and to change oil filters as described in this manual.

See your MacDon Dealer for all other service.

Hydraulic Oil Cooler

The hydraulic oil cooler is located inside the cooling box behind the radiator.

It should be cleaned with compressed air every 100 hours of operation. Daily cleaning may be required if operating in heavy debris conditions. For instructions, refer to *5.9.2 Cleaning Cooler Module, page 293.*
MAINTENANCE AND SERVICING

Knife/Disc Drive Hydraulics

A single piston hydraulic pump works in a closed-loop circuit providing oil to the knife/disc circuit.

The pump will maintain knife/disc speed at all normal operating engine speeds (>1500 rpm), regardless of varying loads on the header.

The pump requires charge flow in order to:

- Replace oil from internal leakages
- Fill and maintain positive pressure in the work circuit
- Provide flushing flow for cooling, and introduce clean oil into the circuit

Reel and Draper Hydraulics

The reel and draper circuits are powered by a gear pump. This allows independent oil flow to the reel and draper circuit and separates oil flow from the knife pump.

The header drive manifold manages flow control and relief for these circuits.

Traction Drive Hydraulics

The windrower traction drive consists of two variable displacement axial piston hydraulic pumps, one for each drive wheel.

The pump’s speeds are increased through a gearbox from the engine. Each pump requires charge flow in order to:

- Replace oil from internal leakages
- Fill and maintain positive pressure in the work circuit
- Provide flushing flow for cooling (occurs at the motors), and introduce clean oil into the circuit
5.5.5 Electrical System

Module Layout
Module Locations Legend

A - Console Module (MD #208808)
B - Harvest Performance Tracker Display (MD #306001)
C - Roof Relay Module (MD #208160)

D - Master Control Module (MD #205941)
E - Firewall Extension Module (MD #201396)
F - Chassis Extension Module (MD #201396)

G - HVAC Controller Module (MD 208110)
H - Chassis Relay Module (MD #208160)
J - Engine ECM

16. Fuse Panel and Relay Module Decal (page 363)
Master Controller

The master controller houses the windrower software and communicates with all other electrical modules on the windrower.

Extension Modules

The M1170 Windrower has two extension modules. One is behind the cab, next to the master controller, and the other is located inside the left frame rail. They are used to provide inputs and outputs to various sensors and valve solenoids throughout the windrower.

Relay Modules

The M1170 Windrower has two relay modules. One is located on the chassis and the other inside the cab headliner. There are fuses and relays located in both relay modules.

The chassis relay module is located on the left (cab-forward) frame rail.
The roof relay module is located inside the cab’s headliner.

Preventing Electrical System Damage

To prevent electrical system damage, take the following precautions:

- Carefully observe polarity when attaching booster battery.
- Do **NOT** short across battery or alternator terminals or allow battery positive (+) cable (B) or alternator wire to become grounded.
- Be sure alternator connections are correct before connecting the cables to the battery.
- When welding on any part of the machine, disconnect battery cables. For instructions, refer to *1.8 Welding Precaution, page 9*.
- Always disconnect battery ground cables when working with the alternator or regulator.
- Never attempt to polarize alternator or regulator.
- If wires are disconnected from the alternator, refer to Figure 5.32, *page 268* to ensure proper connection.
- Never ground the alternator field terminal or field.
- Never connect or disconnect alternator or regulator wires with battery connected or alternator operating.
- Always disconnect cables from the battery when using a charger to charge battery in windrower.
- Ensure all cables are securely connected before operating engine.
- To avoid damage to circuit boards by static electricity, disconnect negative battery terminals when replacing electronic control modules. Furthermore, when handling electronic control modules, avoid touching the connector pins directly.
5.6 Break-In Inspection Procedures

For the break-in schedule, refer to 5.2.1 Break-in Inspection Schedule, page 243.

5.6.1 Tightening Drive Wheel Nuts

To tighten the drive wheel nuts, follow these steps:

IMPORTANT:

- To avoid damage to wheel rims and studs, tighten nuts by hand. Threads must be clean and dry, do **NOT** apply any lubricant or anti-seize compound. Do **NOT** use an impact gun, and do **NOT** overtighten wheel nuts.
- Use only genuine, manufacturer specified nuts.

1. Locate the drive wheels (A).

2. Torque each nut (A) to 510 Nm (375 lbf·ft) using the tightening sequence shown at right.

3. Repeat tightening sequence two additional times, ensuring the specified torque is achieved each time.

4. Repeat torque procedure every hour until two consecutive checks confirm that there is no movement of the nuts (A).
5.6.2 Tightening Caster Wheel Nuts

At first use or when a wheel is removed, check wheel nut/bolt torque every 15 minutes on the road or 1 hour in the field until the specified torque is maintained. Once specified torque is maintained, check wheel nut/bolt torque after 10 and 50 hours (field or road operation), and then every 200 hour intervals thereafter.

1. Locate the caster wheel assemblies (A).

2. Tighten wheel nuts (A) to 163 Nm (120 lbf·ft) using the tightening sequence shown at right. Repeat the tightening sequence three times.
5.6.3 Tightening Caster Wheel Anti-Shimmy Dampeners

Each caster is equipped with two fluid-filled anti-shimmy dampeners (A).

The mounting bolts (B) and (C) need to be checked periodically for security. Refer to 5.2.2 Maintenance Schedule/Record, page 244.

- Two inboard bolts (B) should be tightened to 136 Nm (100 lbf·ft)
- Outboard bolt (C) should be tightened to 244 Nm (182 lbf·ft)
- Outboard jam nut (D) should be tightened to 136 Nm (100 lbf·ft)

5.6.4 Tightening Walking Beam Adjustment Bolts

Check walking beam adjustment bolt torque after 5, 10, and 50 hours of field or road operation.

1. Tighten and torque back bolts (A) to 759 Nm (560 lbf·ft).
2. Tighten and torque bottom bolts (B) to 759 Nm (560 lbf·ft).
3. Repeat on opposite side.
5.6.5 Tensioning Air Conditioner Compressor Belts

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Loosen compressor mounting hardware (A).
4. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

 NOTE:
 The tab (D) on bracket can be used as support for prying.
5. Tighten compressor mounting hardware (A).
6. Recheck tension and readjust as required.
7. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

![Figure 5.41: Air Conditioning (A/C) Compressor](image)

5.6.6 Changing Engine Gearbox Lubricant

Change engine gearbox lubricant after the first 50 hours, and then at every 250 hours or annually as follows:

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
Park on a flat, level surface with the header on the ground, the ground speed lever (GSL) in PARK position, and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

NOTE:
The engine should be warm when changing the lubricant.

1. Park the windrower on a level surface.
2. Shut down the engine, and remove the key from the ignition.
3. Place a 4 liter (1 U.S. gallon) drain pan under the gearbox.
4. Remove drain plug (A) and allow lubricant to completely finish draining.

5. Inspect the drain plug. Small metal shavings are normal. If there are any larger metal pieces, an inspection of the gearbox will be required.

6. Install drain plug (A) and remove check plug (B).

7. Add lubricant until the oil level reaches check plug (B). For lubricant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 240.

8. Replace check plug (B).

9. Operate the engine at low idle and check for leaks at the check plug and drain plug.

5.6.7 Changing Wheel Drive Lubricant – 10 Bolt

The wheel drive lubricant should be changed after the first 50 hours and every 1000 hours or annually, whichever occurs first. Change the lubricant when it is warm.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Park windrower on level ground and position windrower so drain plug (B) is at the lowest point.

2. Shut down the windrower and remove key from ignition.

3. Place a container (about 2 liters [2 quarts]) under the lower drain plug (B).

4. Remove plugs (A) and (B), and drain lubricant into container.

5. Dispose of oil in a manner that complies with local rules and regulations.
6. After the lubricant has drained completely, position the windrower so that ports (A) and (B) on wheel are horizontally level with the center of the hub (C) as shown.

7. Add lubricant. For instructions, refer to 5.10.5 Adding Wheel Drive Lubricant – 10 Bolt, page 305.

8. Reinstall all plugs.

5.6.8 Changing Wheel Drive Lubricant – 12 Bolt (Optional)

The wheel drive lubricant should be changed after the first 50 hours and every 1000 hours or annually, whichever occurs first. Change the lubricant when it is warm.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Park the windrower on level ground and position the drive wheel so fill/drain plug (A) is at the lowest point.

2. Shut down the engine, and remove the key from the ignition.

3. Place a container (about 5 liters [5.3 quarts]) under the fill/drain plug (A).

4. Remove fill/drain plug (A) and check plug (B), and drain lubricant into container.

5. Dispose of oil in a manner that complies with local rules and regulations.
6. After the lubricant has drained completely, rotate the wheel drive until fill/drain plug (A) is vertically centered with the hub, and check port (B) on wheel drive is horizontally level with the center of the hub.

7. Add lubricant. For instructions, refer to 5.10.6 Adding Wheel Drive Lubricant – 12 Bolt (Optional), page 306.

8. Reinstall check plug (B) and torque to 7.5 Nm (6 lbf·ft).

9. Reinstall fill/drain plug (A) and torque to 22 Nm (18 lbf·ft).

5.6.9 Return Oil Filter

The return filter removes particulate contaminants from the return oil from the fan drive, lift circuits, and the drive circuits. It must be changed after the first 50 hours and then at 500-hour intervals. Follow the service schedule on the Harvest Performance Tracker (HPT) display.

Removing Return Oil Filter

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ DANGER

Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.

1. Shut down the engine, and remove the key from the ignition.

2. Locate the return filter (A) under the left platform.

3. Clean around head of the filter (A).

4. Place a container beneath the filter (A) to collect any oil that may leak out.

5. Unscrew filter (A) with a filter wrench.

6. Dispose of used oil and filter in a manner that complies with local rules and regulations.
NOTE:
Image showing filter head removed to show component clarity.

7. Remove and discard gasket (C) from groove (B) in filter head (A).

NOTE:
Filter (D) is shown to provide context.

Installing Return Oil Filter

NOTE:
For filter specifications, refer to 5.1.4 Filter Part Numbers, page 241.

NOTE:
Image shows filter head removed for component clarity.

1. Clean the gasket groove (B) in the filter head (A).
2. Apply a thin film of clean oil to the new filter gasket (C).

IMPORTANT:
Do NOT pre-fill filter before installation as this may potentially introduce unfiltered oil into the system.

3. Install new gasket (C) into the groove (B) in the filter head (A).
4. Screw the new filter (D) onto the filter head until the gasket just contacts the filter.

5. Tighten filter (A) an additional 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install oil filter. Overtightening can damage gasket and filter.

6. Check hydraulic fluid levels. For instructions, refer to 5.7.3 Checking Hydraulic Oil, page 281. For capacity level, refer to the inside back cover.
5.6.10 Charge Filter

The charge filter removes particulate contaminants from the oil before the oil is directed into the traction and header drive pumps. The oil maintains a positive pressure and is continuously supplied in these closed circuits during operation. The charge filter has a high-pressure bypass of 345 kPa (50 psi) that allows oil to bypass the filter element during cold temperatures and when the filter element is heavily loaded.

The charge filter must be replaced at regular intervals. The filter telltale is displayed on the Harvest Performance Tracker (HPT). The charge filter must be changed after first 50 hours and every 500 hours thereafter. Follow the service schedule on the HPT.

Refer to the following procedures to change the charge filter:

- **Removing Charge Filter, page 277.**
- **Installing Charge Filter, page 277.**

Removing Charge Filter

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

DANGER

Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.

1. Shut down the engine, and remove the key from the ignition.
2. Open the platform. For instructions, refer to 5.4.1 Opening Platform, page 249.
3. Clean around head of the filter.
4. Place a container beneath the filter to collect any oil that may leak out.
5. Unscrew filter (A) with a filter wrench.
6. Dispose of used oil and filter in a manner that complies with local rules and regulations.

Installing Charge Filter

NOTE:

For charge filter replacement part number, refer to 5.1.4 Filter Part Numbers, page 241.

1. Clean the gasket surface of the filter head.
2. Apply a thin film of clean oil to the filter gasket.

IMPORTANT:

Do NOT pre-fill filter before installation as this may potentially introduce unfiltered oil into the system.
3. Screw the new filter (A) onto the mount until the gasket just contacts the filter head.

4. Tighten filter an additional 1/2 turn by hand.

 IMPORTANT:
 Do NOT use a filter wrench to install oil filter. Overtightening can damage gasket and filter.

5. Check hydraulic fluid levels. For instructions, refer to 5.7.3 *Checking Hydraulic Oil, page 281.* For capacity level, refer to the inside back cover.

Figure 5.52: Charge Filter
5.7 Every 10 Hours or Daily

Complete the following maintenance tasks every 10 hours of operation or daily, whichever occurs first.

- Check engine oil level. For instructions, refer to 5.7.1 Checking Engine Oil Level, page 279.
- Check engine coolant level. For instructions, refer to 5.7.5 Checking Engine Coolant Level, page 285.
- Check hydraulic oil level. For instructions, refer to 5.7.3 Checking Hydraulic Oil, page 281.
- Check tire inflation. For instructions, refer to 5.7.4 Checking Tire Pressures, page 282.
- Check hydraulic hoses and lines for leaks. For instructions, refer to 5.7.6 Hoses and Lines, page 285.
- Drain fuel filter water trap. For instructions, refer to 5.7.2 Fuel/Water Separator, page 281.
- Clean radiator, hydraulic oil cooler, charge air cooler, and A/C condenser. For instructions, refer to 5.9.2 Cleaning Cooler Module, page 293.
- Fill fuel tank. For instructions, refer to Filling Fuel Tank, page 112.
- Check diesel exhaust fluid (DEF) level. For instructions, refer to 3.17 Harvest Performance Tracker Display, page 77.

5.7.1 Checking Engine Oil Level

Check engine oil level frequently and watch for any signs of leakage.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
During the break-in period, a higher than usual oil consumption should be considered normal.

NOTE:
Oil can be checked without opening the hood.

1. Operate the engine at low idle and check for leaks at the filter and drain plug.
2. Shut down the engine, and remove the key from the ignition.
3. Wait about 5 minutes.
4. Remove dipstick (A) by turning it counterclockwise to unlock.
5. Wipe dipstick clean and reinsert it into engine.

Figure 5.53: Dipstick Location
6. Remove dipstick again and check oil level. Oil level should be between LOW (L) and HIGH (H). If below the LOW mark, add oil.

NOTE:
Adding 1.9 liters (2 U.S. quarts) will raise the level from LOW to HIGH. To add oil, refer to *Adding Engine Oil, page 280*.

7. Replace dipstick and turn it clockwise to lock.

8. Grasp hood by louver (A) and lower until hood engages latch.

NOTE:
Check that latch lever is not tilted to ensure hood is latched.

Adding Engine Oil

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
2. Clean around filler cap (A) and remove by turning it counterclockwise.
3. Carefully pour in 11 L (11.6 US qts) of new oil. A funnel is recommended to avoid spillage. Refer to the inside back cover for oil specifications.

CAUTION
Do NOT fill above the HIGH mark.

4. Replace oil filler cap (A) and turn it clockwise until snug.
5. Check the oil level. For instructions, refer to 5.7.1 Checking Engine Oil Level, page 279.
6. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

5.7.2 Fuel/Water Separator

A fuel/water separator is incorporated into the primary fuel filter. The separator is equipped with a drain and a sensor that detects water in the fuel and displays an alert on the HPT display. Drain the water and sediment from the separator daily or at any time the Water In Fuel (WIF) light illuminates on the HPT display.

To remove water from the fuel system, refer to Removing Water from Fuel System, page 281.

Removing Water from Fuel System

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

3. Place a container under the filter (A) to catch spilled fluid.

4. Turn drain valve (C) by hand 1 1/2 to 2 turns counterclockwise until draining occurs.

5. Drain the filter sump of water and sediment until clear fuel is visible.

6. Turn the valve clockwise to close the drain.

7. Dispose of fluid safely.

8. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

Figure 5.57: Fuel System

A - Primary Fuel Filter
B - Water in Fuel (WIF) Sensor
C - Drain Valve

5.7.3 Checking Hydraulic Oil

Hydraulic oil is used to transmit force under high pressure. The oil also lubricates, cools, and cleans the system, therefore the cleanliness and quality of the oil is highly important to ensure long system life. It is extremely important to avoid contamination when service and regular maintenance is performed.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.
1. Park the windrower on a level surface.
2. Lower the header fully.
3. Lower the reel fully.
4. Shut down the engine, and remove the key from the ignition.
5. Locate sight glass (A) on the right side of the tank. It indicates the oil level and any signs of contamination.
 NOTE:
 No oil in the sight glass indicates that the oil level is below the add mark on the dipstick. The sight glass is viewable with hood open or closed.
6. Ensure the hydraulic oil level is between the low and full indicator marks.
7. If more oil is required to maintain the level between low and full indicator marks, refer to 5.13.3 Filling Hydraulic Oil, page 323.

5.7.4 Checking Tire Pressures

Check tire pressures with a gauge.

Caster Wheel Tires: Inflate all caster wheel tires (B) to 110 kPa (16 psi).

Drive Wheel Tires: For optimal performance, drive wheel (A) tire pressures are determined by tire type, header size, and additional options. Refer to the following table:

![Figure 5.58: Hydraulic Oil Sight Glass](image1)

![Figure 5.59: Windrower Tires](image2)

Table 5.4 Drive Tire Inflation Specifications

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper Header</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D115X single reel</td>
<td>4.6 m (15 ft.), double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>138 (20)</td>
</tr>
<tr>
<td>D115X single reel</td>
<td>4.6 m (15 ft.), double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>138 (20)</td>
</tr>
<tr>
<td>D120X single reel</td>
<td>6.1 m (20 ft.), double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>138 (20)</td>
</tr>
</tbody>
</table>
Table 5.4 Drive Tire Inflation Specifications (continued)

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D120X single reel</td>
<td>6.1 m (20 ft.), double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>138 (20)</td>
</tr>
<tr>
<td>D125X single reel</td>
<td>7.6 m (25 ft.), double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>159 (23)</td>
</tr>
<tr>
<td>D125X single reel</td>
<td>7.6 m (25 ft.), double knife, timed</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>159 (23)</td>
</tr>
<tr>
<td>D130X single reel</td>
<td>9.1 m (30 ft.), double knife, timed</td>
<td>Transport</td>
<td>1</td>
<td>Bar</td>
<td>200 (29)</td>
</tr>
<tr>
<td>D130X single reel</td>
<td>9.1 m (30 ft.), double knife, timed</td>
<td>Transport</td>
<td>1</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D130X single reel</td>
<td>9.1 m (30 ft.), double knife, timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D130X single reel</td>
<td>9.1 m (30 ft.), double knife, timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X single reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>200 (29)</td>
</tr>
<tr>
<td>D135X single reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X single reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X single reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X single reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X single reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X double reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>221 (32)</td>
</tr>
<tr>
<td>D135X double reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X double reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X double reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D135X double reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Bar</td>
<td>283 (41)</td>
</tr>
<tr>
<td>D135X double reel</td>
<td>10.7 m (35 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140X double reel</td>
<td>12.2 m (40 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140X double reel</td>
<td>12.2 m (40 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
</tbody>
</table>
Table 5.4 Drive Tire Inflation Specifications (continued)

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Weight Kit</th>
<th>Tire Type</th>
<th>Pressure kPa (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.), double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.), double knife, untimed</td>
<td>Transport</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Bar</td>
<td>283 (41)</td>
</tr>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Bar</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.), double knife, untimed</td>
<td>Base</td>
<td>2</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.), double knife, untimed</td>
<td>Transport</td>
<td>3</td>
<td>Bar</td>
<td>262 (38)</td>
</tr>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.), double knife, untimed</td>
<td>Transport</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Bar</td>
<td>283 (41)</td>
</tr>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.), double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>3</td>
<td>Turf</td>
<td>241 (35)</td>
</tr>
<tr>
<td>R113/R116</td>
<td>4 m (13 ft.) / 4.9 m (16 ft.)</td>
<td>No Conditioner</td>
<td>—</td>
<td>Bar or Turf</td>
<td>138 (20)</td>
</tr>
<tr>
<td>R113/R116</td>
<td>4 m (13 ft.) / 4.9 m (16 ft.)</td>
<td>Steel or Poly Roll</td>
<td>—</td>
<td>Bar</td>
<td>179 (26)</td>
</tr>
<tr>
<td>R113/R116</td>
<td>4 m (13 ft.) / 4.9 m (16 ft.)</td>
<td>Steel or Poly Roll</td>
<td>—</td>
<td>Turf</td>
<td>159 (23)</td>
</tr>
<tr>
<td>A40DX</td>
<td>4.9 m (16 ft.)</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>200 (29)</td>
</tr>
<tr>
<td>A40DX</td>
<td>4.9 m (16 ft.)</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>200 (29)</td>
</tr>
<tr>
<td>A40DX GSS</td>
<td>4.9 m (16 ft.) (Grass Seed)</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>159 (23)</td>
</tr>
<tr>
<td>A40DX GSS</td>
<td>4.9 m (16 ft.) (Grass Seed)</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>159 (23)</td>
</tr>
<tr>
<td>A40DX</td>
<td>5.5 m (18 ft.)</td>
<td>—</td>
<td>—</td>
<td>Bar</td>
<td>200 (29)</td>
</tr>
<tr>
<td>A40DX</td>
<td>5.5 m (18 ft.)</td>
<td>—</td>
<td>—</td>
<td>Turf</td>
<td>220 (32)</td>
</tr>
</tbody>
</table>
5.7.5 Checking Engine Coolant Level

Check coolant level in the pressurized coolant tank daily.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
Ensure the engine has cooled down prior to checking.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Locate the coolant tank.
4. The tank has a MAX and MIN COLD line marker. Check to make sure the coolant level is at the MAX COLD line (A). If it is too low, add coolant. For specifications, refer to the inside back cover.

 NOTE:
 When checking coolant level, use the MAX COLD line on the side of tank that faces cab for an accurate measurement.
5. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

5.7.6 Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

⚠️ WARNING
- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury.
- Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure.
- Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a Doctor familiar with this type of injury or gangrene may result.
- Use a piece of cardboard or paper to search for leaks.
- Any service components must be genuine MacDon parts.
- All connections must be properly torqued. Refer to 8.1 Torque Specifications, page 401.
IMPORTANT:

- Keep hydraulic coupler tips and connectors clean. Dust, dirt, water, and foreign material are the major causes of hydraulic system damage.
- DO NOT attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.

5.7.7 Checking Engine Gearbox Lubricant Level and Adding Lubricant

Check lubricant level every day.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

Park on a flat, level surface with the header on the ground, the ground speed lever (GSL) in PARK position, and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

1. Park the windrower on level ground, shut down engine, and remove key.

 NOTE:
 - If engine is hot, wait 10 minutes before checking level to allow lubricant to cool and settle in the sump.

2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

3. Remove dipstick (A) and check lubricant level.

![Gearbox Lubricant Dipstick]

Figure 5.62: Gearbox Lubricant Dipstick
5.8 Every 50 Hours

Complete the following maintenance tasks every 50 hours of operation.

- Clean the cab fresh air intake filter. For instructions, refer to 5.8.1 Fresh Air Intake Filter, page 287.
- Check gearbox oil level. For instructions, refer to 5.7.7 Checking Engine Gearbox Lubricant Level and Adding Lubricant, page 286.
- Grease caster bearings and pivots. For instructions, refer to 5.8.2 Greasing the Windrower, page 289.
- Grease top lift link pivots. For instructions, refer to 5.8.2 Greasing the Windrower, page 289.

5.8.1 Fresh Air Intake Filter

The fresh air intake filter is located outside the lower right rear of the cab (A), and should be serviced every 50 hours under normal conditions and more frequently in severe conditions. Refer to 5.1.4 Filter Part Numbers, page 241 for the appropriate part number.

Removing Fresh Air Intake Filter

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Rotate latch (A) counterclockwise to loosen, and remove fresh air filter door (B).
4. Turn knob (A) counterclockwise, and remove it.
5. Remove air filter retainer (B).
6. Remove air filter (C).

Inspecting and Cleaning Fresh Air Intake Filter Element

1. Tap the sides of the filter element gently to loosen dirt. Do **NOT** tap element against a hard surface.
2. Using a dry element cleaner gun, clean element with compressed air.

 IMPORTANT:
 Air pressure must **NOT** exceed 414 kPa (60 psi). Do **NOT** direct air against outside of element, as dirt might be forced through to the inside.
3. Hold the air nozzle next to the filter element’s inner surface and move up and down the pleats.
4. Repeat previous steps to remove additional dirt as required.
5. Hold a bright light inside the element and check carefully for holes. Discard any element that shows the slightest hole.
6. Check outer screen for dents. Vibration would quickly wear a hole in the filter.
7. Check filter gasket for cracks, tears, or other signs of damage. If gasket is damaged or missing, replace element.

Installing Fresh Air Intake Filter

Refer to **5.1.4 Filter Part Numbers, page 241** for part number.

1. Clean interior of fresh air intake box (A).
2. Install air filter (A) onto fresh air box panel (B).

3. Secure air filter (C) with retainer (B).

4. Install knob (A), and turn clockwise to tighten.

5. Insert tabs on fresh air filter door into slots on fresh air box, and rotate latch (A) clockwise to secure door (B).

5.8.2 Greasing the Windrower

⚠️ WARNING

To avoid personal injury, before servicing the windrower or opening drive covers, follow procedures in the SAFETY section. Refer to 1 Safety, page 1.
The greasing points are marked on the machine by decals showing a grease gun and grease interval in hours of operation.

Log hours of operation and use the Maintenance Checklist provided to keep a record of scheduled maintenance. Refer to 5.2.2 Maintenance Schedule/Record, page 244.

![Greasing Interval Decal](image)

Greasing Procedure

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. To avoid injecting dirt and grit, wipe grease fitting with a clean cloth before greasing.
2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted. Refer to the inside back cover.
3. Leave excess grease on fitting to keep out dirt.
4. Replace any loose or broken fittings immediately.
5. If fitting will **NOT** take grease, remove and clean thoroughly. Also clean grease passageway. Replace fitting if necessary.
Grease Points

Figure 5.71: Grease Points

A - Top Link (2 Places) (Both Sides)
B - Caster Pivot (Both Sides)
C - Caster Wheel Hub (Both Sides)

17. Do **NOT** overgrease. Use 1 pump of grease.
5.9 Every 100 Hours

Complete the following maintenance tasks every 100 hours of operation.

- Clean cab air return filter. For instructions, refer to 5.9.1 Servicing Return Air Filter, page 292.
- Clean radiator, hydraulic oil cooler, charge air cooler, and A/C condenser. Refer to 5.9.2 Cleaning Cooler Module, page 293.

5.9.1 Servicing Return Air Filter

The return air filter is located behind the operator’s seat on the cab wall and should be serviced every 100 hours.

1. Unscrew two knobs (A) attaching cover and filter to cab wall, and remove cover and filter assembly (B).

2. Separate the filter (B) from the cover (A).

3. Clean the electrostatic filter as follows:
 a. Mix a solution of warm water and detergent in a suitable container so that the filter (B) can soak for a few minutes.
 b. Agitate to flush out the dirt.
 c. Rinse with clean water, and then dry with compressed air.
 d. Inspect filter for damage, separation, and holes. Replace if damaged. Refer to 5.1.4 Filter Part Numbers, page 241 for part number.

4. Assemble the cleaner (B) and cover (A), and position on cab wall over opening.
5. Secure filter assembly (B) to cab wall with knobs (A).

5.9.2 Cleaning Cooler Module

The cooling module should be cleaned every 100 hours of operation. Daily cleaning may be required if operating in heavy crop conditions.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Proceed to the cleaning procedures. For instructions, refer to Cleaning Right Cooling Module, page 296 or Cleaning Left Cooling Module, page 293.

Cleaning Left Cooling Module

This procedure is for cleaning the engine radiator, air conditioning condenser, and screen in the left cab-forward cooling module.

1. At left cab-forward side cooler module, push latch (A) and open engine radiator door (B).
2. Lower lever (A) to release screen/condenser door (B) from radiator (C), and open screen/condenser door (B).

3. Pull lever (A) up to partially-open condenser (B) away from screen (C).

4. Secure condenser (A) with bracket (B).

5. Clean debris from radiator (D), condenser (A), and screen (C) with compressed air.
6. Close condenser (B) into screen (C) and secure with bracket (A).

7. Close screen/condenser door (B) onto radiator door (C) and secure with lever (A).

8. Close radiator door (B) and push until latch (A) secures door (B).
Cleaning Right Cooling Module

This procedure is for cleaning the coolers at the right cab-forward side of the windrower.

1. At the right (cab-forward) side cooler module, pull latch handle (A) and open screen (B).

2. At the left (cab-forward) side cooler module, push latch (A) and open engine radiator door (B) to allow access inside cooler module.

3. Use compressed air to clean debris from inside the cooler box (A), charge air cooler (B), and hydraulic oil cooler (C).
4. At right side cooler module, with screen door open, clean debris from screen (A) with compressed air.

5. Close screen door (B) and secure with latch (A).
5.10 Every 250 Hours or Annually

Complete the following maintenance tasks every 250 hours of operation or annually, whichever occurs first:

- Change engine oil and filter. For instructions, refer to 5.10.1 Changing Engine Oil, page 298.
- Change engine primary air filter. For instructions, refer to 5.10.2 Maintaining Engine Air Filters, page 299.
- Check wheel drive lubricant level. For instructions, refer to 5.10.3 Checking Wheel Drive Lubricant Level, page 304.
- Inspect exhaust system. For instructions, refer to 5.10.7 Inspecting Exhaust System, page 306.
- Change engine gearbox oil. For instructions, refer to 5.10.8 Changing Engine Gearbox Lubricant, page 308.

5.10.1 Changing Engine Oil

Draining Engine Oil

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
The engine should be warm prior to changing the oil.

1. Shut down the engine, and remove the key from the ignition.
2. Place a drain pan with a capacity of about 24 liters (6 U.S. gallons) under the engine oil drain.
3. Remove oil drain plug (A) and allow the oil to completely finish draining.
4. Replace drain plug (A).
5. Check the condition of the used oil. If either of the following is evident, have your Dealer correct the problem before starting the engine:
 - Thin black oil indicates fuel dilution
 - Milky discoloration indicates coolant dilution
6. Dispose of used oil properly.

Replacing Engine Oil Filter

NOTE:
Replace oil filter each time engine oil is changed.

1. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
2. Place oil pan below filter.
3. Clean around the filter head (A) and remove filter.

NOTE:
Check that gasket is removed from filter head.

4. Clean gasket mating surface.

5. Apply a thin film of clean oil to the gasket on the new filter. Refer to 5.1.4 Filter Part Numbers, page 241 for recommended oil filter.

6. Screw the new filter onto the filter mount until the gasket contacts the filter head.

7. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the oil filter. Overtightening can damage the gasket and filter.

8. Properly dispose of used oil filter.

Adding Engine Oil

⚠️ **WARNING**
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

2. Clean around filler cap (A) and remove by turning it counterclockwise.

3. Carefully pour in 11 L (11.6 US qts) of new oil. A funnel is recommended to avoid spillage. Refer to the inside back cover for oil specifications.

⚠️ **CAUTION**
Do NOT fill above the HIGH mark.

4. Replace oil filler cap (A) and turn it clockwise until snug.

5. Check the oil level. For instructions, refer to 5.7.1 Checking Engine Oil Level, page 279.

6. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

5.10.2 Maintaining Engine Air Filters

Removing Engine Primary Air Filter

1. Stand on right service platform.

2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Slightly lift catch (A) at side of end cap (B). Rotate end cap counterclockwise until it stops.

4. Make sure arrow (A) lines up with the UNLOCK symbol on end cap.

5. Pull off the end cap.

6. Check the aspirator duct opening (A) for obstructions or damage. Clean if necessary.

7. Place cover on platform.

NOTE:
Hoses can be left connected to the cover.
8. Pull out the primary filter element (A).

IMPORTANT:
Be extremely careful with the dirty element until it is completely out of the housing. Accidentally bumping it while still inside may cause dirt and dust to contaminate the clean side of filter housing.

9. If necessary, also change the secondary filter (B). For instructions, refer to *Replacing Secondary Air Filter, page 303*.

IMPORTANT:
- Do **NOT** remove the secondary filter unless it needs replacing. It must never be cleaned.
- Replace secondary filter annually or after every third primary filter change, even if it looks clean.
- If the secondary filter looks dirty, a further inspection will be required.
- Examine filter canister for cracks and replace as necessary.
- Ensure canister retaining latches are secure.

IMPORTANT:
Clean the inside of the housing and cover carefully. Dirt left in the air cleaner housing may be harmful to your engine.
- Use a clean, water-dampened cloth to wipe every surface clean.
- Check it visually to make sure it is clean before putting in a new element.
- Always clean the gasket sealing surfaces of the housing. An improper gasket seal is one of the most common causes of engine contamination.
- Make sure that all hardened dirt ridges are completely removed wherever filter gaskets contact the cleaner housing.

Check for uneven dirt patterns on your old element. Your old element is a valuable clue to potential dust leakage or gasket sealing problems.
- A pattern on the element clean side is a sign that the old element was not firmly sealed or that a dust leak exists.
- Make certain the cause of that leak is identified and rectified before replacing the element.
- Recheck to see if the sealing surface in the housing is clean.

Installing Engine Primary Air Filter

NOTE:
For primary air filter replacement part number, refer to *5.1.4 Filter Part Numbers, page 241*.
1. Insert new primary filter (A) into canister and push into place, ensuring that element is firmly seated in canister.

2. Align arrow (A) to UNLOCK position on end cap, and push end cap fully onto housing.

3. Rotate end cap clockwise until catch (A) engages housing to prevent end cap from turning.

4. Position end cap (B) onto filter housing with aspirator pointing approximately down.

5. Secure end cap onto filter housing by closing latch (A).

6. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

7. Close the platform. For instructions, refer to 5.4.2 Closing Platform, page 249.
Cleaning Primary Air Filter

The engine air cleaner’s primary filter should be replaced after three cleanings or at the specified interval. The secondary element should be replaced every third time the primary element is changed. Refer to 5.2 Windrower Break-In Inspections and Maintenance Schedule, page 243 for the required interval.

1. Hold a bright light inside element and check carefully for holes. Vibration would quickly wear a hole in the filter.
2. Check filter gasket for cracks, tears, or other signs of damage.
3. Check element for oil or soot contamination.
4. Check the secondary element for cleanliness. If there is visible dirt on the secondary element, replace both primary and secondary elements. Do NOT clean.

IMPORTANT:
- The secondary filter element should NEVER be cleaned, only replaced.
- Air filter element cleaning is NOT recommended due to the possible degradation of the element material. If cleaning is performed, there are several risks involved and the following steps should be followed. If any of the conditions described in these steps are found, the filter element MUST be replaced.

5. If secondary element passes inspection, use compressed air not exceeding 270 kPa (40 psi) and a dry element cleaner gun to clean the primary element. Hold nozzle next to inner surface only and move up and down on pleats.

NOTE:
After three cleanings (or at the specified interval), replace the primary element.

6. Repeat inspection before installing. For instructions, refer to Installing Engine Primary Air Filter, page 301.

Replacing Secondary Air Filter

IMPORTANT:
- The secondary filter element (A) should NEVER be cleaned, only replaced. Do NOT remove the secondary filter element unless it needs replacing.
- Replace secondary element annually or after every third primary filter change, even if it appears clean.
- If replacing secondary element, a further inspection may be necessary.
- Examine filter canister for cracks and replace as necessary.
- Ensure canister retaining latches are secure. Ensure filter sealing surfaces are soft, flexible and sealing, not hard and allowing debris through to secondary filter.

1. Remove the primary filter. For instructions, refer to Removing Engine Primary Air Filter, page 299.

IMPORTANT:
When replacing secondary filter (A), reinsert new filter as soon as possible to prevent dirt from entering engine intake.
2. Remove the secondary filter element (A) from canister.

 NOTE:
 If replacing filter, refer to [5.1.4 Filter Part Numbers, page 241](#).

3. Insert new secondary filter element (A) into canister, seal first, and push until seal is seated inside canister.

4. Install the primary filter. For instructions, refer to *Installing Engine Primary Air Filter, page 301*.

 ![Secondary Air Filter](image)

5.10.3 Checking Wheel Drive Lubricant Level

Check the wheel drive lubricant level every 250 hours or annually.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Park the windrower on level ground.
2. Position windrower so that plugs (A) and (B) are horizontally aligned with the center (C) of the hub.

WARNING

Use caution when removing plug as there may be pressure in the drive.

3. Remove plug (A) or (B). The lubricant should be visible through the port or running out slightly. If lubricant needs to be added, refer to [5.10.5 Adding Wheel Drive Lubricant – 10 Bolt, page 305](#).

 NOTE:
 The type of lubricant used after the first lubricant change is different from the factory supplied lubricant.

4. Reinstall plugs and tighten.

5.10.4 Checking Wheel Drive Lubricant Level – 12 Bolt (Optional)

Check the wheel drive lubricant level every 250 hours or annually.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Park the windrower on level ground.

2. Rotate the wheel drive until fill/drain plug (A) is vertically centered with the hub, and check plug (B) is horizontally aligned with the center of the hub.

3. Shut down the engine, and remove the key from the ignition.

⚠️ WARNING
Use caution when removing plug as there may be pressure in the drive.

4. Remove check plug (B). The lubricant should be visible through the port or running out slightly. If lubricant needs to be added, refer to 5.10.6 Adding Wheel Drive Lubricant – 12 Bolt (Optional), page 306.

NOTE:
The type of lubricant used after the first lubricant change is different from the factory supplied lubricant.

5. Reinstall check plug (B) and torque to 7.5 Nm (6 lbf-ft).

6. Reinstall fill/drain plug (A) and torque to 22 Nm (18 lbf-ft).

5.10.5 Adding Wheel Drive Lubricant – 10 Bolt

NOTE:
Do NOT mix lubricants of different brands or characteristics.

NOTE:
For lubricant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 240.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Rotate the wheel drive so plugs (A) and (B) are horizontally aligned with the center (C) of the hub.

2. Shut down the engine, and remove the key from the ignition.

3. Remove either plug (A) or (B).

NOTE:
PRIOR TO FIRST CHANGE: Use SAE 85W-140, API service, class GL-5, extreme pressure gear lubricant (non-synthetic).

NOTE:
AFTER FIRST CHANGE: Use SAE 75W-140 or 80W-140, API service, class GL-5, fully synthetic transmission lubricant (SAE J2360 preferred).

4. Add lubricant through one of the ports until the lubricant reaches the bottom of the ports and begins to run out.

5. Reinstall and tighten plug (A) or (B).
6. Start up and operate the windrower for a few minutes, then stop and check the oil level. Refer to the inside back cover. If necessary, add more oil.

5.10.6 Adding Wheel Drive Lubricant – 12 Bolt (Optional)

NOTE:
Do **NOT** mix lubricants of different brands or characteristics.

NOTE:
For lubricant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 240.

![Figure 5.102: Wheel Drive —12 Bolt](image)

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Rotate the wheel drive until fill/drain plug (A) is vertically centered with the hub, and check plug (B) is horizontally aligned with the center of the hub.
2. Shut down the engine, and remove the key from the ignition.
3. Remove plugs (A), and (B).

NOTE:
Use SAE 85W-140, API service, class GL-5, extreme pressure gear lubricant (non-synthetic).

4. Add lubricant through port (A) until the lubricant runs out of check port (B).
5. Reinstall check plug (B) and torque to 7.5 Nm (6 lbf-ft).
6. Reinstall fill/drain plug (A) and torque to 22 Nm (18 lbf-ft).
7. Start up and operate the windrower for a few minutes, then stop and check the oil level. Refer to the inside back cover. If necessary, add more oil.

5.10.7 Inspecting Exhaust System

The system consists of two main canisters for exhaust treatment. Between the two exhaust canisters is a tube with a dosing module (DM) for diesel exhaust fluid (DEF).

CAUTION
Engine exhaust stack may be hot. To avoid burns, do **NOT** touch exhaust canister when engine is running. Allow sufficient cooling time after shut-down.

The exhaust system requires no regular maintenance, but it should be inspected periodically as follows:

1. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

IMPORTANT:
Ensure the exhaust system is secure to eliminate vibration.
2. Check the following:
 a. Exhaust canisters (A) and bellow tube (B) for dents, cracks, and wear
 b. Straps (C) for tightness
 c. U-bolt (D) and band clamps (E) for breakage, cracks, and rust

 IMPORTANT:
 Damaged exhaust piping, clamps, or components can lead to exhaust leaks and engine derate.

3. Check the three band clamps (A) securing the tubes in between the two exhaust canisters.

 IMPORTANT:
 Do **NOT** change exhaust canister type, piping sizes, or exhaust configuration. See your Dealer for proper replacement parts.

4. Inspect the area around clamps (A) for breakage, cracks, and rust-through.

 IMPORTANT:
 If exhaust is leaking, tighten clamps to 12–15 Nm (9–11 lbf·ft). If leaking at band connection, replace seals. Contact your Dealer if exhaust leak persists.

5. Check tubing for dents or crushed areas.

 IMPORTANT:
 Dents or crushed portions of any tubing create exhaust flow restriction and increase back pressure significantly. Even relatively small dents will cause decreased fuel economy and increased turbo wear. If dents are relatively large, increased bearing and cylinder wear will occur due to increased exhaust temperature.
5.10.8 Changing Engine Gearbox Lubricant

Change engine gearbox lubricant after the first 50 hours, and then at every 250 hours or annually as follows:

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION

Park on a flat, level surface with the header on the ground, the ground speed lever (GSL) in PARK position, and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

NOTE:

The engine should be warm when changing the lubricant.

1. Park the windrower on a level surface.
2. Shut down the engine, and remove the key from the ignition.
3. Place a 4 liter (1 U.S. gallon) drain pan under the gearbox.
4. Remove drain plug (A) and allow lubricant to completely finish draining.
5. Inspect the drain plug. Small metal shavings are normal. If there are any larger metal pieces, an inspection of the gearbox will be required.
6. Install drain plug (A) and remove check plug (B).
7. Add lubricant until the oil level reaches check plug (B). For lubricant specifications, refer to 5.1.3 Lubricants, Fluids, and System Capacities, page 240.
8. Replace check plug (B).
9. Operate the engine at low idle and check for leaks at the check plug and drain plug.

Figure 5.105: Engine Gearbox
5.11 Every 500 Hours or Annually

Complete the following maintenance tasks every 500 hours of operation or annually, whichever occurs first.

- Change primary and secondary fuel filters. For instructions, refer to 5.11.1 Maintaining Fuel Filters, page 309.
- Change hydraulic return filter and charge filter. For instructions, refer to 5.6.9 Return Oil Filter, page 275 and 5.6.10 Charge Filter, page 277.
- Check safety systems. For instructions, refer to 5.11.2 Safety Systems, page 312.

5.11.1 Maintaining Fuel Filters

The windrower’s fuel system is equipped with primary (A) and secondary (B) screw-on cartridge type filters. The primary filter (A) is equipped with a separator that separates sediment and water from the fuel.

NOTE:
Bottom part of image was made transparent to show the primary filter (A).

Removing Primary Fuel Filter

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Locate the primary fuel filter (A) on the right cab-forward side of the windrower.

 NOTE:
 Bottom part of the image made transparent to show location of the primary filter.
4. Clean around the primary filter (A) head.
5. Disconnect the water in fuel (WIF) sensor (B) from bottom of filter.
6. Turn drain valve (C) by hand counterclockwise until draining occurs, and drain filter into a container.
7. Remove filter (A) with a filter wrench.
8. Clean gasket mating surface.
Installing Primary Fuel Filter

IMPORTANT:
Do NOT pre-fill filter with fuel. Pre-filling can contaminate the fuel system.

NOTE:
If replacing filter, refer to 5.1.4 Filter Part Numbers, page 241.

1. Apply some diesel fuel to the filter gasket, and screw the new filter (A) onto the filter mount until the gasket contacts the filter head.
2. Reconnect water in fuel (WIF) sensor (B).
3. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the filter. Overtightening can damage the gasket and filter.

Removing Secondary Fuel Filter

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Clean around the secondary filter head (A).
4. Place a container under the filter to catch spilled fluid.
5. Remove filter (B) with a filter wrench.
6. Clean gasket mating surface.

Installing Secondary Fuel Filter

IMPORTANT:
Do NOT pre-fill filter with fuel. Pre-filling can contaminate the fuel system.
MAINTENANCE AND SERVICING

NOTE:
If replacing filter, refer to 5.1.4 Filter Part Numbers, page 241.

1. Screw the new secondary filter (A) onto the filter mount until the gasket contacts the filter head.
2. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the filter. Overtightening can damage the gasket and filter.

3. Prime the fuel system, refer to Priming Fuel System, page 311.

Figure 5.110: Fuel System

Priming Fuel System
Controlled venting of air is provided at the injection pump through the fuel drain manifold. Small amounts of air introduced by changing filters or injection pump supply line will be vented automatically if the fuel filters are changed in accordance with instructions.

IMPORTANT:
Do NOT bleed the fuel system. Manual priming will be required if:

- Fuel filter is replaced
- Injection pump is replaced
- High-pressure fuel lines are replaced
- Engine is run until fuel tank is empty

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

WARNING
The fuel pump high-pressure fuel lines and fuel rail contain extremely high-pressure fuel. Never loosen any fittings. Personal injury and property damage can result.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Locate the primary fuel filter assembly (A).
4. Turn the priming knob (B) counterclockwise to unlock the plunger on the primary filter head.
5. Pump until hand pump becomes firm.
6. Push the plunger in and lock it by turning knob (B) clockwise until snug.
7. Try starting engine. If engine does NOT start, or starts then shuts down, repeat priming procedure.
8. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

5.11.2 Safety Systems

Checking Operator Presence System

The operator presence system is designed to function as described in 3.2 Operator Presence System, page 41.

Perform the following checks on the Operator Presence System every year or every 500 hours—whichever occurs first.

Checking the Operator Presence System switch status on the Harvest Performance Tracker (HPT) display:

1. Turn the key in the windrower ignition to the ON position.
2. Access the windrower menus by pressing soft key 5 (A).
3. Access the diagnostic menu by pressing soft key 4 (B).
4. Access the Input/Output list by pressing soft key 3 (C).
 NOTE:
The screen will display two options: ABNORMAL STATUS and SYSTEM.
5. Scroll to SYSTEM and press scroll knob to select.
6. Scroll to INTERLOCK-NEUTRAL (A) in the Input/Output List and press scroll knob to select.

7. Scroll to OPERATOR PRESENT (A) and check the following conditions:
 - The status must be ON when the Operator is sitting on the seat.
 - The status must be OFF when the Operator is not sitting on the seat.

 NOTE:
 If the two conditions listed above are **NOT** true, the Operator Presence System requires adjustment. See your MacDon Dealer.

Perform the following checks on the Operator Presence System every 5 years.

Checking the Operator Presence System and engine lock-out systems:

CAUTION

Park on a flat, level surface with the ground speed lever (GSL) in PARK position and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

CAUTION

Check to be sure all bystanders have cleared the area.

1. With the windrower engine running, place the ground speed lever (GSL) in PARK and center the steering wheel until it locks.
2. With everyone clear of the machine, engage the HEADER ENGAGE switch:
 a. After header drives are running, stand up out of the seat. In approximately 5 seconds, the header should shut off.
 b. If **NOT**, the Operator Presence System requires adjustment. See your MacDon Dealer.

 NOTE:
 To restart the header, move the HEADER ENGAGE switch to OFF position and then back to the ON position.

3. With the windrower moving at less than 8 km/h (5 mph):
MAINTENANCE AND SERVICING

a. Stand up out of the seat.

b. The Harvest Performance Tracker (HPT) display will flash NO OPERATOR DETECTED, ENGINE SHUT DOWN IN 5...4...3...2...1... accompanied by a steady tone. At 0, the engine shuts down.

c. If the engine does NOT shut down, the Operator Presence System requires adjustment. See your MacDon Dealer.

4. With the windrower moving at more than 8 km/h (5 mph):

 a. Stand up out of the seat.

 b. After a 2 second delay, the HPT will display NO OPERATOR DETECTED along with a tone.

 c. If NOT, the Operator Presence System requires adjustment. See your MacDon Dealer.

Checking Engine Interlock

Perform the following checks on the engine lock-out system every year or every 500 hours—whichever occurs first.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. With the engine shut down and the HEADER ENGAGE switch (A) engaged, try to start the engine. If the engine turns over, the system requires adjustment. See your MacDon Dealer.

2. With the engine shut down, the steering wheel NOT centered, and the ground speed lever (GSL) (B) in NEUTRAL (but NOT in PARK), try to start the engine. The Harvest Performance Tracker (HPT) will flash NOT IN NEUTRAL and CENTER STEERING WHEEL, accompanied by a short beep with each flash and the engine should NOT turn over. If the engine turns over, the system requires adjustment. See your MacDon Dealer.

A properly functioning system should operate as follows. If not, see your MacDon Dealer.

- The starter should engage ONLY when the GSL is in PARK, the steering wheel is locked in the CENTER position, and the HEADER ENGAGE switch is in the OFF position.

- Under the above conditions, the brake should engage and the machine should NOT move after engine start-up.

- The steering wheel should NOT lock with the engine running and the GSL out of PARK.

- When the GSL is pulled straight out of PARK (NOT in forward or in reverse), the machine should NOT move with the engine running and with the steering wheel still centered.
5.12 Every 1000 Hours

Complete the following maintenance tasks every 1000 hours of operation.

- Change fuel tank vent filter. For instructions, refer to 5.12.1 Removing and Installing the Fuel Tank Vent Filter, page 315.
- Clean DEF supply module filter. For instructions, refer to 5.12.2 Diesel Exhaust Fluid Supply Module Filter, page 317.
- Change wheel drive lubricant. For instructions, refer to 5.6.7 Changing Wheel Drive Lubricant – 10 Bolt, page 273.

5.12.1 Removing and Installing the Fuel Tank Vent Filter

The fuel tank is vented by a hose and filter in the platform rail. Change the filter every 1000 hours or annually, whichever occurs first.

Change the filter as follows:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near windrower when servicing.

1. Shut down the engine, and remove the key from the ignition.

2. Remove two bolts (A) and plate (B) on the right service platform.

![Figure 5.116: Right Service Platform]
3. Release hose tension clamps (A) and slide away from filter (B).

4. Pull hoses off filter (B) and remove filter.

5. Position new filter (A) and attach to fuel tank hose (B). The IN marking on the filter should face away from the fuel tank hose.

 NOTE:
 If filter has an arrow instead of an IN marking, arrow should point toward the fuel tank hose.

6. Attach fuel vent hose (A) to filter (B) and secure both hoses with tension clamps (C).

7. Close hood. For instructions, refer to 5.3.2 Closing Hood, page 248.
5.12.2 Diesel Exhaust Fluid Supply Module Filter

The supply module filter is designed to prevent debris that may be suspended in the diesel exhaust fluid (DEF) from entering the system. Permanent damage to—and premature failure of—the DEF supply module can result from fluid debris.

Checking the DEF Supply Module Filter

1. Locate the aftertreatment diesel exhaust fluid (DEF) supply module (A) on the inside of the right platform by the engine oil dipstick.

2. Inspect the area around the seal and vent of the aftertreatment DEF supply module filter cap (A) for signs of leakage.

3. DEF fluid leaves a white deposit when dry. If there is evidence of leaking, remove the supply module filter, clean and inspect before replacing. For instructions, refer to Cleaning and Inspecting the Supply Module Filter, page 318.

Removing the Supply Module Filter

⚠️ WARNING

Batteries can emit explosive gases. To reduce the possibility of personal injury, always ventilate the compartment before servicing the batteries. To reduce the possibility of arcing, remove the negative (−) battery cable first and attach the negative (−) battery cable last.

⚠️ WARNING

Diesel Exhaust Fluid (DEF) contains urea. Do NOT get the substance in your eyes. In case of contact, immediately flush eyes with water for a minimum of 15 minutes. Do NOT swallow. In the event the DEF is ingested, contact doctor immediately.
MAINTENANCE AND SERVICING

⚠️ WARNING

The DEF line connecting the aftertreatment DEF dosing unit to the aftertreatment DEF dosing valve is under low pressure and should NOT be disconnected while the engine is running or before the system has completed the purge process after engine shutdown. Disconnecting the DEF line while under low pressure could cause DEF to spray.

⚠️ WARNING

Wear appropriate eye and face protection when using compressed air. Flying debris and dirt can cause personal injury.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

IMPORTANT:

Any spilled DEF must be contained and absorbed by non-combustible absorbent material like sand, and then shoveled into a suitable container for disposal. DEF is corrosive. If spilled on tank or any surface of the vehicle, rinse thoroughly with water.

IMPORTANT:

Do NOT disconnect the windrower batteries until the DEF dosing system has completed the purge cycle. Before beginning to remove and/or disconnect any components, wait at least 5 minutes after the ignition switch is turned OFF for the aftertreatment DEF dosing system to purge the DEF from the system. The purge cycle is an automatic process and does not require intervention to occur. The aftertreatment DEF supply module will create an audible pumping noise during the purging process.

NOTE:

Do NOT power wash or steam clean the filter. Use compressed air to remove any loose debris.

1. Shut down the engine, and remove the key from the ignition.
2. Wait 3 minutes for DEF system to complete purge cycle.
3. Place a catch basin under DEF filter cap to collect the remaining DEF in the filter housing.
4. Unscrew the filter cap (A).
5. Remove the aftertreatment DEF filter equalizing element (B).
6. Remove the old aftertreatment DEF supply module filter element (D).

NOTE:

A disposable service tool (C) is included with the filter to aid in filter removal. Use the appropriate end of the tool to remove filter. When inserting the tool, a click sound can be heard which indicates proper engagement with the filter.
7. Discard and replace the filter and equalizing element if removed from the aftertreatment supply module.

Cleaning and Inspecting the Supply Module Filter

NOTE:

If there is the possibility that contaminated diesel exhaust fluid (DEF) has gone through the DEF supply system, check the DEF filter prior to discarding the filter.

Figure 5.122: DEF Supply Module Filter
1. Check the diesel exhaust filter for evidence of contaminated DEF. Use visual and aroma characteristics of the filter to determine if contaminated fluid has passed through the dosing system.

2. Inspect the diesel exhaust filter for debris.

3. Discard the filter element and the equalizing element.

4. Inspect the aftertreatment DEF supply module filter cap for cracks or holes.

5. Check the condition of the threads on the aftertreatment DEF supply module cap.

6. If threads are damaged, replace the aftertreatment DEF supply module cap.

7. If cap threads are damaged, inspect the aftertreatment DEF supply module threads.

8. If threads of aftertreatment DEF supply module are damaged, replace the entire aftertreatment DEF supply module.

9. Clean the aftertreatment DEF supply module cap and threads on the supply module with warm water and clean cloth.

Installing the Supply Module Filter

1. Slide the DEF filter equalizing element (A) into the DEF filter cartridge (B).

2. Insert the assembly into the aftertreatment DEF supply module (C).

3. Install cap (D) and torque to 20 Nm (15 lbf-ft).

NOTE:
The aftertreatment DEF dosing system will not prime until the correct selective catalytic reduction (SCR) catalyst temperatures are reached. To verify that there are no DEF leaks, test drive the windrower for a minimum of 15 minutes to get the SCR system up to temperature.

4. Operate the engine and check for leaks.
5.13 Every 2000 Hours

Complete the following maintenance tasks every 2000 hours of operation.

- Change engine coolant. For instructions, refer to 5.13.1 Changing Engine Coolant, page 320.
- Change hydraulic oil. For instructions, refer to 5.13.2 Draining Hydraulic Oil, page 322
- Change DEF tank vent hose filter. For instructions, refer to 5.13.4 Replacing the Diesel Exhaust Fluid Vent Hose Filter, page 324.
- General engine inspection. For instructions, refer to 5.13.5 General Engine Inspection, page 325.

5.13.1 Changing Engine Coolant

Change the engine coolant after every 2000 hours of operation or two years, whichever occurs first.

Draining Coolant

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION
To avoid personal injury from hot coolant, do NOT turn pressurized coolant tank cap until engine cools.

1. Shut down the engine, and remove the key from the ignition.
2. Let the engine cool.
3. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
4. Turn the pressurized coolant tank cap (A) to the first notch to relieve pressure before removing cap completely.
5. Remove the pressurized coolant tank cap.

Figure 5.124: Coolant Recovery Tank
6. Locate the radiator drain valve (B) on the radiator inlet tube (A). It is located inside the frame beside the engine.

7. Place a drain pan (about 30 liters [8 U.S. gallons]) under the drain valve, and then open the radiator drain valve (B).

8. When the system has been completely drained, close the radiator drain valve (B).

9. Fill system with clean water through the pressurized coolant tank. Replace the pressurized coolant tank cap.

10. Start engine and press the red area on the console TEMPERATURE CONTROL until maximum heating is reached. Run the engine until normal operating temperature (green range on display) is reached.

11. Shut down the engine, and remove the key from the ignition.

12. Drain water out before rust or sediment settles. Repeat Steps 4, page 320 to 8, page 321 to drain water.

13. Close drain valves. Fill the system with a solution of clean water and a heavy duty radiator cleaner. Follow instructions provided with the cleaner.

14. After using the cleaner solution, flush system with clean water again. Inspect radiator, hoses, and fittings for leaks.

15. Close drain valves and fill system. For instructions, refer to Adding Coolant, page 321.

16. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

Adding Coolant

Check the coolant level in the pressurized coolant tank daily, the tank should be at least one-half full. If less, add coolant.

⚠️ CAUTION

To avoid personal injury from hot coolant, do NOT turn pressurized coolant tank cap until engine cools.

1. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

2. Remove the pressurized cap (A) from coolant recovery tank.

 NOTE:
 For coolant specifications, refer to the inside back cover.

3. Add coolant at a rate not exceeding 11 L/min (3 gpm) until the recovery tank is one-half full.

 NOTE:
 When adding coolant, use the MAX COLD line (B) on the side of tank that faces cab for an accurate measurement.

⚠️ CAUTION

Before starting the machine, check to be sure all bystanders have cleared the area.
4. With the pressurized cap off, start the engine and run at high idle for approximately 20 minutes or until the engine temperature reaches 85°C (185°F).

5. Add coolant until the recovery tank is one-half full. Check the coolant level again. For instructions, refer to 5.7.5 Checking Engine Coolant Level, page 285.

6. Replace the pressurized cap (A).

7. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

5.13.2 Draining Hydraulic Oil

Hydraulic oil should be changed every 2000 hours of operation or 3 years, whichever comes first.

⚠️ DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ CAUTION

If machine is running, oil may be hot. Burns can result from contact with hot oil. This procedure can be performed when the oil is cold, but first run the machine to stir the oil up before draining.

1. Park the windrower on a level surface.

2. Shut down the engine, and remove the key from the ignition.

3. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

4. Place a container (at least 65 liters [17 U.S. gallons] capacity) under drain at the bottom of the hydraulic reservoir to collect the oil.

5. On the hydraulic oil tank, turn plug handle (A) counterclockwise until loose, and then remove plug (this will allow air to enter tank).

![Figure 5.127: Reservoir Plug](image-url)
6. From beneath the windrower, locate hose (A) that connects to the inlet manifold (B).

7. Remove hose (A) from the elbow fitting and allow hose to drain into a clean container.

8. Once the tank is empty, reattach hose to elbow.

9. Locate and remove the magnetic drain plug (A) that is underneath the hydraulic oil tank.

 NOTE:
 Pull the traction drive hoses out of the way to allow oil to drop straight down into catch pan.

10. Inspect and clean the magnetic drain plug for any debris.

11. Reinstall drain plug. Torque plug to 75–82 Nm (55–60 lbf·ft).

12. Reinstall plug (A) on the hydraulic oil tank.

13. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

14. Dispose of used oil in a manner that complies with local rules and regulations.

5.13.3 Filling Hydraulic Oil

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Park the windrower on a level surface.

2. Shut down the engine, and remove the key from the ignition.

3. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

4. Turn plug handle (A) counterclockwise until loose and then remove plug by pulling straight out.

 NOTE:
 When filling oil at a fast rate, the screen element in the fill tube restricts the oil and makes it difficult for air to escape.

5. To improve oil fill rate through the screen, open the breather cap (A) at the top of the tank to allow air to escape.

 IMPORTANT:
 Whenever the breather cap is opened, clean the area and take care to prevent debris from entering the tank through the opening.

6. Add oil to maintain the level between the low and full indicator marks. Refer to the inside back cover for hydraulic oil specifications and quantity.

 NOTE:
 When the sight glass is showing LOW, approximately 4 liters (1 U.S. gallon) is required to reach FULL.

7. Reinstall plug, and turn plug handle (B) clockwise until plug is secure.

8. Close breather cap (A).

9. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.

5.13.4 Replacing the Diesel Exhaust Fluid Vent Hose Filter

The diesel exhaust fluid (DEF) vent hose filter should be replaced every 2000 hours.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Locate vent hose filter (B) below the DEF tank (A).

3. Pull vent hose filter (A) from the DEF tank vent hose.

4. Install the new vent hose filter (A).

 NOTE:
 Ensure arrow on the vent hose filter (A) points towards the DEF tank.

5.13.5 General Engine Inspection

Engine inspection should be performed by your MacDon Dealer.

Refer to your engine manual for further information.

NOTE:
Owner’s Manual QSB 4.5 and QSB 6.7 Engine Cummins #4021531 are supplied with your machine.
5.14 Annual Service

Complete the following maintenance tasks annually. It is recommended that annual maintenance be done prior to start of operating season.

- Check battery charge and fluid level. For instructions, refer to 5.14.1 Batteries, page 326.
- Check steering linkages. For instructions, refer to 5.14.2 Checking Steering Link Pivots, page 335.
- Check A/C blower. For instructions, refer to 5.14.3 Air Conditioning Evaporator, page 337.
- Check antifreeze concentration. For instructions, refer to 5.14.4 Checking Engine Coolant Strength, page 339.

5.14.1 Batteries

Table 5.5 Battery Specifications

<table>
<thead>
<tr>
<th>Rating</th>
<th>Group</th>
<th>CCA (min)</th>
<th>Volt</th>
<th>Maximum Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy duty, off-road, vibration resistant</td>
<td>31A</td>
<td>760</td>
<td>12</td>
<td>334 x 188 x 232 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(13 x 7.4 x 9.13 in.)</td>
</tr>
</tbody>
</table>

Maintaining a Battery

⚠️ CAUTION

Do NOT attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

- Check battery charge once a year, more often if operating in cold weather. Hydrometer readings should be 1.260 to 1.300. Readings below 1.250 indicate charging is required. For instructions, refer to Charging a Battery, page 328.
- Keep batteries clean by wiping with a damp cloth.
- Keep all connections clean and tight. Remove any corrosion and wash terminals with a solution of baking soda and water. A light coating of grease on terminals (after cables are attached) will reduce corrosion.
- To prolong battery life, store batteries fully charged and at -7° to +26°C (+20° to +80°F). Check voltage after storage and recharge as needed according to battery and charger manufacturer recommendations.
- Do NOT stack storage batteries on top of each other.
- Test batteries every 4–6 months and recharge if necessary.
- Disconnect battery ground if storing the windrower for more than 3 months.

Opening Battery Cover

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.
3. Lift up on the cab end of the cover (A) to disengage it from the retaining tab (B), and swing cover away from the frame.

Closing Battery Cover

1. Swing cover (A) towards the windrower frame. Lift up on the cab end of the cover until it is secured by retaining tab (B) on the frame.
Charging a Battery

⚠️ CAUTION

- Ventilate the area where batteries are being charged.
- Do NOT charge a frozen battery. Warm to 16°C (60°F) before charging.
- Do NOT connect or disconnect live circuits. To prevent sparks, turn off charger and connect positive cable first. PROTECT YOUR EYES.
- If charging battery in windrower, disconnect POSITIVE battery cable before connecting charger cable, then connect ground cable last, away from battery.
- Stop or cut back charging rate if battery feels hot, or is venting electrolyte. Battery temperature must NOT exceed 52°C (125°F).
- The maximum charge rate in amperes should be NO MORE than 1/3 of the battery’s reserve capacity minute rating. If the terminal voltage exceeds 16.0 volts while charging, reduce the charge rate.
- Continue charging and reduce the rate as needed until a two-hour period results in no increase in voltage or decrease in current.

Table 5.6 Voltage Chart

<table>
<thead>
<tr>
<th>OCV 18</th>
<th>State of Charge (%)</th>
<th>50 Amps</th>
<th>30 Amps</th>
<th>20 Amps</th>
<th>10 Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>100</td>
<td>— Fully charged —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4</td>
<td>75</td>
<td>20</td>
<td>35</td>
<td>48</td>
<td>90</td>
</tr>
<tr>
<td>12.2</td>
<td>50</td>
<td>45</td>
<td>75</td>
<td>95</td>
<td>180</td>
</tr>
<tr>
<td>12.0</td>
<td>25</td>
<td>65</td>
<td>115</td>
<td>145</td>
<td>280</td>
</tr>
<tr>
<td>11.8</td>
<td>0</td>
<td>85</td>
<td>150</td>
<td>195</td>
<td>370</td>
</tr>
</tbody>
</table>

Approximate battery charging time (minutes) to full charge at 27°C/80°F. 19

⚠️ WARNING

- Follow all battery manufacturers’ instructions and precautions.
- Gel and AGM (Absorbed Glass Mat) batteries require a voltage-limited charger. Charging a gel or AGM battery on a typical shop charger—even one time—may greatly shorten its life.
- If the electrolyte is accessible, verify that plates are covered before beginning to charge. At the end of charge, add distilled water as needed to bring levels to the proper height. If water is added, charge for an additional 30 minutes to mix. If electrolyte levels are low, but battery is not accessible, remove battery from service.

18. Open circuit voltage with no charging/discharging for 8 hours or more.
19. Charging time depends on battery capacity, condition, age, temperature, and efficiency of charger.
CAUTION
Follow all instructions and precautions supplied by the battery charger manufacturer, including the following:

- Charge at recommended rates and times.
- Turn off charger prior to hook up to avoid dangerous sparks. Wear proper eye protection.
- Reduce charge rate if the terminal voltage is higher than 16.0 volts while charging. The maximum charge rate in amperes should NOT exceed 1/3 of the battery’s reserve capacity minute rating.
- Continue charging if there is no change in voltage or current for a two-hour period, and reduce the rate as needed.
- If the battery case gets hot during charging or spews large amount of gasses, temporarily stop charging.

IMPORTANT:
NEVER overcharge batteries. Excessive charging will shorten battery life.

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the battery cover. For instructions, refer to Opening Battery Cover, page 326.
3. Remove the red plastic covers from positive cable clamps (B).
4. Remove the black plastic covers from negative terminals (A).
5. If charging battery in windrower, disconnect positive battery cable (C), then connect charger cable to positive post. Connect charger ground cable to the engine block last, away from battery.
6. Charge batteries in accordance with charger manufacturer’s instructions.

Figure 5.138: Batteries

Boosting a Battery
If boosting a battery is required, connect boost cables in the exact order described below.

WARNING
- Gas given off by batteries is explosive. Keep sparks and flames away from batteries.
- Make last connection and first disconnection at the point farthest away from the batteries.
- Wear protective eyewear when using a booster battery.
- Be sure everyone is clear of machine when starting engine. Start engine from operator’s station only.
Connecting booster cables

1. To access the windrower batteries, remove the battery cover. For instructions, refer to Opening Battery Cover, page 326.

2. Pull back the red rubber battery terminal cover and connect one end of the positive (+) booster cable to positive (+) post (A) on the dead battery.

3. Connect the other end of the positive (+) booster cable to the positive (+) post (B) on the booster battery.

4. Connect one end of the negative (–) booster cable to negative (–) post (C) on the booster battery.

5. Connect the other end of the negative (–) booster cable (D) to a clean, unpainted, solid metal part on the engine of the dead unit.

⚠️ WARNING

To minimize the chance of an explosion, avoid connecting the negative boosting cable to the negative post on the dead battery.

6. Turn ignition switch in cab as with normal start-up.

Removing booster cables

⚠️ CAUTION

Spark hazard. When disconnecting booster cables, do NOT allow the cable clamps to touch each other.
MAINTENANCE AND SERVICING

1. Disconnect the negative (−) booster cable (A) from the engine of the unit that was boosted.
2. Disconnect the other end of the negative (−) booster cable from the negative (−) battery post (B) of the booster battery.
3. Disconnect the positive (+) booster cable from the positive (+) battery post (C) of the booster battery.
4. Disconnect the other end of the positive (+) booster cable from the positive (+) battery post (D) of the boosted battery.
5. Replace the black and red rubber battery terminal covers.
6. Close the battery cover. For instructions, refer to Closing Battery Cover, page 327.

Removing a Battery

⚠️ CAUTION
Do NOT attempt to service battery unless you have the proper equipment and experience to perform the job. Have it done by a qualified Dealer.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the battery cover. For instructions, refer to Opening Battery Cover, page 326.
3. Disconnect the battery harness. For instructions, refer to Disconnecting a Battery, page 332.
MAINTENANCE AND SERVICING

4. Loosen bolt (A) until securing strap (B) can be removed.
5. Lift batteries off the support.

Figure 5.141: Battery Location

Installing a Battery

Table 5.7 Battery Specifications

<table>
<thead>
<tr>
<th>Rating</th>
<th>Group</th>
<th>CCA (min)</th>
<th>Volt</th>
<th>Maximum Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy duty, off-road, vibration resistant</td>
<td>31A</td>
<td>760</td>
<td>12</td>
<td>334 x 188 x 232 mm (13 x 7.4 x 9.13 in.)</td>
</tr>
</tbody>
</table>

1. Position new batteries on battery support.

NOTE:
Ensure that positive terminal is positioned on the right side of the battery when facing them.

2. Install strap (B) and secure with bolt (A).
3. Connect battery cables. For instructions, refer to Connecting Batteries, page 333.
4. Close battery cover. For instructions, refer to Closing Battery Cover, page 327.

![Figure 5.142: Battery Location](image)

Disconnecting a Battery

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the battery cover. For instructions, refer to Opening Battery Cover, page 326.
3. Remove the black plastic covers from the negative cable clamps (A). Loosen clamps and remove cable from batteries.

4. Remove the red plastic covers from positive cable clamps (B). Loosen the clamps and remove cable from batteries.

Connecting Batteries

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Move latch (A) towards the right cab-forward side of the windrower.

2. Grasp louver (B), and lift the hood to open.

3. Lift up on the cab-end of cover (A) to disengage it from retaining tab (B), and swing the cover away from the frame.

4. If installing a new battery, remove plastic caps from battery posts.

IMPORTANT:

Batteries are negative grounded. Always connect starter cable to the positive (+) terminal of battery and battery ground cable to negative (–) terminal of battery. Reversed polarity in battery or alternator may result in permanent damage to electrical system.

NOTE:

Before connecting harness to batteries, ensure that positive terminal is positioned on the right side of battery when installed on battery support.
5. Attach red positive (+) cable terminals to positive posts (B) on batteries and tighten clamps. Reposition plastic covers onto clamps.

6. Attach black negative (–) cable terminals to negative posts (A) on batteries and tighten clamps. Reposition plastic covers onto clamps.

7. Swing cover (A) towards the windrower frame. Lift up on the cab end of the cover until it is secured by retaining tab (B) on the frame.

8. Grasp hood by louver (C) and lower until hood engages the latch.

NOTE:
Check that the latch lever is not tilted to ensure the hood is latched.

Auxiliary Power Posts

The auxiliary power posts are a convenient way to connect remote auxiliary fuel pumps for in-field filling of the windrower fuel tank, trickle charging, or maintaining a battery charge.

IMPORTANT:
The auxiliary power posts are **NOT** meant for continuous duty. Remote fill pump motors have a high gallons per minute (GPM) rate, and most models can fill the windrower fuel tank within 10–15 minutes.

IMPORTANT:
The auxiliary power posts are **NOT** to be used as battery boost posts. Boosting a battery from these posts can result in blowing the auxiliary power posts' positive terminal fuse.
IMPORTANT:
Ensure the device being connected to the power posts has an amperage rating less than that of the maximum fuse rating listed on the auxiliary power posts’ decal (A). 30 Amp loads and smaller are recommended as anything larger may blow the fuse if the device has a high in-rush current characteristic.

5.14.2 Checking Steering Link Pivots
The following checks should be performed every year:

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Place ground speed lever (GSL) (A) in PARK, shut down engine, and remove key.
2. Check steering rod bolts (A) for looseness.
3. Ensure ball joints (B) feel firm, but can be moved by hand.
 NOTE:
 Ball joints that are excessively loose or too stiff to pivot by hand should be replaced.

4. Check steering link bolts (A) for looseness.
5. Ensure ball joints (B) feel firm but can be moved by hand.
 NOTE:
 Ball joints that are excessively loose or too stiff to pivot by hand should be replaced.
6. If bolts are loose:
 a. Back off jam nut (A).
 b. Tighten inside nut (B) to 65–72 Nm (48–53 lbf·ft).
 c. Hold inside nut (B) and tighten jam nut (A) to 65–72 Nm (48–53 lbf·ft).

7. See your MacDon Dealer to replace any loose steering link ball joints or steering rod ball joints.

8. After replacing parts or making adjustments, perform checks for neutral interlock and steering lock. For instructions, refer to 5.11.2 Safety Systems, page 312.

5.14.3 Air Conditioning Evaporator

Check the air conditioning evaporator for cleanliness every year. If the air conditioning system produces insufficient cooling, the evaporator fins may be clogged. Fins will clog up from the side opposite the blowers. The evaporator is located inside the heating air conditioning unit under the cab. To access the evaporator, remove the cover from the air conditioning unit.

Removing Air Conditioning Cover

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Loosen the clamps (A) on the two drain hoses and pull the hoses off the air conditioning (A/C) drain tubes.
2. Remove the eight fasteners (A) that attach the cover to the housing. Remove the cover (B).

Cleaning Air Conditioning Evaporator Core

![Figure 5.155: A/C Cover](image)

WARNING

To avoid cuts from evaporator fins, do NOT use bare hands to brush away clogs.

1. Remove the air conditioning (A/C) cover. For instructions, refer to *Removing Air Conditioning Cover, page 337*.

2. Use a vacuum cleaner or compressed air to remove dirt from inside the housing.

3. Blow compressed air through the evaporator fins from the blower side (A) first as shown. Direct the air straight into the evaporator to prevent fin damage. A nozzle extension makes this procedure easier.

4. Repeat the previous step from the side (B) opposite the blowers.

5. If you can’t feel the compressed air blowing through the evaporator core, proceed as follows:
 a. Protect the blower motor (A) from water.
 b. Soak the evaporator core (B) with warm water using a low pressure hose. Let soak for several minutes.
 c. Blow compressed air through the core from the blower side (C).
 d. Repeat the soaking procedure until air blows through the evaporator freely.

![Figure 5.156: A/C Evaporator Core](image)

![Figure 5.157: A/C Evaporator Core](image)
Installing Air Conditioning Cover

1. Straighten any bent fins.
2. Position cover (B) and attach with eight screws (A).

3. Reattach drain hoses to drain tubes and secure with hose clamps (A). Tighten bolts to 7–7.8 Nm (40–45 lbf·in).

5.14.4 Checking Engine Coolant Strength

Check the antifreeze in the pressurized coolant tank with a tester every year, preferably before off-season storage. Antifreeze is essential in any climate. It broadens the operating temperature range by lowering the coolant freezing point and by raising its boiling point. Antifreeze also contains rust inhibitors and other additives to prolong engine life.

⚠️ CAUTION
To avoid personal injury from hot coolant, do NOT turn pressurized coolant tank cap until engine cools.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

IMPORTANT:
If antifreeze strength is not adequate, do NOT drain cooling system to protect against freezing. System may not drain completely, and damage from freezing could still result.
3. Remove the pressurized coolant tank cap (A).

IMPORTANT:
Turn the cap (A) counterclockwise to the first notch to relieve pressure before removing cap completely.

4. Check the coolant in the pressurized coolant tank using an antifreeze tester. Tester should indicate protection to temperatures of -34°C (-30°F).

5. Inspect the pressurized coolant tank cap as follows before reinstalling:
 a. Check the gasket for cracks or deterioration, and replace the cap if necessary.
 b. Check that the spring in the cap moves freely. Replace the cap if spring is stuck.

6. Install pressurized coolant tank cap (A).

7. Close the hood. For instructions, refer to 5.3.2 Closing Hood, page 248.
5.15 Maintenance as Required

This section details service procedures that should be done as they are required.

5.15.1 Seat Belts

- Keep sharp edges and items that can cause damage away from the belts.
- Check belts, buckles, retractors, tethers, slack take-up system, and mounting bolts for damage.
- Check that bolts are tight on the seat bracket or mounting.
- Replace all parts that have damage or wear.
- Replace belts that have cuts that can weaken the belt.
- Keep seat belts clean and dry. Clean only with a soap solution and warm water. Do NOT use bleach or dye on the belts, as this may weaken the material.

5.15.2 Draining Fuel Tank

Draining the fuel tank is necessary to remove old or contaminated fuel.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ WARNING

- To avoid personal injury or death from explosion or fire, do NOT smoke or allow flame or sparks near fuel tank when refueling.
- NEVER refuel the windrower when the engine is hot or running.
- To avoid electric discharge and the risk of a fire or explosion, ensure that the fuel delivery system is properly bonded and grounded. A bonded fuel delivery system has an electrically conductive and unbroken connection between all components of the fuel delivery system (fuel supply tank, transfer pump, transfer hose, nozzle, and others). A wire connection from the fuel delivery system to the machine chassis will equalize the static electric potential between the two machines, further reducing the chance of a static electric discharge. A properly grounded fuel delivery system has an electrically conductive connection from the fuel delivery system tank to earth ground to allow static and electrical charge dissipation.

1. Shut down the engine, and remove the key from the ignition.
2. Locate the fuel tank on the right side of the windrower frame.
3. Place a container under plug (A). The fuel tank holds 518 liters (137 gallons) total.

4. Loosen plug (A), and drain the tank.

5. Add some clean fuel to tank to flush out any remaining contaminants.

NOTE:
Do NOT refill the fuel tank if you need to work on the system. Refill tank when work is completed. For instructions, refer to *Filling Fuel Tank, page 112.*

5.15.3 Draining the Diesel Exhaust Fluid Tank

It is necessary to drain the diesel exhaust fluid (DEF) tank when the DEF is contaminated or if storing the windrower for a period greater than six months.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Place a drain pan under the DEF tank (B). The drain pan should be large enough to hold 28 liters (7.5 U.S. gallons).

IMPORTANT:
Spilled DEF must be contained and absorbed by non-combustible absorbent material like sand and then shovelled into a suitable container for disposal. If spilled on tank or any surface of the vehicle, rinse thoroughly with water as DEF is corrosive.

CAUTION

Avoid contact with eyes. In case of contact, rinse immediately with water for 15 minutes.

3. Remove the drain plug (A) from under the tank (B) and drain.

4. Add some distilled water to the tank (B) to flush out remaining contaminants.

5. Drain the distilled water that was used to clean the tank.

6. Reinstall drain plug (A) into the tank (B).

7. Refill DEF tank. For instructions, refer to *Filling the Diesel Exhaust Fluid Tank, page 254.*

NOTE:
Do NOT refill if storing for six months or longer.
5.15.4 Belts

Tensioning Engine Fan Drive Belt

The engine fan drive belt is automatically tightened. Manual adjustment is NOT required.

Replacing Engine Fan Drive Belt

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Open the hood. For instructions, refer to 5.3.1 Opening Hood, page 247.

3. Loosen compressor mounting hardware (A) and rotate the compressor (B) towards the engine to release tension on belts.

4. Remove belts (C) from compressor (B).

5. Insert the drive end of a 1/2 in. drive ratchet wrench into the belt tensioner (A).

6. Rotate tensioner counterclockwise until fan belt (B) can be slipped off pulley (C). Release tensioner and remove wrench.

7. Remove belt in order 1, 2, 3, as shown in Figure 5.164, page 343.

8. Insert the drive end of a 1/2 in. drive ratchet wrench into the belt tensioner (A).

9. Rotate tensioner counterclockwise until belt (B) can be slipped onto pulley (C). Release tensioner and remove wrench.

10. Check that belt is properly seated in all pulley grooves.
11. Install compressor belts (C).

12. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

NOTE:
The tab (D) on bracket can be used as support for prying.

13. Tighten compressor mounting hardware (A).

14. Recheck tension and readjust as required.

15. Close the hood. For instructions, refer to [5.3.2 Closing Hood, page 248](#).

Tensioning Air Conditioner Compressor Belts

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Open the hood. For instructions, refer to [5.3.1 Opening Hood, page 247](#).

3. Loosen compressor mounting hardware (A).

4. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

NOTE:
The tab (D) on bracket can be used as support for prying.

5. Tighten compressor mounting hardware (A).

6. Recheck tension and readjust as required.

7. Close the hood. For instructions, refer to [5.3.2 Closing Hood, page 248](#).

Replacing Air Conditioner Compressor Belts

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Open the platform. For instructions, refer to [5.4.1 Opening Platform, page 249](#).
3. Loosen compressor mounting hardware (A) and rotate the compressor (B) towards the engine to release tension on belts.

4. Remove belts (C) from compressor (B).

5. Install compressor belts (C).

6. Pry compressor (B) away from engine so that a force of 45 N (10 lbf) deflects the belts (C) 5 mm (3/16 in.) at mid-span.

 NOTE:
 The tab (D) on bracket can be used as support for prying.

7. Tighten compressor mounting hardware (A).

8. Recheck tension and readjust as required.

9. Close the hood. For instructions, refer to *5.3.2 Closing Hood, page 248.*

5.15.5 Engine Speed

The maximum and idle engine speeds are factory set.

Refer to *2.2 Specifications, page 32* for detailed information. If specified speeds cannot be maintained, see your MacDon Dealer.

IMPORTANT:
To avoid voiding engine warranty, contact Cummins before removing components or starting repairs.

5.15.6 Lighting

Aligning Headlights – Engine-Forward

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

NOTE:
Header should be attached and raised to maintain proper windrower stance.
1. Position the windrower on level ground 7.5 m (25 ft.) (A) in front of a vertical surface as shown.

NOTE:
Check that casters are positioned underneath the windrower to properly align headlights.

2. Shut down the engine, and remove the key from the ignition.

3. Turn on ROAD lights (A) and switch to LOW BEAM.
4. Adjust headlight (A) with adjusting bolts (B) so that the beam’s maximum height above the ground does not exceed 1263 mm (49 3/4 in.) (C). Access the bolts by reaching under the headlight bezel (D).

Aligning Headlights – Cab-Forward

Adjust field lights when in the field (or equivalent) to suit Operator preference.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Hold onto handholds (A) on the cab front corners, and stand on header anti-slip strips.
2. Adjust lights by hand as required. Loosen/tighten nuts (A) if necessary.

Figure 5.172: Left Cab-Forward Headlight – Right Opposite

Adjusting Front Field Lights

Adjust field lights when in the field (or equivalent) to best suit Operator preference.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Hold onto handholds (A) on the cab front corners, and stand on header anti-slip strips.

Figure 5.173: Windrower in Cab-Forward
2. Adjust lights by hand as required. Loosen nuts (A) if necessary and retighten.

Figure 5.174: Left Cab-Forward Lights – Right Opposite

Adjusting Rear Roof Work Lights

Adjust lights to best suit Operator preference.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Stand on left or right platform (B) to access rear roof work lights (A).

Figure 5.175: Rear Roof Work Lights
2. Adjust light by hand. Loosen or tighten bolts (A) if necessary.

Adjusting Rear Swath Lights

Adjust rear swath lights to best suit Operator preference.

1. Stand on left or right platform (B) to access rear swath lights (A).

Replacing Bulbs in Standard Work Lights

The following procedure applies to all halogen bulbs shown in Figure 5.179, page 351. If replacing engine-forward headlight bulbs, refer to Replacing Headlight Bulb – Engine-Forward, page 352.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Figure 5.179: Halogen Bulb Locations

![Halogen Bulb Locations Diagram](image)

NOTE:

Front work light shown.

1. Shut down the engine, and remove the key from the ignition.
2. Disconnect wiring harness (A).
3. Remove rubber insulator boot (B).
4. Remove bulb from body.

IMPORTANT:

Do NOT touch the glass of the halogen bulb as the oils or other chemicals from your skin will cause the bulb to fail prematurely.

5. Align lugs on new bulb with slots in housing and push into place.
6. Install insulator boot (B) and wiring harness (A).

Figure 5.180: Front Work Light
Replacing Headlight Bulb – Engine-Forward

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove eight hex flange bolts (A), then remove headlight bezel assembly (B). Retain hardware.

3. Remove electrical connectors from red tail lights (C) to fully remove bezel (B).

4. Remove the two bolts (A) holding the headlight bracket (B) in place and slide bracket forward.

5. Pull wiring harness connector off the headlight and remove assembly (B).

6. Remove four machine screws (A) and nylon nuts (B) and retain hardware.

7. Remove old headlight from bracket and replace with new headlight.

IMPORTANT:

Do **NOT** touch the glass of the halogen bulb as oils or other chemicals from your skin will cause the bulb to fail prematurely.

8. Attach headlight to bracket using four retained machine screws (A) and nylon nuts (B). Torque screws to 2.0–2.7 Nm (18–24 lbf·in).
9. Connect wiring harness connector to headlight.

10. Attach headlight bracket assembly (B) using retained bolts (A).

12. Attach electrical connectors to red tail lights (C).

13. Attach headlight bezel assembly (B) to frame using the eight retained hex flange bolts (A). Torque bolts to 2.0–2.7 Nm (18–24 lbf-in).

Replacing LED Lights – Deluxe Cab Only

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

The M1170 Windrower deluxe cab is equipped with the following LED lights (MD #207062):

- Four LED field lights (A)
- Two LED stubble lights (B)
- Two LED rear work lights (C)

The bulb of an LED light cannot be replaced. If a light fails, please contact your MacDon Dealer for replacement parts.
Replacing Bulbs in Red and Amber Lights

To replace bulbs in red and amber lights, follow these steps:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.

 NOTE:
 Hold onto the handholds on the cab front corners and stand on the header anti-slip strips, or stand on the maintenance platform when accessing the red and amber lights.

2. Use left or right platform to access marker lights (A) and (B) attached to mirror arms.
3. Remove two screws (A) from lens and remove lens.
4. Push and twist light bulb to remove from socket.
5. Install a new bulb in the socket, ensuring that bulb base is properly engaged in socket.
 - Use Bulb Trade #1157 for red tail lights
 - Use Bulb Trade #1156 for amber lights
6. Reinstall lens with screws (A).

Figure 5.188: Red and Amber Lights

__Replacing Red Tail Lights__

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down engine and remove key. Turn lights OFF.
2. Remove two hex flange bolts (A) from light (B), and remove light from bezel.
3. Remove electrical connector from light (B).
4. Connect wiring harness to new light (B), and secure light to bezel using two hex flange bolts (A).

Figure 5.189: Red Tail Lights
Replacing Beacon Lights

1. Disconnect wiring (A) from harness.
2. Remove nuts (B) and remove beacon (C). Discard defective beacon and hardware.
3. Clean residue from support (D) mounting surface.
4. Install new beacon (C) with gasket (E) onto support. Secure with bolts (F), washers (G), and nuts (B).
5. Torque nuts to 0.65 Nm (0.48 lbf-ft).

![Figure 5.190: Beacon Light Assembly](image)

Replacing the Cabin Dome Bulb

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Insert a slotted screwdriver (or similar prying tool) into slot (A). Gently pry the lens cover until retaining tabs (B) are free of the dome light bezel.
3. Remove lens cover.

![Figure 5.191: Cabin Dome Light](image)
4. Replace bulb (A) (MD #208191).

IMPORTANT:
Do NOT touch glass with fingers.

5. Insert single retaining tab (A) into dome light bezel.

6. Insert a slotted screwdriver (or similar prying tool) into slot (B), and gently pry lens cover until retaining tabs (C) engage into dome light bezel.

Replacing the Cabin Dome Light Assembly

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Shut down the engine, and remove the key from the ignition.

2. Insert a slotted screwdriver (or similar prying tool) into slot (A). Gently pry the lens cover until retaining tabs (B) are free of the dome light bezel.

3. Remove lens cover.

4. Remove two screws (A) from dome light bezel.

5. Carefully insert a slotted screwdriver (or similar prying tool) between roof liner and dome light assembly on the side of the light with the ON/OFF switch.

6. Gently depress retaining clip (A), and swing dome light assembly downwards to disengage retaining tab (B).

7. Disconnect the old dome light assembly from the wiring harness.

8. Connect the new dome light (MD #201707) to the wiring harness.

9. Engage retaining tab (B), and swing dome light assembly upwards until retaining clip (A) snaps into place and secures assembly.
10. Secure dome light assembly with two screws (A).

11. Insert single retaining tab (A) into dome light bezel.

12. Insert a slotted screwdriver (or similar prying tool) into slot (B), and gently pry lens cover until retaining tabs (C) engage into dome light bezel.

Turn Signal Indicators

If the turn signal indicators on the console do not function, contact your MacDon Dealer.

5.15.7 Accessing Circuit Breakers and Fuses

Most circuit breakers and fuses are located inside a fuse box mounted on the left (cab-forward) side of the frame, behind the platform and inside the battery cover.

NOTE:
The circuit breakers automatically reset. Fuses are the plastic blade type.

WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.
1. Stop engine and remove the key from the ignition.

2. Open the battery cover (A) to access the fuse box. For instructions, refer to *Opening Battery Cover, page 326.*

3. Lift latch (A) at top of fuse box cover (B) to disengage tab, and then lower cover.

4. Check and replace fuses as required. For instructions, refer to *Checking and Replacing Fuses, page 361.*

5. Position cover (B) onto fuse panel, ensuring that hooks at bottom of cover have engaged fuse panel.

6. Push latch (A) to engage tab at top of fuse box.

7. Close battery cover and move platform to working position. For instructions, refer to *5.4.2 Closing Platform, page 249.*
Checking and Replacing Fuses

1. To check fuse, pull fuse (A) out of receptacle and visually examine.
2. To replace fuse, insert new fuse into receptacle.

IMPORTANT:
Replacement fuses should match rating on decal shown on *Fuse Panel and Relay Module Decals, page 363.*

Replacing Circuit Breakers and Relays

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Open fuse box cover. For instructions, refer to *5.15.7 Accessing Circuit Breakers and Fuses, page 359.*
3. To replace relay (A), pull relay out of receptacle and install new relay.

4. Reinstall cover.

Figure 5.202: Fuse Box – Cover Removed
Fuse Panel and Relay Module Decals

Figure 5.203: Left Rail Fuse Decal Locations

A - Main Fuse Panel Decal (MD #208594) (Located inside Fuse Cover) (Group A)
B - Chassis Relay Module Fuse Decal (MD #207816) (Located inside Fuse Cover) (Group B)
C - Lower AMI Group Fuse Decal (MD #291378) (Group D)
D - Upper AMI Group Fuse Decal (MD #207818) (Group D)
E - ATO Group Fuse Decal (MD #291465) (Group C)
MAINTENANCE AND SERVICING

Figure 5.204: Main Fuse Panel Decal (MD #208594) – Group A
Figure 5.205: Chassis Relay Module Fuse Panel Decal (MD #207816) – Group B

- BF8 15A
 LOW BEAM EF
- BF7 15A
 RH TURN LIGHTS
- BF6 15A
 LH TURN LIGHTS
- BF5 15A
 WIPER EF
- BF4 15A
 HIGH BEAM EF
- BF3 10A
 WIPER CF
- BF2 15A
 TAIL LIGHTS CF
- BF1 15A
 BRAKE LIGHTS CF

- BK9
 SELECTOR 1 / 2
- BK10
 SPARE
- BK12
 WIPER WASHER
- BK3
 RH TURN LIGHTS
- BK6
 LH TURN LIGHTS
- BK11
 SPARE
- BK2
 HIGH BEAM EF
- BK5
 LOW BEAM EF
- BK8
 WIPER EF
- BK1
 BRAKE LIGHTS CF
- BK4
 TAIL LIGHTS CF
- BK7
 WIPER CF
Figure 5.206: ATO (Group C) and AMI (Group D) Fuse Decals

A - Lower AMI Group Fuse Decal (MD #291378)
B - Upper AMI Group Fuse Decal (MD #207818)
C - ATO Group Fuse Decal (MD #291465)
Figure 5.207: Roof Headliner Fuse Decal (MD #207819) – Group E
Inspecting and Replacing 125A Main Fuses

The 125A main fuse holders are located on the frame on the left cab-forward side platform beside the battery.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

Access the 125A main fuses as follows:

1. Shut down the engine, and remove the key from the ignition.
2. Open the platform. For instructions, refer to 5.4.1 Opening Platform, page 249.
3. Remove negative battery terminal.
4. Locate the five main fuses (A) secured to the left cab-forward front frame.

5. To check condition of the fuse, pull tab (A) and open cover (B).
6. Examine fuse (A) for indications of melting.

7. To remove fuse (A), remove two nuts (B) and pull the fuse free from holder (existing wiring may need to be pulled off the stud first).

8. Install the new fuse on studs and install any existing wiring that was removed.

9. Secure with nuts (B).

10. Close cover (B) and secure with tab (A).

11. Close the platform. For instructions, refer to 5.4.2 Closing Platform, page 249.

5.15.8 Drive Wheels

Raising Drive Wheel

This procedure applies to both drive wheels.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

⚠️ **CAUTION**

Header MUST be removed and NO weight box installed. Use a hydraulic jack with minimum lifting capacity of 2268 kg (5000 lb.) to provide adequate support for the machine.

1. Detach the header.

2. Park the windrower on a level surface.

3. Block the wheels.
4. Place the ground speed lever (GSL) (A) in PARK.

5. Shut down the engine, and remove the key from the ignition.

6. Place a jack under the leg jack point (A). Raise the drive wheel until it is slightly off the ground.

7. Place a jack stand beneath the lift cylinder mount (B).

 NOTE:
 Do **NOT** place jack stand under the cylinder. Use a small metal plate on top of the jack stand.

8. Lower the windrower onto the jack stand.

Removing Drive Wheels

CAUTION

Use a suitable lifting device capable of supporting a minimum of 907 kg (2000 lb.) to lift the wheel assembly away from the windrower.

1. Raise the windrower drive wheel (A) off the ground. For instructions, refer to *Raising Drive Wheel, page 369*.

2. Remove the wheel nuts (B).

3. Remove the drive wheel (A).
Installing Drive Wheels

⚠️ CAUTION

Use a lifting device capable of supporting a minimum of 907 kg (2000 lb.) to lift the wheel assembly.

IMPORTANT:

The windrower must be supported off the ground with stands. For instructions, refer to Raising Drive Wheel, page 369.

1. Using a forklift, lift cab end of windrower to approximately 130 cm (51 in.) (B) off the ground, enough to position the drive wheel assembly (A). Place a stand (C) under the windrower frame.
2. Clean mounting surface on wheel drive and rim.

3. Position a suitable lifting device (A) under the tire and raise slightly.
4. Position the wheel against wheel drive hub so air valve (B) is on the outside and tread (C) points forward (cab-forward orientation).

NOTE:

For turf tires (diamond tread pattern), be sure the arrow on the sidewall points in forward rotation (cab-forward).
5. Align the rim with studs on the hub and push the wheel onto the hub.

6. Install wheel nuts (A).

IMPORTANT:
To avoid damage to wheel rims and studs, do **NOT** use an impact wrench. Threads must be clean and dry. Do **NOT** apply lubricant or anti-seize compound. Do **NOT** overtighten wheel nuts.

7. Torque drive wheel nuts. For instructions, refer to **5.6.1 Tightening Drive Wheel Nuts, page 269.**

8. Repeat the tightening sequence two additional times, ensuring the specified torque is achieved each time.

9. Repeat Steps **2, page 371 to 8, page 372** for the other drive wheel.

10. Raise the windrower, remove the stand, and lower windrower to the ground.

11. Lower the windrower. Remove the jack. For instructions, refer to **Lowering Drive Wheel, page 372.**

12. Repeat the torque procedure every hour of operation until two consecutive checks confirm that there is no movement of the nuts.

Lowering Drive Wheel

⚠ **CAUTION**
Jack stand must be capable of supporting a minimum of 2268 kg (5000 lb.).
1. Place a jack under the leg jack point (A), and raise the drive wheel slightly off the jack stand.
2. Remove the jack stand from under the cylinder lift mount (B). Lower the drive wheel to the ground.
3. Remove the jack.

Figure 5.219: Drive Wheel Leg Jacking Point

5.15.9 Caster Wheels

Adjusting Caster Tread Width

The rear casters can be adjusted to a narrow tread width, which allows loading and shipping without having to remove them.

A narrow tread width is better suited for smaller headers because it allows more space to the uncut crop, and provides more maneuverability around poles, irrigation inlets, and other obstacles.

A wider tread width reduces runover in heavy crops that produce large windrows.

WARNING
To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

CAUTION
Park on a flat, level surface with the header on the ground, the ground speed lever (GSL) in PARK position, and the steering wheel in locked position (centered). Wait for the HPT to beep and display a red P symbol to confirm the park brakes have engaged.

1. Park the windrower on a level surface.
2. Place the ground speed lever (GSL) in PARK.
3. Shut down the engine, and remove the key from the ignition.
4. Using a jack (or another lifting device) under the frame at location (A), slightly raise the rear of the windrower until most of the weight is off the casters.

IMPORTANT:
Do NOT damage the engine oil pan when raising the windrower.

NOTE:
Lifting device must have a lifting capacity of at least 4536 kg (10,000 lb.).

5. Remove six bolts (B) (four on backside, two on underside) and washers from the left and right sides of the walking beam.

6. Slide the left and right extensions equal distances in either the inboard or outboard directions, and align its holes at the desired locations.

NOTE:
To assist moving the extensions, rotate the caster so the wheel is parallel to the walking beam.

IMPORTANT:
Ensure the caster wheels are positioned at equal distances from the center of the windrower.
7. Position bracket (A) and install back bolts (C).
8. Install bottom bolts (B).
9. Tighten bolts as follows:
 a. Snug bottom bolts (B), then snug back bolts (C).
 b. Tighten and torque back bolts (C) to 746–770 Nm (550–570 lb-ft).
 c. Tighten and torque bottom bolts (B) to 746–770 Nm (550–570 lb-ft).
10. Lower the windrower to the ground.

IMPORTANT:
Torque bolts after first 5 and 10 hours of operation.

Installing Forked Caster Wheel
1. Position axle assembly (B) into wheel (C) and secure with wheel nuts (A).
2. Tighten wheel nuts (A) to 163 Nm (120 lb-ft) using the tightening sequence shown at right. Repeat the tightening sequence three times.
3. Position wheel assembly (D) in forked caster (C).
4. Install eight bolts (A) and nuts (four on each side of caster) to secure axle (B) to caster (C). Torque nuts to 97–107 Nm (75–79 lbf·ft).
5. Lower caster wheel. For instructions, refer to Lowering Caster Wheel, page 377.

Removing Forked Caster Wheel

⚠️ CAUTION

Wheel assemblies are heavy. Support wheel assembly before removing axle bolts.

1. Raise caster wheel. For instructions, refer to Raising Caster Wheel, page 377.
2. Remove the eight bolts (A) and nuts (four of each on each side of caster) attaching axle (B) to forked caster (C), and remove wheel assembly (D) from caster (C).
3. Remove the eight wheel nuts (A) that secure the axle (B) to the wheel (C).
4. Separate axle (B) and wheel (C).
MAINTENANCE AND SERVICING

Lowering Caster Wheel

1. Raise the end of walking beam (A) slightly, using a suitable lifting device capable of lifting minimum 2268 kg (5000 lb.).
2. Remove the jack stand, and lower the end of the walking beam until the caster wheel assembly (B) is on the ground.
3. Remove blocks from the drive tires.

Figure 5.229: Caster Wheel Assembly

Raising Caster Wheel

This procedure is for raising the caster wheel. This procedure applies to both caster wheels.

1. Park the windrower on a level surface.
2. Block the wheels.
3. Place the ground speed lever (GSL) (A) in PARK.
4. Shut down the engine, and remove the key from the ignition.

5. Raise the end of walking beam (A) until the caster wheel assembly (B) is slightly off the ground. Use a suitable lifting device, capable of lifting 2268 kg (5000 lb.) minimum.
6. Place a jack stand beneath the walking beam and lower the beam until resting on the stand.

Figure 5.230: GSL Position

Figure 5.231: Caster Wheel Assembly
Chapter 6: Options and Attachments

6.1 Hood

6.1.1 High Debris Cooler Intake (Hood Scoops)

The High Debris Cooler Intake kit contains air intake ducts designed to pull cooling system air from a less debris-prone area. MD #B6055

Instruction MD #147859 is included with the bundle.
6.2 Cab

6.2.1 Automated Steering Systems

A MacDon-approved automated steering system is available from MacDon Dealers that provide Trimble® global positioning system (GPS) installation and support services.

MacDon windrows are partially pre-wired for either the Trimble® AutoPilot™ hydraulically integrated steering system or the Trimble® EZ-Pilot® wheel/column-based assisted steering system. The windrower’s ground speed lever (GSL) has an automated steering (autosteer) engage switch.

The Trimble® EZ-Pilot® system for model year 2019 and later machines requires the MacDon EZ-Pilot® Ready kit (MD #B6602). Installation instruction (MD #214623) is included in the bundle.

The Trimble® AutoPilot™ system for model year 2019 and later machines requires the MacDon Trimble® Autopilot™ Ready kit (MD #B6601). Installation instruction (MD #214624) is included in the bundle.

Other GPS providers may supply parts in their vehicle-specific installation packages or make installation kits available through MacDon Dealers.

6.2.2 High Performance Lighting – Standard on Deluxe Cab Package

The standard windrower cab has four halogen field lights on the front, as well as two halogen stubble lights and two halogen work lights on the back. The Lighting Upgrade kit (MD #B6051) contains eight LED flood lights to replace all of these lights. Machines with the deluxe cab already have 360° Night Vision LED Lighting installed.

MD #B6051

Installation instructions are included in the bundle.

NOTE:
This bundle is included in the deluxe cab package.
6.3 Header Operation

6.3.1 Booster Spring Kit – External

This kit is available for headers over 2812 kg (6200 lb.) to increase float capacity.

MD #B6047 – Booster Spring kit (external) includes two springs (one for each side) and mounting brackets. Kit instruction MD #147825 is included in the bundle.

There is also a Double Booster Spring kit (MD #B6106) that is used together with the Booster Spring kit (external) to add on a second booster spring. Refer to 6.3.2 Double Booster Spring Kit – External, page 382.

Table 6.1 Available Float Spring Kits for Different Header Types and Configurations

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Header Configuration</th>
<th>Additional Float Spring Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>D130XL</td>
<td>9.1 m (30 ft.) single reel, double knife, timed</td>
<td>Transport</td>
<td>—</td>
</tr>
<tr>
<td>D130XL</td>
<td>9.1 m (30 ft.) single reel, double knife, timed</td>
<td>Transport, Upper Cross Auger, Vertical Knives</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>10.8 m (35 ft.) single reel, double knife, untimed</td>
<td>Base</td>
<td>—</td>
</tr>
<tr>
<td>D135XL</td>
<td>10.8 m (35 ft.) single reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>10.8 m (35 ft.) single reel, double knife, untimed</td>
<td>Transport, Upper Cross Auger, Vertical Knives</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>10.8 m (35 ft.) double reel, double knife, untimed</td>
<td>Base</td>
<td>—</td>
</tr>
<tr>
<td>D135XL</td>
<td>10.8 m (35 ft.) double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>10.8 m (35 ft.) double reel, double knife, untimed</td>
<td>Transport, Upper Cross Auger, Vertical Knives</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.) double reel, double knife, untimed</td>
<td>Base</td>
<td>—</td>
</tr>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.) double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D140XL</td>
<td>12.2 m (40 ft.) double reel, double knife, untimed</td>
<td>Transport, Upper Cross Auger, Vertical Knives</td>
<td>MD #B6047</td>
</tr>
</tbody>
</table>
Table 6.1 Available Float Spring Kits for Different Header Types and Configurations (continued)

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Header Configuration</th>
<th>Additional Float Spring Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>D145XL</td>
<td>12.2 m (40 ft.) double reel, double knife, untimed</td>
<td>Base</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>12.2 m (40 ft.) double reel, double knife, untimed</td>
<td>Transport</td>
<td>MD #B6047</td>
</tr>
</tbody>
</table>

6.3.2 Double Booster Spring Kit – External

Available for headers over 2812 kg (6200 lb.) to increase the float capacity.

The Double Booster Spring kit (MD #B6106) is used together with the Booster Spring kit (MD # B6047) to add a second booster spring. Refer to 6.3.1 Booster Spring Kit – External, page 381. Kit instruction MD #147826 is included in the bundle.

Table 6.2 Available Float Spring Kits for Different Header Types and Configurations

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Header Configuration</th>
<th>Additional Float Spring Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>D145XL</td>
<td>13.7 m (45 ft.) double reel, double knife, untimed</td>
<td>Transport Upper Cross Auger Vertical Knives</td>
<td>MD #B6106</td>
</tr>
</tbody>
</table>

6.3.3 Double Windrow Attachment

This kit allows auger headers to lay a double windrow when installed on a windrower. The kit includes a draper deck, linkage assembly, hydraulics, and installation instructions.

MD #C2070 consists of:
- MD #B6693 – Deck
- MD #B6694 – Mounting frame and hydraulic/electrical connections
- Double Windrow Attachment (DWA) manual

6.3.4 Double Windrow Attachment Shutoff Kit

The DWA Shut-Off kit is for M1170 Windrowers configured for both auger and draper headers. The kit will enable the Operator to shut off the DWA draper in order to operate the windrower with a draper header.

MD #299704

Instructions are included in the kit.

6.3.5 Center-Link Lifter

This kit allows the center-link cylinder to be hydraulically positioned and connected to the header without leaving the operator’s station.

MD #B6617

Instruction MD #214701 included in the bundle.
6.3.6 Swath Compressor

The MacDon Swath Compressor is a large, formed polyethylene sheet which is designed to mount to the underside of a MacDon M1 Series Windrower. The MacDon Swath Compressor is designed for use with D1XL and D1X Series Draper Headers cutting canola.

When lowered, the swath compressor helps prevent wind damage by shaping the windrow and anchoring it into the stubble behind the header using a smooth, gradual transition that helps prevent shelling in ripe conditions.

The swath compressor height can be adjusted and monitored with the Harvest Performance Tracker (HPT) display. Height can be adjusted for crop ripeness, yield, and the amount of compression required. The swath compressor will automatically lift up if the Operator stops or reverses the windrower.

Preferred height can be saved under a One-Touch-Return preset.

MD #B6441

Instructions are included with the kit.
6.4 Transport

6.4.1 Ballast

Ballast kits are for draper headers only. For operation on steep hills, additional ballast sets (beyond the recommendation in the table) may be installed.

Initial rear ballast package (MD #B6053): 1 unit (163 kg [360 lb.])

Additional rear ballast package (MD #B6054): 2 units (163 kg [360 lb.] each)

Installation instructions are included.

Table 6.3 Ballast

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
<th>Installed Options</th>
<th>Base Kit</th>
<th>Additional Kits</th>
<th>Additional Float Springs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D125X</td>
<td>25 foot, single reel, double knife, timed</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, single reel, double knife, timed</td>
<td>Transport</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D130XL</td>
<td>30 foot, single reel, double knife, timed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>0</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, single reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, single reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>1</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, single reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>1</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D135XL</td>
<td>35 foot, double reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D140XL</td>
<td>40 foot, double reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D140XL</td>
<td>40 foot, double reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>1</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D140XL</td>
<td>40 foot, double reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>45 foot, double reel, double knife, untimed</td>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>45 foot, double reel, double knife, untimed</td>
<td>Transport</td>
<td>1</td>
<td>2</td>
<td>MD #B6047</td>
</tr>
<tr>
<td>D145XL</td>
<td>45 foot, double reel, double knife, untimed</td>
<td>Transport + upper cross auger + vertical knives</td>
<td>1</td>
<td>2</td>
<td>MD #B6106</td>
</tr>
</tbody>
</table>
6.4.2 Single Side Mud Caster Wheels
Single-sided mud caster wheels on an unsuspended assembly are designed to minimize wheel clogging in very heavy mud conditions.

MD #B6017
Instruction MD #214616 is included with the bundle.

6.4.3 Towing Harness
The towing harness is used together with the weight box (refer to 6.4.4 Weight Box, page 385) when towing a D1XL or D1X Series Draper Header equipped with slow speed transport option behind the windrower.

MD #B6048 – Weight box harness only. Includes hitch pin and wiring for use with slow speed header transport option.
Instruction MD #147868 is included in the bundle.

6.4.4 Weight Box
A weight box installed onto the windrower header lift system is required to transport a header behind the windrower.

MD #B5238 – Weight box without harness
A towing harness is required to use the weight box. Refer to 6.4.3 Towing Harness, page 385 for more information.
Chapter 7: Troubleshooting

7.1 Engine Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Engine won't crank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls not in NEUTRAL</td>
<td>Move ground speed lever (GSL) to NEUTRAL.</td>
<td>Starting the Engine, page 115</td>
</tr>
<tr>
<td>Controls not in NEUTRAL</td>
<td>Move steering wheel to locked (centered) position.</td>
<td>Starting the Engine, page 115</td>
</tr>
<tr>
<td>Controls not in NEUTRAL</td>
<td>Disengage HEADER ENGAGE switch.</td>
<td>3.2.1 Header Drive, page 41</td>
</tr>
<tr>
<td>Symptom: Engine hard to start or will not start.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTRAL interlock misadjusted</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>No fuel to engine</td>
<td>Fill empty fuel tank. Replace clogged filter.</td>
<td>Filling Fuel Tank, page 112 and 5.11.1 Maintaining Fuel Filters, page 309</td>
</tr>
<tr>
<td>Old fuel in tank</td>
<td>Drain tank. Refill with fresh fuel.</td>
<td>5.15.2 Draining Fuel Tank, page 341</td>
</tr>
<tr>
<td>Water, dirt, or air in fuel system</td>
<td>Drain, flush, fill, and prime system.</td>
<td>Priming Fuel System, page 311</td>
</tr>
<tr>
<td>Improper type of fuel</td>
<td>Use proper fuel for operating conditions.</td>
<td>5.1.2 Fuel Specifications, page 239</td>
</tr>
<tr>
<td>Crankcase oil too heavy</td>
<td>Use recommended oil.</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
</tr>
<tr>
<td>Low battery output</td>
<td>Have battery tested. Check battery electrolyte level.</td>
<td>5.14.1 Batteries, page 326</td>
</tr>
<tr>
<td>Poor battery connection</td>
<td>Clean and tighten loose connections.</td>
<td>5.14.1 Batteries, page 326</td>
</tr>
<tr>
<td>Faulty starter</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Loose electrical connection at fuel pump</td>
<td>Ensure connector at pump is fully pushed in.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Wiring shorted, circuit breaker open</td>
<td>Check continuity of wiring and breaker (manual reset).</td>
<td>Checking and Replacing Fuses, page 361</td>
</tr>
<tr>
<td>ECM fuse (1 of 2) blown</td>
<td>Replace.</td>
<td>Checking and Replacing Fuses, page 361</td>
</tr>
<tr>
<td>ECM Ignition relay faulty</td>
<td>Replace.</td>
<td>Checking and Replacing Fuses, page 361</td>
</tr>
<tr>
<td>Faulty injectors</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Engine knocks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine out of time</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Insufficient oil</td>
<td>Add oil.</td>
<td>Adding Engine Oil, page 299</td>
</tr>
<tr>
<td>Low or high coolant temperature</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Improper fuel</td>
<td>Use proper fuel.</td>
<td>5.1.2 Fuel Specifications, page 239</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Symptom: Low oil pressure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low oil level</td>
<td>Add oil.</td>
<td>Adding Engine Oil, page 299</td>
</tr>
<tr>
<td>Improper type of oil</td>
<td>Drain and fill crankcase with proper oil.</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
</tr>
<tr>
<td>Worn components</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: High oil consumption.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal parts worn</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Crankcase oil too light</td>
<td>Use recommended oil.</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
</tr>
<tr>
<td>Oil leaks</td>
<td>Check for leaks around gaskets, seals, and drain plugs.</td>
<td>5.7.1 Checking Engine Oil Level, page 279</td>
</tr>
<tr>
<td>Symptom: Engine runs irregularly or frequently stalls.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsteady fuel supply</td>
<td>Change filter on fuel tank vent line.</td>
<td>5.12.1 Removing and Installing the Fuel Tank Vent Filter, page 315 and 5.11.1 Maintaining Fuel Filters, page 309</td>
</tr>
<tr>
<td>Water or dirt in fuel system</td>
<td>Drain, flush, and fill fuel system.</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
</tr>
<tr>
<td>Low coolant temperature</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air in fuel system</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Dirty or faulty injectors</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Lack of power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect timing</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Engine oil viscosity too high</td>
<td>Use recommended oil.</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
</tr>
<tr>
<td>Intake air restriction</td>
<td>Service air cleaner.</td>
<td>Cleaning Primary Air Filter, page 303</td>
</tr>
<tr>
<td>Clogged fuel filter</td>
<td>Replace primary fuel filter, and if necessary, replace secondary fuel filter.</td>
<td>5.11.1 Maintaining Fuel Filters, page 309</td>
</tr>
<tr>
<td>High back pressure</td>
<td>Clean out or replace exhaust canisters.</td>
<td>5.10.7 Inspecting Exhaust System, page 306</td>
</tr>
<tr>
<td>Improper type of fuel</td>
<td>Use proper fuel.</td>
<td>5.1.2 Fuel Specifications, page 239</td>
</tr>
<tr>
<td>High or low engine temperature</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Improper valve clearance</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Faulty injectors</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Engine temperature is below normal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defective thermostat</td>
<td>Remove and check thermostat.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Warning alarm sounds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine overheated</td>
<td>Check thermostat.</td>
<td>Contact Dealer</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine overheated</td>
<td>Check coolant level.</td>
<td>5.7.5 Checking Engine Coolant Level, page 285</td>
</tr>
<tr>
<td>Low engine oil pressure</td>
<td>Check oil level.</td>
<td>5.7.1 Checking Engine Oil Level, page 279</td>
</tr>
<tr>
<td>Low charge oil pressure</td>
<td>Check oil level.</td>
<td>5.7.3 Checking Hydraulic Oil, page 281</td>
</tr>
</tbody>
</table>

Symptom: Engine overheats.

Low coolant level	Fill reserve tank to proper level. Check system for leaks.	Adding Coolant, page 321
Water only for coolant	Replace with antifreeze.	Adding Coolant, page 321
Engine overloaded	Reduce ground speed.	Driving Forward in Cab-Forward Mode, page 125
Defective radiator cap	Replace cap.	Inspecting Pressurized Coolant Tank Cap, page 256
Dirty radiator screen	Clean screen.	5.9.2 Cleaning Cooler Module, page 293
Dirty radiator core	Clean radiator.	5.9.2 Cleaning Cooler Module, page 293
Cooling system dirty	Flush cooling system.	5.13.1 Changing Engine Coolant, page 320
Defective thermostat	Remove and check thermostat.	Contact Dealer
Defective temperature gauge or sender	Check coolant temperature with thermometer. Replace gauge if necessary.	Contact Dealer
Defective water pump	Contact Dealer.	Contact Dealer

Symptom: High fuel consumption.

Clogged or dirty air cleaner	Service air cleaner.	Cleaning Primary Air Filter, page 303
Engine overloaded	Reduce ground speed.	Driving Forward in Cab-Forward Mode, page 125
Improper valve clearance	Contact Dealer.	Contact Dealer
Engine out of time	Contact Dealer.	Contact Dealer
Dirty injector nozzles	Contact Dealer.	Contact Dealer
Low engine temperature	Check thermostat.	Contact Dealer
Improper type of fuel	Use proper fuel.	5.1.2 Fuel Specifications, page 239

Symptom: Starter cranks slowly or will not operate.

<p>| Low battery output | Check battery charge. | Maintaining a Battery, page 326 |
| Loose or corroded battery connections | Clean and tighten loose connections. | Maintaining a Battery, page 326 |
| Controls not in NEUTRAL | Move GSL to NEUTRAL. | Starting the Engine, page 115 |
| Controls not in NEUTRAL | Move steering wheel to locked (centered) position. | Driving in Reverse in Cab-Forward Mode, page 126 |
| Controls not in NEUTRAL | Disengage header. | Engaging and Disengaging the Header, page 185 |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay not functioning</td>
<td>Check relay and wire connections.</td>
<td>Checking and Replacing Fuses, page 361</td>
</tr>
<tr>
<td>Main fuse defective/blown</td>
<td>Replace main fuse.</td>
<td>Checking and Replacing Fuses, page 361</td>
</tr>
<tr>
<td>Key power fuse blown</td>
<td>Replace.</td>
<td>Checking and Replacing Fuses, page 361</td>
</tr>
<tr>
<td>Key switch worn or terminals loose</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Switch at Interlock not closed or defective</td>
<td>Adjust switch or replace Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Crankcase oil too high viscosity</td>
<td>Use recommended oil.</td>
<td>5.1.3 Lubricants, Fluids, and System Capacities, page 240</td>
</tr>
</tbody>
</table>
7.2 Electrical Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Low voltage and/or the battery will not charge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defective battery</td>
<td>Have battery tested.</td>
<td>5.14.1 Batteries, page 326</td>
</tr>
<tr>
<td>Loose or corroded connections</td>
<td>Clean and tighten battery connections.</td>
<td>Maintaining a Battery, page 326</td>
</tr>
<tr>
<td>Defective alternator belt</td>
<td>Replace worn belt.</td>
<td>Replacing Engine Fan Drive Belt, page 343</td>
</tr>
<tr>
<td>Alternator or voltage regulator not connected properly</td>
<td>Connect properly.</td>
<td>5.14.1 Batteries, page 326</td>
</tr>
<tr>
<td>Dirty or defective alternator, defective voltage regulator, or high</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>resistance in circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom: Lights dim.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High resistance in circuit or poor ground on lights</td>
<td>Check the wiring circuit for a break in a wire or a poor ground.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Lights do not light.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Headlight Bulb – Engine-Forward, page 352</td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Bulbs in Standard Work Lights, page 351</td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing LED Lights – Deluxe Cab Only, page 353</td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Bulbs in Red and Amber Lights, page 354</td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Red Tail Lights, page 355</td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing Beacon Lights, page 356</td>
</tr>
<tr>
<td>Burned out or defective light bulb</td>
<td>Replace light bulb.</td>
<td>Replacing the Cabin Dome Bulb, page 356</td>
</tr>
<tr>
<td>Broken wiring</td>
<td>Check wiring for broken wire or shorts.</td>
<td></td>
</tr>
<tr>
<td>Poor ground on lights</td>
<td>Clean and tighten ground wires.</td>
<td></td>
</tr>
<tr>
<td>Open or defective circuit breaker</td>
<td>Check circuit breaker.</td>
<td>5.15.7 Accessing Circuit Breakers and Fuses, page 359</td>
</tr>
<tr>
<td>Defective relay</td>
<td>Replace relay.</td>
<td>Replacing Circuit Breakers and Relays, page 361</td>
</tr>
<tr>
<td>Symptom: Wrong turn signal/indicator lights activated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversed wiring</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: No current to tab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken or disconnected wire</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Circuit breaker tripped</td>
<td>Breaker automatically resets.</td>
<td>—</td>
</tr>
</tbody>
</table>
7.3 Hydraulics Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Header or reel is not lifting.</td>
<td>Appropriate solenoids not being energized by activating switch Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Reel and/or conveyor is not turning.</td>
<td>Flow controls adjusted too low Toggle speed controls on Harvest Performance Tracker (HPT) display to increase flow.</td>
<td>Conveyor Speed Adjustment Buttons, page 76 and Reel and Disc Speed Switch, page 73</td>
</tr>
<tr>
<td>Flow controls adjusted too low Toggle speed controls on Harvest Performance Tracker (HPT) display to increase flow.</td>
<td>Appropriate solenoid on flow control block not being energized Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Relief pressure too low Check/adjust/clean relief valve.</td>
<td></td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Hydraulic oil high-temperature alarm activates.</td>
<td>Hydraulic oil cooling system not working properly Check/clean cooling box.</td>
<td>5.9.2 Cleaning Cooler Module, page 293</td>
</tr>
</tbody>
</table>
7.4 Header Drive Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Header drive is not engaging.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATOR PRESENCE switch not closed or faulty</td>
<td>Occupy operator’s seat or replace switch. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>OPERATOR PRESENCE switch not closed or faulty</td>
<td>Occupy operator’s seat or replace switch. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Appropriate solenoid not being energized by activating switch</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Couplers not connected</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Faulty pump or flow controls</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Control solenoids disconnected</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header ID not detected</td>
<td>Attach header or check wiring. Contact your Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Symptom: Header drive lacks power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief valve setting too low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Header drive overload</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Warning alarm sounds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header drive overload</td>
<td>Reduce ground speed.</td>
<td>—</td>
</tr>
<tr>
<td>Relief valve setting too low</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
</tbody>
</table>
7.5 Traction Drive Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: The warning alarm sounds and the low charge pressure warning appears on the Harvest Performance Tracker (HPT).</td>
<td>Low hydraulic oil level</td>
<td>Stop engine, and add oil to hydraulic system.</td>
</tr>
<tr>
<td>Symptom: Wheels lack necessary ability to pull on a grade or when pulling out of a ditch.</td>
<td>Internal pump or motor damage</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Symptom: With the steering wheel centered, one wheel pulls more than the other wheel.</td>
<td>Leakage at pump or motor</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Symptom: Both wheels will not pull in forward or in reverse.</td>
<td>Loose hardware on pump controls</td>
<td>Repair or tighten.</td>
</tr>
<tr>
<td>Symptom: One wheel will not pull in forward or in reverse.</td>
<td>Broken pump arm or shaft</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Steering controls worn or defective</td>
<td>Check GSL and steering for loose, worn or damaged ball joints and connecting rods.</td>
</tr>
<tr>
<td></td>
<td>High pressure relief valve stuck open, damaged seat</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Brakes binding or not releasing fully</td>
<td>Check charge pressure.</td>
</tr>
<tr>
<td></td>
<td>Failed pump, motor or final drive</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Symptom: Excessive noise from the drive system.</td>
<td>Mechanical interference in steering or ground speed linkage</td>
<td>Remove interference.</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brakes binding or not releasing fully</td>
<td>Check charge pressure.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Faulty pump or motor</td>
<td>Contact Dealer.</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Air in system</td>
<td>Check lines for leakage.</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic line clamps loose</td>
<td>Tighten clamps.</td>
<td>—</td>
</tr>
<tr>
<td>Ball joints are worn</td>
<td>Replace worn parts.</td>
<td>—</td>
</tr>
</tbody>
</table>

Symptom: The hydraulic oil filter leaks at a seal.

| Not properly tightened | Tighten filter element. | Installing Return Oil Filter, page 276 or Installing Charge Filter, page 277 |
| Damaged seal or threads | Replace filter or filter head. | Removing Return Oil Filter, page 275 or Removing Charge Filter, page 277 |
7.6 Steering and Ground Speed Control Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: The machine will not steer straight.</td>
<td>Linkage worn or loose: Adjust steering chain tension. Replace worn parts. Adjust linkage.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: The machine moves on flat ground with controls set to neutral.</td>
<td>Neutral interlock misadjusted: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Parking brake not functioning: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ground speed lever (GSL) servo misadjusted: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GSL cable misadjusted: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Steering wheel will not lock with the GSL set to PARK.</td>
<td>Transmission interlock misadjusted: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Faulty GSL neutral switch: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Interlock springs not pulling interlock closed: Replace or reattach springs.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Faulty switch on PARK: Replace switch or adjust.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Insufficient road speed.</td>
<td>Ground speed limit is too low: Increase limit.</td>
<td>Adjusting Ground Speed Limit, page 124</td>
</tr>
<tr>
<td>Symptom: Maximum ground speed is too slow.</td>
<td>Servo not adjusted properly: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Fault with wheel motor control: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GSL position sensor not calibrated or damaged: Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Maximum speed limit is set at 10 mph: Increase speed limit.</td>
<td>Adjusting Ground Speed Limit, page 124</td>
</tr>
<tr>
<td>Symptom: Steering is too stiff or too loose.</td>
<td>Steering chain tension is out of adjustment: Adjust steering chain tension.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ball joints or steering linkage pivot stiff: Replace or repair.</td>
<td>—</td>
</tr>
</tbody>
</table>
7.7 Cab Air Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: The blower fan will not run.</td>
<td>Burned out motor</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Burned out switch</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Motor shaft tight or bearings worn</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring—loose or broken</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Blower rotors in contact with housing</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Burned out motor</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Symptom: The blower fan is operating, but air doesn't blow into the cab.</td>
<td>Dirty fresh air filter</td>
<td>Clean fresh air filter.</td>
</tr>
<tr>
<td></td>
<td>Dirty recirculating air filter</td>
<td>Clean return air filter.</td>
</tr>
<tr>
<td></td>
<td>Evaporator clogged</td>
<td>Clean evaporator.</td>
</tr>
<tr>
<td></td>
<td>Air flow passage blocked</td>
<td>Remove blockage.</td>
</tr>
<tr>
<td>Symptom: Heater is not heating.</td>
<td>Heater shut-off valve at engine closed</td>
<td>Open valve.</td>
</tr>
<tr>
<td></td>
<td>Defective thermostat in engine water outlet manifold</td>
<td>Replace thermostat.</td>
</tr>
<tr>
<td></td>
<td>Heater temperature control defective</td>
<td>Replace control.</td>
</tr>
<tr>
<td></td>
<td>No thermostat in engine water outlet manifold</td>
<td>Install thermostat.</td>
</tr>
<tr>
<td>Symptom: Air louvers emitting odor.</td>
<td>Plugged drainage hose</td>
<td>Blow out hose with compressed air.</td>
</tr>
<tr>
<td></td>
<td>Dirty filters</td>
<td>Clean filters.</td>
</tr>
<tr>
<td>Symptom: Air conditioning is not cooling.</td>
<td>Low refrigerant level</td>
<td>Add refrigerant.</td>
</tr>
<tr>
<td></td>
<td>Clutch coil burned out or disconnected</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Blower motor disconnected or burned out</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td></td>
<td>Switch contacts in thermostat burned excessively, or sensing element defective</td>
<td>Replace thermostat.</td>
</tr>
<tr>
<td></td>
<td>Compressor partially or completely seized</td>
<td>Remove compressor for service or replacement.</td>
</tr>
<tr>
<td></td>
<td>Condenser fins plugged</td>
<td>Clean condenser.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Loose or broken compressor drive belt</td>
<td>Replace drive belt and/or tighten to specifications.</td>
<td>Tensioning Air Conditioner Compressor Belts, page 344 and Replacing Air Conditioner Compressor Belts, page 344</td>
</tr>
<tr>
<td>Dirty filters</td>
<td>Clean fresh air and recirculation filters.</td>
<td>5.9.1 Servicing Return Air Filter, page 292</td>
</tr>
<tr>
<td>Broken or disconnected electrical wire</td>
<td>Check all terminals for loose connections; check wiring for hidden breaks.</td>
<td>—</td>
</tr>
<tr>
<td>Broken or disconnected ground wire</td>
<td>Check ground wire to see if loose, broken, or disconnected.</td>
<td>—</td>
</tr>
<tr>
<td>Expansion valve stuck in open or closed position</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Broken refrigerant line</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Leak in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Compressor shaft seal leaking</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Clogged screen in receiver-drier; plugged hose or coil</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Air conditioning is not producing sufficient cooling (meaning that air temperature in the windrower cab, measured at the louvered vent, can be maintained at 14°C [57°F] below ambient air temperature)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor clutch slipping</td>
<td>Remove clutch assembly for service or replacement.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Thermostat defective or improperly adjusted</td>
<td>Replace thermostat.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Clogged air filters</td>
<td>Remove air filters, and clean or replace as necessary.</td>
<td>5.9.1 Servicing Return Air Filter, page 292</td>
</tr>
<tr>
<td>Heater circuit is open</td>
<td>Lower temperature control in cab, and close valve on engine.</td>
<td>3.10.3 Climate Controls, page 59 and 3.10.1 Heater Shut-Off Valve, page 59</td>
</tr>
<tr>
<td>Insufficient air circulation over condenser coil; fins clogged with dirt or insects</td>
<td>Clean condenser.</td>
<td>Cleaning Left Cooling Module, page 293</td>
</tr>
<tr>
<td>Evaporator fins clogged</td>
<td>Clean evaporator fins (under cab floor).</td>
<td>Cleaning Air Conditioning Evaporator Core, page 338</td>
</tr>
<tr>
<td>Refrigerant low</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Clogged expansion valve</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Clogged receiver-drier</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Air in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Blower motor sluggish in operation</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Air conditioning cools intermittently.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit icing up due to thermostat adjusted too low</td>
<td>Adjust thermostat.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Unit icing up due to excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Unit icing up due to incorrect superheat adjustment in the expansion valve</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Thermostat defective</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Defective blower switch or blower motor</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Partially open, improper ground or loose connection in compressor clutch coil</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Compressor clutch slipping</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Air conditioning system too noisy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defective winding or improper connection in compressor clutch coil or relay</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Excessive charge in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Low charge in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Excessive moisture in system</td>
<td>Contact Dealer.</td>
<td>—</td>
</tr>
<tr>
<td>Loose or excessively worn drive belt</td>
<td>Tighten or replace as required.</td>
<td></td>
</tr>
<tr>
<td>Noisy clutch</td>
<td>Remove clutch for service or replacement as required.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Noisy compressor</td>
<td>Check mountings and repair. Remove compressor for service or replacement.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Compressor oil level low</td>
<td>Add SP-15 PAG refrigerant oil.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Blower fan noisy due to excessive wear</td>
<td>Remove blower motor for service or replacement as necessary.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Symptom: Cab windows fog up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High humidity</td>
<td>Run A/C to dehumidify air and heater to control temperature.</td>
<td>3.10.3 Climate Controls, page 59</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING
7.8 Operator’s Station Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough ride.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat suspension not adjusted for operator’s weight</td>
<td>Adjust seat suspension.</td>
<td>3.3.3 Suspension and Height, page 43</td>
</tr>
<tr>
<td>High air pressure in tires</td>
<td>Deflate to proper pressure.</td>
<td>5.7.4 Checking Tire Pressures, page 282</td>
</tr>
<tr>
<td>Cab suspension too stiff</td>
<td>Adjust suspension.</td>
<td>Contact Dealer.</td>
</tr>
</tbody>
</table>
Chapter 8: Reference

8.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

8.1.1 Metric Bolt Specifications

Table 8.1 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 8.1: Bolt Grades
Table 8.2 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8.3 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>
Table 8.4 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.5 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
<th>8.8 (Cast Aluminum)</th>
<th>10.9 (Cast Aluminum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nm</td>
<td>lbf-ft</td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
<td>28</td>
<td>55</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
<td>52</td>
<td>100</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
8.1.3 O-Ring Boss Hydraulic Fittings – Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.
3. Check that O-ring (A) is NOT on threads and adjust if necessary.
4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until backup washer (D) and O-ring (A) contact part face (E).
6. Position angle fittings by unscrewing no more than one turn.
7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).
8. Check final condition of fitting.
Table 8.6 O-Ring Boss (ORB) Hydraulic Fittings – Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^{20})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

\(^{20}\) Torque values shown are based on lubricated connections as in reassembly.
8.1.4 O-Ring Boss Hydraulic Fittings – Non-Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 8.7, page 406.
6. Check final condition of fitting.

![Figure 8.8: Hydraulic Fitting](image)

Table 8.7 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

\(^{21}\) Torque values shown are based on lubricated connections as in reassembly.
8.1.5 O-Ring Face Seal Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 8.8, page 407.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 8.8 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note23</td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note23</td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1 3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
<tr>
<td>-14</td>
<td>Note23</td>
<td>7/8</td>
<td>–</td>
</tr>
</tbody>
</table>

22 Torque values and angles shown are based on lubricated connection as in reassembly.

23 O-ring face seal type end not defined for this tube size.
<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-16</td>
<td>1 7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1 11/16</td>
<td>1 1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1 1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

8.1.6 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks, scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The turns from finger tight (TFFT) and flats from finger tight (FFFT) values are shown in Table 8.9, page 408. Make sure that tube end of a shaped connector (typically 45° or 90°) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.9 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

24 Torque values and angles shown are based on lubricated connection as in reassembly.
8.2 Conversion Chart

Table 8.10 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td>Unit Name</td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>x 2.4710 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>acres</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>x 0.2248 =</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>x 0.0394 =</td>
</tr>
<tr>
<td></td>
<td>meter</td>
<td>m</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>x 1.341 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>x 0.145 =</td>
</tr>
<tr>
<td></td>
<td>megapascal</td>
<td>MPa</td>
<td>x 145.038 =</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 0.7376 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lbf-ft</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 8.8507 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lbf-in</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>°C</td>
<td>(°C x 1.8) + 32 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 =</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 =</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>x 0.2642 =</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>mL</td>
<td>x 0.0338 =</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 =</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>x 2.2046 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb.</td>
</tr>
</tbody>
</table>
8.3 Windrower Fault Codes

The Harvest Performance Tracker (HPT) displays the windrower fault codes as a sequence of three numbers (AAA.BBBBBB.CC). The sequence is defined as follows:

- **AAA** = The Source Address (SA) defines which module generated the fault.
- **BBBBBB** = The SPN is the description of the unique fault value.
- **CC** = The FMI indicated the fault’s level of severity.

Source address (SA) numbers refer to the following locations:

- 23: Harvest Performance Tracker (HPT) display
- 25: HVAC box
- 104: Master controller and connected extension modules
- 176: Roof relay module
- 178: Chassis relay module
- 190: Console and ground speed lever (GSL)
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 521489 1</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 2</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 2 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 3</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 & 2 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 4</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 3 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 5</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 & 3 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 6</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 2 & 3 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521489 7</td>
<td>Electrical System</td>
<td>Master Module Offline</td>
<td>CAN 1 & 2 & 3 Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521490 1</td>
<td>Electrical System</td>
<td>Ext. Module Offline</td>
<td>Firewall Extension Module Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521491 1</td>
<td>Electrical System</td>
<td>Ext. Module Offline</td>
<td>Chassis Extension Module Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521492 1</td>
<td>Electrical System</td>
<td>Display Offline</td>
<td>CAN 1 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521492 2</td>
<td>Electrical System</td>
<td>Display Offline</td>
<td>CAN 2 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521492 3</td>
<td>Electrical System</td>
<td>Display Offline</td>
<td>CAN 1 & 2 Offline</td>
<td>Check Module connectors; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521493 1</td>
<td>Electrical System</td>
<td>Relay Module Offline</td>
<td>Roof Relay Module Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521494 1</td>
<td>Electrical System</td>
<td>Relay Module Offline</td>
<td>Chassis Relay Module Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521495 1</td>
<td>Electrical System</td>
<td>Console Offline</td>
<td>Console Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521496 1</td>
<td>Electrical System</td>
<td>HVAC ECU Offline</td>
<td>HVAC ECU Offline</td>
<td>Check Module connectors and Module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>23 521497 1</td>
<td>Electrical System</td>
<td>Engine ECM Offline</td>
<td>Engine Control Module Offline</td>
<td>First check if cooling module door is open or cooling module door sensor is defective. If not then check engine control module connectors and module fuse; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521498 1</td>
<td>Electrical System</td>
<td>CAN 1 Offline</td>
<td>CAN 1 Offline</td>
<td>Check CAN Harnessing; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521499 1</td>
<td>Electrical System</td>
<td>CAN 2 Offline</td>
<td>CAN 2 Offline</td>
<td>Windrower lighting and HVAC will not be operational. Check CAN Harnessing; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521500 1</td>
<td>Electrical System</td>
<td>CAN 3 Offline</td>
<td>CAN 3 Offline</td>
<td>Check CAN Harnessing; if OK, Contact Dealer.</td>
</tr>
<tr>
<td>23 521515 1</td>
<td>Windrower</td>
<td>Water in fuel</td>
<td>Water in fuel detected</td>
<td>Drain fuel filter immediately.</td>
</tr>
<tr>
<td>25 168 1</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Low voltage - Below normal, most severe</td>
<td>Check HVAC power supply. Contact Dealer.</td>
</tr>
<tr>
<td>25 520193 5</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Clutch low amps - Current below normal</td>
<td>Inspect A/C clutch wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>25 520193 6</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Clutch high amps - Current above normal</td>
<td>Inspect A/C clutch wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>25 520194 3</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Evaporator temp open circuit - Voltage above normal</td>
<td>Check temperature sensor and wiring at the evaporator. Contact Dealer.</td>
</tr>
<tr>
<td>25 520194 4</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Evaporator temp shorted - Voltage below normal</td>
<td>Check temperature sensor and wiring at the evaporator. Contact Dealer.</td>
</tr>
<tr>
<td>25 170 3</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Cab temp open circuit - Voltage above normal</td>
<td>Inspect cab temperature and wiring. Contact Dealer.</td>
</tr>
<tr>
<td>25 170 4</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Cab temp shorted - Voltage below normal</td>
<td>Inspect cab temperature and wiring. Contact Dealer.</td>
</tr>
<tr>
<td>25 442 3</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Duct temp open circuit - Voltage above normal</td>
<td>Check HVAC duct temperature sensor wiring. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>25 442 4</td>
<td>Electrical System</td>
<td>HVAC</td>
<td>Duct temp shorted - Voltage below normal</td>
<td>Check HVAC duct temperature sensor wiring. Contact Dealer.</td>
</tr>
<tr>
<td>104 111 1</td>
<td>Windrower</td>
<td>Engine Coolant</td>
<td>Below Normal Most Severe</td>
<td>Coolant Level - Data Valid But Below Normal Operational Range.</td>
</tr>
<tr>
<td>104 111 17</td>
<td>Windrower</td>
<td>Engine Coolant</td>
<td>Below Normal Least Severe</td>
<td>Coolant Level - Data Valid But Below Normal Operating Range.</td>
</tr>
<tr>
<td>104 52100 3</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52100 4</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52100 5</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52100 6</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52100 8</td>
<td>Electrical System</td>
<td>Fuel Level Sender</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 52103 3</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Contact dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52103 4</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Contact dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52103 5</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Contact dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52103 6</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Contact Dealer to adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 52103 8</td>
<td>Electrical System</td>
<td>GSL Position</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521006 5</td>
<td>Electrical System</td>
<td>Hyd Oil Temp Sensor</td>
<td>Low Error</td>
<td>Sensor voltage below 50 mV. Check sensor power supply. Replace sensor if necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>104 521006</td>
<td>Electrical System</td>
<td>Hyd Oil Temp Sensor</td>
<td>High Error</td>
<td>Sensor voltage above 1300 mV. Check for wiring damage. Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521006</td>
<td>Electrical System</td>
<td>Hyd Oil Temp Sensor</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521383</td>
<td>Windrower</td>
<td>Hydraulic Oil Hot</td>
<td>Above Normal Least Severe</td>
<td>Clean cooler cores with compressed air. If condition persists with clean cores, contact dealer.</td>
</tr>
<tr>
<td>104 521383</td>
<td>Windrower</td>
<td>Hyd Oil Very Hot</td>
<td>Above Normal Most Severe</td>
<td>Clean cooler cores with compressed air. If condition persists with clean cores, contact dealer. Continued operation may lead to machine damage.</td>
</tr>
<tr>
<td>104 521387</td>
<td>Windrower</td>
<td>Oil Charge Press High</td>
<td>Above Normal Most Severe</td>
<td>Charge pressure relief valve may be misadjusted or damaged. Contact dealer.</td>
</tr>
<tr>
<td>104 521387</td>
<td>Windrower</td>
<td>Oil Charge Press Low</td>
<td>Below Normal Least Severe</td>
<td>Charge pressure relief valve may be misadjusted or damaged. Contact dealer.</td>
</tr>
<tr>
<td>104 521387</td>
<td>Windrower</td>
<td>Oil Charge Press Low</td>
<td>Below Normal Most Severe</td>
<td>Shut down engine. Charge pressure relief valve may be misadjusted or damaged. Contact Dealer.</td>
</tr>
<tr>
<td>104 521021</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521021</td>
<td>Electrical System</td>
<td>Reel Height</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>104 521024 3</td>
<td>Electrical System</td>
<td>Reel Fore-Aft</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521024 4</td>
<td>Electrical System</td>
<td>Reel Fore-Aft</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521024 5</td>
<td>Electrical System</td>
<td>Reel Fore-Aft</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521024 6</td>
<td>Electrical System</td>
<td>Reel Fore-Aft</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521024 8</td>
<td>Electrical System</td>
<td>Reel Fore-Aft</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521027 3</td>
<td>Electrical System</td>
<td>Lateral Tilt</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521027 4</td>
<td>Electrical System</td>
<td>Lateral Tilt</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521027 5</td>
<td>Electrical System</td>
<td>Lateral Tilt</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521027 6</td>
<td>Electrical System</td>
<td>Lateral Tilt</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521027 8</td>
<td>Electrical System</td>
<td>Lateral Tilt</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521030 3</td>
<td>Electrical System</td>
<td>Left Float Cyl.</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521030 4</td>
<td>Electrical System</td>
<td>Left Float Cyl.</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>104 521030 5</td>
<td>Electrical System</td>
<td>Left Float Cyl.</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521030 6</td>
<td>Electrical System</td>
<td>Left Float Cyl.</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521030 8</td>
<td>Electrical System</td>
<td>Left Float Cyl.</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521033 3</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 4</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 5</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 6</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521033 8</td>
<td>Electrical System</td>
<td>Conveyor Pressure</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage. Ensure that DWA option (in Attachments menu) is checked off only if it is in fact installed.</td>
</tr>
<tr>
<td>104 521036 3</td>
<td>Electrical System</td>
<td>Right Float Cyl.</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521036 4</td>
<td>Electrical System</td>
<td>Right Float Cyl.</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>104 521036 5</td>
<td>Electrical System</td>
<td>Right Float Cyl.</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521036 6</td>
<td>Electrical System</td>
<td>Right Float Cyl.</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521036 8</td>
<td>Electrical System</td>
<td>Right Float Cyl.</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521039 3</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521039 4</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521039 5</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521039 6</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521039 8</td>
<td>Electrical System</td>
<td>Knife Pressure</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521042 3</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521042 4</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521042 5</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521042 6</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or Replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521042 8</td>
<td>Electrical System</td>
<td>Reel Pressure</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>104 521045 3</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 4</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 5</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 6</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521045 8</td>
<td>Electrical System</td>
<td>Header Tilt</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521048 3</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 4</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 5</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 6</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521048 8</td>
<td>Electrical System</td>
<td>Header Height</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521051 3</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
</tr>
<tr>
<td>104 521051 4</td>
<td>Electrical System</td>
<td>Charge Pressure</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521051 5</td>
<td>Electrical System Charge Pressure Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521051 6</td>
<td>Electrical System Charge Pressure High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521051 8</td>
<td>Electrical System Cab Fwd Stop Lt Snsr CAN Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521059 19</td>
<td>Electrical System Cooler Box Door CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521060 19</td>
<td>Electrical System Seat Cab Fwd CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521061 19</td>
<td>Electrical System Seat Engine Fwd CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521062 19</td>
<td>Electrical System Interlock Closed CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521063 19</td>
<td>Electrical System Oil Level Signal CAN Error</td>
<td>Low Hydraulic Oil Level. Shut off engine and check sensor wiring and replace sensor if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521064 19</td>
<td>Electrical System Windrower CAN Error</td>
<td>Low Hydraulic Oil Level. Shut off engine and check sensor wiring and replace sensor if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521065 19</td>
<td>Electrical System DWA Position Switch CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521066 19</td>
<td>Electrical System Header ID1 CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521067 19</td>
<td>Electrical System Header ID2 CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 521068 19</td>
<td>Electrical System Header ID3 CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Code</td>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>104 521069</td>
<td>CAN Error</td>
<td>Header ID4</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521070</td>
<td>CAN Error</td>
<td>Header ID5</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521071</td>
<td>Low Alarm</td>
<td>Electrical System</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor as necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521071</td>
<td>High Alarm</td>
<td>Left Wheel Motor</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage and replace sensor as necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521071</td>
<td>Low Alarm</td>
<td>Right Wheel Motor</td>
<td>Check left wheel speed sensor and wiring. Reading speed off right wheel only. Auto-reel and auto-draper speed performance will be impacted while turning.</td>
<td></td>
</tr>
<tr>
<td>104 521071</td>
<td>High Alarm</td>
<td>Wheel Speed</td>
<td>Check right wheel speed sensor and wiring. Reading speed off left wheel only. Auto-reel and auto-draper speed performance will be impacted while turning.</td>
<td></td>
</tr>
<tr>
<td>104 521071</td>
<td>Low Alarm</td>
<td>Knife/Disc Speed</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply and replace sensor if necessary. No knife/disc speed feedback. Estimated speed will be used. This will exclude knife/disc speed changes when selecting buttons A, B and C on ground speed lever.</td>
<td></td>
</tr>
<tr>
<td>104 521071</td>
<td>High Alarm</td>
<td>Condition Exists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>104 521390 0</td>
<td>Windrower Knife Speed</td>
<td>Above Norm Most Severe</td>
<td>Knife speed above max allowable for header type. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>104 521074 2</td>
<td>Electrical System Reel Speed</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521074 3</td>
<td>Electrical System Reel Speed</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521074 31</td>
<td>Electrical System Reel Speed</td>
<td>Condition Exists</td>
<td>No reel speed feedback. This will exclude reel speed changes when selecting buttons A, B and C on ground speed lever. It will also disable the auto-reel speed feature.</td>
<td></td>
</tr>
<tr>
<td>104 521075 2</td>
<td>Electrical System Cooling Fan Spd</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521075 3</td>
<td>Electrical System Cooling Fan Spd</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>104 521391 0</td>
<td>Windrower Cooling Fan Spd High</td>
<td>Above Norm Most Severe</td>
<td>Fan speed readout high. Safe mode activated. Fan will default to full rpm at high idle. Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>104 521391 31</td>
<td>Windrower Cooling Fan Speed</td>
<td>Condition Exists</td>
<td>No cooling fan speed feedback.</td>
<td></td>
</tr>
<tr>
<td>104 521391 1</td>
<td>Windrower Cooling Fan Spd Low</td>
<td>Below Normal Most Severe</td>
<td>Control system is unable to adjust fan speed. Beware that there is the potential for engine overheat if fan speed is too low. Safe mode activated. Fan will default to full rpm at high idle. Contact dealer.</td>
<td></td>
</tr>
<tr>
<td>104 521076 2</td>
<td>Electrical System Left Draper Idler Spd</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
<td></td>
</tr>
<tr>
<td>104 521076 3</td>
<td>Electrical System Left Draper Idler Spd</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>104 521076 31</td>
<td>Electrical System</td>
<td>Left Draper Idler Spd</td>
<td>Condition Exists</td>
<td>No draper slip feedback. Draper slip detection is no longer active. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521077 2</td>
<td>Electrical System</td>
<td>Right Draper Idler Spd</td>
<td>Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Check sensor adjustment and replace if necessary. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521077 3</td>
<td>Electrical System</td>
<td>Right Draper Idler Spd</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Check sensor adjustment and replace if necessary.</td>
</tr>
<tr>
<td>104 521077 31</td>
<td>Electrical System</td>
<td>Right Draper Idler Spd</td>
<td>Condition Exists</td>
<td>No draper slip feedback. Draper slip detection is no longer active. If a double draper drive kit is installed, select it from the Settings > Header > Attachments menu.</td>
</tr>
<tr>
<td>104 521078 4</td>
<td>Electrical System</td>
<td>Knife Drive</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521078 3</td>
<td>Electrical System</td>
<td>Knife Drive</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521078 2</td>
<td>Electrical System</td>
<td>Knife Drive</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>104 521079 4</td>
<td>Electrical System</td>
<td>Left Wheel Motor</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521079 3</td>
<td>Electrical System</td>
<td>Left Wheel Motor</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521079 2</td>
<td>Electrical System</td>
<td>Left Wheel Motor</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>104 521080 4</td>
<td>Electrical System</td>
<td>Right Wheel Motor</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521080 3</td>
<td>Electrical System</td>
<td>Right Wheel Motor</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521080 2</td>
<td>Electrical System</td>
<td>Right Wheel Motor</td>
<td>Saturated</td>
<td>Check current output channel on Master Controller.</td>
</tr>
<tr>
<td>Fault Code</td>
<td>SPN</td>
<td>System</td>
<td>Full Fault Description</td>
<td>Short Fault Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>104 521081</td>
<td>4</td>
<td>Electrical System</td>
<td>Cooling Fan Speed Open Load</td>
<td>Cooling Fan Speed Saturated</td>
</tr>
<tr>
<td>104 521082</td>
<td>4</td>
<td>Electrical System</td>
<td>Header Raise/Lower Overload</td>
<td>Header Raise/Lower Saturated</td>
</tr>
<tr>
<td>104 521083</td>
<td>4</td>
<td>Electrical System</td>
<td>Header Tilt Overload</td>
<td>Header Tilt Saturated</td>
</tr>
<tr>
<td>104 521085</td>
<td>5</td>
<td>Electrical System</td>
<td>Reel Drive PWM Overload</td>
<td>Reel Drive PWM Saturated</td>
</tr>
<tr>
<td>104 521086</td>
<td>4</td>
<td>Electrical System</td>
<td>Conveyor Drive PWM Overload</td>
<td>Conveyor Drive PWM Saturated</td>
</tr>
<tr>
<td>104 521357</td>
<td>3</td>
<td>Electrical System</td>
<td>Interlock Open Overload</td>
<td>Interlock Open Saturated</td>
</tr>
<tr>
<td>104 521359</td>
<td>4</td>
<td>Electrical System</td>
<td>Brake Release Overload</td>
<td>Brake Release Saturated</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>104 521361</td>
<td>Electrical System</td>
<td>Batt. Disc. Open</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521364</td>
<td>Electrical System</td>
<td>Ignition</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521364</td>
<td>Electrical System</td>
<td>Ignition</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521366</td>
<td>Electrical System</td>
<td>Starter Relay</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521366</td>
<td>Electrical System</td>
<td>Starter Relay</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521368</td>
<td>Electrical System</td>
<td>12 V Sensor Pwr</td>
<td>Firewall 12 V Sensor Power - Open Load</td>
<td>Check wiring for damage or breaks. The following sensors may be affected: hydraulic oil temperature, hydraulic oil level, cooling fan speed, cab forward or engine-forward seat position, or hydraulic oil filter. Contact Dealer.</td>
</tr>
<tr>
<td>104 521368</td>
<td>Electrical System</td>
<td>12 V Sensor Pwr</td>
<td>Firewall 12 V Sensor Power - Overload</td>
<td>High current on circuit. Check wiring for damage. The following sensors may be affected: hydraulic oil temperature, hydraulic oil level, cooling fan speed, cab forward or engine-forward seat position, or hydraulic oil filter. Contact Dealer.</td>
</tr>
<tr>
<td>104 521369</td>
<td>Electrical System</td>
<td>Cooling Fan Reverse</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521369</td>
<td>Electrical System</td>
<td>Cooling Fan Reverse</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521370</td>
<td>Electrical System</td>
<td>Reel/Aux Lift Selector</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521370</td>
<td>Electrical System</td>
<td>Reel/Aux Lift Selector</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521371</td>
<td>Electrical System</td>
<td>Reel Retract O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521371</td>
<td>Electrical System</td>
<td>Reel Retract O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>104 521372 3</td>
<td>Electrical System</td>
<td>Reel Extend O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521372 4</td>
<td>Electrical System</td>
<td>Reel Extend O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521373 3</td>
<td>Electrical System</td>
<td>Reel Raise O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521373 4</td>
<td>Electrical System</td>
<td>Reel Raise O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521374 3</td>
<td>Electrical System</td>
<td>Reel Lower O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521374 4</td>
<td>Electrical System</td>
<td>Reel Lower O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521375 3</td>
<td>Electrical System</td>
<td>12 V Sensor Pwr</td>
<td>Chassis 12 V Sensor Power - Open Load</td>
<td>Check wiring for damage or breaks. The following sensors may be affected: DWA Position, header tilt position, swath compressor position. Contact Dealer.</td>
</tr>
<tr>
<td>104 521375 4</td>
<td>Electrical System</td>
<td>12 V Sensor Pwr</td>
<td>Chassis 12 V Sensor Power - Overload</td>
<td>High current on circuit. Check wiring for damage. The following sensors may be affected: DWA Position, header tilt position, swath compressor position. Contact Dealer.</td>
</tr>
<tr>
<td>104 521376 3</td>
<td>Electrical System</td>
<td>Deck Shift Left O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521376 4</td>
<td>Electrical System</td>
<td>Deck Shift Left O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521377 3</td>
<td>Electrical System</td>
<td>Deck Shift Right O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521377 4</td>
<td>Electrical System</td>
<td>Deck Shift Right O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521378 3</td>
<td>Electrical System</td>
<td>Left Lateral Tilt O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521378 4</td>
<td>Electrical System</td>
<td>Left Lateral Tilt O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>104 521379 3</td>
<td>Electrical System</td>
<td>Right Lateral Tilt O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521379 4</td>
<td>Electrical System</td>
<td>Right Lateral Tilt O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521380 3</td>
<td>Electrical System</td>
<td>Right Float Adjust O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521380 4</td>
<td>Electrical System</td>
<td>Right Float Adjust O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521381 3</td>
<td>Electrical System</td>
<td>Left Float Adjust O/P</td>
<td>Open Load</td>
<td>Check wiring for damage or breaks. Contact Dealer.</td>
</tr>
<tr>
<td>104 521381 4</td>
<td>Electrical System</td>
<td>Left Float Adjust O/P</td>
<td>Overload</td>
<td>High current on circuit. Check wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>104 521087 2</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>Disabled</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>104 521087 3</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>High Temperature</td>
<td>Module has exceeded max operating temperature. Allow module to cool down before continuing operation.</td>
</tr>
<tr>
<td>104 521087 4</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>Low Batt Voltage</td>
<td>Battery voltage is low, check charging system. Contact Dealer.</td>
</tr>
<tr>
<td>104 521087 5</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>High Batt Voltage</td>
<td>Battery voltage is high. Contact Dealer.</td>
</tr>
<tr>
<td>104 521087 7</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>Vref Error</td>
<td>Reference voltage error. Check wiring for damage. The following sensors may be affected: Left Hand Wheel Speed Right Hand Wheel Speed Fuel Level Ground Speed Lever Position</td>
</tr>
<tr>
<td>104 521087 10</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>MultiAddress</td>
<td>Check address wiring.</td>
</tr>
<tr>
<td>104 521087 8</td>
<td>Electrical System</td>
<td>Master Controller</td>
<td>Address Error</td>
<td>CAN Address Error. Contact Dealer.</td>
</tr>
<tr>
<td>104 521092 1</td>
<td>Electrical System</td>
<td>Ext. Module, Firewall</td>
<td>Disabled</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>104</td>
<td>521092</td>
<td>2</td>
<td>Electrical System Ext. Module, High Temperature</td>
<td>Module has exceeded max operating temperature. Allow module to cool down before continuing operation.</td>
</tr>
<tr>
<td>104</td>
<td>521092</td>
<td>3</td>
<td>Electrical System Ext. Module, Low Batt Voltage</td>
<td>Battery voltage is low. Check charging system.</td>
</tr>
<tr>
<td>104</td>
<td>521092</td>
<td>4</td>
<td>Electrical System Ext. Module, High Batt Voltage</td>
<td>Battery voltage is high. Contact Dealer.</td>
</tr>
<tr>
<td>104</td>
<td>521092</td>
<td>6</td>
<td>Electrical System Ext. Module, Address Error</td>
<td>CAN Address Error. Contact Dealer.</td>
</tr>
<tr>
<td>104</td>
<td>521092</td>
<td>7</td>
<td>Electrical System Ext. Module, Vref error</td>
<td>Reference voltage error. Check wiring for damage.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>1</td>
<td>Electrical System Ext. Module, Chassis</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>2</td>
<td>Electrical System Ext. Module, Chassis, High Temperature</td>
<td>Module has exceeded max operating temperature. Allow module to cool down before continuing operation.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>3</td>
<td>Electrical System Ext. Module, Chassis, Low Batt Voltage</td>
<td>Battery voltage is low. Check charging system.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>4</td>
<td>Electrical System Ext. Module, Chassis, High Batt Voltage</td>
<td>Battery voltage is high. Contact Dealer.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>6</td>
<td>Electrical System Ext. Module, Chassis, Address Error</td>
<td>CAN Address Error. Contact Dealer.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>7</td>
<td>Electrical System Ext. Module, Chassis, Vref error</td>
<td>Reference voltage error. Check wiring for damage.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>8</td>
<td>Electrical System Swath Compressor, Low Alarm</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>9</td>
<td>Electrical System Swath Compressor, High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>10</td>
<td>Electrical System Swath Compressor, Low Error</td>
<td>Sensor voltage below 0.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104</td>
<td>521097</td>
<td>11</td>
<td>Electrical System Swath Compressor, High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521501 6</td>
<td>Electrical System</td>
<td>Swath Compressor</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521501 8</td>
<td>Electrical System</td>
<td>Swath Compressor</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521502 3</td>
<td>Electrical System</td>
<td>AHHC Left-out Sensor</td>
<td>Low Alarm</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 4</td>
<td>Electrical System</td>
<td>AHHC Left-out Sensor</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 5</td>
<td>Electrical System</td>
<td>AHHC Left-out Sensor</td>
<td>Low Error</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 6</td>
<td>Electrical System</td>
<td>AHHC Left-out Sensor</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521502 8</td>
<td>Electrical System</td>
<td>AHHC Left-out Sensor</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
<tr>
<td>104 521503 3</td>
<td>Electrical System</td>
<td>AHHC Left-in Sensor</td>
<td>Low Alarm</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 4</td>
<td>Electrical System</td>
<td>AHHC Left-in Sensor</td>
<td>High Alarm</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 5</td>
<td>Electrical System</td>
<td>AHHC Left-in Sensor</td>
<td>Low Error</td>
<td>Sensor voltage above 4.5 V. Check sensor power supply. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 6</td>
<td>Electrical System</td>
<td>AHHC Left-in Sensor</td>
<td>High Error</td>
<td>Sensor voltage above 4.5 V. Check for wiring damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521503 8</td>
<td>Electrical System</td>
<td>AHHC Left-in Sensor</td>
<td>Vref Error</td>
<td>Reference voltage error. Check sensor wiring for damage.</td>
</tr>
</tbody>
</table>
Fault Codes Telltale

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Low Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor High Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Low Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor High Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Vref Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Low Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor High Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Low Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor High Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Vref Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521506</td>
<td>Contact Dealer</td>
<td>The following sensors may be affected: knife speed, reel speed, left or right draper speed, header identification, reel height position, reel fore-aft position, and hydraulic oil temperature.</td>
</tr>
</tbody>
</table>

Fault Codes

<table>
<thead>
<tr>
<th>SA</th>
<th>SPN</th>
<th>Type</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>521504</td>
<td>Electrical System</td>
<td>AHHC Right-in Sensor</td>
</tr>
<tr>
<td>104</td>
<td>521505</td>
<td>Electrical System</td>
<td>AHHC Right-out Sensor</td>
</tr>
</tbody>
</table>

Table of Fault Codes

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Low Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor High Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Low Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor High Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Vref Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Low Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor High Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Low Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor High Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Vref Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521506</td>
<td>Contact Dealer</td>
<td>The following sensors may be affected: knife speed, reel speed, left or right draper speed, header identification, reel height position, reel fore-aft position, and hydraulic oil temperature.</td>
</tr>
</tbody>
</table>

Table of Fault Codes

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Low Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor High Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Low Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor High Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521504</td>
<td>AHHC Right-in Sensor Vref Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Low Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor High Alarm</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Low Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor High Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521505</td>
<td>AHHC Right-out Sensor Vref Error</td>
<td>Check sensor wiring for damage. Adjust and re-calibrate or replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521506</td>
<td>Contact Dealer</td>
<td>The following sensors may be affected: knife speed, reel speed, left or right draper speed, header identification, reel height position, reel fore-aft position, and hydraulic oil temperature.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FM</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>104 521506</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>104 521506</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>104 521507</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>104 521507</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>104 521507</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>104 521508</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>104 521509</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Full Fault Description
- Check wiring for damage or breaks. The following sensors may be affected: knife speed, reel speed, header identification, reel height position, and hydraulic oil temperature. Contact Dealer.
- Check wiring for damage. The following sensors may be affected: knife pressure, reel pressure, header identification, reel height position, and hydraulic oil temperature. Contact Dealer.
- Check wiring for damage. The following sensors may be affected: knife pressure, reel pressure, header identification, reel height position, and hydraulic oil temperature. Contact Dealer.
- Check wiring for damage. The following sensors may be affected: knife pressure, reel pressure, header identification, reel height position, and hydraulic oil temperature. Contact Dealer.
- Check wiring for damage. The following sensors may be affected: knife pressure, reel pressure, header identification, reel height position, and hydraulic oil temperature. Contact Dealer.
- Check wiring for damage. The following sensors may be affected: knife pressure, reel pressure, header identification, reel height position, and hydraulic oil temperature. Contact Dealer.

Short Description
- Gearbox Oil Level Signal - Gearbox Oil Low Level Sensor Contact Dealer.
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 521510</td>
<td>Electrical System</td>
<td>Gearbox Oil Level Signal</td>
<td>CAN Error - Gearbox Oil High Level Sensor</td>
<td>Oil level. Check sensor wiring and replace sensor if necessary.</td>
</tr>
<tr>
<td>104 521510</td>
<td>Windrower</td>
<td>Gearbox Oil Level High</td>
<td>High Gearbox Oil Level</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay coil open or not present</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay Coil shorted or failed relay driver</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay Normally Open contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay Normally Closed contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay coil is not receiving power</td>
<td>Check wiring to roof relay module EK1. Contact Dealer.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay Normally open contact is shorted</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521104</td>
<td>Electrical System</td>
<td>Inner Work Lights</td>
<td>EK1 Relay Normally Closed contact is shorted</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521111</td>
<td>Electrical System</td>
<td>Low Beam Light Cab Fwd</td>
<td>EK2 Relay coil open or not present</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521111</td>
<td>Electrical System</td>
<td>Low Beam Light Cab Fwd</td>
<td>EK2 Relay Coil shorted or failed relay driver</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521111</td>
<td>Electrical System</td>
<td>Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally Open contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521111</td>
<td>Electrical System</td>
<td>Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally Closed contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521111</td>
<td>Electrical System</td>
<td>Low Beam Light Cab Fwd</td>
<td>EK2 Relay coil is not receiving power</td>
<td>Check wiring to roof relay module EK2. Contact Dealer.</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>Message</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521111 6 Electrical System Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally open contact is shorted</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521111 7 Electrical System Low Beam Light Cab Fwd</td>
<td>EK2 Relay Normally closed contact is open</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 1 Electrical System Engine Fwd</td>
<td>EK3 Relay Normally Closed contact is shorted</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 2 Electrical System Engine Fwd</td>
<td>EK3 Relay Normally Open contact is open</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 3 Electrical System Engine Fwd</td>
<td>EK3 Relay coil is not receiving power</td>
<td>Check wiring to roof relay module EK3. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 4 Electrical System Engine Fwd</td>
<td>EK3 Relay coil is not receiving power</td>
<td>Check wiring to roof relay module EK3. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 5 Electrical System Engine Fwd</td>
<td>EK3 Relay Normally Open contact is shorted</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 6 Electrical System Engine Fwd</td>
<td>EK3 Relay Normally open contact is shorted</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521119 7 Electrical System Engine Fwd</td>
<td>EK3 Relay Normally closed contact is shorted</td>
<td>Check roof relay module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 1 Electrical System Outer Work Lights</td>
<td>EK4 Relay Normally Closed contact is open</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 2 Electrical System Outer Work Lights</td>
<td>EK4 Relay normally closed contact is shorted</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 3 Electrical System Outer Work Lights</td>
<td>EK4 Relay normally open contact is shorted</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 4 Electrical System Outer Work Lights</td>
<td>EK4 Relay normally open contact is shorted</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 5 Electrical System Outer Work Lights</td>
<td>EK4 Relay normally open contact is shorted</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 6 Electrical System Outer Work Lights</td>
<td>EK4 Relay normally open contact is shorted</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 521127 7 Electrical System Outer Work Lights</td>
<td>EK4 Relay normally open contact is shorted</td>
<td>Check wiring to roof relay module EK4. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>SPN</th>
<th>FMI</th>
<th>Full Fault Description</th>
<th>Short Description</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>176 521135 1</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay coil open or not present</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521135 2</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay coil shorted or failed relay driver</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521135 3</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay Normally Open contact is open</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521135 4</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay Normally Closed contact is open</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521135 5</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay coil is not receiving power</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521135 6</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay Normally Open contact is shorted</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521135 7</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>Relay Normally Closed contact is shorted</td>
<td>Rear Roof Work Lights</td>
<td>Check wiring to roof relay module EK5. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 1</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay coil open or not present</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 2</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay coil shorted or failed relay driver</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 3</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay Normally Open contact is open</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 4</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay Normally Closed contact is open</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 5</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay coil is not receiving power</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 6</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay Normally Open contact is shorted</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521143 7</td>
<td>Electrical System</td>
<td>High Beam Lights CF</td>
<td>Relay Normally Closed contact is shorted</td>
<td>High Beam Lights CF</td>
<td>Check wiring to roof relay module EK6. Contact Dealer.</td>
</tr>
<tr>
<td>176 521151 1</td>
<td>Electrical System</td>
<td>Brake Lights, Eng Fwd</td>
<td>Relay coil open or not present</td>
<td>Brake Lights, Eng Fwd</td>
<td>Check wiring to roof relay module EK7. Contact Dealer.</td>
</tr>
<tr>
<td>176 521151 2</td>
<td>Electrical System</td>
<td>Brake Lights, Eng Fwd</td>
<td>Relay coil shorted or failed relay driver</td>
<td>Brake Lights, Eng Fwd</td>
<td>Check wiring to roof relay module EK7. Contact Dealer.</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>SPN</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>521151</td>
<td>Electrical System Brake Lights, Eng Fwd EK7 Relay Normally Open contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521151</td>
<td>Electrical System Brake Lights, Eng Fwd EK7 Relay Normally Closed contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521151</td>
<td>Electrical System Brake Lights, Eng Fwd EK7 Relay coil is not receiving power</td>
<td>Check wiring to roof relay module EK7. Contact Dealer.</td>
</tr>
<tr>
<td>521151</td>
<td>Electrical System Brake Lights, Eng Fwd EK7 Relay Normally open contact is shorted</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521159</td>
<td>Electrical System Rear Swath Lights EK8 Relay coil open or not present</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521159</td>
<td>Electrical System Rear Swath Lights EK8 Relay Coil shorted or failed relay driver</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521159</td>
<td>Electrical System Rear Swath Lights EK8 Relay Normally Open contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521159</td>
<td>Electrical System Rear Swath Lights EK8 Relay Normally Closed contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521167</td>
<td>Electrical System Beacon Lights EK9 Relay coil open or not present</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521167</td>
<td>Electrical System Beacon Lights EK9 Relay Coil shorted or failed relay driver</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521167</td>
<td>Electrical System Beacon Lights EK9 Relay Normally Open contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>521167</td>
<td>Electrical System Beacon Lights EK9 Relay Normally Closed contact is open</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>176 521167 5</td>
<td>Electrical System</td>
<td>Beacon Lights</td>
</tr>
<tr>
<td>176 521167 6</td>
<td>Electrical System</td>
<td>Beacon Lights</td>
</tr>
<tr>
<td>176 521167 7</td>
<td>Electrical System</td>
<td>Beacon Lights</td>
</tr>
<tr>
<td>176 521175 1</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521175 2</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521175 3</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521175 4</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521175 5</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521175 6</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521175 7</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
</tr>
<tr>
<td>176 521185 1</td>
<td>Electrical System</td>
<td>Inner work lights</td>
</tr>
<tr>
<td>176 521185 2</td>
<td>Electrical System</td>
<td>Inner work lights</td>
</tr>
<tr>
<td>176 521185 3</td>
<td>Electrical System</td>
<td>Inner work lights</td>
</tr>
<tr>
<td>176 521288 1</td>
<td>Electrical System</td>
<td>Outer work lights</td>
</tr>
<tr>
<td>176 521288 2</td>
<td>Electrical System</td>
<td>Outer work lights</td>
</tr>
<tr>
<td>176 521288 3</td>
<td>Electrical System</td>
<td>Outer work lights</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Telltale</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Electrical System Brake Lights, Eng Fwd</td>
<td>Brake Lights, Eng Fwd</td>
<td>1</td>
</tr>
<tr>
<td>Electrical System Brake Lights, Eng Fwd</td>
<td>Brake Lights, Eng Fwd</td>
<td>2</td>
</tr>
<tr>
<td>Electrical System Brake Lights, Eng Fwd</td>
<td>Brake Lights, Eng Fwd</td>
<td>3</td>
</tr>
<tr>
<td>Electical System Low Beam Light Cab Fwd</td>
<td>Low Beam Light Cab Fwd</td>
<td>1</td>
</tr>
<tr>
<td>Electrical System Low Beam Light Cab Fwd</td>
<td>Low Beam Light Cab Fwd</td>
<td>2</td>
</tr>
<tr>
<td>Electrical System Low Beam Light Cab Fwd</td>
<td>Low Beam Light Cab Fwd</td>
<td>3</td>
</tr>
<tr>
<td>Electrical System Rear Swath Lights</td>
<td>Rear Swath Lights</td>
<td>1</td>
</tr>
<tr>
<td>Electrical System Rear Swath Lights</td>
<td>Rear Swath Lights</td>
<td>2</td>
</tr>
<tr>
<td>Electrical System Rear Swath Lights</td>
<td>Rear Swath Lights</td>
<td>3</td>
</tr>
<tr>
<td>Electrical System High Beam Lights CF</td>
<td>High Beam Lights CF</td>
<td>1</td>
</tr>
<tr>
<td>Electrical System High Beam Lights CF</td>
<td>High Beam Lights CF</td>
<td>2</td>
</tr>
<tr>
<td>Electrical System High Beam Lights CF</td>
<td>High Beam Lights CF</td>
<td>3</td>
</tr>
<tr>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>Tail Lights Engine Fwd</td>
<td>1</td>
</tr>
<tr>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>Tail Lights Engine Fwd</td>
<td>2</td>
</tr>
<tr>
<td>Electrical System Tail Lights Engine Fwd</td>
<td>Tail Lights Engine Fwd</td>
<td>3</td>
</tr>
<tr>
<td>Electrical System Rear Roof Work Lights</td>
<td>Rear Roof Work Lights</td>
<td>1</td>
</tr>
<tr>
<td>Electrical System Rear Roof Work Lights</td>
<td>Rear Roof Work Lights</td>
<td>2</td>
</tr>
<tr>
<td>Electrical System Rear Roof Work Lights</td>
<td>Rear Roof Work Lights</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>SPN</th>
<th>FMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>176 521291</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>176 521291</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>176 521291</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>176 521294</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>176 521294</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>176 521294</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>176 521297</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>176 521297</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>176 521297</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>176 521300</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>176 521300</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>176 521300</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>176 521303</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>176 521303</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>176 521303</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>176 521306</td>
<td>1</td>
<td>21</td>
</tr>
</tbody>
</table>

Recommended Fix/Check Message

1. Check wiring to roof relay module EC3 circuit breaker. Contact Dealer.
2. Check wiring to roof relay module EC4 circuit breaker. Contact Dealer.
3. Check wiring to roof relay module EC5 circuit breaker. Contact Dealer.
4. Check wiring to roof relay module EC6 circuit breaker. Contact Dealer.
5. Check wiring to roof relay module EC7 circuit breaker. Contact Dealer.
6. Check wiring to roof relay module EC8 circuit breaker. Contact Dealer.
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>176 521306 2</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>EC8 Circuit Breaker Not Powered</td>
<td>Check wiring to roof relay module EC8 circuit breaker. Contact Dealer.</td>
</tr>
<tr>
<td>176 521306 3</td>
<td>Electrical System</td>
<td>Rear Roof Work Lights</td>
<td>EC8 Circuit Breaker Not Used</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521309 1</td>
<td>Electrical System</td>
<td>Beacon Lights</td>
<td>EC9 Circuit Breaker Blown</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521309 2</td>
<td>Electrical System</td>
<td>Beacon Lights</td>
<td>EC9 Circuit Breaker Not Powered</td>
<td>Check wiring to roof relay module EC9 circuit breaker. Contact Dealer.</td>
</tr>
<tr>
<td>176 521309 3</td>
<td>Electrical System</td>
<td>Beacon Lights</td>
<td>EC9 Circuit Breaker Not Used</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521312 1</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
<td>EC10 Circuit Breaker Blown</td>
<td>Check roof relay module.</td>
</tr>
<tr>
<td>176 521312 2</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
<td>EC10 Circuit Breaker Not Powered</td>
<td>Check wiring to roof relay module EC10 circuit breaker. Contact Dealer.</td>
</tr>
<tr>
<td>176 521312 3</td>
<td>Electrical System</td>
<td>Dome Light, Cab</td>
<td>EC10 Circuit Breaker Not Used</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521474 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521475 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521476 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521477 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521478 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521479 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521480 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>176 521481 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>176 521482 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>176 521483 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>176 521484 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>176 521485 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>176 521486 1</td>
<td>Electrical System</td>
<td>Roof Relay Module</td>
<td>Error - Module, Roof mVEC</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>178 521186 1</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay coil open or not present</td>
<td>Check chassis module for missing relay. Replace relay.</td>
</tr>
<tr>
<td>178 521186 2</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay Coil shorted or failed relay driver</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521186 3</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay Normally Open contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521186 4</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521186 5</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>178 521186 6</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay Normally open contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521186 7</td>
<td>Electrical System</td>
<td>Brake Lights, Cab Fwd</td>
<td>BK1 Relay Normally closed contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521194 1</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay coil open or not present</td>
<td>Check chassis module for missing relay. Replace relay.</td>
</tr>
<tr>
<td>178 521194 2</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay Coil shorted or failed relay driver</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521194 3</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay Normally Open contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521194 4</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>178 521194 5</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>178 521194 6</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay Normally open contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521194 7</td>
<td>Electrical System</td>
<td>High Beam, Engine Fwd</td>
<td>BK2 Relay Normally closed contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521226 1</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay coil open or not present</td>
<td>Check chassis module for missing relay. Replace relay.</td>
</tr>
<tr>
<td>178 521226 2</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay Coil shorted or failed relay driver</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521226 3</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay Normally Open contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521226 4</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521226 5</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>178 521226 6</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay Normally open contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521226 7</td>
<td>Electrical System</td>
<td>Right Turn Signal</td>
<td>BK3 Relay Normally closed contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521210 1</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
<td>BK5 Relay coil open or not present</td>
<td>Check chassis module for missing relay. Replace relay.</td>
</tr>
<tr>
<td>178 521210 2</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
<td>BK5 Relay Coil shorted or failed relay driver</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521210 3</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
<td>BK5 Relay Normally Open contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521210 4</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
<td>BK5 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521210 5</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
<td>BK5 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>178 521210 6</td>
<td>Electrical System</td>
<td>Low Beam Lights, EF</td>
<td>BK5 Relay Normally open contact is shorted</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>Fault Codes</td>
<td>SPN</td>
<td>Index</td>
<td>FMI</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>BK5 Relay Normally closed contact is shorted</td>
<td>178 521210</td>
<td>1</td>
<td>Electrical System</td>
<td>7</td>
</tr>
<tr>
<td>BK6 Relay coil open or not present</td>
<td>178 521210</td>
<td>2</td>
<td>Electrical System</td>
<td>1</td>
</tr>
<tr>
<td>BK6 Relay coil shorted or failed relay driver</td>
<td>178 521210</td>
<td>3</td>
<td>Electrical System</td>
<td>2</td>
</tr>
<tr>
<td>BK6 Relay Normally Open contact is open</td>
<td>178 521210</td>
<td>4</td>
<td>Electrical System</td>
<td>3</td>
</tr>
<tr>
<td>BK6 Relay Normally Closed contact is shorted</td>
<td>178 521210</td>
<td>5</td>
<td>Electrical System</td>
<td>4</td>
</tr>
<tr>
<td>BK6 Relay Normally Open contact is shorted</td>
<td>178 521210</td>
<td>6</td>
<td>Electrical System</td>
<td>5</td>
</tr>
<tr>
<td>BK7 Relay Coil shorted or failed relay driver</td>
<td>178 521210</td>
<td>7</td>
<td>Electrical System</td>
<td>6</td>
</tr>
<tr>
<td>BK7 Relay Normally Open contact is open</td>
<td>178 521210</td>
<td>8</td>
<td>Electrical System</td>
<td>7</td>
</tr>
<tr>
<td>BK8 Relay Normally Open contact is shorted</td>
<td>178 521210</td>
<td>9</td>
<td>Electrical System</td>
<td>8</td>
</tr>
<tr>
<td>BK8 Relay Normally Closed contact is shorted</td>
<td>178 521210</td>
<td>10</td>
<td>Electrical System</td>
<td>9</td>
</tr>
<tr>
<td>BK9 Relay Coil shorted or failed relay driver</td>
<td>178 521210</td>
<td>11</td>
<td>Electrical System</td>
<td>10</td>
</tr>
<tr>
<td>BK9 Relay Normally Open contact is open</td>
<td>178 521210</td>
<td>12</td>
<td>Electrical System</td>
<td>11</td>
</tr>
<tr>
<td>BK9 Relay Normally Closed contact is shorted</td>
<td>178 521210</td>
<td>13</td>
<td>Electrical System</td>
<td>12</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Code</th>
<th>SPN</th>
<th>FMI</th>
<th>Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 521234 2</td>
<td>2</td>
<td>Electrical System</td>
<td>Hydraulic Selector 1/2</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521234 3</td>
<td>3</td>
<td>Electrical System</td>
<td>Hydraulic Selector 1/2</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521234 4</td>
<td>4</td>
<td>Electrical System</td>
<td>Hydraulic Selector 1/2</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521234 5</td>
<td>5</td>
<td>Electrical System</td>
<td>Hydraulic Selector 1/2</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521234 6</td>
<td>6</td>
<td>Electrical System</td>
<td>Hydraulic Selector 1/2</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521234 7</td>
<td>7</td>
<td>Electrical System</td>
<td>Hydraulic Selector 1/2</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 1</td>
<td>1</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 2</td>
<td>2</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 3</td>
<td>3</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 4</td>
<td>4</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 5</td>
<td>5</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 6</td>
<td>6</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521242 7</td>
<td>7</td>
<td>Electrical System</td>
<td>Wiper, Engine Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521250 1</td>
<td>1</td>
<td>Electrical System</td>
<td>Tail Lights, Cab Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521250 2</td>
<td>2</td>
<td>Electrical System</td>
<td>Tail Lights, Cab Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>178 521250 3</td>
<td>3</td>
<td>Electrical System</td>
<td>Tail Lights, Cab Fwd</td>
<td>Replace relay.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>178 521250 4</td>
<td>Electrical System Tail Lights, Cab Fwd</td>
<td>BK4 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521250 5</td>
<td>Electrical System Tail Lights, Cab Fwd</td>
<td>BK4 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>178 521250 6</td>
<td>Electrical System Tail Lights, Cab Fwd</td>
<td>BK4 Relay Normally open contact is shorted</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521250 7</td>
<td>Electrical System Tail Lights, Cab Fwd</td>
<td>BK4 Relay Normally closed contact is shorted</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521250 8</td>
<td>Electrical System Tail Lights, Cab Fwd</td>
<td>BK4 Relay Normally closed contact is open</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521266 1</td>
<td>Electrical System Spare</td>
<td>BK11 Relay coil open or not present</td>
<td>Check chassis module for missing relay. Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521266 2</td>
<td>Electrical System Spare</td>
<td>BK11 Relay Coil shorted or failed relay driver</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521266 3</td>
<td>Electrical System Spare</td>
<td>BK11 Relay Normally Open contact is open</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521266 4</td>
<td>Electrical System Spare</td>
<td>BK11 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521266 5</td>
<td>Electrical System Spare</td>
<td>BK11 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>178 521266 6</td>
<td>Electrical System Spare</td>
<td>BK11 Relay Normally open contact is shorted</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521266 7</td>
<td>Electrical System Spare</td>
<td>BK11 Relay Normally closed contact is shorted</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521274 1</td>
<td>Electrical System Windshield washer</td>
<td>BK12 Relay coil open or not present</td>
<td>Check chassis module for missing relay. Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521274 2</td>
<td>Electrical System Windshield washer</td>
<td>BK12 Relay Coil shorted or failed relay driver</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521274 3</td>
<td>Electrical System Windshield washer</td>
<td>BK12 Relay Normally Open contact is open</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521274 4</td>
<td>Electrical System Windshield washer</td>
<td>BK12 Relay Normally Closed contact is open</td>
<td>Replace relay.</td>
<td></td>
</tr>
<tr>
<td>178 521274 5</td>
<td>Electrical System Windshield washer</td>
<td>BK12 Relay coil is not receiving power</td>
<td>Contact Dealer.</td>
<td></td>
</tr>
<tr>
<td>Fault Code</td>
<td>SPN</td>
<td>FMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521274</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521315</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521315</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521315</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521318</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521318</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521318</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521318</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521321</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521321</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521321</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521324</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521324</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521324</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521327</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>521327</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Referenced System Codes and Messages

Full Fault Description

- **178 521274 6 Electrical System Windshield washer**
 - **Telltale:** Windshield washer
 - **Short Description:** BK12 Relay Normally open contact is shorted
 - **Recommended Fix/Check:** Replace relay.

- **178 521274 7 Electrical System Windshield washer**
 - **Telltale:** Windshield washer
 - **Short Description:** BK12 Relay Normally closed contact is shorted
 - **Recommended Fix/Check:** Replace relay.

Short Description

- **178 521315 1 Electrical System Brake Lights, Cab Fwd**
 - **Telltale:** Brake Lights, Cab Fwd
 - **Full Fault Description:** BF1 Fuse Blown
 - **Recommended Fix/Check:** Replace blown fuse in chassis relay module.

- **178 521315 2 Electrical System Brake Lights, Cab Fwd**
 - **Telltale:** Brake Lights, Cab Fwd
 - **Full Fault Description:** BF1 Fuse Not Powered
 - **Recommended Fix/Check:** Contact Dealer.

- **178 521315 3 Electrical System Brake Lights, Cab Fwd**
 - **Telltale:** Brake Lights, Cab Fwd
 - **Full Fault Description:** BF1 Fuse Not Used
 - **Recommended Fix/Check:** Install fuse in chassis relay module.

- **178 521318 1 Electrical System Tail Lights, Cab Fwd**
 - **Telltale:** Tail Lights, Cab Fwd
 - **Full Fault Description:** BF2 Fuse Blown
 - **Recommended Fix/Check:** Replace blown fuse in chassis relay module.

- **178 521318 2 Electrical System Tail Lights, Cab Fwd**
 - **Telltale:** Tail Lights, Cab Fwd
 - **Full Fault Description:** BF2 Fuse Not Powered
 - **Recommended Fix/Check:** Contact Dealer.

- **178 521318 3 Electrical System Tail Lights, Cab Fwd**
 - **Telltale:** Tail Lights, Cab Fwd
 - **Full Fault Description:** BF2 Fuse Not Used
 - **Recommended Fix/Check:** Install fuse in chassis relay module.

- **178 521321 1 Electrical System Wiper, Cab Fwd**
 - **Telltale:** Wiper, Cab Fwd
 - **Full Fault Description:** BF3 Fuse Blown
 - **Recommended Fix/Check:** Replace blown fuse in chassis relay module.

- **178 521321 2 Electrical System Wiper, Cab Fwd**
 - **Telltale:** Wiper, Cab Fwd
 - **Full Fault Description:** BF3 Fuse Not Powered
 - **Recommended Fix/Check:** Contact Dealer.

- **178 521321 3 Electrical System Wiper, Cab Fwd**
 - **Telltale:** Wiper, Cab Fwd
 - **Full Fault Description:** BF3 Fuse Not Used
 - **Recommended Fix/Check:** Install fuse in chassis relay module.

- **178 521324 1 Electrical System High Beam Lights, EF**
 - **Telltale:** High Beam Lights, EF
 - **Full Fault Description:** BF4 Fuse Blown
 - **Recommended Fix/Check:** Replace blown fuse in chassis relay module.

- **178 521324 2 Electrical System High Beam Lights, EF**
 - **Telltale:** High Beam Lights, EF
 - **Full Fault Description:** BF4 Fuse Not Powered
 - **Recommended Fix/Check:** Contact Dealer.

- **178 521324 3 Electrical System High Beam Lights, EF**
 - **Telltale:** High Beam Lights, EF
 - **Full Fault Description:** BF4 Fuse Not Used
 - **Recommended Fix/Check:** Install fuse in chassis relay module.

- **178 521327 1 Electrical System Wiper, EF**
 - **Telltale:** Wiper, EF
 - **Full Fault Description:** BF5 Fuse Blown
 - **Recommended Fix/Check:** Replace blown fuse in chassis relay module.

- **178 521327 2 Electrical System Wiper, EF**
 - **Telltale:** Wiper, EF
 - **Full Fault Description:** BF5 Fuse Not Powered
 - **Recommended Fix/Check:** Contact Dealer.
<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Full Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 521328</td>
<td>Left Turn Signal</td>
<td>Install fuse in chassis relay module.</td>
</tr>
<tr>
<td>178 521330</td>
<td>Left Turn Signal</td>
<td>Replace blown fuse in chassis relay module.</td>
</tr>
<tr>
<td>178 521333</td>
<td>Right Turn Signal</td>
<td>Install fuse in chassis relay module.</td>
</tr>
<tr>
<td>178 521336</td>
<td>Right Turn Signal</td>
<td>Replace blown fuse in chassis relay module.</td>
</tr>
<tr>
<td>178 521461</td>
<td>Chassis Relay Module</td>
<td>Install fuse in chassis relay module.</td>
</tr>
<tr>
<td>178 521464</td>
<td>Chassis Relay Module</td>
<td>Replace blown fuse in chassis relay module.</td>
</tr>
<tr>
<td>178 521465</td>
<td>Chassis Relay Module</td>
<td>Contact Dealer.</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>SPN</th>
<th>FM1</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 521467</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error</td>
</tr>
<tr>
<td>178 521468</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error</td>
</tr>
<tr>
<td>178 521469</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error</td>
</tr>
<tr>
<td>178 521470</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error</td>
</tr>
<tr>
<td>178 521471</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error</td>
</tr>
<tr>
<td>178 521472</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Chassis Relay Module Error</td>
</tr>
<tr>
<td>190 524101</td>
<td>12</td>
<td>1</td>
<td>Electrical System</td>
<td>Console ROM CRC failed</td>
</tr>
<tr>
<td>190 524102</td>
<td>12</td>
<td>1</td>
<td>Electrical System</td>
<td>Console memory failed</td>
</tr>
<tr>
<td>190 524103</td>
<td>12</td>
<td>1</td>
<td>Electrical System</td>
<td>Console EEPROM read</td>
</tr>
<tr>
<td>190 444</td>
<td>1</td>
<td>1</td>
<td>Electrical System</td>
<td>Console 12 V Low</td>
</tr>
<tr>
<td>190 1043</td>
<td>2</td>
<td>2</td>
<td>Electrical System</td>
<td>Console 2.5 V Low</td>
</tr>
<tr>
<td>190 3509</td>
<td>2</td>
<td>2</td>
<td>Electrical System</td>
<td>Console 5 V Low</td>
</tr>
<tr>
<td>190 524260</td>
<td>13</td>
<td>1</td>
<td>Electrical System</td>
<td>Console EEPROM write</td>
</tr>
<tr>
<td>190 524262</td>
<td>13</td>
<td>1</td>
<td>Electrical System</td>
<td>Console primary CRC</td>
</tr>
<tr>
<td>190 524263</td>
<td>13</td>
<td>1</td>
<td>Electrical System</td>
<td>Console redundant CRC</td>
</tr>
</tbody>
</table>

REFERENCE
<table>
<thead>
<tr>
<th>SA</th>
<th>SPN</th>
<th>FMI</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>524264</td>
<td>13</td>
<td>Electrical System</td>
<td>Console config reading</td>
<td>Error reading a configuration parameter.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>2662</td>
<td>3</td>
<td>Electrical System</td>
<td>Throttle Voltage High</td>
<td>Throttle input has a voltage too high.</td>
<td>Check console wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>2662</td>
<td>4</td>
<td>Electrical System</td>
<td>Throttle Voltage Low</td>
<td>Throttle input has a voltage too low.</td>
<td>Check console wiring for damage. Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>2662</td>
<td>14</td>
<td>Electrical System</td>
<td>Console throttle input</td>
<td>Throttle inputs failed the plausibility check.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>2662</td>
<td>13</td>
<td>Electrical System</td>
<td>Console throttle > 0</td>
<td>The throttle was out of neutral when powering up.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524129</td>
<td>31</td>
<td>Electrical System</td>
<td>GSL Handle Offline</td>
<td>Communications lost with the GSL Handle.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524130</td>
<td>31</td>
<td>Electrical System</td>
<td>GSL Button Stuck</td>
<td>There is a stuck button on the handle at power up.</td>
<td>Check GSL switches for failure or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524131</td>
<td>31</td>
<td>Electrical System</td>
<td>Console Button Stuck</td>
<td>There is a stuck button on the console at power up.</td>
<td>Check console switches for failure or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524117</td>
<td>31</td>
<td>Electrical System</td>
<td>Console button reading</td>
<td>There was an error reading the serial data for the console buttons.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524118</td>
<td>31</td>
<td>Electrical System</td>
<td>Console button low</td>
<td>The LOW state test for control panel buttons 4-8 & HeaderReverse failed.</td>
<td>Includes deck shift, DWA up/down and header reverse buttons. Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524119</td>
<td>31</td>
<td>Electrical System</td>
<td>Console button high</td>
<td>The HIGH state test for control panel buttons 4-8 & HeaderReverse failed</td>
<td>Includes deck shift, DWA up/down and header reverse buttons. Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524221</td>
<td>31</td>
<td>Electrical System</td>
<td>GSL button low state</td>
<td>A handle button failed its LOW state check.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524222</td>
<td>31</td>
<td>Electrical System</td>
<td>GSL button high state</td>
<td>A handle button failed its HIGH state check.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190</td>
<td>524223</td>
<td>31</td>
<td>Electrical System</td>
<td>GSL scroll encoder</td>
<td>There was a serial data transfer error with the scroll wheel encoders.</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 524224 31 Electrical System</td>
<td>GSL scroll data</td>
<td>The scroll wheel data was read, but there was an error reading a portion of data.</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 524225 31 Electrical System</td>
<td>GSL scroll SPI read</td>
<td>There was a SPI transfer failure while reading the scroll wheel encoders.</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 524265 6 Electrical System</td>
<td>Horn Current High</td>
<td>The horn output is drawing more than 6A.</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 524266 6 Electrical System</td>
<td>Console on-relay >2.5A</td>
<td>The battery on-relay coil is drawing more than 2.5A</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 524267 6 Electrical System</td>
<td>Console off-relay >2.5A</td>
<td>The battery off relay coil is drawing more than 2.5A</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521392 3 Electrical System</td>
<td>Left Turn Signal</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521392 4 Electrical System</td>
<td>Left Turn Signal</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521393 3 Electrical System</td>
<td>Right Turn Signal</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521393 4 Electrical System</td>
<td>Right Turn Signal</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521394 3 Electrical System</td>
<td>Hazard</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521394 4 Electrical System</td>
<td>Hazard</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521395 3 Electrical System</td>
<td>DWA/Swath Roller Up</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521395 4 Electrical System</td>
<td>DWA/Swath Roller Up</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521396 3 Electrical System</td>
<td>DWA/Swath Roller Dn</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521396 4 Electrical System</td>
<td>DWA/Swath Roller Dn</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521397</td>
<td>3 Electrical</td>
<td>Deck Shift Right</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521397</td>
<td>4 Electrical</td>
<td>Deck Shift Right</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521398</td>
<td>3 Electrical</td>
<td>Deck Shift Center</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521398</td>
<td>4 Electrical</td>
<td>Deck Shift Center</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521399</td>
<td>3 Electrical</td>
<td>Deck Shift Left</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521399</td>
<td>4 Electrical</td>
<td>Deck Shift Left</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521400</td>
<td>3 Electrical</td>
<td>Draper Speed Decrease</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521400</td>
<td>4 Electrical</td>
<td>Draper Speed Decrease</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521401</td>
<td>3 Electrical</td>
<td>Draper Speed Increase</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521401</td>
<td>4 Electrical</td>
<td>Draper Speed Increase</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521402</td>
<td>3 Electrical</td>
<td>Road Lights</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521402</td>
<td>4 Electrical</td>
<td>Road Lights</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521403</td>
<td>3 Electrical</td>
<td>High Beam</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521403</td>
<td>4 Electrical</td>
<td>High Beam</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521404</td>
<td>3 Electrical</td>
<td>F1 Button</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521404</td>
<td>4 Electrical</td>
<td>F1 Button</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
<td>Full Description</td>
<td>Short Description</td>
<td>Telltale</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>--</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>190 521405</td>
<td>3</td>
<td>4</td>
<td>Electrical System Beacons</td>
<td>Beacons</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521406</td>
<td>3</td>
<td>4</td>
<td>Electrical System Clearance Lights</td>
<td>Clearance Lights</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521407</td>
<td>3</td>
<td>4</td>
<td>Electrical System Wiper EF</td>
<td>Wiper EF</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521408</td>
<td>3</td>
<td>4</td>
<td>Electrical System Washer</td>
<td>Washer</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521409</td>
<td>3</td>
<td>4</td>
<td>Electrical System Wiper CF</td>
<td>Wiper CF</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521410</td>
<td>3</td>
<td>4</td>
<td>Electrical System Field Lights</td>
<td>Field Lights</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521411</td>
<td>3</td>
<td>4</td>
<td>Electrical System F2 Button</td>
<td>F2 Button</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>190 521412</td>
<td>3</td>
<td>4</td>
<td>Electrical System AC Fan Spd Decrease</td>
<td>AC Fan Spd Decrease</td>
<td>190</td>
<td>CAN Error</td>
</tr>
<tr>
<td>Fault Code</td>
<td>Description</td>
<td>Recommended Fix/Check Message</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521413</td>
<td>AC Fan Spd Increase Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521413</td>
<td>AC Fan Spd Increase CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521414</td>
<td>AC Recirc Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521414</td>
<td>AC Recirc CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521415</td>
<td>F3 Button Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521415</td>
<td>F3 Button CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521416</td>
<td>F4 Button Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521416</td>
<td>F4 Button CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521417</td>
<td>AC On/Off Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521417</td>
<td>AC On/Off CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521418</td>
<td>AC Defrost Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521418</td>
<td>AC Defrost CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521419</td>
<td>AC Auto Fan Spd Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521419</td>
<td>AC Auto Fan Spd CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521420</td>
<td>AC Cold Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 521420</td>
<td>AC Cold CAN Error</td>
<td>Contact Dealer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Fault Description</td>
<td>Short Description</td>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
<td>Telltale</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>190 521421 3 Electrical System AC Hot</td>
<td>Switch Error</td>
<td>AC Hot</td>
<td>3</td>
<td>190</td>
<td>521421</td>
<td></td>
</tr>
<tr>
<td>190 521422 4 Electrical System AC Hot</td>
<td>CAN Error</td>
<td>AC Hot</td>
<td>4</td>
<td>190</td>
<td>521422</td>
<td></td>
</tr>
<tr>
<td>190 521423 3 Electrical System Horn</td>
<td>Switch Error</td>
<td>Horn</td>
<td>3</td>
<td>190</td>
<td>521423</td>
<td></td>
</tr>
<tr>
<td>190 521424 4 Electrical System Horn</td>
<td>CAN Error</td>
<td>Horn</td>
<td>4</td>
<td>190</td>
<td>521424</td>
<td></td>
</tr>
<tr>
<td>190 521425 3 Electrical System EEC Button</td>
<td>Switch Error</td>
<td>EEC Button</td>
<td>3</td>
<td>190</td>
<td>521425</td>
<td></td>
</tr>
<tr>
<td>190 521426 4 Electrical System EEC Button</td>
<td>CAN Error</td>
<td>EEC Button</td>
<td>4</td>
<td>190</td>
<td>521426</td>
<td></td>
</tr>
<tr>
<td>190 521427 3 Electrical System F5 Button</td>
<td>Switch Error</td>
<td>F5 Button</td>
<td>3</td>
<td>190</td>
<td>521427</td>
<td></td>
</tr>
<tr>
<td>190 521428 4 Electrical System F5 Button</td>
<td>CAN Error</td>
<td>F5 Button</td>
<td>4</td>
<td>190</td>
<td>521428</td>
<td></td>
</tr>
<tr>
<td>190 521429 3 Electrical System Header Stop NC</td>
<td>Switch Error</td>
<td>Header Stop NC</td>
<td>3</td>
<td>190</td>
<td>521429</td>
<td></td>
</tr>
<tr>
<td>190 521430 4 Electrical System Header Stop NC</td>
<td>CAN Error</td>
<td>Header Stop NC</td>
<td>4</td>
<td>190</td>
<td>521430</td>
<td></td>
</tr>
<tr>
<td>190 521431 3 Electrical System Header Reverse</td>
<td>Switch Error</td>
<td>Header Reverse</td>
<td>3</td>
<td>190</td>
<td>521431</td>
<td></td>
</tr>
<tr>
<td>190 521432 4 Electrical System Header Reverse</td>
<td>CAN Error</td>
<td>Header Reverse</td>
<td>4</td>
<td>190</td>
<td>521432</td>
<td></td>
</tr>
<tr>
<td>190 521433 3 Electrical System Operator Present</td>
<td>Switch Error</td>
<td>Operator Present</td>
<td>3</td>
<td>190</td>
<td>521433</td>
<td></td>
</tr>
<tr>
<td>190 521434 4 Electrical System Operator Present</td>
<td>CAN Error</td>
<td>Operator Present</td>
<td>4</td>
<td>190</td>
<td>521434</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Fix/Check Message: Check switch for damage or binding. Contact Dealer.
<table>
<thead>
<tr>
<th>Fault Codes</th>
<th>Telltale</th>
<th>Short Description</th>
<th>Full Fault Description</th>
<th>Recommended Fix/Check Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 521433 3</td>
<td>Electrical System</td>
<td>Door Switches</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521433 4</td>
<td>Electrical System</td>
<td>Door Switches</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521434 3</td>
<td>Electrical System</td>
<td>Throttle</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521434 4</td>
<td>Electrical System</td>
<td>Throttle</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521435 3</td>
<td>Electrical System</td>
<td>Batt Disc. Close</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521435 4</td>
<td>Electrical System</td>
<td>Batt Disc. Close</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521436 3</td>
<td>Electrical System</td>
<td>Horn</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521436 4</td>
<td>Electrical System</td>
<td>Horn</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521438 3</td>
<td>Electrical System</td>
<td>AutoSteer Engage</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521438 4</td>
<td>Electrical System</td>
<td>AutoSteer Engage</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521439 3</td>
<td>Electrical System</td>
<td>A Button</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521439 4</td>
<td>Electrical System</td>
<td>A Button</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521440 3</td>
<td>Electrical System</td>
<td>B Button</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521440 4</td>
<td>Electrical System</td>
<td>B Button</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521441 3</td>
<td>Electrical System</td>
<td>C Button</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521441 4</td>
<td>Electrical System</td>
<td>C Button</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>SPN</td>
<td>FMI</td>
<td>Full Fault Description</td>
<td>Short Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>190 521442</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Select</td>
</tr>
<tr>
<td>190 521443</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Select</td>
</tr>
<tr>
<td>190 521444</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Escape</td>
</tr>
<tr>
<td>190 521445</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Escape</td>
</tr>
<tr>
<td>190 521446</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Autosteer</td>
</tr>
<tr>
<td>190 521447</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Autosteer</td>
</tr>
<tr>
<td>190 521448</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Tilt Extend</td>
</tr>
<tr>
<td>190 521449</td>
<td>3</td>
<td>4</td>
<td>Electrical System</td>
<td>Tilt Extend</td>
</tr>
<tr>
<td>190 521442</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Escape</td>
</tr>
<tr>
<td>190 521443</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Escape</td>
</tr>
<tr>
<td>190 521444</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Autosteer</td>
</tr>
<tr>
<td>190 521445</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Autosteer</td>
</tr>
<tr>
<td>190 521446</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Tilt Retract</td>
</tr>
<tr>
<td>190 521447</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Tilt Retract</td>
</tr>
<tr>
<td>190 521448</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Header Raise 1</td>
</tr>
<tr>
<td>190 521449</td>
<td>4</td>
<td>3</td>
<td>Electrical System</td>
<td>Header Raise 1</td>
</tr>
<tr>
<td>190 521442</td>
<td>4</td>
<td>4</td>
<td>Electrical System</td>
<td>Header Raise 2</td>
</tr>
<tr>
<td>190 521443</td>
<td>4</td>
<td>4</td>
<td>Electrical System</td>
<td>Header Raise 2</td>
</tr>
<tr>
<td>190 521444</td>
<td>4</td>
<td>4</td>
<td>Electrical System</td>
<td>Header Lower 1</td>
</tr>
<tr>
<td>190 521445</td>
<td>4</td>
<td>4</td>
<td>Electrical System</td>
<td>Header Lower 1</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>190 521450 3</td>
<td>Electrical System</td>
<td>Header Lower 2</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521450 4</td>
<td>Electrical System</td>
<td>Header Lower 2</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521430 3</td>
<td>Electrical System</td>
<td>Keyswitch - Ignition</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521430 4</td>
<td>Electrical System</td>
<td>Keyswitch - Ignition</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521431 3</td>
<td>Electrical System</td>
<td>Keyswitch - Accessory</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521431 4</td>
<td>Electrical System</td>
<td>Keyswitch - Accessory</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521432 3</td>
<td>Electrical System</td>
<td>Keyswitch - Crank</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521432 4</td>
<td>Electrical System</td>
<td>Keyswitch - Crank</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521451 3</td>
<td>Electrical System</td>
<td>Reel/Knf Spd -</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521451 4</td>
<td>Electrical System</td>
<td>Reel/Knf Spd -</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521452 3</td>
<td>Electrical System</td>
<td>Reel/Knf Spd +</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521452 4</td>
<td>Electrical System</td>
<td>Reel/Knf Spd +</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521453 3</td>
<td>Electrical System</td>
<td>Reel Fore</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521453 4</td>
<td>Electrical System</td>
<td>Reel Fore</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521454 3</td>
<td>Electrical System</td>
<td>Reel Aft</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521454 4</td>
<td>Electrical System</td>
<td>Reel Aft</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>Fault Codes</td>
<td>Telltale</td>
<td>Short Description</td>
<td>Full Fault Description</td>
<td>Recommended Fix/Check Message</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>190 521455 3</td>
<td>Electrical System</td>
<td>Reel Raise</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521455 4</td>
<td>Electrical System</td>
<td>Reel Raise</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521456 3</td>
<td>Electrical System</td>
<td>Reel Lower</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521456 4</td>
<td>Electrical System</td>
<td>Reel Lower</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521457 3</td>
<td>Electrical System</td>
<td>GSL Shift Switch</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521457 4</td>
<td>Electrical System</td>
<td>GSL Shift Switch</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
<tr>
<td>190 521459 3</td>
<td>Electrical System</td>
<td>Wheel Position</td>
<td>Switch Error</td>
<td>Check switch for damage or binding. Contact Dealer.</td>
</tr>
<tr>
<td>190 521459 4</td>
<td>Electrical System</td>
<td>Wheel Position</td>
<td>CAN Error</td>
<td>Contact Dealer.</td>
</tr>
</tbody>
</table>
8.4 Engine Fault Codes

Example: Harvest Performance Tracker (HPT) displays the Fault Code 629S 16F 28C

- 629S - S represents the J1939 SPN column. Locate code 629 in that column.
- 12F - F represents the FMI column. Locate code 12 in that column.
- 28C - C is occurrences, 28 is the quantity.
- J1939 SPN description - Controller 1. The Cummins description of this is engine control module critical internal failure - Bad intelligent device or component
- The Cummins Dealer will request the fault code that corresponds with the number that you have located in the J1939 SPN column.

<table>
<thead>
<tr>
<th>J1939 SPN</th>
<th>J1939 FMI</th>
<th>Telltale</th>
<th>Lamp</th>
<th>Cummins Fault Code</th>
<th>J1939_SPN Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2272</td>
<td>Engine Exhaust Gas</td>
<td>EGR Valve Position Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>51</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6497</td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit</td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>51</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6498</td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit</td>
<td>Engine Intake Throttle Actuator Position Sensor Circuit - Voltage above normal, or shorted to low source</td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>241</td>
<td>Wheel-Based Vehicle Speed</td>
<td>Wheel-Based Vehicle Speed - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>148</td>
<td>Accelerator Pedal Position 1</td>
<td>Accelerator Pedal or Lever Position Sensor 1 - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>Stop Engine</td>
<td>Red</td>
<td>147</td>
<td>Accelerator Pedal Position 1</td>
<td>Accelerator Pedal or Lever Position 1 Sensor Circuit Frequency - Data valid but below normal operating range</td>
</tr>
<tr>
<td>91</td>
<td>2</td>
<td>Stop Engine</td>
<td>Red</td>
<td>1242</td>
<td>Accelerator Pedal Position 1</td>
<td>Accelerator Pedal or Lever Position 1 Sensor Circuit - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>91</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1358</td>
<td>Accelerator Pedal Position 1</td>
<td>Accelerator Pedal or Lever Position 1 Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>91</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1359</td>
<td>Accelerator Pedal Position 1</td>
<td>Accelerator Pedal or Lever Position 1 Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>91</td>
<td>9</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3326</td>
<td>Accelerator Pedal Position 1</td>
<td>SAE J1939 Multiplexed Accelerator Pedal or Lever Sensor System - Abnormal update rate</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>91</td>
<td>19</td>
<td>Stop Engine</td>
<td>Red</td>
<td>1515</td>
<td>Accelerator Pedal Position 1</td>
<td>SAE J1939 Multiplexed Accelerator Pedal or Lever Sensor System - Received network data in error</td>
</tr>
<tr>
<td>94</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>546</td>
<td>Engine Fuel Delivery Pressure</td>
<td>Fuel Delivery Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>94</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>547</td>
<td>Engine Fuel Delivery Pressure</td>
<td>Fuel Delivery Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>95</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2372</td>
<td>Engine Fuel Filter Differential Pressure</td>
<td>Fuel Filter Differential Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>97</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>428</td>
<td>Water In Fuel Indicator</td>
<td>Water in Fuel Indicator Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>97</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>429</td>
<td>Water In Fuel Indicator</td>
<td>Water in Fuel Indicator Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>97</td>
<td>15</td>
<td>Water in Fuel (Blinking)</td>
<td>Amber</td>
<td>418</td>
<td>Water In Fuel Indicator</td>
<td>Water in Fuel Indicator - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>97</td>
<td>16</td>
<td>Water in Fuel</td>
<td>Amber</td>
<td>1852</td>
<td>Water In Fuel Indicator</td>
<td>Water in Fuel Indicator - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>Eng Oil Press</td>
<td>Red</td>
<td>415</td>
<td>Engine Oil Pressure</td>
<td>Engine Oil Rifle Pressure - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>435</td>
<td>Engine Oil Pressure</td>
<td>Engine Oil Rifle Pressure - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>135</td>
<td>Engine Oil Pressure</td>
<td>Engine Oil Rifle Pressure 1 Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>141</td>
<td>Engine Oil Pressure</td>
<td>Engine Oil Rifle Pressure 1 Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>143</td>
<td>Engine Oil Pressure</td>
<td>Engine Oil Rifle Pressure - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>556</td>
<td>Engine Crankcase Pressure</td>
<td>Crankcase Pressure - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>101</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1942</td>
<td>Engine Crankcase Pressure</td>
<td>Crankcase Pressure - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>101</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1843</td>
<td>Engine Crankcase Pressure</td>
<td>Crankcase Pressure Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>101</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1844</td>
<td>Engine Crankcase Pressure</td>
<td>Crankcase Pressure Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>101</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber (Blinking)</td>
<td>1974</td>
<td>Engine Crankcase Pressure</td>
<td>Crankcase Pressure - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>101</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>555</td>
<td>Engine Crankcase Pressure</td>
<td>Crankcase Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>102</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>122</td>
<td>Engine Intake Manifold #1 Pressure</td>
<td>Intake Manifold 1 Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>102</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>123</td>
<td>Engine Intake Manifold #1 Pressure</td>
<td>Intake Manifold 1 Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>103</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2288</td>
<td>Engine Turbocharger 1 Speed</td>
<td>Turbocharger 1 Speed - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>103</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>595</td>
<td>Engine Turbocharger 1 Speed</td>
<td>Turbocharger 1 Speed - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>103</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>687</td>
<td>Engine Turbocharger 1 Speed</td>
<td>Turbocharger 1 Speed - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>105</td>
<td>0</td>
<td>Check Engine</td>
<td>Red</td>
<td>155</td>
<td>Engine Intake Manifold 1</td>
<td>Intake Manifold 1 Temperature - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>105</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>153</td>
<td>Engine Intake Manifold 1</td>
<td>Intake Manifold 1 Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>105</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>154</td>
<td>Engine Intake Manifold 1</td>
<td>Intake Manifold 1 Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>105</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2964</td>
<td>Engine Intake Manifold #1</td>
<td>Intake Manifold 1 Temperature - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>105</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>488</td>
<td>Engine Intake Manifold</td>
<td>Intake Manifold 1 Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>107</td>
<td>15</td>
<td>Eng Air Filter</td>
<td>Amber</td>
<td>5576</td>
<td>Engine Air Filter 1 Differential Pressure</td>
<td>Engine Air Filter Differential Pressure - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>107</td>
<td>16</td>
<td>Eng Air Filter</td>
<td>Amber</td>
<td>3341</td>
<td>Engine Air Filter 1 Differential Pressure</td>
<td>Engine Air Filter Differential Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>Eng coolant temp</td>
<td>Red</td>
<td>151</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>110</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>144</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature 1 Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>110</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>145</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature 1 Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>110</td>
<td>16</td>
<td>Eng coolant temp</td>
<td>Amber</td>
<td>146</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>110</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>2659</td>
<td>Engine Coolant Temperature</td>
<td>Engine Coolant Temperature - Condition exists</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>Coolant Level</td>
<td>Red</td>
<td>235</td>
<td>Engine Coolant Level</td>
<td>Coolant Level - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>111</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6522</td>
<td>Engine Coolant Level</td>
<td>Coolant Level Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>111</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6523</td>
<td>Engine Coolant Level</td>
<td>Coolant Level Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>111</td>
<td>17</td>
<td>Coolant Level</td>
<td>Amber (Blinking)</td>
<td>2448</td>
<td>Engine Coolant Level</td>
<td>Coolant Level - Data valid but below normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>111</td>
<td>18</td>
<td>Coolant Level</td>
<td>Amber</td>
<td>197</td>
<td>Engine Coolant Level</td>
<td>Coolant Level - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>157</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>449</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>157</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>451</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>157</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>452</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>157</td>
<td>16</td>
<td>Check</td>
<td>Amber</td>
<td>553</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>157</td>
<td>18</td>
<td>Check</td>
<td>Amber</td>
<td>559</td>
<td>Engine Injector Metering Rail 1</td>
<td>Injector Metering Rail 1 Pressure - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>15</td>
<td>Battery</td>
<td>None</td>
<td>6256</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>16</td>
<td>Battery</td>
<td>Amber</td>
<td>442</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>17</td>
<td>Battery</td>
<td>None</td>
<td>6257</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>168</td>
<td>18</td>
<td>Check</td>
<td>Amber</td>
<td>249</td>
<td>Battery Potential / Power Input 1</td>
<td>Battery 1 Voltage - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>175</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>689</td>
<td>Engine Oil Temperature 1 Circut - Voltage above normal, or shorted to high source</td>
<td>Engine Oil Temperature Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>175</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6525</td>
<td>Engine Oil Temperature 1 Circut - Voltage below normal, or shorted to low source</td>
<td>Engine Oil Temperature Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>190</td>
<td>0</td>
<td>Stop</td>
<td>Red</td>
<td>234</td>
<td>Engine Speed</td>
<td>Engine Crankshaft Speed/Position - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>190</td>
<td>2</td>
<td>Check</td>
<td>None</td>
<td>2321</td>
<td>Engine Speed</td>
<td>Engine Crankshaft Speed/Position - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>190</td>
<td>16</td>
<td>Check</td>
<td>Amber</td>
<td>2468</td>
<td>Engine Speed</td>
<td>Engine Crankshaft Speed/Position - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>237</td>
<td>13</td>
<td>Check</td>
<td>Amber</td>
<td>4517</td>
<td>Vehicle Identification Number</td>
<td>Vehicle Identification Number - Out of Calibration</td>
</tr>
<tr>
<td>411</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>1866</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Differential Pressure - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>411</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2273</td>
<td>Engine Exhaust Gas Recirculation 1 Differential Pressure</td>
<td>Exhaust Gas Recirculation Differential Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>411</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2274</td>
<td>Engine Exhaust Gas Recirculation 1 Differential Pressure</td>
<td>Exhaust Gas Recirculation Differential Pressure Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>412</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2375</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>412</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2376</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>412</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2961</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>412</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2962</td>
<td>Engine Exhaust Gas</td>
<td>Exhaust Gas Recirculation Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>441</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>293</td>
<td>Auxiliary Temperature 1</td>
<td>Auxiliary Temperature Sensor Input 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>441</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>294</td>
<td>Auxiliary Temperature 1</td>
<td>Auxiliary Temperature Sensor Input 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>441</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6583</td>
<td>Auxiliary Temperature 1</td>
<td>Auxiliary Temperature Sensor Input 1 - Special Instructions</td>
</tr>
<tr>
<td>558</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>431</td>
<td>Accelerator Pedal 1 Low Idle Switch</td>
<td>Accelerator Pedal or Lever Idle Validation Switch - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>558</td>
<td>13</td>
<td>Stop Engine</td>
<td>Red</td>
<td>432</td>
<td>Accelerator Pedal 1 Low Idle Switch</td>
<td>Accelerator Pedal or Lever Idle Validation Switch Circuit - Out of Calibration</td>
</tr>
<tr>
<td>558</td>
<td>19</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3527</td>
<td>Accelerator Pedal 1 Low Idle Switch</td>
<td>Accelerator Pedal or Lever Idle Validation Switch Circuit - Received Network Data In Error</td>
</tr>
<tr>
<td>563</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3488</td>
<td>Anti-Lock Braking (ABS) Active</td>
<td>Anti-Lock Braking (ABS) Controller - Abnormal update rate</td>
</tr>
<tr>
<td>563</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>4215</td>
<td>Anti-Lock Braking (ABS) Active</td>
<td>Anti-Lock Braking (ABS) Active - Condition Exists</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>612</td>
<td>2</td>
<td>Stop Engine</td>
<td>Red</td>
<td>115</td>
<td>System Diagnostic Code #2</td>
<td>Lost Both of Two Signals - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>625</td>
<td>9</td>
<td>Stop Engine</td>
<td>Red</td>
<td>291</td>
<td>Proprietary Datalink</td>
<td>Proprietary Datalink Error (OEM/Vehicle Datalink) - Abnormal update rate</td>
</tr>
<tr>
<td>629</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>343</td>
<td>Controller #1</td>
<td>Engine Control Module Warning Internal Hardware Failure - Bad intelligent device or component</td>
</tr>
<tr>
<td>630</td>
<td>12</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3697</td>
<td>Engine Control Module Calibration Memory</td>
<td>Engine Control Module Calibration Memory - Bad intelligent device or component</td>
</tr>
<tr>
<td>633</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2311</td>
<td>Engine Fuel Actuator 1 Control Command</td>
<td>Electronic Fuel Injection Control Valve Circuit - Condition exists</td>
</tr>
<tr>
<td>639</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>285</td>
<td>J1939 Network #1, Primary Vehicle Network (previously SAE J1939 Data Link)</td>
<td>SAE J1939 Multiplexing PGN Timeout Error - Abnormal update rate</td>
</tr>
<tr>
<td>639</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>286</td>
<td>J1939 Network #1, Primary Vehicle Network (previously SAE J1939 Data Link)</td>
<td>SAE J1939 Multiplexing Configuration Error - Out of Calibration</td>
</tr>
<tr>
<td>641</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2387</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit (Motor) - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>641</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1894</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit - Abnormal update rate</td>
</tr>
<tr>
<td>641</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2198</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit - Root cause not known</td>
</tr>
<tr>
<td>641</td>
<td>12</td>
<td>Stop Engine</td>
<td>Red</td>
<td>2634</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Controller - Bad intelligent device or component</td>
</tr>
<tr>
<td>641</td>
<td>13</td>
<td>Stop Engine</td>
<td>Red</td>
<td>2449</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Controller - Out of Calibration</td>
</tr>
<tr>
<td>641</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>1976</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Over Temperature (Calculated) - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>641</td>
<td>31</td>
<td>Stop Engine</td>
<td>Red</td>
<td>2635</td>
<td>Engine Variable Geometry Turbocharger Actuator #1</td>
<td>VGT Actuator Driver Circuit - Condition exists</td>
</tr>
<tr>
<td>644</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>237</td>
<td>Engine External Speed Command Input</td>
<td>External Speed Command Input (Multiple Unit Synchronization) - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>647</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6263</td>
<td>Engine Fan Clutch 1 Output Device Driver</td>
<td>Fan Control Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>647</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6264</td>
<td>Engine Fan Clutch 1 Output Device Driver</td>
<td>Fan Control Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>651</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>322</td>
<td>Engine Injector Cylinder #01</td>
<td>Injector Solenoid Driver Cylinder 1 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>652</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>331</td>
<td>Engine Injector Cylinder #02</td>
<td>Injector Solenoid Driver Cylinder 2 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>652</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1141</td>
<td>Engine Injector Cylinder #02</td>
<td>Injector Solenoid Driver Cylinder 2 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>653</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>324</td>
<td>Engine Injector Cylinder #03</td>
<td>Injector Solenoid Driver Cylinder 3 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>653</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1142</td>
<td>Engine Injector Cylinder #03</td>
<td>Injector Solenoid Driver Cylinder 3 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>654</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>332</td>
<td>Engine Injector Cylinder #04</td>
<td>Injector Solenoid Driver Cylinder 4 Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>654</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1143</td>
<td>Engine Injector Cylinder #04</td>
<td>Injector Solenoid Driver Cylinder 4 - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>677</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>584</td>
<td>Engine Starter Motor Relay</td>
<td>Starter Relay Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>677</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>585</td>
<td>Engine Starter Motor Relay</td>
<td>Starter Relay Driver Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>697</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2557</td>
<td>Auxiliary PWM Driver #1</td>
<td>Auxiliary PWM Driver 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>697</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2558</td>
<td>Auxiliary PWM Driver #1</td>
<td>Auxiliary PWM Driver 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>701</td>
<td>14</td>
<td>Stop Engine</td>
<td>Red</td>
<td>4734</td>
<td>Auxiliary I/O #01</td>
<td>Auxiliary Input/Output 1 - Special Instructions</td>
</tr>
<tr>
<td>723</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>2322</td>
<td>Engine Speed 2</td>
<td>Engine Camshaft Speed / Position Sensor - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>723</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>731</td>
<td>Engine Speed 2</td>
<td>Engine Speed / Position Camshaft and Crankshaft Misalignment - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>729</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6556</td>
<td>Engine Intake Air Heater Driver #1</td>
<td>Engine Intake Air Heater 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>729</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6557</td>
<td>Engine Intake Air Heater Driver #1</td>
<td>Engine Intake Air Heater 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>748</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3641</td>
<td>Transmission Output Retarder</td>
<td>Transmission Output Retarder - Abnormal update rate</td>
</tr>
<tr>
<td>862</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6336</td>
<td>Crankcase breather Heater Circuit</td>
<td>Crankcase Breather Filter Heater Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>862</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6337</td>
<td>Crankcase breather Heater Circuit</td>
<td>Crankcase Breather Filter Heater Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>974</td>
<td>3</td>
<td>Stop Engine</td>
<td>Red</td>
<td>133</td>
<td>Remote Accelerator Pedal Position</td>
<td>Remote Accelerator Pedal or Lever Position Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>974</td>
<td>4</td>
<td>Stop Engine</td>
<td>Red</td>
<td>134</td>
<td>Remote Accelerator Pedal Position</td>
<td>Remote Accelerator Pedal or Lever Position Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>974</td>
<td>19</td>
<td>Stop Engine</td>
<td>Red</td>
<td>288</td>
<td>Remote Accelerator Pedal Position</td>
<td>SAE J1939 Multiplexing Remote Accelerator Pedal or Lever Position Sensor System - Received network data in error</td>
</tr>
<tr>
<td>976</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6563</td>
<td>PTO Governor State</td>
<td>Auxiliary Intermediate (PTO) Speed Switch Validation - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1072</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6418</td>
<td>Engine (Compression) Brake Output #1</td>
<td>Engine Brake Actuator Driver 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1072</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6419</td>
<td>Engine (Compression) Brake Output #1</td>
<td>Engine Brake Actuator Driver 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1073</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6421</td>
<td>Engine (Compression) Brake Output #2</td>
<td>Engine Brake Actuator Driver Output 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1073</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6422</td>
<td>Engine (Compression) Brake Output #2</td>
<td>Engine Brake Actuator Driver Output 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1075</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6258</td>
<td>Engine Electric Lift Pump for Engine Fuel Supply</td>
<td>Electric Lift Pump for Engine Fuel Supply Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1075</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6259</td>
<td>Engine Electric Lift Pump for Engine Fuel Supply</td>
<td>Electric Lift Pump for Engine Fuel Supply Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1081</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3555</td>
<td>Engine Wait to Start Lamp</td>
<td>Engine Wait to Start Lamp - Abnormal update rate</td>
</tr>
<tr>
<td>1172</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>691</td>
<td>Engine Turbocharger 1 Compressor Intake Temperature</td>
<td>Turbocharger 1 Compressor Intake Temperature Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1172</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>692</td>
<td>Engine Turbocharger 1 Compressor Intake Temperature</td>
<td>Turbocharger 1 Compressor Intake Temperature Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1176</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>743</td>
<td>Engine Turbocharger 1 Compressor Intake Pressure</td>
<td>Turbocharger 1 Compressor Intake Pressure Circuit - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1176</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>741</td>
<td>Engine Turbocharger 1 Compressor Intake Pressure</td>
<td>Turbocharger 1 Compressor Intake Pressure Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1176</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>742</td>
<td>Engine Turbocharger 1 Compressor Intake Pressure</td>
<td>Turbocharger 1 Compressor Intake Pressure Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1194</td>
<td>13</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3298</td>
<td>Anti-theft Encryption Seed Present Indicator</td>
<td>Anti-theft Encryption Seed - Out of Calibration</td>
</tr>
<tr>
<td>1209</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2554</td>
<td>Engine Exhaust Gas Pressure 1</td>
<td>Exhaust Gas Pressure 1 - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1209</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2373</td>
<td>Engine Exhaust Gas Pressure 1</td>
<td>Exhaust Gas Pressure Sensor 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1209</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2374</td>
<td>Engine Exhaust Gas Pressure 1</td>
<td>Exhaust Gas Pressure Sensor 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1231</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>3329</td>
<td>J1939 Network #2</td>
<td>J1939 Network #2 - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1235</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>3331</td>
<td>J1939 Network #3</td>
<td>J1939 Network #3 - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1323</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1654</td>
<td>Engine Misfire Cylinder #1</td>
<td>Engine Misfire Cylinder 1 - Condition exists</td>
</tr>
<tr>
<td>1324</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1655</td>
<td>Engine Misfire Cylinder #2</td>
<td>Engine Misfire Cylinder 2 - Condition exists</td>
</tr>
<tr>
<td>1325</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1656</td>
<td>Engine Misfire Cylinder #3</td>
<td>Engine Misfire Cylinder 3 - Condition exists</td>
</tr>
<tr>
<td>1326</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1657</td>
<td>Engine Misfire Cylinder #4</td>
<td>Engine Misfire Cylinder 4 - Condition exists</td>
</tr>
<tr>
<td>1347</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>272</td>
<td>Engine Fuel Pump Pressurizing Assembly #2</td>
<td>Engine Fuel Pump Pressurizing Assembly 1 Circuit - Voltage</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1347</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>271</td>
<td>Engine Fuel Pump Pressurizing Assembly #1</td>
<td>above normal, or shorted to high source</td>
</tr>
<tr>
<td>1347</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>281</td>
<td>Engine Fuel Pump Pressurizing Assembly #3</td>
<td>Engine Fuel Pump Pressurizing Assembly 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1349</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>483</td>
<td>Engine Injector Metering Rail 2 Pressure</td>
<td>Injector Metering Rail 2 Pressure Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1378</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber (Blinking)</td>
<td>649</td>
<td>Engine Oil Change Interval</td>
<td>Engine Oil Change Interval - Condition exists</td>
</tr>
<tr>
<td>1388</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>297</td>
<td>Auxiliary Pressure #2</td>
<td>Auxiliary Pressure Sensor Input 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>1388</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>298</td>
<td>Auxiliary Pressure #2</td>
<td>Auxiliary Pressure Sensor Input 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1388</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6584</td>
<td>Auxiliary Pressure #2</td>
<td>Auxiliary Pressure Sensor Input 2 - Special Instructions</td>
</tr>
<tr>
<td>1569</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3714</td>
<td>Engine Protection Torque Derate</td>
<td>Engine Protection Torque Derate - Condition exists</td>
</tr>
<tr>
<td>1639</td>
<td>0</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4789</td>
<td>Fan Speed</td>
<td>Fan Speed - Data Valid but Above Normal Operational Range - Most Severe Level</td>
</tr>
<tr>
<td>1639</td>
<td>1</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4791</td>
<td>Fan Speed</td>
<td>Fan Speed - Data Valid but Below Normal Operational Range - Most Severe Level</td>
</tr>
<tr>
<td>1639</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6469</td>
<td>Fan Speed</td>
<td>Fan Speed – Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1639</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>6467</td>
<td>Fan Speed</td>
<td>Fan Speed - Data Valid but Above Normal Operational Range - Most Severe Level</td>
</tr>
<tr>
<td>1639</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6468</td>
<td>Fan Speed</td>
<td>Fan Speed - Data Valid but Below Normal Operational Range - Most Severe Level</td>
</tr>
<tr>
<td>1668</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>4437</td>
<td>J1939 Network #4 - Data erratic</td>
<td>J1939 Network #4 - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>1675</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>3737</td>
<td>Engine Starter Mode</td>
<td>Engine Starter Mode Overcrank Protection - Condition exists</td>
</tr>
<tr>
<td>1761</td>
<td>1</td>
<td>DEF</td>
<td>Amber</td>
<td>1673</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level - Data valid but</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1761</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1669</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>1761</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1668</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>1761</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4677</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>SAE J1939 Multiplexing PGN Timeout Error - Abnormal update rate</td>
</tr>
<tr>
<td>1761</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4769</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor - Abnormal rate of change</td>
</tr>
<tr>
<td>1761</td>
<td>11</td>
<td>Check Engine</td>
<td>None</td>
<td>6562</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor - Root cause not known</td>
</tr>
<tr>
<td>1761</td>
<td>13</td>
<td>Check Engine</td>
<td>None</td>
<td>6526</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level Sensor - Out of Calibration</td>
</tr>
<tr>
<td>1761</td>
<td>17</td>
<td>DEF</td>
<td>Amber (Blinking)</td>
<td>3497</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level - Data valid but below normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>1761</td>
<td>18</td>
<td>DEF</td>
<td>Amber (Blinking)</td>
<td>3498</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Level - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>2623</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1239</td>
<td>Accelerator Pedal #1 Channel 2</td>
<td>Accelerator Pedal or Lever Position Sensor 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>2623</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1241</td>
<td>Accelerator Pedal #1 Channel 2</td>
<td>Accelerator Pedal or Lever Position Sensor 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>2789</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>2346</td>
<td>Engine Turbocharger 1 Calculated Turbo Intake Temperature</td>
<td>Turbocharger Turbine Intake Temperature - Data valid but above normal operating range - Least Severe</td>
</tr>
<tr>
<td>2791</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2349</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2791</td>
<td>6</td>
<td>Check</td>
<td>Amber</td>
<td>2353</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit - Current above normal or grounded circuit</td>
</tr>
<tr>
<td>2791</td>
<td>7</td>
<td>Check</td>
<td>None</td>
<td>6555</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>2791</td>
<td>13</td>
<td>Check</td>
<td>Amber</td>
<td>1896</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Controller - Out of Calibration</td>
</tr>
<tr>
<td>2791</td>
<td>15</td>
<td>Check</td>
<td>Amber</td>
<td>1961</td>
<td>Engine Exhaust Gas Recirculation 1 (EGR1) Valve Control</td>
<td>EGR Valve Control Circuit Over Temperature - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>3031</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>1679</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3031</td>
<td>3</td>
<td>Check</td>
<td>Amber</td>
<td>1678</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature Sensor - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3031</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6559</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature Sensor - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3031</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>4572</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Temperature - Abnormal Update Rate</td>
</tr>
<tr>
<td>3216</td>
<td>2</td>
<td>Check</td>
<td>Amber</td>
<td>3228</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3216</td>
<td>4</td>
<td>Check</td>
<td>Amber</td>
<td>1885</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3216</td>
<td>9</td>
<td>Check</td>
<td>Amber</td>
<td>3232</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Abnormal update rate</td>
</tr>
<tr>
<td>3216</td>
<td>10</td>
<td>Check</td>
<td>None</td>
<td>6621</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Abnormal rate of change</td>
</tr>
<tr>
<td>3216</td>
<td>13</td>
<td>Check</td>
<td>Amber</td>
<td>3718</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx - Out of Calibration</td>
</tr>
<tr>
<td>3216</td>
<td>16</td>
<td>Check</td>
<td>Amber</td>
<td>3726</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3216</td>
<td>20</td>
<td>Check</td>
<td>None</td>
<td>6458</td>
<td>Aftertreatment 1 Intake NOx</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3216</td>
<td>21</td>
<td>Check Engine</td>
<td>None</td>
<td>6459</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
<td></td>
</tr>
<tr>
<td>3218</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3682</td>
<td>Aftertreatment 1 Intake Gas Sensor Power Status</td>
<td>Aftertreatment 1 Intake NOx Sensor Power Supply - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3226</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6464</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6521</td>
<td>Aftertreatment Outlet NOx Sensor Circuits</td>
<td>Aftertreatment Outlet NOx Sensor Circuit - Voltage below normal or shorted to low source</td>
</tr>
<tr>
<td>3226</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2771</td>
<td>Aftertreatment 1 Intake NOx Sensor - Abnormal update rate</td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>10</td>
<td>Check Engine</td>
<td>None</td>
<td>6565</td>
<td>Aftertreatment 1 Intake NOx Sensor - Abnormal rate of change</td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3717</td>
<td>Aftertreatment 1 Intake NOx Sensor - Out of Calibration</td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>20</td>
<td>Check Engine</td>
<td>None</td>
<td>6462</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>21</td>
<td>Check Engine</td>
<td>None</td>
<td>6463</td>
<td>Aftertreatment 1 Intake NOx Sensor - Data not Rational - Drifted High</td>
<td></td>
</tr>
<tr>
<td>3228</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6582</td>
<td>Aftertreatment 1 Outlet Gas Sensor Power Status</td>
<td>Aftertreatment 1 Outlet NOx Sensor Power Supply - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3361</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2976</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Temperature - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3361</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3558</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3361</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3559</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3362</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1682</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Input Lines</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Input Lines - Condition exists</td>
</tr>
<tr>
<td>3363</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6479</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>3363</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6481</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3363</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6475</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>3363</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1713</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3363</td>
<td>18</td>
<td>Check Engine</td>
<td>None</td>
<td>6476</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank Heater - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>3364</td>
<td>1</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3866</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data valid but below normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>3364</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3878</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3364</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1686</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3364</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1685</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3364</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4741</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality Sensor Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>3364</td>
<td>6</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4742</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality Sensor Circuit - Current above normal or grounded circuit</td>
</tr>
<tr>
<td>3364</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3876</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality Sensor - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>3364</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3868</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Abnormal update rate</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>3364</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4277</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Abnormal rate of change</td>
</tr>
<tr>
<td>3364</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1715</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Root cause not known</td>
</tr>
<tr>
<td>3364</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1714</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Out of Calibration</td>
</tr>
<tr>
<td>3364</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>4842</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>3364</td>
<td>18</td>
<td>Check Engine</td>
<td>None</td>
<td>6752</td>
<td>Aftertreatment Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Data valid but below normal operating range - Moderate Severe Level</td>
</tr>
<tr>
<td>3364</td>
<td>19</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4241</td>
<td>Aftertreatment Diesel Exhaust Fluid Tank 1 Quality</td>
<td>Aftertreatment Diesel Exhaust Fluid Quality - Received network data in error</td>
</tr>
<tr>
<td>3464</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6493</td>
<td>Electronic Throttle Control Actuator Driver Circuit</td>
<td>Electronic Throttle Control Actuator Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3464</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6494</td>
<td>Electronic Throttle Control Actuator Driver Circuit</td>
<td>Electronic Throttle Control Actuator Driver Circuit - Voltage above normal, or shorted to low source</td>
</tr>
<tr>
<td>3464</td>
<td>5</td>
<td>Check Engine</td>
<td>None</td>
<td>6496</td>
<td>Electronic Throttle Control Actuator Driver Circuit</td>
<td>Electronic Throttle Control Actuator Driver Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3509</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>386</td>
<td>Sensor supply voltage 1</td>
<td>Sensor Supply 1 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3509</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>352</td>
<td>Sensor supply voltage 1</td>
<td>Sensor Supply 1 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3510</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>227</td>
<td>Sensor supply voltage 2</td>
<td>Sensor Supply 2 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3510</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>187</td>
<td>Sensor supply voltage 2</td>
<td>Sensor Supply 2 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3511</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>239</td>
<td>Sensor supply voltage 3</td>
<td>Sensor Supply 3 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------</td>
<td>--------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>3511</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>238</td>
<td>Sensor supply voltage 3</td>
<td>Sensor Supply 3 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3512</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2185</td>
<td>Sensor supply voltage 4</td>
<td>Sensor Supply 4 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3512</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>2186</td>
<td>Sensor supply voltage 4</td>
<td>Sensor Supply 4 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3513</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1695</td>
<td>Sensor supply voltage 5</td>
<td>Sensor Supply 5 - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3513</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1696</td>
<td>Sensor supply voltage 5</td>
<td>Sensor Supply 5 - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3514</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>515</td>
<td>Sensor supply voltage 6</td>
<td>Sensor Supply 6 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>3514</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>516</td>
<td>Sensor supply voltage 6</td>
<td>Sensor Supply 6 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>3515</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4743</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 Sensor Circuit - Current below normal or open circuit</td>
</tr>
<tr>
<td>3515</td>
<td>6</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4744</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 Sensor Circuit - Current above normal or grounded</td>
</tr>
<tr>
<td>3515</td>
<td>10</td>
<td>Check Engine</td>
<td>None</td>
<td>6619</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 - Abnormal Rate of Change</td>
</tr>
<tr>
<td>3515</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4745</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Temperature 2 - Root Cause Not Known</td>
</tr>
<tr>
<td>3521</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4768</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Property</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Property - Root Cause Not Known</td>
</tr>
<tr>
<td>3597</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>1117</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>Power Supply Lost With Ignition On - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>3597</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>351</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>Injector Power Supply - Bad intelligent device or component</td>
</tr>
<tr>
<td>3597</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6499</td>
<td>ECU Power Output Supply Voltage #1</td>
<td>ECU Power Output Supply Voltage 1 - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>3597</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1938</td>
<td>ECU Power Output Supply Voltage 1 - Data valid but below normal operating range - Moderately Severe Level</td>
<td></td>
</tr>
<tr>
<td>3695</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6568</td>
<td>Aftertreatment Regeneration Inhibit Switch - Data is erratic, intermittent, or incorrect</td>
<td></td>
</tr>
<tr>
<td>3750</td>
<td>14</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5938</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration - Condition exists</td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3547</td>
<td>NOx limits exceeded due to Empty Diesel Exhaust Fluid Tank</td>
<td></td>
</tr>
<tr>
<td>4185</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1427</td>
<td>Overspeed Shutdown Relay Driver Diagnostic has detected an error - Condition exists</td>
<td></td>
</tr>
<tr>
<td>4186</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1428</td>
<td>Low Oil Pressure Shutdown Relay Driver Diagnostic has detected an error - Condition exists</td>
<td></td>
</tr>
<tr>
<td>4187</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1429</td>
<td>High Engine Temperature Shutdown Relay Driver Diagnostic has detected an error - Condition exists</td>
<td></td>
</tr>
<tr>
<td>4188</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1431</td>
<td>Pre-Low Oil Pressure Indicator Relay Driver Diagnostic has detected an error - Condition exists</td>
<td></td>
</tr>
<tr>
<td>4223</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1432</td>
<td>Pre-High Engine Temperature Warning Relay Driver Diagnostic has detected an error - Condition exists</td>
<td></td>
</tr>
<tr>
<td>4334</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3596</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure - Data is erratic, intermittent, or incorrect</td>
<td></td>
</tr>
<tr>
<td>4334</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3571</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4334</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3572</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4334</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3575</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Doser Absolute Pressure - Data valid but above normal operating range</td>
<td></td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>4334</td>
<td>18</td>
<td>Check</td>
<td>Amber</td>
<td>3574</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Pressure Sensor - Data valid but below normal operating range</td>
<td></td>
</tr>
<tr>
<td>4337</td>
<td>10</td>
<td>Check</td>
<td>Amber</td>
<td>4249</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing Temperature - Abnormal Rate of Change</td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>6531</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 State - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6532</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 State - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td>5</td>
<td>Check</td>
<td>None</td>
<td>6482</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 1 State - Current below normal or open circuit</td>
<td></td>
</tr>
<tr>
<td>4342</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>6533</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 State - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4342</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6534</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 State - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4342</td>
<td>5</td>
<td>Check</td>
<td>None</td>
<td>6483</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 2 State - Current below normal or open circuit</td>
<td></td>
</tr>
<tr>
<td>4344</td>
<td>3</td>
<td>Check</td>
<td>None</td>
<td>6535</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 3 State - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4344</td>
<td>4</td>
<td>Check</td>
<td>None</td>
<td>6536</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 3 State - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4344</td>
<td>5</td>
<td>Check</td>
<td>None</td>
<td>6484</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater 3 State - Current below normal or open circuit</td>
<td></td>
</tr>
<tr>
<td>4360</td>
<td>0</td>
<td>Stop</td>
<td>Red</td>
<td>3229</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature - Most Severe Level</td>
<td></td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4360</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3144</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td>Aftertreatment 1 SCR Intake Temperature Sensor - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>4360</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3142</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td>Aftertreatment 1 SCR Intake Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4360</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3143</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td>Aftertreatment 1 SCR Intake Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4360</td>
<td>15</td>
<td>Check Engine</td>
<td>None</td>
<td>3164</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td>Aftertreatment 1 SCR Intake Temperature - Data valid but above normal operating range - Least Severe</td>
</tr>
<tr>
<td>4360</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3231</td>
<td>Aftertreatment 1 SCR Catalyst Intake Gas Temperature</td>
<td>Aftertreatment 1 SCR Intake Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4363</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3165</td>
<td>Aftertreatment 1 SCR Outlet Gas Temperature</td>
<td>Aftertreatment 1 SCR Outlet Temperature - Data valid but above normal operational range - Most Severe</td>
</tr>
<tr>
<td>4363</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3148</td>
<td>Aftertreatment 1 SCR Outlet Gas Temperature</td>
<td>Aftertreatment 1 SCR Outlet Temperature Sensor - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>4363</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6569</td>
<td>Aftertreatment 1 SCR Outlet Gas Temperature</td>
<td>Aftertreatment 1 SCR Outlet Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>4363</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6571</td>
<td>Aftertreatment 1 SCR Outlet Gas Temperature</td>
<td>Aftertreatment 1 SCR Outlet Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>4363</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3235</td>
<td>Aftertreatment 1 SCR Catalyst Outlet Gas Temperature</td>
<td>Aftertreatment 1 SCR Outlet Temperature - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4364</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6517</td>
<td>Aftertreatment 1 SCR Conversion Efficiency</td>
<td>Aftertreatment SCR Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4364</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3582</td>
<td>Aftertreatment 1 SCR Conversion Efficiency</td>
<td>Aftertreatment SCR Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>4376</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3577</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Return Valve - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4376</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3578</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Return Valve - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4376</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6527</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Return Valve - Mechanical system not responding or out of adjust</td>
<td></td>
</tr>
<tr>
<td>4765</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6539</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature - Data is erratic, intermittent, or incorrect</td>
<td></td>
</tr>
<tr>
<td>4765</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3314</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature - Sensor Circuit - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4765</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3313</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature - Sensor Circuit - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4765</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3251</td>
<td>Aftertreatment Diesel Oxidation Catalyst Intake Temperature - Data Valid But Above Normal Operating range</td>
<td></td>
</tr>
<tr>
<td>4766</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>5387</td>
<td>Aftertreatment Diesel Oxidation Catalyst Outlet Gas Temperature - Data valid but above normal operating range - Most Severe Level</td>
<td></td>
</tr>
<tr>
<td>4766</td>
<td>2</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5386</td>
<td>Aftertreatment Diesel Oxidation Catalyst Outlet Gas Temperature - Data is erratic, intermittent, or incorrect</td>
<td></td>
</tr>
<tr>
<td>4766</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4533</td>
<td>Aftertreatment Diesel Oxidation Catalyst Outlet Gas Temperature Sensor Circuit - Voltage above normal, or shorted to high source</td>
<td></td>
</tr>
<tr>
<td>4766</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4534</td>
<td>Aftertreatment Diesel Oxidation Catalyst Outlet Gas Temperature Sensor Circuit - Voltage below normal, or shorted to low source</td>
<td></td>
</tr>
<tr>
<td>4766</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5389</td>
<td>Aftertreatment Diesel Oxidation Catalyst Outlet Gas Temperature - Data valid but above normal</td>
<td></td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>operating range - Least Severe Level</td>
<td></td>
</tr>
<tr>
<td>4766</td>
<td>16</td>
<td>Stop Engine</td>
<td>Red</td>
<td>5388</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Outlet Gas Temperature</td>
<td>Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>4792</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>3751</td>
<td>Aftertreatment SCR Catalyst System</td>
<td></td>
</tr>
<tr>
<td>4792</td>
<td>14</td>
<td>Stop Engine</td>
<td>Red</td>
<td>4585</td>
<td>Aftertreatment 1 SCR Catalyst System</td>
<td>Aftertreatment 1 SCR Catalyst System - Special Instructions</td>
</tr>
<tr>
<td>4794</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3151</td>
<td>Aftertreatment 1 SCR Catalyst System</td>
<td>Aftertreatment 1 SCR Catalyst System Missing - Condition exists</td>
</tr>
<tr>
<td>4796</td>
<td>31</td>
<td>Check Engine</td>
<td>None</td>
<td>6621</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Missing</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Missing - Condition exists</td>
</tr>
<tr>
<td>5018</td>
<td>11</td>
<td>Check Engine</td>
<td>None</td>
<td>2637</td>
<td>Aftertreatment Diesel Oxidation Catalyst</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Face Plugged - Root cause not known</td>
</tr>
<tr>
<td>5024</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3649</td>
<td>Aftertreatment 1 Intake Gas NOx Sensor Heater Ratio</td>
<td>Aftertreatment 1 Intake NOx Sensor Heater - Abnormal rate of change</td>
</tr>
<tr>
<td>5031</td>
<td>10</td>
<td>Check Engine</td>
<td>None</td>
<td>6581</td>
<td>Aftertreatment 1 Outlet Gas NOx Sensor Heater Ratio</td>
<td>Aftertreatment 1 Outlet NOx Sensor Heater - Abnormal rate of change</td>
</tr>
<tr>
<td>5125</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3419</td>
<td>Sensor supply voltage 7</td>
<td>Sensor Supply 7 Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>5125</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3421</td>
<td>Sensor supply voltage 7</td>
<td>Sensor Supply 7 Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5245</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4863</td>
<td>Aftertreatment Selective Catalytic Reduction Operator Inducement Active</td>
<td>Aftertreatment Diesel Exhaust Fluid Tank Low Level Indicator</td>
</tr>
<tr>
<td>5246</td>
<td>0</td>
<td>Stop Engine</td>
<td>Red</td>
<td>3712</td>
<td>Aftertreatment SCR Operator Inducement Severity</td>
<td>Aftertreatment SCR Operator Inducement - Data valid but above normal operational range - Most Severe Level</td>
</tr>
<tr>
<td>5298</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>2638</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>5298</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>1691</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst Conversion Efficiency - Data valid but below normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>5394</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>3755</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve</td>
<td>Operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>5394</td>
<td>5</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3567</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve - Data is erratic, intermittent, or incorrect</td>
</tr>
<tr>
<td>5394</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3568</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve</td>
<td>Aftertreatment Diesel Exhaust Fluid Dosing Valve - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>5484</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6456</td>
<td>Engine Fan Clutch 2 Output Device Driver</td>
<td>Engine Fan Clutch 2 Control Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>5484</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6457</td>
<td>Engine Fan Clutch 2 Output Device Driver</td>
<td>Engine Fan Clutch 2 Control Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5491</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6477</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay</td>
<td>Aftertreatment Diesel Exhaust Fluid Line Heater Relay - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>5491</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6478</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay</td>
<td>Aftertreatment Diesel Exhaust Fluid Line Heater Relay - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5491</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>6537</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Line Heater Relay - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>5571</td>
<td>0</td>
<td>Check Engine</td>
<td>Amber</td>
<td>3741</td>
<td>High-Pressure Common Rail Fuel Pressure Relief Valve</td>
<td>High-Pressure Common Rail Fuel Pressure Relief Valve - Data valid but above normal operational range</td>
</tr>
<tr>
<td>5571</td>
<td>7</td>
<td>Check Engine</td>
<td>None</td>
<td>3727</td>
<td>High-Pressure Common Rail Fuel Pressure Relief Valve</td>
<td>High-Pressure Common Rail Fuel Pressure Relief Valve - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>5571</td>
<td>15</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5585</td>
<td>High-Pressure Common Rail Fuel Pressure Relief Valve</td>
<td>High-Pressure Common Rail Fuel Pressure Relief Valve - Data valid but above normal operating range - Least Severe Level</td>
</tr>
<tr>
<td>5742</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4158</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module</td>
<td>Aftertreatment Diesel Particulate Filter Temperature Sensor Module - Bad intelligent device or component</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>5743</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4164</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Voltage above Normal, or shorted to high source</td>
</tr>
<tr>
<td>5743</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4165</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Voltage below normal, or Shorted to low source</td>
</tr>
<tr>
<td>5743</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4152</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Abnormal update rate</td>
</tr>
<tr>
<td>5743</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4261</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Root cause not known</td>
</tr>
<tr>
<td>5743</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4159</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Bad intelligent device or component</td>
</tr>
<tr>
<td>5743</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4166</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module</td>
<td>Aftertreatment Selective Catalytic Reduction Temperature Sensor Module - Data valid, but above normal</td>
</tr>
<tr>
<td>5745</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4168</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater - Voltage above normal, or shorted to high</td>
</tr>
<tr>
<td>5745</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4169</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>5745</td>
<td>17</td>
<td>Check Engine</td>
<td>None</td>
<td>6513</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater - Data valid, but below normal operating range</td>
</tr>
<tr>
<td>5745</td>
<td>18</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4171</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater - Data valid, but below normal operating range</td>
</tr>
<tr>
<td>5746</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6529</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater Relay</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater Relay - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>5746</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4156</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater Relay</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater Relay - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>5798</td>
<td>10</td>
<td>Check Engine</td>
<td>Amber</td>
<td>4251</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Supply Module Heater Temperature</td>
<td>Abnormal rate of change</td>
</tr>
<tr>
<td>6655</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6511</td>
<td>ECU Power Lamp</td>
<td>Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>6655</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6512</td>
<td>ECU Power Lamp</td>
<td>Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>6799</td>
<td>2</td>
<td>Check Engine</td>
<td>None</td>
<td>6473</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>6799</td>
<td>3</td>
<td>Check Engine</td>
<td>None</td>
<td>6471</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch Position Sensor Circuit - Voltage above normal, or shorted to high source</td>
</tr>
<tr>
<td>6799</td>
<td>4</td>
<td>Check Engine</td>
<td>None</td>
<td>6472</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch Position Sensor Circuit - Voltage below normal, or shorted to low source</td>
</tr>
<tr>
<td>6799</td>
<td>7</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5185</td>
<td>Engine Fan Blade Pitch</td>
<td>Fan Blade Pitch - Mechanical system not responding or out of adjustment</td>
</tr>
<tr>
<td>6802</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5278</td>
<td>Aftertreatment 1 Diesel Exhaust Fluid Dosing System Frozen - Condition exists</td>
<td></td>
</tr>
<tr>
<td>6881</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5653</td>
<td>SCR Operator Inducement Override Switch</td>
<td>SCR Operator Inducement Override Switch - Abnormal Update Rate</td>
</tr>
<tr>
<td>6881</td>
<td>13</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5654</td>
<td>SCR Operator Inducement Override Switch</td>
<td>SCR Operator Inducement Override Switch - Out of Calibration</td>
</tr>
<tr>
<td>6882</td>
<td>3</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5393</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Voltage above normal or shorted to high source</td>
</tr>
<tr>
<td>6882</td>
<td>4</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5394</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Voltage below normal or shorted to low source</td>
</tr>
<tr>
<td>6882</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5391</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Abnormal Update Rate</td>
</tr>
<tr>
<td>6882</td>
<td>11</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5395</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Root cause not known</td>
</tr>
<tr>
<td>J1939 SPN</td>
<td>J1939 FMI</td>
<td>Telltale</td>
<td>Lamp</td>
<td>Cummins Fault Code</td>
<td>J1939_SPN Description</td>
<td>Detail</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>6882</td>
<td>12</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5392</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Bad intelligent device or component</td>
</tr>
<tr>
<td>6882</td>
<td>16</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5396</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module</td>
<td>Aftertreatment Diesel Oxidation Catalyst Temperature Sensor Module - Data valid but above normal operating range - Moderately Severe Level</td>
</tr>
<tr>
<td>6918</td>
<td>31</td>
<td>Check Engine</td>
<td>Maintenance</td>
<td>5632</td>
<td>SCR System Cleaning Inhibited Due to Inhibit Switch</td>
<td>SCR System Cleaning Inhibited Due to Inhibit Switch - Condition exists</td>
</tr>
<tr>
<td>6928</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6597</td>
<td>SCR System Cleaning Inhibited Due to System Timeout</td>
<td>SCR System Cleaning Inhibited Due to System Timeout - Condition exists</td>
</tr>
<tr>
<td>7848</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>6634</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration</td>
<td>Diesel Particulate Filter 1 Conditions Not Met for Active Regeneration - Condition exists</td>
</tr>
<tr>
<td>520968</td>
<td>9</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5939</td>
<td>Machine Constrained Operation - Abnormal Update Rate. No Communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the machine electronic control unit.</td>
<td></td>
</tr>
<tr>
<td>520968</td>
<td>19</td>
<td>Check Engine</td>
<td>None</td>
<td>5941</td>
<td>Machine Constrained Operation - Received network data in error. The received J1939 datalink message was not valid.</td>
<td></td>
</tr>
<tr>
<td>524286</td>
<td>31</td>
<td>Check Engine</td>
<td>Amber</td>
<td>5617</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst System</td>
<td>Aftertreatment 1 Diesel Oxidation Catalyst System - Special Instruction</td>
</tr>
</tbody>
</table>
Index

A

A Series headers
 definition... 29
A40DX Auger Headers
 auger run screens.................................. 231
 run screen 1.. 231
 run screen 2.. 232
 auger speed
 adjusting... 218
 connecting hydraulics.............................. 148
 detaching from windrower.......................... 150
 disc speed switch.................................... 73
 float options with fixed deck...................... 229
 knife speed.. 224
 adjusting knife alarm pressure.................. 226
 adjusting knife speed alarm..................... 227
 mechanically connecting to M1 Series.............. 143
 operating... 218
 reel speed
 adjusting... 218
 adjusting reel alarm pressure.................. 223
 setting reel speed in auto mode................... 218
 setting reel speed in manual mode.................. 220

aftertreatment functions
 activating.. 122

air conditioning
 cleaning evaporator core........................... 338
 compressor
 replacing belts.................................... 344
 tensioning belts.................................... 272, 344
 filters
 fresh air intake filter............................ 287
 inspecting and cleaning.......................... 288
 installing filter................................... 288
 removing filter.................................... 287
 installing cover..................................... 339
 removing cover...................................... 337
 testing/troubleshooting
 cab air... 397
 air conditioning box connectors
 welding precautions................................... 9
 air filters, See filters
 annual service... 110
 anti-shimmy dampeners
 location... 37
 antifreeze.. 339
 API
 definition.. 29
 ASTM
 definition.. 29
 attaching/detaching headers
 A40DX Auger Headers
 attaching to windrower............................. 143
 connecting hydraulics.............................. 148
 detaching from windrower........................... 150
 D1X or D1XL Series Draper Headers
 attaching draper header supports................ 154
 connecting center-link.............................. 155
 connecting hydraulics.............................. 160
 detaching from windrower........................... 163
 hydraulic center-link with optional self-alignment kit
 ... 155
 hydraulic center-link without optional self-alignment kit
 ... 155
 hydraulic center-link without self-alignment kit
 ... 155
 R1 Series Rotary Disc Headers
 attaching to windrower............................. 167
 connecting hydraulics.............................. 171
 auger alarm pressure
 adjusting.. 223
 auger pressure
 viewing... 231
 auger speed
 adjusting.. 218
 viewing... 231
 automated steering systems.......................... 380
 autosteer engagement button......................... 69, 71
 autosteer, See automated steering systems

B

ballast kits... 384
batteries
 auxiliary power posts............................... 334
 battery cable... 329
 battery cover
 closing... 327
 opening... 326
 battery safety.. 8
 battery specification................................ 326
 boosting.. 329
 charging.. 328
 connecting... 333
 disconnecting.. 332
 installing... 332
 maintaining.. 326
 removing... 331
 troubleshooting....................................... 391
 welding precautions................................... 9
 beacon lights... 55
 location... 37
 switch.. 52
 belts.. 343
INDEX

deck shift.. 211
deck shift control.. 211
float options with deck shift............................... 212
setting float options... 212
detaching from windrower
 units with hydraulic center-link 163
draper run screens ... 214
 run screen 1.. 214
 run screen 2.. 215
draper speed
 adjusting.. 200
 adjusting draper alarm pressure.......................... 204
draper slip warning ... 206
setting draper speed in auto mode 201
setting draper speed in manual mode 203
header float
 float options with deck shift............................ 212
header position .. 193
reel fore-aft position 193
reel height.. 193
hydraulic center-link with optional self-alignment kit
 attaching to M1170.. 155
hydraulic center-link without self-alignment kit
 attaching to M1170.. 155
knife speed.. 206
 knife speed alarm
 adjusting alarm... 210
 adjusting pressure ... 208
setting knife speed.. 207, 225
operating.. 193
reel speed
 adjusting reel speed.. 196
setting reel speed in auto mode 196
setting reel speed in manual mode 198
date
 setting on HPT.. 90
decals
 fuse box and relay module decals........................ 363
 location of safety signs................................... 16
 deck shift.. 74, 211
driving the windrower
 controls.. 75
driving on road.. 133, 135
driving the windrower
 entering/entering the windrower........................ 124
driving the windrower
 engine-forward operation................................ 127
driving the windrower
 entering/exit the windrower................................ 124
driving the windrower
 forward in cab-forward mode.............................. 125
driving the windrower
 reverse in cab-forward mode.............................. 125
driving the windrower
 reverse in engine-forward mode.......................... 126
driving the windrower
 spin turn.. 129
driving the windrower
 stopping.. 129
driving the windrower
 adjusting ground speed limit........................... 124
driving the windrower
 driving on road... 133, 135
driving the windrower
 engine-forward operation................................ 127
driving the windrower
 entering/exit the windrower................................ 124
driving the windrower
 forward in cab-forward mode.............................. 125
driving the windrower
 reverse in cab-forward mode.............................. 125
driving the windrower
 reverse in engine-forward mode.......................... 126
driving the windrower
 spin turn.. 129
driving the windrower
 stopping.. 129
DWA, See double windrow attachments

E

EC declaration of conformity ii
ECM
 definition.. 29
driving the windrower
 adjusting ground speed limit........................... 124
driving on road.. 133, 135
driving the windrower
 engine-forward operation................................ 127
driving the windrower
 entering/exit the windrower................................ 124
driving the windrower
 forward in cab-forward mode.............................. 125
driving the windrower
 reverse in cab-forward mode.............................. 125
driving the windrower
 reverse in engine-forward mode.......................... 126
driving the windrower
 spin turn.. 129
driving the windrower
 stopping.. 129
DWA, See double windrow attachments

E

EC declaration of conformity ii
ECM
 definition.. 29
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming the EEC</td>
<td>119</td>
</tr>
<tr>
<td>Using the EEC</td>
<td>68</td>
</tr>
<tr>
<td>ECU</td>
<td></td>
</tr>
<tr>
<td>Definition</td>
<td>29</td>
</tr>
<tr>
<td>Electrical systems</td>
<td>263</td>
</tr>
<tr>
<td>Auxiliary power posts</td>
<td>334</td>
</tr>
<tr>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Battery cover</td>
<td></td>
</tr>
<tr>
<td>Closing</td>
<td>327</td>
</tr>
<tr>
<td>Opening</td>
<td>326</td>
</tr>
<tr>
<td>Boosting</td>
<td>329</td>
</tr>
<tr>
<td>Charging</td>
<td>328</td>
</tr>
<tr>
<td>Connecting</td>
<td>333</td>
</tr>
<tr>
<td>Disconnecting</td>
<td>332</td>
</tr>
<tr>
<td>Installing</td>
<td>332</td>
</tr>
<tr>
<td>Maintaining</td>
<td>326</td>
</tr>
<tr>
<td>Removing</td>
<td>331</td>
</tr>
<tr>
<td>Extension modules</td>
<td>267</td>
</tr>
<tr>
<td>Fuses and relays</td>
<td>363</td>
</tr>
<tr>
<td>Checking and replacing fuses</td>
<td>361</td>
</tr>
<tr>
<td>Inspecting/replacing 125A main fuses</td>
<td>368</td>
</tr>
<tr>
<td>Relay modules</td>
<td>267</td>
</tr>
<tr>
<td>Replacing circuit breakers/relays</td>
<td>361</td>
</tr>
<tr>
<td>Master controller</td>
<td>267</td>
</tr>
<tr>
<td>Module layout</td>
<td>263</td>
</tr>
<tr>
<td>Preventing damage to electrical systems</td>
<td>268</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>391</td>
</tr>
<tr>
<td>Engaging the header</td>
<td>185</td>
</tr>
<tr>
<td>Engine air intake temperatures</td>
<td>132</td>
</tr>
<tr>
<td>Engine control module</td>
<td></td>
</tr>
<tr>
<td>Welding precautions</td>
<td>9</td>
</tr>
<tr>
<td>Engine coolant temperatures</td>
<td>132</td>
</tr>
<tr>
<td>Engine cooling system</td>
<td></td>
</tr>
<tr>
<td>Air conditioning (A/C)</td>
<td>259</td>
</tr>
<tr>
<td>Charge air cooler (CAC)</td>
<td>257</td>
</tr>
<tr>
<td>Cooling module</td>
<td></td>
</tr>
<tr>
<td>Cleaning screens and components</td>
<td>293, 296</td>
</tr>
<tr>
<td>Engine coolant</td>
<td></td>
</tr>
<tr>
<td>Adding coolant</td>
<td>321</td>
</tr>
<tr>
<td>Checking coolant level</td>
<td>285</td>
</tr>
<tr>
<td>Checking coolant strength</td>
<td>339</td>
</tr>
<tr>
<td>Draining coolant</td>
<td>320</td>
</tr>
<tr>
<td>Hydraulic oil cooler</td>
<td>258</td>
</tr>
<tr>
<td>Pressurized coolant tank cap</td>
<td>256</td>
</tr>
<tr>
<td>Inspecting pressurized coolant tank cap</td>
<td></td>
</tr>
<tr>
<td>Engine harness</td>
<td></td>
</tr>
<tr>
<td>Welding precautions</td>
<td>9</td>
</tr>
<tr>
<td>Engine interlock</td>
<td>314</td>
</tr>
<tr>
<td>Engine load</td>
<td></td>
</tr>
<tr>
<td>Viewing</td>
<td>232, 237–238</td>
</tr>
<tr>
<td>Engine operation</td>
<td></td>
</tr>
<tr>
<td>Engine aftertreatment switches</td>
<td></td>
</tr>
<tr>
<td>Manual SCR conditioning/inhibit switches</td>
<td>122</td>
</tr>
<tr>
<td>Engine speed</td>
<td>345</td>
</tr>
<tr>
<td>Engine temperature</td>
<td>121</td>
</tr>
<tr>
<td>Exhaust aftertreatment system</td>
<td></td>
</tr>
<tr>
<td>Exhaust system cleaning</td>
<td>121</td>
</tr>
<tr>
<td>Fueling</td>
<td>112</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>121</td>
</tr>
<tr>
<td>Shutting down the engine</td>
<td>120</td>
</tr>
<tr>
<td>Engine rpm</td>
<td>77</td>
</tr>
<tr>
<td>Engine-forward</td>
<td></td>
</tr>
<tr>
<td>Definition</td>
<td>29</td>
</tr>
<tr>
<td>Engines</td>
<td></td>
</tr>
<tr>
<td>Adding coolant</td>
<td>321</td>
</tr>
<tr>
<td>Adding oil</td>
<td>280, 299</td>
</tr>
<tr>
<td>Air intake system</td>
<td>259</td>
</tr>
<tr>
<td>Belts</td>
<td>343</td>
</tr>
<tr>
<td>Charge air cooling</td>
<td>258</td>
</tr>
<tr>
<td>Checking coolant level</td>
<td>285</td>
</tr>
<tr>
<td>Checking cooling data</td>
<td>132</td>
</tr>
<tr>
<td>Checking interlock</td>
<td>314</td>
</tr>
<tr>
<td>Checking oil level</td>
<td>113, 279</td>
</tr>
<tr>
<td>Cooling system</td>
<td></td>
</tr>
<tr>
<td>Twin-flow cooling system</td>
<td>255</td>
</tr>
<tr>
<td>Eco engine control</td>
<td></td>
</tr>
<tr>
<td>Programming the EEC</td>
<td>119</td>
</tr>
<tr>
<td>Eco engine control (EEC)</td>
<td>68</td>
</tr>
<tr>
<td>Using the EEC</td>
<td></td>
</tr>
<tr>
<td>Electronics</td>
<td>13</td>
</tr>
<tr>
<td>Engine air filter</td>
<td></td>
</tr>
<tr>
<td>Changing secondary air filter</td>
<td>303</td>
</tr>
<tr>
<td>Cleaning primary air filter</td>
<td>303</td>
</tr>
<tr>
<td>Installing primary air filter</td>
<td>301</td>
</tr>
<tr>
<td>Maintaining filters</td>
<td>299</td>
</tr>
<tr>
<td>Removing primary air filter</td>
<td>299</td>
</tr>
<tr>
<td>Engine compartment</td>
<td>247</td>
</tr>
<tr>
<td>Engine controls</td>
<td>67</td>
</tr>
<tr>
<td>Engine exhaust system</td>
<td></td>
</tr>
<tr>
<td>Inspecting exhaust system</td>
<td>306</td>
</tr>
<tr>
<td>Engine gearbox maintenance</td>
<td></td>
</tr>
<tr>
<td>Adding lubricant</td>
<td>286</td>
</tr>
<tr>
<td>Changing lubricant</td>
<td>272, 308</td>
</tr>
<tr>
<td>Checking lubricant level</td>
<td>286</td>
</tr>
<tr>
<td>Engine oil change</td>
<td>298</td>
</tr>
<tr>
<td>Draining oil</td>
<td>298</td>
</tr>
<tr>
<td>Engine oil filter</td>
<td>298</td>
</tr>
<tr>
<td>Engine operation</td>
<td></td>
</tr>
<tr>
<td>Eco engine control programming</td>
<td>119</td>
</tr>
<tr>
<td>Starting the engine</td>
<td>115</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>118</td>
</tr>
<tr>
<td>Fault codes</td>
<td>456</td>
</tr>
<tr>
<td>Faults and telltales</td>
<td>86</td>
</tr>
<tr>
<td>General engine inspection</td>
<td>325</td>
</tr>
<tr>
<td>Manuals</td>
<td>325</td>
</tr>
<tr>
<td>Power</td>
<td>13</td>
</tr>
<tr>
<td>Removing water from fuel system</td>
<td>281</td>
</tr>
<tr>
<td>Safety</td>
<td>13</td>
</tr>
<tr>
<td>Speed</td>
<td>13</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>387</td>
</tr>
</tbody>
</table>
INDEX

engine start ... 118
entering the cab .. 124
evaporator ... 337
evaporator core
 cleaning .. 338
exhaust aftertreatment system
 activating .. 122
exhaust system
 cleaning .. 306
 inspecting .. 124
exiting the cab ... 124
external booster spring kit ... 381

F

fan speeds ... 132
fault codes
 engine fault codes .. 456
 windrower fault codes .. 410
FFFT
 definition .. 29
field lights
 location ... 37
 switch .. 52
 symbol .. 106
filters
 charge filter ... 277
 installing ... 277
 removing ... 277
 DEF supply module filter ... 317
 checking filter .. 317
 cleaning and inspecting filter 318
 installing filter ... 319
 removing filter ... 317
 DEF vent hose filter
 changing DEF vent hose filter 324
 engine air filter
 changing secondary air filter 303
 cleaning primary filter element 303
 installing primary air filter 301
 removing primary air filter 299
 engine oil filter
 replacing engine oil filter ... 298
 fresh air intake filter .. 287
fuel filters
 maintaining fuel filters ... 309
 primary fuel filter
 installing ... 310
 removing ... 309
 secondary fuel filter
 installing ... 310
 removing ... 310
 fuel specifications ... 239
 fuel tank
 draining the fuel tank .. 341
 filling the fuel tank .. 112
 fuel/water separator .. 281
 removing water from fuel system 281
 removing/installing fuel tank vent filter 315
 priming ... 311
 function buttons ... 104
 fuse panel .. 363
fuses
 accessing fuses ... 359
 checking and replacing ... 361
 inspecting/replacing 125A main fuses 368

G

gearboxes
 engine
 changing lubricant .. 272, 308
glossary .. 29
GPS automated steering systems 380
ground speed control
 troubleshooting .. 396
ground speed lever
 function group switches .. 71
INDEX

header position 6-way switch 72
header raise and lower rates 191
home, back, and select buttons 80
location .. 39
One-Touch-Return positions 73
reel and disc speed switch 73
reel position four-way switch 72
scroll knob, scroll wheel, and select button 80
ground speed levers ... 69
ground speed limit ... 124
ground speeds .. 77
GSL, See ground speed lever
GVW, See ground speed lever

H

handholds
location .. 37
hard joint
definition .. 29
harvest performance tracker
fault codes
engine fault codes .. 456
windrower fault codes ... 410
faults and telltale .. 86
function buttons
F1 to F4 ... 104
HPT display ... 67, 77
home, back, select buttons 80
main menu ... 82
menu icons .. 83
navigating the display ... 79
QuickMenu ... 81
screen layout .. 77
scroll knob, scroll wheel, select button 80
setting display brightness and volume 88
setting display language and units 91
setting display time and date 90
setting up the display ... 88
soft keys .. 81
machine information
accessing header information 100
accessing performance information 102
accessing software information 101
accessing windrower information 99
run screen 1
auger headers ... 231
draper headers ... 214
rotary disc headers .. 237
run screen 2
auger headers ... 232
draper headers ... 215
rotary disc headers .. 238
run screen 3 .. 131
run screen 4 .. 132
settings
calibrating windrower and header 93
control locks .. 98
resetting to factory defaults 91
windrower tire size .. 97
symbols
definitions .. 107
viewing machine information 99
harvest performance tracker display
checking header settings 179
location ... 39
hazard lights .. 54, 56, 69
location ... 37
HDS
definition .. 29
header angles .. 186
header controls .. 70
console header buttons .. 74
deck shift/float presets .. 75
draper speed ... 76
DWA ... 76
GSL buttons ... 71
header position 6-way switch 72
One-Touch-Return positions 73
reel and disc speed switch 73
reel position four-way switch 72
header drive reverse button 70
header engage/drive switch 70
header drive ... 184
header engage switch .. 70
header float .. 181
checking float .. 181
float operating guidelines 182
float options with deck shift (D1X Series) 212
float options with deck shift (D1XL Series) 212
float options with fixed deck (R1 Series) 235
preset controls .. 75
removing and restoring float 184
setting float ... 182
header hours ... 100
header information ... 77
header lift legs
location ... 37
header operation
center-link
checking self-locking center-link hook 187
cutting height ... 188
disengaging the header 185
engaging the header .. 185
header angles
adjusting header angle 186
header drive ... 184
header float
float operating guidelines 182
I
ignition switch ... 67
location ... 39
inhibit status.. 77
ISC
definition.. 29

J
JIC
definition.. 29

K
knife
definition.. 29
knife pressure
viewing ... 214, 231–232
knife speed
A40DX Auger Headers
adjusting knife alarm pressure 226
adjusting knife speed alarm 227
knife speed chart .. 224
D1X Series Draper Headers
knife alarm pressure.. 208
knife speed alarm .. 210
setting knife speed ... 207, 225
D1XL Series Draper Headers
knife alarm pressure.. 208
knife speed alarm .. 210
setting knife speed ... 207, 225
knife speed chart .. 206
viewing .. 214, 231–232

L
language
setting on HPT .. 91
lighting ... 52
beacons ... 55
replacing lights .. 356
cab-forward mode
field ... 52
road lights ... 53
engine-forward mode
road lights .. 54
field lights
cab-forward mode .. 52
flood lights
adjusting front work lights (field) 348
headlights
aligning headlights (cab-forward) 347
aligning headlights (engine-forward) 345
replacing headlight bulb (engine-forward) 352
interior lights
dome bulb ... 356
dome light assembly .. 357
LED lights
optional lighting upgrade 380
replacing LED lights (deluxe cab) 353
rear roof work lights
adjusting rear roof work lights 349
rear swath lights
adjusting rear swath lights 350
red and amber lights
replacing bulbs ... 354
troubleshooting .. 391
turn signal / hazard lights 56
turn signal indicators ... 359
work lights
replacing halogen bulbs 351
locks
lock and unlock swath compressor 217
lubricants
adding to engine gearbox 286
changing in engine gearbox 272, 308
checking engine gearbox level 286
lubricating the windrower
recommended fuel, fluids, and lubricants 239
lubrication .. 289
grease points and intervals 291
greasing procedure ... 290
lubricants/fluids/system capacities 240
lubricating wheel drive
adding lubricant - 12 bolt (optional) 306
adding lubricant – 10 Bolt 305
changing wheel drive lubricant 273
changing wheel drive lubricant 12 Bolt (optional) 274
checking wheel drive ... 304
checking lubricant levels 304
storing lubricants and fluids 239

M
maintenance and servicing
A/C compressor belt
replacing ... 344
tensioning ... 272, 343–344
break-in inspection schedule 243
break-in inspections
procedures ... 269
break-in period .. 109
checking safety systems 312
daily checks and maintenance 111
engine interlock ... 314
operator presence system 312
cycling air conditioning compressor coolant 111
replacing headlight bulb (engine-forward) 352
interior lights
dome bulb ... 356
dome light assembly .. 357
LED lights
optional lighting upgrade 380
replacing LED lights (deluxe cab) 353
rear roof work lights
adjusting rear roof work lights 349
rear swath lights
adjusting rear swath lights 350
red and amber lights
replacing bulbs ... 354
troubleshooting .. 391
turn signal / hazard lights 56
turn signal indicators ... 359
work lights
replacing halogen bulbs 351
locks
lock and unlock swath compressor 217
lubricants
adding to engine gearbox 286
changing in engine gearbox 272, 308
checking engine gearbox level 286
lubricating the windrower
recommended fuel, fluids, and lubricants 239
lubrication .. 289
grease points and intervals 291
greasing procedure ... 290
lubricants/fluids/system capacities 240
lubricating wheel drive
adding lubricant - 12 bolt (optional) 306
adding lubricant – 10 Bolt 305
changing wheel drive lubricant 273
changing wheel drive lubricant 12 Bolt (optional) 274
checking wheel drive ... 304
checking lubricant levels 304
storing lubricants and fluids 239
INDEX

electrical system ... 263
batteries ... 326
module layout ... 263
electronic maintenance tool 246
engine
 air intake system .. 259
 charge air cooling 258
 engine belt .. 343
 engine oil
 checking .. 113, 279
 gearbox .. 286
 general engine inspection 325
engine air filters .. 299
engine coolant ... 320
engine exhaust system
 inspecting .. 306
engine oil .. 298
filter part numbers 241
fuel system
 fuel filters .. 309
 fuel, fluids, and lubricants 239
greasing the windrower 289
hydraulic oil
 checking and adding hydraulic oil 281
 draining hydraulic oil 322
 filling hydraulic oil 323
lighting ... 345
 adjusting field/work/flood lights (front) 348
 adjusting rear swath lights 350
 adjusting roof work lights (rear) 349
 aligning headlights (cab-forward) 347
 aligning headlights (engine-forward) 345
 replacing beacon lights 356
 replacing cabin dome bulb 356
 replacing dome light assembly 357
 replacing halogen bulbs 351
 replacing headlight bulb (engine forward) 352
 replacing LED lights (deluxe cab) 353
 replacing red and amber bulbs 354
 replacing red tail lights 355
maintenance indicator 77
maintenance platforms
 location ... 37
manuals
 engine owner’s manual 325
 manual storage location 61
MDS
 definition ... 29
menu icons
 HPT .. 83
metric bolts
 torque specifications 401
mirrors
 location ... 37

N

N-DETENT
 definition ... 29
n/a
 definition ... 29
NPT
 definition ... 29
nut
 definition ... 29

O

oil pressure ... 121
oils (engine)
 adding .. 280, 299
 checking level .. 113, 279
 draining oil ... 298
 replacing engine oil filter 298
One-Touch-Return .. 190
operating symbols .. 106
operating the windrower
 accessing header information 100
 accessing performance information 102
 accessing software information 101
 accessing windrower information 99
 adjusting header raise and lower rates 191
break-in period .. 109
INDEX

performance data ... 131
platforms ... 249
adjusting platform ... 250
closing platform .. 249
opening platform .. 249
precleaners
location ... 37
predelivery checks
tire pressure .. 282
preseason checks .. 110
pressurized coolant tank
inspecting pressurized coolant tank cap 256
priming
fuel system .. 311
product overview .. 29

Q
QuickMenu system .. 81

R
R Series headers
definition .. 29
R1 Series Rotary Disc Headers
attaching header .. 167
connecting hydraulics .. 171
disc run screens .. 237
run screen 1 .. 237
run screen 2 .. 238
disc speed ... 233
disc pressure alarm ... 234
setting disc speed .. 233
disc speed switch ... 73
header float
float options with fixed deck 235
operating .. 233
radios
activating Bluetooth® ... 64
AM/FM/CD/USB Bluetooth®-equipped radio 63
pairing a Bluetooth® device 65
rear view mirrors .. 58
reel
D1X and D1XL Series headers
adjusting reel alarm pressure 199
troubleshooting ... 392
reel alarm pressure
A40DX Auger Headers ... 223
D1X and D1XL Series headers 199
reel fore-aft position
viewing .. 215
reel height
viewing .. 215
reel position
four-way switch ... 72
reel pressure
viewing .. 214, 231
reel speed
A40DX Auger Headers
adjusting ... 218
setting in auto mode .. 218
setting in manual mode .. 220
D1X and D1XL Series Draper Headers
adjusting ... 196
setting in auto mode .. 196
setting in manual mode .. 198
viewing .. 214–215, 231–232
Reel Speed Control kit ... 218
references
torque specifications .. 401
relay module .. 363
relays
replacing ... 361
return oil filter
installing .. 276
removing .. 275
reverse ... 70
symbol ... 106
reversing
in cab-forward mode ... 126
in engine-forward mode .. 129
reversing the header ... 185
road lights ... 53
aligning headlights ... 345
location ... 37
switch ... 52
symbol ... 106
RoHS
definition ... 29
roof connectors
welding precautions .. 9
rpm
definition ... 29

S
SAE
definition ... 29
safety .. 1
battery safety ... 8
checking engine interlock 314
checking operator presence system 312
drive safety .. 13
electric brake .. 13
engine electronics ... 13
high-pressure rail ... 13
general safety .. 3
hydraulic safety ... 6
maintenance safety ... 5
operational safety .. 109
INDEX

safety alert symbols.. 1
safety sign decals .. 15
installing decals .. 15
interpreting decals .. 18
sign location .. 16
signal words .. 2
tire safety .. 7
welding precautions .. 9
safety systems .. 312
screen layouts
 HPT ... 77
screws
 definition .. 29
scroll wheel .. 71
SDD
 definition .. 29
seat belts ... 49
 maintaining seat belts .. 341
serial numbers
 engine serial number location vi
 windrower serial number location vi
shutting down the engine ... 120
SKD
 definition .. 29
Slow Speed Transport option 138
soft joints
 definition .. 29
soft keys .. 81
software .. 101
specifications ... 32
 battery specification .. 326
 filter part numbers ... 241
 fuel ... 239
 torque specifications .. 401
 windrower dimensions .. 36
spin turning .. 129
spm
 definition .. 29
starting the engine .. 115
steering
 adjustments
 steering column .. 51
 steering wheel .. 51
 automated steering systems (option) 380
 checking steering link pivots 335
 troubleshooting .. 396
stopping .. 130
storing windrowers ... 142
supply module
 cleaning and inspecting filter 318
 installing filter .. 319
 removing filter .. 317
swath compressors ... 74
description ... 215
 lock and unlock ... 217
 operating ... 215
 raising .. 76
switches
 auxiliary lift .. 76
disc speed ... 71, 73
ground speed lever ... 71
header engage .. 70
header position .. 72
lighting .. 52
One-Touch-Return switches 71
reel position ... 71
reel position four-way switch 72
reel speed ... 71, 73
reel speed switch ... 73
select button ... 80
select switch ... 71, 80
shift switch ... 71, 80
symbols
 definitions .. 106
 HPT ... 107
 HPT menu icons .. 83
 windrower operating symbols 106

T
taillights ... 53–55
telltales ... 37
temperatures
 cab .. 59
 engine ... 121
 engine air intake .. 132
 engine coolant ... 132
 hydraulic oil ... 132, 238
 seat .. 47
tension
 definition .. 29
TFT
 definition .. 29
throttle .. 67, 70
 location ... 39
time
 setting on HPT .. 90
tires, See wheels and tires
torque
 definition .. 29
torque angles
 definition .. 29
torque specifications ... 401
metric bolt specifications .. 401
 bolting into cast aluminum 403
O-ring boss (ORB) hydraulic fittings – adjustable 404
O-ring boss (ORB) hydraulic fittings – non-adjustable .. 406
O-ring face seal (ORFS) fittings 407
INDEX

tapered pipe thread fittings 408
torque-tension
 definition ... 29
towing harness .. 385
towing headers ... 138
 preparing ... 139
 weight box .. 385
towing windrower 140
 engaging and disengaging final drives 141
traction drive
 troubleshooting 394
training seats .. 48
Trimble® automated steering systems 380
troubleshooting
 batteries ... 391
 cab air ... 397
 electrical .. 391
 engine .. 387
 engine start ... 118
 header drive ... 393
 hydraulics .. 392
 lighting ... 391
 operator’s station 400
 reel .. 392
 steering and ground speed control 396
 traction drive .. 394
 turn signals .. 391
 wheels ... 394
 turn signals ... 53–54, 56, 69
 indicators ... 359
 location ... 37
 status ... 77
 symbol ... 106
 troubleshooting 391
turning the windrower 129
twin-flow cooling system 255

U

UCA
 definition ... 29
ULSD
 definition ... 29
units of measurement
 setting on HPT 91

W

walking beams
 adjusting caster tread width 373
 location ... 37
 tightening bolts 271
washers
 definition ... 29

water
 removing from fuel system 281
WCM
 definition ... 29
weight boxes ... 133, 135, 138, 385
welding precautions 9
wheel motor connectors
 welding precautions 9
wheels and tires
 caster wheels 373
 adjusting caster tread width 373
 caster wheel nut torque 270
 installing forked caster wheel 375
 location ... 37
 lowering caster wheel (all) 377
 raising caster wheel (all) 377
 removing forked caster wheel 376
 tightening anti-shimmy dampener 271
 checking tire pressure 282
drive wheels
 installing drive wheels 371
 location ... 37
 lowering drive wheels 372
 raising drive wheel 369
 removing drive wheel 370
 tightening drive wheel nuts 269
safety .. 7
setting tire size in HPT 97
tires
 checking pressure 282
troubleshooting 394
wheel drive
 adding lubricant – 10 Bolt 305
 adding lubricant – 12 bolt (optional) 306
 changing lubricant 273
 changing lubricant 12 Bolt (optional) 274
 checking lubricant levels 304
 checking lubricant levels – 12 Bolt (Optional) .. 304
windrower faults
 fault codes ... 410
 faults and telltale 86
windrows
 definition ... 29
windshield wipers 57
location ... 37
symbol ... 106
work lights ... 53–54
Lubricants, Fluids, and System Capacities

Table 1.1 System Capacities

<table>
<thead>
<tr>
<th>Lubricant/Fluid</th>
<th>Location</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel exhaust fluid (DEF)</td>
<td>Diesel exhaust fluid tank</td>
<td>Must meet ISO 22241 requirements.</td>
<td>28 liters (7.5 U.S. gallons)</td>
</tr>
<tr>
<td>Grease</td>
<td>As required unless otherwise specified</td>
<td>SAE multi-purpose high temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Fuel tank</td>
<td>Ultra low sulphur diesel (ULSD) Grade No. 2, or ULSD Grade No. 1 and 2 mix; refer to 5.1.2 Fuel Specifications, page 239 for more information</td>
<td>518 liters (137 U.S. gallons)</td>
</tr>
<tr>
<td>Hydraulic oil</td>
<td>Hydraulic reservoir</td>
<td>Single grade transmission/hydraulic fluid (THF)</td>
<td>60 liters (15.8 U.S. gallons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommend Viscosity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60.1 cSt @ 40°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 9.5 cSt @ 100°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommended brands:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AGCO Power Fluid 821XL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Case HY-TRAN ULTRACTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• John Deere Hy-Gard J20C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Petro-Canada Duratran</td>
<td></td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Gearbox</td>
<td>SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant (SAE J2360 preferred)</td>
<td>2.3 liters (2.4 U.S. quarts)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>Standard Wheel drive</td>
<td>SAE 75W-140 or 80W-140, API service class GL-5 fully synthetic gear lubricant (SAE J2360 preferred)</td>
<td>1.4 liters (1.5 U.S. quarts)</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>High Torque Wheel drive</td>
<td>SAE 85W-140, API service class GL-5 fully synthetic gear lubricant</td>
<td>4.5 liters (4.8 U.S. quarts)</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>Engine cooling system</td>
<td>ASTM D-6210 and Fleetguard ES Compleat®</td>
<td>31 liters (8.2 U.S. gallons)</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Engine oil pan</td>
<td>SAE 15W-40 compliant with SAE specs for API Class SJ and CJ-4 engine oil</td>
<td>11 liters (11.6 U.S. quarts)</td>
</tr>
<tr>
<td>Air conditioning refrigerant</td>
<td>Air conditioning system</td>
<td>R134A</td>
<td>2.38 kg (5.25 lb.)</td>
</tr>
<tr>
<td>Air conditioning refrigerant oil</td>
<td>Air conditioning system total capacity</td>
<td>PAG SP-15</td>
<td>240 cc (8.1 fl. oz.)</td>
</tr>
<tr>
<td>Windshield washer fluid</td>
<td>Windshield washer fluid tank</td>
<td>SAE J942 compliant</td>
<td>4 liters (1 U.S. gallon)</td>
</tr>
</tbody>
</table>

25. Optional when operating temperature is below 0°C (32°F).