Declaration of Conformity

EC Declaration of Conformity

1. **Manufacturer:** MacDon Industries Ltd.
 600 Moray Street,
 Winnipeg, Manitoba, Canada
 R3J 3G3

2. **Model:** MacDon F01 Series

3. **Product:** As per Shipping Document

4. **Date:** May 3, 2018

5. **Author:** Christoph Martens
 Product Integrity

<table>
<thead>
<tr>
<th>EN</th>
<th>BG</th>
<th>CZ</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>We declare, that the product:</td>
<td>декларираме, че следния продукт:</td>
<td>Prokládáme, že následující produkt:</td>
<td>erklærer, at produktet:</td>
</tr>
<tr>
<td>Machine Type</td>
<td>Тип машина</td>
<td>Typ zofi:</td>
<td>Modeltypen:</td>
</tr>
<tr>
<td>Name & Model</td>
<td>Назовните и модел:</td>
<td>Název a model:</td>
<td>Navn og model:</td>
</tr>
<tr>
<td>Serial Number(s)</td>
<td>Серийните номера:</td>
<td>Řežba:</td>
<td>Serienummer (numre):</td>
</tr>
</tbody>
</table>

6. **Technical File:**
 Benefic von Reidel
 General Manager, MacDon Europe GmbH
 Hagenauer Straße 59
 63523 Wiesbaden (Germany)
 busreibiede@macdon.com

<table>
<thead>
<tr>
<th>DE</th>
<th>ES</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieser Eintrag ist für das Produkt:</td>
<td>Se declaramos que el producto:</td>
<td>Me es meeldet, et produktet:</td>
</tr>
<tr>
<td>Maschinentyp:</td>
<td>Tipo de máquina:</td>
<td>Typ maskiner:</td>
</tr>
<tr>
<td>Name & Model</td>
<td>Nombre y modelo:</td>
<td>Número de serie:</td>
</tr>
</tbody>
</table>

7. **Technical File:**
 Benefic von Reidel
 General Manager, MacDon Europe GmbH
 Hagenauer Straße 59
 63523 Wiesbaden (Germany)
 busreibiede@macdon.com

--

<table>
<thead>
<tr>
<th>FR</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nous avouons, []</td>
<td>Declareret, at produktet:</td>
</tr>
<tr>
<td>Déclaration que le produit:</td>
<td>typen maskiner:</td>
</tr>
<tr>
<td>Type de machine:</td>
<td>Navn og type:</td>
</tr>
<tr>
<td>Numéro(s) de série:</td>
<td>Numéro(s) de série:</td>
</tr>
</tbody>
</table>

8. **Technical File:**
 Benefic von Reidel
 General Manager, MacDon Europe GmbH
 Hagenauer Straße 59
 63523 Wiesbaden (Germany)
 busreibiede@macdon.com

The Harvesting Specialists

MacDon

10/03/13
EC Declaration of Conformity

<table>
<thead>
<tr>
<th>EN</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

EN

Declaration

<table>
<thead>
<tr>
<th>DE (Deutsch)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>ES (Español)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>IT (Italiano)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>FR (Français)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>NL (Nederlands)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>NO (Norsk)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>PT (Português)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDon Industries Ltd.</td>
<td>[4]</td>
</tr>
<tr>
<td>680 Moray Street,</td>
<td>As per Shipping Document</td>
</tr>
<tr>
<td>Winnipeg, Manitoba,</td>
<td>[5]</td>
</tr>
<tr>
<td>Canada R3J 3B3</td>
<td>May 3, 2018</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>DE (Deutsch)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Harvesting Specialists</td>
<td>[4]</td>
</tr>
<tr>
<td>Revision A</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Christoph Martens</td>
<td>Product Integrity</td>
</tr>
<tr>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>MacDon Industries Ltd.</td>
<td>680 Moray Street, Winnipeg, Manitoba, Canada R3J 3B3</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>ES (Español)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Harvesting Specialists</td>
<td>[4]</td>
</tr>
<tr>
<td>Revision A</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Christoph Martens</td>
<td>Product Integrity</td>
</tr>
<tr>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>MacDon Industries Ltd.</td>
<td>680 Moray Street, Winnipeg, Manitoba, Canada R3J 3B3</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>IT (Italiano)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Harvesting Specialists</td>
<td>[4]</td>
</tr>
<tr>
<td>Revision A</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Christoph Martens</td>
<td>Product Integrity</td>
</tr>
<tr>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>MacDon Industries Ltd.</td>
<td>680 Moray Street, Winnipeg, Manitoba, Canada R3J 3B3</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>FR (Français)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Harvesting Specialists</td>
<td>[4]</td>
</tr>
<tr>
<td>Revision A</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Christoph Martens</td>
<td>Product Integrity</td>
</tr>
<tr>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>MacDon Industries Ltd.</td>
<td>680 Moray Street, Winnipeg, Manitoba, Canada R3J 3B3</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>NL (Nederlands)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Harvesting Specialists</td>
<td>[4]</td>
</tr>
<tr>
<td>Revision A</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Christoph Martens</td>
<td>Product Integrity</td>
</tr>
<tr>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>MacDon Industries Ltd.</td>
<td>680 Moray Street, Winnipeg, Manitoba, Canada R3J 3B3</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration

<table>
<thead>
<tr>
<th>NO (Norsk)</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Harvesting Specialists</td>
<td>[4]</td>
</tr>
<tr>
<td>Revision A</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Christoph Martens</td>
<td>Product Integrity</td>
</tr>
<tr>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>MacDon Industries Ltd.</td>
<td>680 Moray Street, Winnipeg, Manitoba, Canada R3J 3B3</td>
</tr>
<tr>
<td>[2]</td>
<td>[6]</td>
</tr>
<tr>
<td>Float Module</td>
<td>Christoph Martens</td>
</tr>
<tr>
<td>[3]</td>
<td>Product Integrity</td>
</tr>
</tbody>
</table>

Declaration
EC Declaration of Conformity

HJ

Mrs. [1]

Hausmann, Karl FE Produkte

Malzfix Universal [2]

Fauleitungen u. Modelle [3]

Schräge Nummern (Vat [4])

Selbsttägige nach der harmonisierten Richtlinie 2006/42/EG prüfen.

LV

Mr. [1]

Hausmann, Karl FE Produkte

Malzfix Universal [2]

Nasslufteinspritzung [3]

Schräge Nummern (Vat [4])

Ableitversuch Badajoz Direktive 2006/42/EG prüfen.

Benedikt von Redmond

Generalkommissar, Macdon Europe GmbH

Hagenauer Straße 59

65203 Wiesbaden (Hessen)

benredmond@macton.com

PT

Nils [1]

Declarações, que a propriedade

Tipo de máquina [2]

Nome e Modelo [3]

Númer de Série [4]

Fornece todas as disposições relevantes da Diretoria 2006/42/EC.

Normas harmonizadas aplicadas, conforme referido no Artigo 7(2):

EN ISO 9423:2001

Nils [1]

Declarações, que a propriedade

Tipo de máquina [2]

Nome e Modelo [3]

Númer de Série [4]

Fornece todas as disposições relevantes da Diretoria 2006/42/EC.

Normas harmonizadas aplicadas, conforme referido no Artigo 7(2):

EN ISO 9423:2001

SK

M. [1]

Uverešťame o producent

Typ zariadenia [2]

Značka a model [3]

Seriálové číslo [4]

Oktavené alebo rekonštrukčné dispozičné stanovisko 2006/42/EC.

Konštrukciu je uskutočnil standard Kozik, ktorý je vedoucou v dôlež.

EN ISO 9423:2001

SV

M. [1]

Intyg om produktens

Makronummer [2]

Namn och modell [3]

Seriernummer [4]

Oktavenära eller rekonstruera dispozitiva 2006/42/EC.

Intyg och dokumentationen, som erklärande av direktivet 2006/42/EC.

EN ISO 9423:2001

NL

Mr. [1]

Verklaring, dat de producten

Maaknr [2]

Naam en model [3]

Serienummer [4]

Oktavenbouw of rekonstruierende dispozitiva 2006/42/EC.

Identiteit en toestondt van de betrokkene en de mededeling [5]

Henriëtta van den Bercken

Administratief-directeur, Macdon Europe GmbH

Hagenauer Straße 59

65203 Wiesbaden (Hessen)

hvdbercken@macton.com

FR

Nils [1]

Déclarations, que la propriété

Type de machine [2]

Nom et Modèle [3]

Numéro de Série [4]

En fournissant toutes les dispositions relevantes de la Directive 2006/42/CE.

Normes harmonisées applicables, conformément à l’article 7(2):

EN ISO 9423:2001

NO

Mr. [1]

Deklarering, at produktene

Modellnr [2]

Næringsvelferd og modell [3]

Serie-nummer (Vat [4])

Gjennomføres tolv ansvarsbeskrivelser i direktiv 2006/42/EF.

Kvalitetshistorik beregnet, for hvert vigtigt element i 7(2):

EN ISO 9423:2001

IT

Mr. [1]

 Dichiarazione che i prodotti

Tipologia [2]

Nome e modelli [3]

Serie-nummer (Vat [4])

Esclusi dalla disposizione 2006/42/CE.

Ufficio degli standard armonizzati, come indicato nell’articolo 7(2):

EN ISO 9423:2001

DE

Mr. [1]

Bedeutung des Produktes

Kategori [2]

Name und Modelle [3]

Serie-nummer (Vat [4])

Ausnahmen von den harmonisierten Vorschriften in 7(2) nicht erlaubt.

EN ISO 9423:2001

ES

Mr. [1]

Declaración de conformidad

Tipología [2]

Nombre y modelo [3]

Número de serie (Vat [4])

Excluye la aplicación de las directivas 2006/42/EC.

Uso de los artículos armonizados, como indicado en el artículo 7(2):

EN ISO 9423:2001

EL

Mr. [1]

Ο έγγραφος ότι τα προϊόντα

Κατηγορία [2]

Πρότυπο και τύπος [3]

Δομένο και μοντέλο [4]

Αποτελεί έξαρτημα της ομάδας νομικών πρότυπων της διεθνούς διατάξεως 2006/42/EC.

Δελτίο επικοινωνίας είτε των 7(2) που δεν εφαρμόζονται.

EN ISO 9423:2001
Introduction

This instructional manual contains information on the FD1 Series FlexDraper® and the FM100 Combine Float Module. It must be used in conjunction with your combine operator's manual.

The FD1 Series FlexDraper® is specially designed to work well in all straight cut conditions, whether cutting on or above the ground, using a three-piece flexible frame to closely follow ground contours. The FM100 Combine Float Module is used to attach an FD1 Series FlexDraper® to most makes and models of combines.

Carefully read all the material provided before attempting to use the machine.

Use this manual as your first source of information about the machine. If you follow the instructions provided, your header will work well for many years. If you require more detailed service information, a technical manual is available from your MacDon Dealer.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

The following conventions are used in this document:

- Right and left are determined from the operator's position. The front of the header faces the crop; the back of the header attaches to the combine.
- Unless otherwise noted, use the standard torque values provided in Chapter 8.1 Torque Specifications, page 577.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

The Table of Contents and Index will guide you to specific areas of this manual. Study the Table of Contents to familiarize yourself with how the information is organized.
Keep this manual handy for frequent reference and to pass on to new Operators or Owners. A manual storage case (A) is located inside the header left endshield.

Call your MacDon Dealer if you need assistance, information, or additional copies of this manual.

NOTE:
Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).

This document is available in English, Czech, German, French, Portuguese, Russian, and Ukrainian.

Figure 1. Manual Storage Location
List of Revisions

<table>
<thead>
<tr>
<th>Summary of Change</th>
<th>Refer To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated Declaration of Conformity for model year 2019.</td>
<td>Declaration of Conformity, page i</td>
</tr>
<tr>
<td>Added Ukrainian to the list of languages available.</td>
<td>Introduction, page v</td>
</tr>
<tr>
<td>Added FM100 safety decal locations.</td>
<td>1.7 Safety Decal Locations, page 8</td>
</tr>
<tr>
<td>Added safety decal MD #252996.</td>
<td>1.8 Understanding Safety Signs, page 13</td>
</tr>
<tr>
<td>Updated illustrations of endshield hinge plate. Added note to ensure hinge arm is</td>
<td>• Removing Endshields, page 36</td>
</tr>
<tr>
<td>installed in outboard hole on the hinge bracket.</td>
<td>• Installing Endshields, page 37</td>
</tr>
<tr>
<td>Updated illustrations to show transport lights.</td>
<td>Repositioning Fore-Aft Cylinders on Non-European-Configured Headers with Multi-Crop Rapid Reel Conversion Option, page 108</td>
</tr>
<tr>
<td>Revised the high voltage limit adjustment instructions.</td>
<td>Adjusting Voltage Limits: One-Sensor System, page 131</td>
</tr>
<tr>
<td>Added topic.</td>
<td>Replacing Float Indicator Cable, page 135</td>
</tr>
<tr>
<td>Added step and image showing the header control switch.</td>
<td>Calibrating Auto Header Height Control (Case IH 5130/6130/7130, 5140/6140/7140), page 146</td>
</tr>
<tr>
<td>Added settings for HEIGHT/TILT RESPONSE and AUTO HEIGHT OVERRIDE.</td>
<td>Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 160</td>
</tr>
<tr>
<td>Added settings specific to the two-sensor system.</td>
<td>• Setting up the Header on the Combine Display (Case IH 5130/6130/7130; 5140/6140/7140), page 142</td>
</tr>
<tr>
<td></td>
<td>• Calibrating the Auto Header Height Control (Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240), page 156</td>
</tr>
<tr>
<td></td>
<td>• Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 160</td>
</tr>
<tr>
<td>Added steps to set center link to D, unlock float, and lock wings.</td>
<td>Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 160</td>
</tr>
<tr>
<td>Added steps for calibrating feeder house speed.</td>
<td>Calibrating the Auto Header Height Control (John Deere S and T Series), page 215</td>
</tr>
<tr>
<td>Removed unnecessary steps involving header float; these steps are not applicable</td>
<td>Calibrating Reel Height Sensor (John Deere S and T Series), page 227</td>
</tr>
<tr>
<td>to reel height sensor calibration.</td>
<td></td>
</tr>
<tr>
<td>Deleted note with link to height sensor adjustment; the note isn’t relevant to</td>
<td>Calibrating Feeder House (John Deere S7 Series), page 236</td>
</tr>
<tr>
<td>feeder house speed calibration.</td>
<td></td>
</tr>
<tr>
<td>Added step to lock wings before calibration.</td>
<td>Calibrating the Auto Header Height Control (CLAAS 600 and 700 Series), page 251</td>
</tr>
<tr>
<td>Added topics.</td>
<td>Revised caution statement about reduced header stability when cornering.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| | Added topics.
| | Revised caution statement about reduced header stability when cornering.
| | Updated feed auger illustrations.
| | 4.1 Float Module Feed Auger Configurations, page 307
| | Added topics.
| | Updated feed auger illustrations.
| | Updated feed auger illustrations.
| | Added changing oil in header drive gearbox (first 50 hours only).
| | Added lubricating center draper roller bearings (every 50 hours).
| | Added checking draper roller bearings for heat (every 200 hours)
| | 5.3.1 Maintenance Schedule/Record, page 385
| | Added checking and adjusting finger timing instructions.
| | Updated torque value for center reel arm brace bolts. Updated illustration to show new bolt orientation.
| | 5.15.3 Centering Double Reel, page 507
| | Updated reel speed sensor illustrations.
| | Updated load range D tire pressure to 75 psi.
| | 5.17.3 Checking Tire Pressure, page 544
| | Added topics.
| | 6.4.6 Center Skid Shoes Kit, page 554
| | 6.5.9 European Combine Upper Cross Auger (UCA), page 559
Model and Serial Number

Record the model number, serial number, and model year of the header, combine float module, and transport / stabilizer wheel option (if installed) in the spaces provided.

NOTE:
Right and left designations are determined from the operator’s position, facing forward.

FlexDraper® Header

Header Model: ________________________________
Serial Number: ______________________________
Year: ______________________________

The serial number plate (A) is located in the upper corner on the left endsheet.

Combine Float Module

Float Module Model: ________________________________
Serial Number: ______________________________
Year: ______________________________

The serial number plate (A) is located at the top left side of the float module.
Slow Speed Transport / Stabilizer Wheel Option

Serial Number:

Year:

The serial number plate (A) is located on the right axle assembly.

Figure 4. Transport/Stabilizer Option
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration of Conformity...</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>List of Revisions</td>
</tr>
<tr>
<td>Model and Serial Number</td>
</tr>
<tr>
<td>Chapter 1: Safety</td>
</tr>
<tr>
<td>1.1 Safety Alert Symbols</td>
</tr>
<tr>
<td>1.2 Signal Words</td>
</tr>
<tr>
<td>1.3 General Safety</td>
</tr>
<tr>
<td>1.4 Maintenance Safety</td>
</tr>
<tr>
<td>1.5 Hydraulic Safety</td>
</tr>
<tr>
<td>1.6 Safety Signs</td>
</tr>
<tr>
<td>1.6.1 Installing Safety Decals</td>
</tr>
<tr>
<td>1.7 Safety Decal Locations</td>
</tr>
<tr>
<td>1.8 Understanding Safety Signs</td>
</tr>
<tr>
<td>Chapter 2: Product Overview</td>
</tr>
<tr>
<td>2.1 Definitions</td>
</tr>
<tr>
<td>2.2 Specifications</td>
</tr>
<tr>
<td>2.3 Component Identification</td>
</tr>
<tr>
<td>2.3.1 FD1 Series FlexDraper®</td>
</tr>
<tr>
<td>2.3.2 FM100 Float Module</td>
</tr>
<tr>
<td>Chapter 3: Operation</td>
</tr>
<tr>
<td>3.1 Owner/Operator Responsibilities</td>
</tr>
<tr>
<td>3.2 Operational Safety</td>
</tr>
<tr>
<td>3.2.1 Header Safety Props</td>
</tr>
<tr>
<td>3.2.2 Reel Safety Props</td>
</tr>
<tr>
<td>3.2.3 Endshields</td>
</tr>
<tr>
<td>3.2.4 Linkage Covers</td>
</tr>
<tr>
<td>3.2.5 Daily Start-Up Check</td>
</tr>
<tr>
<td>3.3 Break-in Period</td>
</tr>
<tr>
<td>3.4 Shutting down the Combine</td>
</tr>
<tr>
<td>3.5 Cab Controls</td>
</tr>
</tbody>
</table>

5
7
19
21
25
25
26
29
30
31
31
32
33
33
34
35
36
37
37
38
39
40
41
42
TABLE OF CONTENTS

3.6 Header Setup .. 43
 3.6.1 Header Attachments .. 43
 3.6.2 Header Settings ... 43
 3.6.3 Optimizing Header for Straight Combining Canola ... 54
 Checking and Adjusting Feed Auger Springs .. 54
 3.6.4 Reel Settings ... 56
3.7 Header Operating Variables ... 58
 3.7.1 Cutting off the Ground .. 58
 Adjusting Stabilizer / Slow Speed Transport Wheels ... 59
 Adjusting Stabilizer Wheels ... 60
 3.7.2 Cutting on the Ground ... 62
 Adjusting Inner Skid Shoes ... 62
 Adjusting Outer Skid Shoes ... 63
 3.7.3 Header Float ... 64
 Checking and Adjusting Header Float .. 64
 Locking/Unlocking Header Float .. 69
 Locking/Unlocking Header Wings ... 70
 Operating in Flex Mode .. 70
 Operating in Rigid Mode ... 71
 3.7.4 Checking and Adjusting Header Wing Balance ... 73
 Checking Wing Balance .. 73
 Adjusting Wing Balance ... 79
 3.7.5 Header Angle .. 81
 Adjusting Header Angle from Combine ... 83
 3.7.6 Reel Speed ... 89
 Optional Reel Drive Sprockets .. 89
 3.7.7 Ground Speed .. 90
 3.7.8 Draper Speed .. 91
 Adjusting Header Draper Speed .. 92
 Feed Draper Speed .. 93
 3.7.9 Knife Speed Data ... 94
 Checking Knife Speed ... 95
 3.7.10 Reel Height .. 95
 Checking and Adjusting Reel Height Sensor ... 96
 Replacing Reel Height Sensor .. 98
 3.7.11 Reel Fore-Aft Position .. 99
 Adjusting Reel Fore-Aft Position ... 100
 Repositioning Fore-Aft Cylinders on Non-European-Configured Headers 101
 Repositioning Fore-Aft Cylinders on European-Configured Headers 104
 Repositioning Fore-Aft Cylinders on Non-European-Configured Headers with Multi-Crop Rapid Reel Conversion Option ... 108
 3.7.12 Reel Tine Pitch .. 111
 Reel Cam Settings ... 111
 Adjusting Reel Cam .. 113
 3.7.13 Crop Dividers .. 115
 Removing Crop Dividers with Latch Option from Header .. 115
 Removing Crop Dividers without Latch Option from Header .. 116
 Installing Crop Dividers with Latch Option onto Header .. 116
 Installing Crop Dividers without Latch Option onto Header ... 118
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.14 Crop Divider Rods</td>
<td>119</td>
</tr>
<tr>
<td>Removing Crop Divider Rods</td>
<td>120</td>
</tr>
<tr>
<td>Installing Crop Divider Rods</td>
<td>120</td>
</tr>
<tr>
<td>Rice Divider Rods</td>
<td>121</td>
</tr>
<tr>
<td>3.7.15 Setting Auger Position</td>
<td>121</td>
</tr>
<tr>
<td>3.8 Auto Header Height Control (AHHC)</td>
<td>124</td>
</tr>
<tr>
<td>3.8.1 Sensor Operation</td>
<td>125</td>
</tr>
<tr>
<td>3.8.2 Sensor Output Voltage Range – Combine Requirements</td>
<td>126</td>
</tr>
<tr>
<td>10 Volt Adapter (MD #B6421) – New Holland Combines Only</td>
<td>126</td>
</tr>
<tr>
<td>Manually Checking Voltage Range: One-Sensor System</td>
<td>127</td>
</tr>
<tr>
<td>Manually Checking Voltage Range: Two-Sensor System</td>
<td>129</td>
</tr>
<tr>
<td>Adjusting Voltage Limits: One-Sensor System</td>
<td>131</td>
</tr>
<tr>
<td>Adjusting Voltage Limits: Two-Sensor System</td>
<td>131</td>
</tr>
<tr>
<td>Replacing the Auto Header Height Control (AHHC) Sensor (One-Sensor System)</td>
<td>133</td>
</tr>
<tr>
<td>Replacing Float Indicator Cable</td>
<td>135</td>
</tr>
<tr>
<td>3.8.3 Case IH 5088/6088/7088 Combines</td>
<td>139</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (Case IH 5088/6088/7088)</td>
<td>139</td>
</tr>
<tr>
<td>Setting the Sensitivity of the Auto Header Height (Case IH 5088/6088/7088)</td>
<td>140</td>
</tr>
<tr>
<td>3.8.4 Case IH 5130/6130/7130 and 5140/6140/7140 Mid-Range Combines</td>
<td>142</td>
</tr>
<tr>
<td>Setting up the Header on the Combine Display (Case IH 5130/6130/7130; 5140/6140/7140)</td>
<td>142</td>
</tr>
<tr>
<td>Checking Voltage Range from Combine Cab (Case IH 5130/6130/7130; 5140/6140/7140)</td>
<td>144</td>
</tr>
<tr>
<td>Calibrating Auto Header Height Control (Case IH 5130/6130/7130, 5140/6140/7140)</td>
<td>146</td>
</tr>
<tr>
<td>Setting Preset Cutting Height (Case IH 5130/6130/7130; 5140/6140/7140)</td>
<td>147</td>
</tr>
<tr>
<td>3.8.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230 and 7240/8240/9240 Combines</td>
<td>150</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (Case 8010)</td>
<td>150</td>
</tr>
<tr>
<td>Setting Header Controls (Case 8010)</td>
<td>153</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)</td>
<td>153</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)</td>
<td>156</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software)</td>
<td>160</td>
</tr>
<tr>
<td>Checking Reel Height Sensor Voltages (Case IH)</td>
<td>164</td>
</tr>
<tr>
<td>Setting Preset Cutting Height (Case 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)</td>
<td>165</td>
</tr>
<tr>
<td>3.8.6 Challenger and Massey Ferguson 6 and 7 Series Combines</td>
<td>166</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (Challenger and Massey Ferguson)</td>
<td>166</td>
</tr>
<tr>
<td>Engaging the Auto Header Height Control (Challenger and Massey Ferguson)</td>
<td>168</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (Challenger and Massey Ferguson)</td>
<td>169</td>
</tr>
<tr>
<td>Adjusting the Header Height (Challenger and Massey Ferguson)</td>
<td>171</td>
</tr>
<tr>
<td>Adjusting the Header Raise/Lower Rate (Challenger and Massey Ferguson)</td>
<td>171</td>
</tr>
<tr>
<td>Setting the Sensitivity of the Auto Header Height Control (Challenger and Massey Ferguson)</td>
<td>172</td>
</tr>
<tr>
<td>3.8.7 Gleaner R65/R66/R75/R76 and S Series Combines</td>
<td>173</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>173</td>
</tr>
<tr>
<td>Engaging the Auto Header Height Control (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>175</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrating the Auto Header Height Control (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>177</td>
</tr>
<tr>
<td>Turning off the Accumulator (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>178</td>
</tr>
<tr>
<td>Adjusting the Header Raise/Lower Rate (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>179</td>
</tr>
<tr>
<td>Adjusting Ground Pressure (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>179</td>
</tr>
<tr>
<td>Adjusting the Sensitivity of the Auto Header Height Control (AHHC) (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>180</td>
</tr>
<tr>
<td>Troubleshooting Alarms and Diagnostic Faults (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)</td>
<td>181</td>
</tr>
<tr>
<td>3.8.8 Gleaner S9 Series Combines</td>
<td>183</td>
</tr>
<tr>
<td>Setting up the Header (Gleaner S9 Series)</td>
<td>183</td>
</tr>
<tr>
<td>Setting up Reel Settings (Gleaner S9 Series)</td>
<td>188</td>
</tr>
<tr>
<td>Setting up Automatic Header Controls (Gleaner S9 Series)</td>
<td>189</td>
</tr>
<tr>
<td>Calibrating the Header (Gleaner S9 Series)</td>
<td>192</td>
</tr>
<tr>
<td>Operating Header (Gleaner S9 Series)</td>
<td>195</td>
</tr>
<tr>
<td>Header In-Field Settings</td>
<td>196</td>
</tr>
<tr>
<td>3.8.9 John Deere 60 Series Combines</td>
<td>197</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (John Deere 60 Series)</td>
<td>197</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (John Deere 60 Series)</td>
<td>200</td>
</tr>
<tr>
<td>Turning the Accumulator Off (John Deere 60 Series)</td>
<td>201</td>
</tr>
<tr>
<td>Setting the Sensing Grain Header Height to 50 (John Deere 60 Series)</td>
<td>202</td>
</tr>
<tr>
<td>Setting the Sensitivity of the Auto Header Height Control (John Deere 60 Series)</td>
<td>203</td>
</tr>
<tr>
<td>Adjusting the Threshold for the Drop Rate Valve (John Deere 60 Series)</td>
<td>204</td>
</tr>
<tr>
<td>3.8.10 John Deere 70 Series Combines</td>
<td>205</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (John Deere 70 Series)</td>
<td>205</td>
</tr>
<tr>
<td>Calibrating Feeder House Speed (John Deere 70 Series)</td>
<td>208</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (John Deere 70 Series)</td>
<td>208</td>
</tr>
<tr>
<td>Setting the Sensitivity of the Auto Header Height Control (John Deere 70 Series)</td>
<td>208</td>
</tr>
<tr>
<td>Adjusting the Manual Header Raise/Lower Rate (John Deere 70 Series)</td>
<td>210</td>
</tr>
<tr>
<td>3.8.11 John Deere S and T Series Combines</td>
<td>211</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (John Deere S and T Series)</td>
<td>212</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (John Deere S and T Series)</td>
<td>215</td>
</tr>
<tr>
<td>Setting the Sensitivity of the Auto Header Height Control (John Deere S and T Series)</td>
<td>218</td>
</tr>
<tr>
<td>Adjusting the Manual Header Raise/Lower Rate (John Deere S and T Series)</td>
<td>219</td>
</tr>
<tr>
<td>Setting Preset Cutting Height (John Deere S and T Series)</td>
<td>220</td>
</tr>
<tr>
<td>Calibrating Feeder House Fore-Aft Tilt Range (John Deere S and T Series)</td>
<td>222</td>
</tr>
<tr>
<td>Checking Reel Height Sensor Voltages (John Deere S and T Series)</td>
<td>225</td>
</tr>
<tr>
<td>Calibrating Reel Height Sensor Voltages (John Deere S and T Series)</td>
<td>227</td>
</tr>
<tr>
<td>3.8.12 John Deere S7 Series Combines</td>
<td>230</td>
</tr>
<tr>
<td>Setting up Header (John Deere S7 Series)</td>
<td>230</td>
</tr>
<tr>
<td>Checking Voltage Range from the Combine Cab (John Deere S7 Series)</td>
<td>234</td>
</tr>
<tr>
<td>Calibrating Feeder House (John Deere S7 Series)</td>
<td>236</td>
</tr>
<tr>
<td>Calibrating Header (John Deere S7 Series)</td>
<td>239</td>
</tr>
<tr>
<td>3.8.13 CLAAS 500 Series Combines</td>
<td>242</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (CLAAS 500 Series)</td>
<td>242</td>
</tr>
<tr>
<td>Setting Cutting Height (CLAAS 500 Series)</td>
<td>244</td>
</tr>
<tr>
<td>Setting the Sensitivity of the Auto Header Height Control (CLAAS 500 Series)</td>
<td>246</td>
</tr>
<tr>
<td>Adjusting Auto Reel Speed (CLAAS 500 Series)</td>
<td>248</td>
</tr>
<tr>
<td>3.8.14 CLAAS 600 and 700 Series Combines</td>
<td>251</td>
</tr>
<tr>
<td>Calibrating the Auto Header Height Control (CLAAS 600 and 700 Series)</td>
<td>251</td>
</tr>
<tr>
<td>Setting Cutting Height (CLAAS 600 and 700 Series)</td>
<td>254</td>
</tr>
</tbody>
</table>
Chapter 4: Header Attachment/Detachment

4.1 Float Module Feed Auger Configurations
 4.1.1 Converting from Ultra Narrow Configuration or Narrow Configuration to Medium Configuration
 4.1.2 Converting from Wide Configuration to Medium Configuration
 4.1.3 Converting from Medium Configuration or Wide Configuration to Narrow Configuration
 4.1.4 Converting from Ultra Narrow Configuration to Narrow Configuration
 4.1.5 Converting from Medium Configuration to Wide Configuration
 4.1.6 Converting from Ultra Narrow or Narrow Configuration to Wide Configuration
Chapter 5: Maintenance and Servicing

5.1 Preparing Machine for Servicing ... 383
5.2 Maintenance Specifications .. 384
5.2.1 Installing a Sealed Bearing ... 384
5.3 Maintenance Requirements .. 385
5.3.1 Maintenance Schedule/Record ... 385
5.3.2 Break-In Inspection ... 388
5.3.3 Preseason Servicing .. 388
5.3.4 End-of-Season Service .. 389
5.3.5 Checking Hydraulic Hoses and Lines ... 390
5.3.6 Lubrication and Servicing ... 390
5.3.6.1 Service Intervals .. 390
5.3.6.2 Greasing Procedure .. 399
5.3.6.3 Lubricating Reel Drive Chain .. 400
5.3.6.4 Lubricating Auger Drive Chain ... 402
5.3.6.5 Lubricating Header Drive Gearbox .. 404

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.7 Optional Modification to Wide Configuration</td>
<td>322</td>
</tr>
<tr>
<td>4.1.8 Converting from Medium Configuration or Wide Configuration to Ultra Narrow Configuration</td>
<td>323</td>
</tr>
<tr>
<td>4.1.9 Converting from Narrow Configuration to Ultra Narrow Configuration</td>
<td>327</td>
</tr>
<tr>
<td>4.2 Float Module Setup</td>
<td>331</td>
</tr>
<tr>
<td>4.2.1 Using Auger Flighting</td>
<td>331</td>
</tr>
<tr>
<td>4.2.2 Using Stripper Bars</td>
<td>331</td>
</tr>
<tr>
<td>4.3 Case IH Combines</td>
<td>332</td>
</tr>
<tr>
<td>4.3.1 Attaching Header to Case IH Combine</td>
<td>332</td>
</tr>
<tr>
<td>4.3.2 Detaching Header from Case IH Combine</td>
<td>337</td>
</tr>
<tr>
<td>4.4 AGCO (Challenger, Gleaner, and Massey Ferguson) Combines</td>
<td>340</td>
</tr>
<tr>
<td>4.4.1 Attaching Header to a Challenger, Gleaner, or Massey Ferguson Combine</td>
<td>340</td>
</tr>
<tr>
<td>4.4.2 Detaching Header from a Challenger, Gleaner, or Massey Ferguson Combine</td>
<td>345</td>
</tr>
<tr>
<td>4.5 John Deere Combines</td>
<td>348</td>
</tr>
<tr>
<td>4.5.1 Attaching Header to John Deere Combine</td>
<td>348</td>
</tr>
<tr>
<td>4.5.2 Detaching Header from John Deere Combine</td>
<td>352</td>
</tr>
<tr>
<td>4.6 CLAAS Combines</td>
<td>355</td>
</tr>
<tr>
<td>4.6.1 Attaching Header to CLAAS Combine</td>
<td>355</td>
</tr>
<tr>
<td>4.6.2 Detaching Header from CLAAS Combine</td>
<td>360</td>
</tr>
<tr>
<td>4.7 New Holland Combines</td>
<td>363</td>
</tr>
<tr>
<td>4.7.1 Attaching Header to New Holland CR/CX Combine</td>
<td>363</td>
</tr>
<tr>
<td>4.7.2 Detaching Header from New Holland CR/CX Combine</td>
<td>367</td>
</tr>
<tr>
<td>4.7.3 CR Feeder Deflectors</td>
<td>371</td>
</tr>
<tr>
<td>4.8 Attaching and Detaching Header from Float Module</td>
<td>372</td>
</tr>
<tr>
<td>4.8.1 Detaching Header from Float Module</td>
<td>372</td>
</tr>
<tr>
<td>4.8.2 Attaching Header to Float Module</td>
<td>377</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Hydraulics</td>
<td>407</td>
</tr>
<tr>
<td>5.4.1 Checking Oil Level in Hydraulic Reservoir</td>
<td>407</td>
</tr>
<tr>
<td>5.4.2 Adding Oil to Hydraulic Reservoir</td>
<td>408</td>
</tr>
<tr>
<td>5.4.3 Changing Oil in Hydraulic Reservoir</td>
<td>409</td>
</tr>
<tr>
<td>5.4.4 Changing Oil Filter</td>
<td>410</td>
</tr>
<tr>
<td>5.5 Electrical System</td>
<td>411</td>
</tr>
<tr>
<td>5.5.1 Replacing Light Bulbs</td>
<td>411</td>
</tr>
<tr>
<td>5.6 Header Drive</td>
<td>412</td>
</tr>
<tr>
<td>5.6.1 Removing Driveline</td>
<td>412</td>
</tr>
<tr>
<td>5.6.2 Installing Driveline</td>
<td>413</td>
</tr>
<tr>
<td>5.6.3 Removing Driveline Guard</td>
<td>414</td>
</tr>
<tr>
<td>5.6.4 Installing Driveline Guard</td>
<td>416</td>
</tr>
<tr>
<td>5.6.5 Adjusting Gearbox Drive Chain Tension</td>
<td>418</td>
</tr>
<tr>
<td>5.7 Auger</td>
<td>419</td>
</tr>
<tr>
<td>5.7.1 Adjusting Auger to Pan Clearance</td>
<td>419</td>
</tr>
<tr>
<td>5.7.2 Checking Auger Drive Chain Tension</td>
<td>421</td>
</tr>
<tr>
<td>5.7.3 Adjusting Auger Drive Chain Tension</td>
<td>423</td>
</tr>
<tr>
<td>5.7.4 Removing Auger Drive Chain</td>
<td>424</td>
</tr>
<tr>
<td>5.7.5 Installing Auger Drive Chain</td>
<td>426</td>
</tr>
<tr>
<td>5.7.6 Using Auger Flighting</td>
<td>428</td>
</tr>
<tr>
<td>5.7.7 Auger Fingers</td>
<td>428</td>
</tr>
<tr>
<td>5.8 Knife</td>
<td>437</td>
</tr>
<tr>
<td>5.8.1 Replacing Knife Section</td>
<td>437</td>
</tr>
<tr>
<td>5.8.2 Removing Knife</td>
<td>438</td>
</tr>
<tr>
<td>5.8.3 Removing Knifehead Bearing</td>
<td>439</td>
</tr>
<tr>
<td>5.8.4 Installing Knifehead Bearing</td>
<td>440</td>
</tr>
<tr>
<td>5.8.5 Installing Knife</td>
<td>440</td>
</tr>
<tr>
<td>5.8.6 Spare Knife</td>
<td>441</td>
</tr>
<tr>
<td>5.8.7 Knife Guards</td>
<td>441</td>
</tr>
<tr>
<td>5.9 Knife Drive System</td>
<td>454</td>
</tr>
<tr>
<td>5.9.1 Knife Drive Box</td>
<td>454</td>
</tr>
</tbody>
</table>
5.16 Reel System .. 526
 5.16.1 Reel Drive Cover .. 526
 Removing Reel Drive Cover .. 526
 Installing Reel Drive Cover ... 527
 5.16.2 Reel Drive Chain Tension .. 528
 Loosening Reel Drive Chain .. 528
 Tightening Reel Drive Chain ... 528
 5.16.3 Reel Drive Sprocket .. 530
 Removing Reel Drive Sprocket .. 530
 Installing Reel Drive Sprocket .. 531
 5.16.4 Double-Reel U-Joint ... 532
 Removing Double-Reel U-Joint .. 532
 Installing Double-Reel U-Joint .. 533
 5.16.5 Reel Drive Motor ... 534
 Removing Reel Drive Motor .. 534
 Installing Reel Drive Motor .. 534
 5.16.6 Replacing Drive Chain on Double Reel .. 535
 5.16.7 Replacing Drive Chain on Single Reel .. 537
 5.16.8 Replacing Reel Speed Sensor .. 538
 Replacing AGCO (Challenger, Gleaner, and Massey Ferguson) Sensor 538
 Replacing John Deere Reel Speed Sensor .. 540
 Replacing CLAAS 400 Series Reel Speed Sensor ... 540
 Replacing CLAAS 500/700 Series Reel Speed Sensor .. 541

5.17 Transport System (Optional) .. 542
 5.17.1 Checking Wheel Bolt Torque .. 542
 5.17.2 Checking Axle Bolt Torque ... 543
 5.17.3 Checking Tire Pressure ... 544

Chapter 6: Options and Attachments .. 545
 6.1 Float Module .. 545
 6.1.1 Hillside Extension Kit .. 545
 6.2 Reel ... 546
 6.2.1 Multi-Crop Rapid Reel Conversion Kit ... 546
 6.2.2 Reel Arm Extension Kit (European-configured Headers Only) 546
 6.2.3 Lodged Crop Reel Finger Kit .. 547
 6.2.4 PR15 Tine Tube Reel Conversion Kit .. 547
 6.2.5 Reel Endshield Kit .. 547
 6.2.6 Tine Tube Reinforcing Kit ... 548
 6.3 Cutterbar ... 549
Chapter 7: Troubleshooting ...561
7.1 Crop Loss at Cutterbar ...561
7.2 Cutting Action and Knife Components ..564
7.3 Reel Delivery ...567
7.4 Header and Drapers ..570
7.5 Cutting Edible Beans ...572

Chapter 8: Reference ..577
8.1 Torque Specifications ...577
8.1.1 Metric Bolt Specifications ...577
8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum ...579
8.1.3 Flare-Type Hydraulic Fittings ..580
8.1.4 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable) ..581
8.1.5 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable) ...583
8.1.6 O-Ring Face Seal (ORFS) Hydraulic Fittings ...584
8.1.7 Tapered Pipe Thread Fittings ...585

6.4 Header ..552
 6.4.1 Divider Latch Kit ...552
 6.4.2 Stabilizer Wheels ..552
 6.4.3 Secondary Stabilizer Wheel ...553
 6.4.4 Stabilizer Wheels and Slow Speed Transport Package ..553
 6.4.5 Backsheet Extension Kit ..554
 6.4.6 Center Skid Shoes Kit ..554

6.5 Crop Delivery ...555
 6.5.1 FM100 Dual Auto Header Height Control (AHHC) Sensor Kit ..555
 6.5.2 FM100 Feed Auger Flighting ...555
 6.5.3 In-Cab Draper Speed Control (ICDSC) Kit ...556
 6.5.4 Draper Deflector (Narrow) ...556
 6.5.5 Draper Deflector (Wide) ...557
 6.5.6 Stripper Bars ...557
 6.5.7 Auger Dent Repair Kit ...558
 6.5.8 Upper Cross Auger (UCA) ...558
 6.5.9 European Combine Upper Cross Auger (UCA) ...559
 6.5.10 Rice Divider Rods ..559

6.3.1 Cutterbar Wearplate ..549
6.3.2 Knifehead Shield ..549
6.3.3 Extended Center Filler ..550
6.3.4 Rock Retarder ...550
6.3.5 Stub Guard Conversion Kit ..550
6.3.6 FD1 Series Vertical Knife Mounts and Double Vertical Knife Hose Kits551
6.3.7 Vertical Knife Plumbing Kits ...551
6.3.8 Roto-Shear Completion Package ..551

8.1.6 O-Ring Face Seal (ORFS) Hydraulic Fittings ..584
8.1.7 Tapered Pipe Thread Fittings ...585
1 Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

• ATTENTION!
• BECOME ALERT!
• YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

• Accidents disable and kill
• Accidents cost
• Accidents can be avoided

Figure 1.1: Safety Symbol
1.2 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. Signal words are selected using the following guidelines:

⚠️ **DANGER**
Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ **WARNING**
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ **CAUTION**
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.
1.3 General Safety

CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do NOT take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip-resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. Never ignore warning signs of fatigue.
SAFETY

- Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.
- Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
- Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

- Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.
- Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.
- To avoid bodily injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

- Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
- Keep work area well lit.
- Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
- NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
- When storing machinery, cover sharp or extending components to prevent injury from accidental contact.

Figure 1.5: Safety around Equipment

Figure 1.6: Safety around Equipment

Figure 1.7: Safety around Equipment
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit
- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lubricant fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do **NOT** attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high-pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If original part on which a safety sign was installed is replaced, be sure repair part also bears current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.6.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.
1.7 Safety Decal Locations

Figure 1.15: Upper Cross Auger

Figure 1.16: Slow Speed Transport
Figure 1.17: Slow Speed Transport Tow-Bar

Figure 1.18: Vertical Knife
Figure 1.19: Endsheets, Reel Arms, and Backsheet
SAFETY

Figure 1.20: Backtube

A - MD #184372
B - MD #166466
D - MD #131392
C - MD #131391
E - MD #184372 (Split Frame)
Figure 1.21: FM100 Float Module

A - MD #252996

B - MD #184372
1.8 Understanding Safety Signs

MD #113482

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

• Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
• Do NOT allow untrained persons to operate the machine.
• Review safety instructions with all Operators every year.
• Ensure that all safety signs are installed and legible.
• Make certain everyone is clear of machine before starting engine and during operation.
• Keep riders off the machine.
• Keep all shields in place and stay clear of moving parts.
• Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
• Stop the engine and remove the key before servicing, adjusting, lubricating, cleaning, or unplugging machine.
• Engage safety props to prevent lowering of header or reel before servicing in the raised position.
• Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #131391

Crushing hazard

DANGER

• Rest header on ground or engage safety props before going under unit.
SAFETY

MD #131392
Crushing hazard

WARNING

- To avoid injury from fall of raised reel; fully raise reel, stop the engine, remove the key, and engage safety prop on each reel support arm before working on or under reel.

Figure 1.24: MD #131392

MD #131393
Reel hazard

WARNING

- To avoid injury from fall of raised reel; fully raise reel, stop the engine, remove the key, and engage safety prop on each reel support arm before working on or under reel.

Figure 1.25: MD #131393

MD #166466
High-pressure oil hazard

WARNING

- Do NOT go near leaks.
- High-pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do NOT use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

Figure 1.26: MD #166466
MD #174436
High-pressure oil hazard

WARNING
- Do not go near leaks.
- High-pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

MD #174632
Reel entanglement hazard

CAUTION
- To avoid injury from entanglement with rotating reel, stand clear of header while machine is running.

MD #184372
General hazard pertaining to machine operation and servicing

CAUTION
To avoid injury or death from improper or unsafe machine operation:
- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do NOT allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
• Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
• Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
• Engage safety props to prevent lowering of raised unit before servicing in the raised position.
• Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #184422

Chain drive hand and arm entanglement hazard

WARNING

• Do **NOT** open or remove safety shields while engine is running.
• To avoid injury, stop the engine and remove the key before opening shield.

![Figure 1.30: MD #184422](image1)

MD #220797

Tipping hazard in transport mode

WARNING

• Read the operator’s manual for more information on potential tipping or rollover of header while transporting.

![Figure 1.31: MD #220797](image2)
MD #220798
Loss of control hazard in transport

CAUTION

- Do not tow the header with a dented or otherwise damaged tow pole (the circle with the red X shows a dent in the pole).
- Consult the operator’s manual for more information.

MD #220799
Transport/roading hazard

WARNING

- Ensure tow-bar lock mechanism is locked.

MD #252996
Hot oil spray hazard

WARNING

- Hydraulic oil is under pressure and may be hot.
- Never remove fill cap when machine is hot. Always allow machine to cool down before removing fill cap.
MD #279085

Auger entanglement hazard

WARNING

- To avoid injury from rotating auger, stand clear of auger while machine is running.

Figure 1.35: MD #279085
2 Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHHC</td>
<td>Automatic Header Height Control</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>D1 Series header</td>
<td>MacDon D120, D125, D130, D135, D140, and D145 combine draper header from D1 model number series</td>
</tr>
<tr>
<td>DDD</td>
<td>Double-draper drive</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DKD</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>DR</td>
<td>Double reel</td>
</tr>
<tr>
<td>FD1 Series header</td>
<td>MacDon FD130, FD135, FD140, or FD145 combine FlexDraper® header from the FD1 Series model number series</td>
</tr>
<tr>
<td>FFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts crop and feeds it into an attached combine</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>HDS</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>MDS</td>
<td>Mechanical deck shift</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>SDD</td>
<td>Single-draper drive</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>Truck</td>
<td>A four-wheel highway/road vehicle weighing no less than 3400 kg (7500 lb.)</td>
</tr>
<tr>
<td>UCA</td>
<td>Upper cross auger</td>
</tr>
<tr>
<td>Untimed knife drive</td>
<td>Unsynchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor or two hydraulic motors</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism</td>
</tr>
</tbody>
</table>
2.2 Specifications

The following symbols and letters are used in Table 2.1, page 21 and Table 2.2, page 23:

| FD1 | FM100 | Attachments
S: standard / OF: optional (factory installed) / OD: optional (dealer installed) / -: not available

Table 2.1 Header Specifications

<table>
<thead>
<tr>
<th>Cutterbar</th>
<th>Effective cutting width (distance between crop divider points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 m (30 ft.) header</td>
<td>914.4 cm (360 in.) S</td>
</tr>
<tr>
<td>10.7 m (35 ft.) header</td>
<td>10.668 m (420 in.) S</td>
</tr>
<tr>
<td>12.2 m (40 ft.) header</td>
<td>12.192 m (480 in.) S</td>
</tr>
<tr>
<td>13.7 m (45 ft.) header</td>
<td>13.716 m (540 in.) S</td>
</tr>
<tr>
<td>Cutterbar lift range</td>
<td>Varies with combine model S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knife</th>
<th>Single-knife drive (all sizes): hydraulic motor to C-belt to enclosed heavy-duty (MD) knife drive box. OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double knife drive (12.2 and 13.7 m [40 and 45 ft.]): two hydraulic motors to C-belts, untimed, to enclosed heavy-duty (MD) knife drive boxes. OF</td>
<td></td>
</tr>
<tr>
<td>Knife stroke</td>
<td>76 mm (3 in.) S</td>
</tr>
<tr>
<td>Single-knife speed (strokes per minute)¹ 9.1 m (30 ft.)</td>
<td>1200–1400 spm S</td>
</tr>
<tr>
<td>Single-knife speed (strokes per minute)¹ 10.7 m (35 ft.)</td>
<td>1100–1300 spm S</td>
</tr>
<tr>
<td>Single-knife speed (strokes per minute)¹ 12.2 m (40 ft.)</td>
<td>1050–1200 spm S</td>
</tr>
<tr>
<td>Double-knife speed (strokes per minute)¹ 12.2, 13.7 m (40, 45 ft.)</td>
<td>1100–1400 spm S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knife Sections</th>
<th>Over-serrated / solid / bolted / 3.5 serrations per cm (9 serrations per inch) S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife overlap at center (double-knife headers)</td>
<td>3 mm (1/8 in.) S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guards and Hold-Downs</th>
<th>Guard: pointed / forged / double heat treated (DHT), Hold-down: sheet metal / adjustment bolt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Guard Angle (Cutterbar on Ground)</th>
<th>Center-link retracted 2.0 degrees S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center-link extended</td>
<td>7.4 degrees S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Draper (Conveyor) and Decks</th>
<th>Draper width 1.057 m (41-19/32 in.) S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper drive</td>
<td>Hydraulic S</td>
</tr>
</tbody>
</table>

¹ Under normal cutting conditions, knife speed taken at the knife drive pulley should be set at 600 rpm (1200 spm). If set to low end of the speed range, you could experience knife stalling.
Table 2.1 Header Specifications (continued)

<table>
<thead>
<tr>
<th>Draper speed: FM100 Float Module controlled</th>
<th>0–193 m/min. (635 fpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR15 Pick-Up Reel</td>
<td></td>
</tr>
<tr>
<td>Quantity of tine tubes</td>
<td>5-, 6-, or 9-tine tubes</td>
</tr>
<tr>
<td>Center tube diameter</td>
<td>203 mm (8 in.)</td>
</tr>
<tr>
<td>Finger tip radius</td>
<td>Factory-set 800 mm (31-1/2 in.)</td>
</tr>
<tr>
<td>Finger tip radius</td>
<td>Adjustment range 766–800 mm (30-3/16–31-1/2 in.)</td>
</tr>
<tr>
<td>Effective reel diameter (via cam profile)</td>
<td>1.650 m (65 in.)</td>
</tr>
<tr>
<td>Finger length</td>
<td>290 mm (11 in.)</td>
</tr>
<tr>
<td>Finger spacing (staggered on alternate bats)</td>
<td>150 mm (6 in.)</td>
</tr>
<tr>
<td>Reel drive</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>Reel speed (adjustable from cab, varies with combine model)</td>
<td>0–67 rpm</td>
</tr>
<tr>
<td>Frame and Structure</td>
<td></td>
</tr>
<tr>
<td>Header width</td>
<td>Field mode</td>
</tr>
<tr>
<td>Cut width + 384 mm (15-1/8 in.)</td>
<td>S</td>
</tr>
<tr>
<td>Header width</td>
<td>Transport position - reel fore-aft fully retracted (shortest center-link)</td>
</tr>
<tr>
<td>Header width</td>
<td>Transport position - reel fore-aft fully retracted (shortest center-link)</td>
</tr>
</tbody>
</table>
Table 2.2 Header Attachments

<table>
<thead>
<tr>
<th>FM100 Float Module</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed draper</td>
<td>Width</td>
<td>2.000 m (78-11/16 in.)</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Feed draper</td>
<td>Speed</td>
<td>107–122 m/min (350–400 fpm)</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Feed auger</td>
<td>Width</td>
<td>1.660 m (65-5/16 in.)</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Feed auger</td>
<td>Outside diameter</td>
<td>559 mm (22 in.)</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Feed auger</td>
<td>Tube diameter</td>
<td>356 mm (14 in.)</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Feed auger</td>
<td>Speed (varies with combine model)</td>
<td>190 rpm</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Oil reservoir capacity</td>
<td></td>
<td>75 liters (20 US gallons)</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Oil type</td>
<td></td>
<td>DURATRAN™</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>Case, New Holland</td>
<td>Maximum (extended)</td>
<td>1.230 m (48-7/16 in.)</td>
<td>Of</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>Case, New Holland</td>
<td>Minimum (compressed)</td>
<td>603 mm (23-3/4 in.)</td>
<td>Of</td>
</tr>
</tbody>
</table>

2. Subtract 265 mm (10-7/16 in.) for length between yoke pins.
Table 2.2 Header Attachments (continued)

<table>
<thead>
<tr>
<th>Driveline overall length²</th>
<th>Challenger, Gleaner, John Deere, CLAAS, Massey Ferguson</th>
<th>Maximum (extended)</th>
<th>(1.262,\text{m} \quad (49-11/16,\text{in.}))</th>
<th>(\text{OF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driveline overall length²</td>
<td>Challenger, Gleaner, John Deere, CLAAS, Massey Ferguson</td>
<td>Minimum (compressed)</td>
<td>(916,\text{mm} \quad (36-1/16,\text{in.}))</td>
<td>(\text{OF})</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>John Deere 9650/9660</td>
<td>Maximum (extended)</td>
<td>(775,\text{mm} \quad (30-1/2,\text{in.}))</td>
<td>(\text{OF})</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>John Deere 9650/9660</td>
<td>Minimum (compressed)</td>
<td>(880,\text{mm} \quad (34-5/8,\text{in.}))</td>
<td>(\text{OF})</td>
</tr>
</tbody>
</table>

Upper Cross Auger

| Outside diameter | \(305\,\text{mm} \quad (12\,\text{in.})\) | — |
| Tube diameter | \(152\,\text{mm} \quad (6\,\text{in.})\) | — |

Stabilizer Wheel / Slow Speed Transport

| Wheels | 15 in. | — |
| Tires | P205/75 R-15 | — |

Weight

Estimated weight range – base header, no float module – variances are due to different package configurations.

<table>
<thead>
<tr>
<th>Header Size</th>
<th>Weight Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 m (30 ft.)</td>
<td>2218–2317 kg (4890–5240 lb.)</td>
</tr>
<tr>
<td>10.7 m (35 ft.)</td>
<td>2409–2558 kg (5310–5640 lb.)</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>North America frame</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>Export frame</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td>North America frame</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td>Export frame</td>
</tr>
</tbody>
</table>
2.3 Component Identification

2.3.1 FD1 Series FlexDraper®

Figure 2.2: FD1 Series FlexDraper® Components

A - Wing Float Linkage
D - Endshield
G - Side Draper
K - Reel Endshield

B - Center Reel Arm
E - Reel Lift Cylinder
H - Center Reel Drive
L - Crop Divider

C - Reel Fore-Aft Cylinder
F - Knife Drive Box (inside endshield)
J - Pick-up Reel
M - Header Light (except Europe)
2.3.2 FM100 Float Module

Figure 2.3: Header Side of FM100 Float Module

A - Feed Auger B - Header Float Springs C - Center-Link
D - Hydraulic Reservoir E - Gearbox F - Header Support Arms
G - Feed Draper H - Hydraulic Filter
Figure 2.4: Combine Side of FM100 Float Module

A - Float Module Gearbox
B - Hydraulic Compartment Cover
C - Reservoir Oil Level Sight Glass
D - Center-Link
E - Header Height Control Indicator
F - Torque Wrench
G - Drain Tube (x2)
H - Float Lock Handle (x2)
J - Auto Header Height Control (AHHC) Sensor
3 Operation

3.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the header. Contact your MacDon Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety decals on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do NOT modify the machine. Unauthorized modifications may impair the function and/or safety of the machine and may reduce the length of service you receive from your machine.
- The safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
3.2 Operational Safety

⚠️ CAUTION
Adhere to the following safety precautions:

- Follow all safety and operational instructions provided in your operator’s manuals. If you do not have a combine manual, get one from your Dealer and read it thoroughly.
- Never attempt to start the engine or operate the machine except from the combine seat.
- Check the operation of all controls in a safe, clear area before starting work.
- Do NOT allow riders on the combine.

⚠️ CAUTION
- Never start or move the machine until you are sure all bystanders have cleared the area.
- Avoid travelling over loose fill, rocks, ditches, or holes.
- Drive slowly through gates and doorways.
- When working on inclines, travel uphill or downhill whenever possible. Be sure to keep transmission in gear when travelling downhill.
- Never attempt to get on or off a moving machine.
- Do NOT leave operator’s station while the engine is running.
- To avoid bodily injury or death from unexpected startup of a machine, always stop the engine and remove the key before adjusting or removing plugged material from the machine.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure. Refer to 3.4 Shutting down the Combine, page 41.
- Operate only in daylight or good artificial light.

3.2.1 Header Safety Props
The header safety props, located on the header lift cylinders, prevent the lift cylinders from unexpectedly retracting and lowering the header. Refer to your combine operator’s manual for instructions.

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.
3.2.2 Reel Safety Props

The reel safety props, located on the reel support arms, prevent the reel from unexpectedly lowering.

⚠️ WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

To prevent damage to the reel support arms, do NOT transport the header with the reel safety props engaged.

Engaging Reel Safety Props

1. Raise reel to maximum height.

2. Move reel safety props (A) to engaged position (as shown).

 NOTE:
 Keep pivot bolt (B) sufficiently tight so prop remains in stored position when not in use, but can be engaged using hand force.

3. Repeat on right reel arm.

Figure 3.3: Reel Safety Prop – Left Side
4. Use handle (A) to move lock rod to inboard position (B), which engages pin (C) under prop.
5. Lower reel until safety props contact the outer arm cylinder mounts and the center arm pins.

Disengaging Reel Safety Props
1. Raise the reel to maximum height.
2. Move the reel safety props (A) back inside the reel arms.
3. Use handle (B) to move lock rod (A) to the outboard position.

3.2.3 Endshields

A hinged, polyethylene endshield is fitted on each end of the header.

Opening Endshields

1. Push release lever (A) located on the backside of the endshield to unlock the shield.

2. Pull endshield open using handle depression (B).

3. Pull endshield at handle depression (A). Endshield is retained by a hinge tab (B) and will open in direction (C).
4. If additional clearance is required, pull the endshield free of hinge tab (A) and swing shield towards the rear of the header.

5. Engage safety latch (B) on hinge arm to secure the shield in fully open position.

Closing Endshields
1. Disengage lock (B) to allow endshield to move.
2. Insert front of endshield behind hinge tab (A) and into divider cone.

3. Swing endshield in direction (A) into closed position. Engage lock with a firm push.
4. Check that endshield is locked.
Checking and Adjusting Endshields

Endshields are subject to expansion or contraction caused by large temperature variations. The position of the top pin and lower latch can be adjusted to compensate for dimensional changes.

Checking the endshield:

1. Check gap (X) between front end of shields and header frame and compare to the values in Table 3.1, page 35.

<table>
<thead>
<tr>
<th>Temperature in °C (°F)</th>
<th>Gap (X) mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (45)</td>
<td>13–18 (1/2–23/32)</td>
</tr>
<tr>
<td>18 (65)</td>
<td>10–15 (3/8–19/32)</td>
</tr>
<tr>
<td>29 (85)</td>
<td>7–12 (9/32–15/32)</td>
</tr>
<tr>
<td>41 (105)</td>
<td>4–9 (5/32–11/32)</td>
</tr>
</tbody>
</table>

Adjusting the endshield gap:

1. Loosen the four bolts (A) on support tube bracket (B).
2. Loosen the three bolts (A) on latch assembly (B).

3. Adjust latch assembly (B) to achieve the desired gap between the front end of the shield and the header frame. Refer to Table 3.1, page 35 for the recommended endshield gap at various temperatures.

4. Tighten the three bolts (A) on the latch assembly.

5. Tighten the four bolts (A) on support tube bracket (B).

6. Close endshield.

Removing Endshields

1. Fully open the endshield. For instructions, refer to *Opening Endshields, page 33.*

2. Engage lock (A) to prevent endshield movement.

3. Remove self-tapping screw (B).

4. Slide endshield upwards and remove from hinge arm (C).

5. Place endshield away from work area.
Installing Endshields

1. Guide endshield onto hinge arm (C) and slowly slide it downwards.

 NOTE:
 Ensure hinge arm (C) is installed in the outboard hole on the hinge bracket, as shown in illustration at right.

2. Install self-tapping screw (B).

3. Disengage lock (A) to allow endshield movement.

4. Close endshield. Refer to *Closing Endshields, page 34*.

 NOTE:
 Endshields may expand or contract when subjected to large temperature changes. Top pin and lower latch bracket positions can be adjusted to compensate for dimensional changes. Refer to *Checking and Adjusting Endshields, page 35*.

3.2.4 Linkage Covers

Plastic covers are attached to the header frame to protect the header wing balance mechanism from debris and weather.

Removing Linkage Covers

1. Remove screw (A) and lift outboard end of cover (B).
2. Rotate cover (A) upward until inboard end can be lifted off.

![Figure 3.19: Linkage Cover](image)

Installing Linkage Covers
1. Position inboard end of cover (A) over linkage and behind indicator bar (B).
2. Lower cover until secure and against header tube.

![Figure 3.20: Linkage Cover](image)

3. Install screw (A) to hold cover (B) in place.

![Figure 3.21: Linkage Cover](image)
3.2.5 Daily Start-Up Check

CAUTION

- Clear the area of other persons, pets, etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.
- Wear close-fitting clothing and protective shoes with slip-resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that could be necessary through the day. Do NOT take chances. You may need a hard hat, protective glasses or goggles, heavy gloves, a respirator or filter mask, or wet weather gear.
- Protect against noise. Wear a suitable hearing protective device such as ear muffs or ear plugs to protect against objectionable or uncomfortably loud noises.

Complete the following tasks each day before start-up:

1. Check the machine for leaks and any parts that are missing, broken, or not working correctly.

 NOTE:
 Use proper procedure when searching for pressurized fluid leaks. Refer to 5.3.5 Checking Hydraulic Hoses and Lines, page 390.

2. Clean all lights and reflective surfaces on the machine.

3. Perform all daily maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 385.
3.3 Break-in Period

⚠️ CAUTION
Before investigating an unusual sound or attempting to correct a problem, shut off engine and remove key.

NOTE:
Until you become familiar with the sound and feel of your new header, be extra alert and attentive.

After attaching the header to the combine for the first time, follow these steps:

1. Operate the machine with the reels, drapers, and knives running slowly for five minutes. Watch and listen FROM THE OPERATOR’S SEAT for binding or interfering parts.

 NOTE:
 Reels and side drapers will not operate until oil flow fills the lines.

2. Refer to 5.3.2 Break-In Inspection, page 388 and perform all the specified tasks.
3.4 Shutting down the Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

To shut down the combine and before leaving the operator’s seat for any reason, follow these steps:

1. Park on level ground whenever possible.
2. Lower the header fully.
3. Place all controls in NEUTRAL or PARK.
4. Disengage the header drive.
5. Lower and fully retract the reel.
6. Stop the engine and remove the key from the ignition.
7. Wait for all movement to stop.
CAUTION

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

Refer to your combine operator’s manual for identification of the following in-cab controls:

- Header engage/disengage control
- Header height
- Header angle
- Ground speed
- Reel speed
- Reel height
- Reel fore-aft position
3.6 Header Setup

3.6.1 Header Attachments
Several attachments to improve the performance of your header are available as options that can be installed by your MacDon Dealer. Refer to 6 Options and Attachments, page 545 for descriptions of available items.

3.6.2 Header Settings
The following tables provide a guideline for setting up the FD1 FlexDraper® Header; however, the suggested settings can be changed to suit various crops and conditions not covered in the tables.

Refer also to 3.6.4 Reel Settings, page 56.

For FM100 auger configurations, refer to 4.1 Float Module Feed Auger Configurations, page 307.
<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102 (<4)</th>
<th>102–203 (4–8)</th>
<th>203+ (8+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>Storage</td>
<td>As required</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
<td>Down for lodged crop conditions, middle or down for other crop conditions</td>
<td></td>
</tr>
<tr>
<td>Crop Condition</td>
<td>Light</td>
<td>Normal</td>
<td>Heavy</td>
</tr>
<tr>
<td>Divider Rods</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Draper Speed Setting</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Header Angle</td>
<td>B – C</td>
<td>B – C</td>
<td>B – C</td>
</tr>
<tr>
<td>Reel Cam</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Reel Speed %</td>
<td>10–15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Reel Position</td>
<td>6 or 7</td>
<td>6 or 7</td>
<td>6 or 7</td>
</tr>
<tr>
<td>Upper Cross Auger</td>
<td>Not required</td>
<td>Not required</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

3. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
4. Setting on FM100 draper control.
5. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
6. Cutting height is controlled with a combination of skid shoes and header angle.
7. Percentage above ground speed.
Table 3.2 Recommended FD1 Series / FM100 Combine Header Settings for Cereals (continued)

<table>
<thead>
<tr>
<th>Skid Shoe Position</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Condition</td>
<td>Divider Rods</td>
</tr>
<tr>
<td>Light</td>
<td>Off</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
</tr>
<tr>
<td>Stubble Height</td>
<td>On ground</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Stabilizer Wheels(^8)</td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting(^9)</th>
<th>Header Angle(^{10, 11})</th>
<th>Reel Cam</th>
<th>Reel Speed %(^{12})</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

8. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
9. Setting on FM100 draper control.
10. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
11. Cutting height is controlled with a combination of skid shoes and header angle.
12. Percentage above ground speed.
Table 3.4 Recommended FD1 Series / FM100 Combine Header Settings for Peas

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>On ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels (^{13})</td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting (^{14})</th>
<th>Header Angle (^{15} 16)</th>
<th>Reel Cam</th>
<th>Reel Speed % (^{17})</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>4 or 5</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

13. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
14. Setting on FM100 draper control.
15. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
16. Cutting height is controlled with a combination of skid shoes and header angle.
17. Percentage above ground speed.
<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102–203 (4–8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels(^{18})</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Down for light or heavy crop conditions, middle or down for normal or lodged crop conditions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting(^{19})</th>
<th>Header Angle(^{20, 21})</th>
<th>Reel Cam</th>
<th>Reel Speed %(^{22})</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>1</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>1</td>
<td>10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>203+ (8+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting(^{19})</th>
<th>Header Angle(^{20, 21})</th>
<th>Reel Cam</th>
<th>Reel Speed %</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>1 or 2</td>
<td>10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2 or 3</td>
<td>5–10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

\(^{18}\) Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.

\(^{19}\) Setting on FM100 draper control.

\(^{20}\) Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.

\(^{21}\) Cutting height is controlled with a combination of skid shoes and header angle.

\(^{22}\) Percentage above ground speed.
Table 3.6 Recommended FD1 Series / FM100 Combine Header Settings for California Rice

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102 (<4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>23</sup></td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods<sup>24</sup></th>
<th>Draper Speed Setting<sup>25</sup></th>
<th>Header Angle<sup>26, 27</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>28</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Rice divider rod</td>
<td>4</td>
<td>D</td>
<td>2</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
<tr>
<td>lodged</td>
<td>Rice divider rod</td>
<td>4</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102–203 (4–8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>23</sup></td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Middle or down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods<sup>24</sup></th>
<th>Draper Speed Setting<sup>25</sup></th>
<th>Header Angle<sup>26, 27</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>28</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Rice divider rod</td>
<td>4</td>
<td>D</td>
<td>3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Rice divider rod</td>
<td>4</td>
<td>D</td>
<td>4</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

23. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
24. The rice divider rod is available. Rice divider rod not required on both ends of header.
25. Setting on FM100 draper control.
26. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
27. Cutting height is controlled with a combination of skid shoes and header angle.
28. Percentage above ground speed.
<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>203+ (8+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels(^{23})</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods(^{24})</th>
<th>Draper Speed Setting(^{25})</th>
<th>Header Angle(^{26, 27})</th>
<th>Reel Cam</th>
<th>Reel Speed %(^{28})</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Rice divider rod</td>
<td>4</td>
<td>A</td>
<td>3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Rice divider rod</td>
<td>4</td>
<td>D</td>
<td>4</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>
Table 3.7 Recommended FD1 Series / FM100 Combine Header Settings for Delta Rice

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>51–152 (2–6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>29</sup></td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Middle or down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>30</sup></th>
<th>Header Angle<sup>31,32</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>33</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>6</td>
<td>D</td>
<td>2 or 3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>6</td>
<td>D</td>
<td>3 or 4</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>152+ (6+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>30</sup></th>
<th>Header Angle<sup>31,32</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>33</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>6</td>
<td>A</td>
<td>2 or 3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>6</td>
<td>D</td>
<td>3 or 4</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

29. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
30. Setting on FM100 draper control.
31. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
32. Cutting height is controlled with a combination of skid shoes and header angle.
33. Percentage above ground speed.
Table 3.8 Recommended FD1 Series / FM100 Combine Header Settings for Edible Beans

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>On ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>34</sup></td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>35</sup></th>
<th>Header Angle<sup>36 37</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>38</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

³⁴ Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.

³⁵ Setting on FM100 draper control.

³⁶ Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.

³⁷ Cutting height is controlled with a combination of skid shoes and header angle.

³⁸ Percentage above ground speed.
Table 3.9 Recommended FD1 Series / FM100 Combine Header Settings for Flax

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>51–153 (2–6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>39</sup></td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Down for lodged crop conditions, middle or down for other crop conditions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>40</sup></th>
<th>Header Angle<sup>41</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>43</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

39. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
40. Setting on FM100 draper control.
41. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
42. Cutting height is controlled with a combination of skid shoes and header angle.
43. Percentage above ground speed.
3.6.3 Optimizing Header for Straight Combining Canola

Ripe canola can be straight combined, but most varieties are very susceptible to shelling and subsequent seed loss. This section provides recommended attachments, settings, and adjustments to optimize FD1 Series FlexDraper® Headers for straight combining canola.

Recommended attachments

The optimization includes the following modifications to the header:

- Installing a full-length upper cross auger
- Installing vertical knives
- Installing short center reel braces

NOTE:
Each kit includes installation instructions and the necessary hardware. Refer to *6 Options and Attachments, page 545*.

Recommended settings

Optimizing the header requires adjustments to the following settings:

- Moving the reel fore-aft cylinders to the alternative aft location. Refer to *Repositioning Fore-Aft Cylinders on Non-European-Configured Headers, page 101*.
- Adjusting reel fore-aft position. Refer to *Adjusting Reel Fore-Aft Position, page 100*.
- Adjusting reel height so that fingers just engage the crop. Refer to *3.7.10 Reel Height, page 95*.
- Setting reel cam to position 1. Refer to *Adjusting Reel Cam, page 113*.
- Setting reel speed equal to ground speed and increase as required. Refer to *3.7.6 Reel Speed, page 89*.
- Set the side draper speed to position nine on FM100 control valve. Refer to *3.7.8 Draper Speed, page 91*.
- Set auger to floating position. Refer to *3.7.15 Setting Auger Position, page 121*.
- Loosen auger spring tension. Refer to *Checking and Adjusting Feed Auger Springs, page 54*.

Checking and Adjusting Feed Auger Springs

The feed auger has an adjustable spring tensioning system that allows the auger to float on top of the crop instead of crushing and damaging it. The factory-set tension is adequate for most crop conditions.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise header to full height.
2. Shut down the combine, and remove the key from the ignition.
4. Check the thread length protruding past the nut (B). Length should be 22–26 mm (7/8–1 in.).

If adjustment is required, follow these steps:

1. Loosen upper jam nut (A) on spring tensioner.
2. Turn lower nut (B) until the thread (C) protrudes 22–26 mm (7/8–1 in.).
3. Tighten jam nut (A).
4. Repeat Steps 1, page 55 to 3, page 55 on opposite side.
3.6.4 Reel Settings

Table 3.10 FD1 Series Recommended Reel Settings

<table>
<thead>
<tr>
<th>Cam Setting Number (Finger Speed Gain)</th>
<th>Reel Position Number</th>
<th>Reel Finger Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0)</td>
<td>6 or 7</td>
<td></td>
</tr>
<tr>
<td>2 (20%)</td>
<td>6 or 7</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.10 FD1 Series Recommended Reel Settings (continued)

<table>
<thead>
<tr>
<th>Cam Setting Number (Finger Speed Gain)</th>
<th>Reel Position Number</th>
<th>Reel Finger Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (30%)</td>
<td>3 or 4</td>
<td></td>
</tr>
<tr>
<td>4 (35%)</td>
<td>2 or 3</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

- Adjust the reel forward to get closer to the ground while tilting the header back. Fingers/tines will dig into the ground at extreme reel-forward positions, so adjust skid shoes or header angle to compensate. Adjust the reel rearwards to position the reel farther away from the ground when tilting the header forward.
- Header tilt can be increased to position the reel closer to the ground, or decreased to position the reel farther from the ground, while keeping material flowing onto drapers.
- To leave the maximum amount of stubble behind in lodged crop, raise the header and increase the header tilt to keep the reel close to the ground. Position the reel fully forward.
- The reel may have to be moved back to prevent lumps or plugging on the cutterbar in thinner crops.
- Minimum crop carrying capacity (minimum area of exposed draper between the reel and the header backsheet) occurs with the reel in the furthest aft position.
- Maximum crop carrying capacity (maximum area of exposed draper between the reel and the header backsheet) occurs with the reel in the furthest forward position.
- Due to the nature of the cam action, the tip speed of the fingers/tines at the cutterbar becomes higher than that of the reel speed at higher cam settings. Refer to Table 3.10, page 56.
3.7 Header Operating Variables

Satisfactory function of the header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and increases productivity. As well, proper adjustments and timely maintenance will increase the length of service you receive from your machine.

The variables listed in Table 3.11, page 58 and detailed on the following pages will affect the performance of your header.

You will quickly become adept at adjusting the machine to achieve the results you desire. Most of the adjustments have been preset at the factory, but the settings can be changed to suit crop conditions.

Table 3.11 Operating Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting height</td>
<td>3.7.1 Cutting off the Ground, page 58; 3.7.2 Cutting on the Ground, page 62</td>
</tr>
<tr>
<td>Header float</td>
<td>3.7.3 Header Float, page 64</td>
</tr>
<tr>
<td>Header angle</td>
<td>3.7.5 Header Angle, page 81</td>
</tr>
<tr>
<td>Reel speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td>Ground speed</td>
<td>3.7.7 Ground Speed, page 90</td>
</tr>
<tr>
<td>Reel height</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Reel fore-aft position</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Reel tine pitch</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Crop divider rods</td>
<td>3.7.13 Crop Dividers, page 115</td>
</tr>
<tr>
<td>Feed auger configurations</td>
<td>4.1 Float Module Feed Auger Configurations, page 307</td>
</tr>
</tbody>
</table>

3.7.1 Cutting off the Ground

The header’s design allows operators to cut crop above the ground in relation to desired stubble height. The cutting height will vary depending on factors including crop type, crop conditions, etc.

The stabilizer wheel system is designed to minimize bouncing at the header ends and may be used to float the header to achieve an even cutting height when cutting above ground level in cereal grains. The system produces even stubble height and greatly reduces operator fatigue.

Cutting height is controlled using a combination of the combine header height control and a stabilizer wheel system (or stabilizer / slow speed transport wheel system).

If stabilizer wheels are installed, refer to Adjusting Stabilizer Wheels, page 60 to change the wheel position.

If stabilizer / slow speed transport wheels are installed, refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 59 to change the wheel position.
Adjusting Stabilizer / Slow Speed Transport Wheels

A properly adjusted header will achieve a balance between the amount of header weight carried by the float and the amount carried by the stabilizer / slow speed transport wheels.

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the header so the stabilizer wheels are off the ground. Shut down engine and remove the key.
2. Remove the hairpin (A) from the latch on the right wheel assembly.
3. Disengage the latch (B), lift the wheel out of the hook, and place on the ground as shown. (This reduces weight of assembly and makes adjusting the wheel position easier.)
4. Lift the left wheel slightly to support the weight, and the pull handle (C) upwards to release the lock.
5. Lift the left wheel to the desired height and engage the support channel into the slot (D) in the upper support.
6. Push down on the handle (C) to lock.
7. Lift the right wheel back into the field position and ensure the latch (B) is engaged.
8. Secure the latch with hairpin (A).
9. Support the wheel weight by lifting slightly with one hand, and pull up on handle (A) to release the lock.
10. Lift the wheels to the desired height, and engage the support channel into the slot (B) in the upper support.
11. Push down on the handle (A) to lock.
12. Lower the header to the desired cutting height using the combine controls and check the load indicator (A).

13. Adjust the header angle to the desired working angle with the machine’s header angle controls. If header angle is not critical, set it to mid-position.

IMPORTANT:
Continuous operation with excessive spring compression (i.e., load indicator reading greater than 4 or a compressed length [A] less than 295 mm [11-5/8 in.]) can result in damage to the suspension system.

14. Use the combine’s auto header height control (AHHC) to automatically maintain cutting height. Refer to 3.8 Auto Header Height Control (AHHC), page 124 and your combine operator’s manual for details.

NOTE:
The height sensor on the FM100 Float Module must be connected to the combine header control module in the cab.

Adjusting Stabilizer Wheels

A properly adjusted header will achieve a balance between the amount of header weight carried by the float and the amount carried by the stabilizer wheels.

Refer to 3.6.2 Header Settings, page 43 for recommended use in specific crops and crop conditions.

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the header until the stabilizer wheels are off the ground. Shut down engine and remove the key.
2. Support the wheel weight by lifting slightly with one hand on handle (B), and pull up on the handle (A) to release the lock.

3. Lift the wheel using handle (B), and engage the support channel into the center slot (C) in the upper support.

4. Push down on the handle (A) to lock.

5. Lower the header to the desired cutting height using the combine controls and check the load indicator (A).

6. Adjust the header angle to the desired working angle with the machine’s header angle controls. If header angle is not critical, set it to mid-position.

IMPORTANT:
Continuous operation with excessive spring compression (i.e., load indicator reading greater than 4 or a compressed length less than 295 mm (11-5/8 in.) (A) can result in damage to the suspension system.

7. Use the combine’s Auto Header Height Control (AHHC) to automatically maintain cutting height. Refer to 3.8 Auto Header Height Control (AHHC), page 124 and your combine operator’s manual for details.

NOTE:
The height sensor on the FM100 Float Module must be connected to the combine height control system in the cab.
3.7.2 Cutting on the Ground

Header design allows you to cut crop at ground level with the header on the ground. Cutting height will vary depending on what kind of crop, crop conditions, etc.

Cutting on the ground is performed with the header fully lowered and the cutterbar on the ground. The orientation of the knife and knife guards relative to the ground (header angle) is controlled by the skid shoes and the center-link—it is NOT controlled by the header lift cylinders. The skid shoes and center-link allow you to adjust to field conditions and maximize the amount of material cut while reducing damage to the knife caused by stones and debris.

The header float system floats the header over the surface to compensate for ridges, trenches, and other variations in ground contour to prevent the cutterbar from pushing into the ground or leaving uncut crop.

Refer to the following for additional information:

- Adjusting Inner Skid Shoes, page 62
- Adjusting Outer Skid Shoes, page 63
- 3.7.5 Header Angle, page 81
- 3.7.3 Header Float, page 64

Also refer to 3.6.2 Header Settings, page 43.

Adjusting Inner Skid Shoes

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise header to full height, engage safety props.
2. Shut off the engine, and remove key.
3. Raise the stabilizer wheels or slow speed transport wheels fully (if installed). Refer to the following:
 - Adjusting Stabilizer Wheels, page 60
 - Adjusting Stabilizer / Slow Speed Transport Wheels, page 59
4. Remove the lynch pin (A) from each skid shoe.
5. Hold the shoe (B) and remove the pin (C) by disengaging from the frame and pulling away from the shoe.
6. Raise or lower the skid shoe (B) to achieve the desired position using the holes in the support (D) as a guide.
7. Install the pin (C), engage in frame, and secure with lynch pin (A).
8. Check that all of the skid shoes are adjusted to the same position.

Figure 3.32: Inner Skid Shoe
9. Adjust the header angle to the desired working position using the machine’s header angle controls. If the header angle is not critical, set it to the mid-position.

10. Check the header float. Refer to 3.7.3 Header Float, page 64.

Adjusting Outer Skid Shoes

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise the header to its full height, engage the safety props.

2. Shut off the engine, and remove the key from the ignition.

3. Raise the stabilizer wheels or slow speed transport wheels fully (if installed). Refer to the following:
 - Adjusting Stabilizer Wheels, page 60
 - Adjusting Stabilizer / Slow Speed Transport Wheels, page 59

4. Remove the lynch pin (A) from each skid shoe (B).

5. Hold the shoe (B) and remove the pin (C) by disengaging from the frame and pulling away from the shoe.

6. Raise or lower the skid shoe (B) to achieve the desired position using the holes in the support (D) as a guide.

7. Reinstall pin (C), engage in frame, and secure with lynch pin (A).

8. Check that all of the skid shoes are adjusted to the same position.

9. Check the header float. Refer to 3.7.3 Header Float, page 64.

![Figure 3.33: Outer Skid Shoe](image-url)
3.7.3 Header Float

The header float system reduces the ground pressure at the cutterbar allowing the header to more easily follow the ground and quickly respond to sudden ground contour changes or obstacles.

Header float is indicated on the float indicator (A). Values 0 to 4 represent the force of the cutterbar on the ground with 0 being the minimum and 4 being the maximum.

The maximum force is determined by the tension on the float module’s adjustable float springs. Float can be changed to suit field and crop conditions and is dependent on what options have been installed on the header. Refer to Checking and Adjusting Header Float, page 64.

The FD1 Series combine header performs best with minimum ground pressure under normal conditions. Readjust the float if adding optional attachments to the header that affect header weight.

1. Set the float for cutting on the ground as follows:
 a. Ensure the header float locks are disengaged. Refer to Locking/Unlocking Header Float, page 69.
 b. Lower feeder house using the combine header controls until the float indicator (A) reaches the desired float value (cutterbar ground force). Set the float indicator initially to float value 2 and adjust as necessary.

2. Set the float for cutting off the ground as follows:
 a. Set up the stabilizer wheels. Refer to 3.7.1 Cutting off the Ground, page 58.
 b. Note the float value on the float indicator and maintain this value during operation (disregard minor fluctuations on the indicator).

Checking and Adjusting Header Float

The header is equipped with a suspension system that floats the header over the ground to compensate for ridges, trenches, and other variations in ground contour. If the header float is not set properly, it may cause the cutterbar to push into the ground or leave uncut crop. This procedure describes how to check header float and adjust to the factory-recommended settings.

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Use the following guidelines when adjusting float:
- Turn each adjustment bolt pair equally. Refer to Step 12, page 67, and repeat torque wrench reading procedure on both sides of header.
Set header float as light as possible without causing excessive bouncing to prevent knife component breakage, soil scooping, or soil build-up at the cutterbar in wet conditions.

To avoid excessive bouncing and leaving a ragged cut, use a slower ground speed with a light float setting, if necessary.

When cutting off the ground, use the stabilizer wheels in conjunction with header float to minimize bouncing at the header ends and to control cut height. Refer to Adjusting Stabilizer Wheels, page 60.

NOTE:
If adequate header float cannot be achieved using all of the available adjustments, an optional heavy-duty spring is available. See your MacDon Dealer or refer to the parts catalog for ordering information.

To check and adjust header float, follow these steps:

1. Level the header and float module. If the header and float module are not level, perform the following checks before adjusting the float:

 IMPORTANT:
 Do NOT use the float module springs to level the header.
 - Park the combine on a level surface.
 - Check that the combine feeder house is level. Refer to your combine operator’s manual for instructions.
 - Check that the top of the float module is level with the combine axle.
 - Ensure the combine tires are inflated equally.

2. Adjust header so that the cutterbar is 150–254 mm (6–10 in.) off the ground.

3. Extend the header angle hydraulic cylinder to between B and C on indicator (A).

4. Adjust the reel fore-aft position to between 5 and 6 on the position indicator decal (A) located on the reel right arm.

5. Lower the reel fully.

6. Shut down the combine, and remove the key from the ignition.
7. Place wing lock spring handles (A) in the **LOCKED** (upper) position.

8. Disengage both header float locks by pulling the float lock handle (A) away from the float module and pushing the float lock handle down and into position (B) (**UNLOCK**).
9. Place stabilizer wheels and slow speed transport wheels (if equipped) in storage position as follows:
 a. Support the wheel weight by lifting slightly with one hand, and pull up on handle (A) to release the lock.
 b. Lift the wheels to the desired height, and engage the support channel into the slot (B) in the upper support.
 c. Push down on the handle (A) to lock.

10. Remove the supplied torque wrench (A) from its storage position at the right side of the float module frame. Pull in the direction shown to disengage the wrench from the hook.

11. Place the torque wrench (A) onto the float lock (B). Note the position of the wrench for checking left or right side.

12. Push down on wrench to rotate bell crank (C) forward.
13. Push down on the wrench until indicator (A) reaches a maximum reading and then begins to decrease. Note the maximum reading. Repeat at opposite side.

14. Use the following table as a guide for float settings:
 - If reading on the wrench is high, the header is heavy
 - If reading on the wrench is low, the header is light

Table 3.12 Float Settings

<table>
<thead>
<tr>
<th>Header Size</th>
<th>Indicator Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting on the Ground</td>
<td>Cutting off the Ground</td>
</tr>
<tr>
<td>9.1 m and 10.7 m (30 ft. and 35 ft.)</td>
<td>1-1/2 to 2</td>
</tr>
<tr>
<td>12.2 m and 13.7 m (40 ft. and 45 ft.)</td>
<td>2 to 2-1/2</td>
</tr>
</tbody>
</table>
15. Before adjusting the float spring adjustment bolts (A), rotate the spring locks (B) by loosening bolts (C).

16. To increase float (decrease header weight), turn both adjustment bolts (A) on the left side clockwise. Repeat adjustment at opposite side.

NOTE:
Turn each bolt pair equally.

17. To decrease float (increase header weight), turn left side adjustment bolts (A) counterclockwise. Repeat at opposite side.

NOTE:
Turn each bolt pair equally.

18. Adjust the float so the wrench readings are equal on both sides of the header.

NOTE:
For 12.2 and 13.7 m (40 and 45 ft.) double-knife headers: adjust the float so the wrench readings are equal at both sides, and then loosen both right side spring bolts two turns.

19. Lock adjustment bolts (A) with spring locks (B). Ensure bolt heads (A) are engaged in the spring lock cutouts. Tighten bolts (C) to secure spring locks in place.

20. Proceed to *Adjusting Wing Balance, page 79*.

Locking/Unlocking Header Float

Two header float locks—one on each side of the float module—lock and unlock the header float system.

IMPORTANT:
The float locks must be engaged when the header is being transported with the float module attached so there is no relative movement between the float module and the header. The float locks also must be locked when detaching from the combine to enable the feeder house to release the float module.
To **disengage (unlock) float locks**, pull the float lock handle (A) into position (B) (**UNLOCK**). In this position, the header is unlocked, and can float with respect to the float module.

To **engage (lock) float locks**, push the float lock handle (A) into position (C) (**LOCK**). In this position, the header cannot move with respect to the float module.

Locking/Unlocking Header Wings

The header is designed to operate with the cutterbar on the ground. The three sections move independently to follow the ground contours. In this mode, each wing is **unlocked** and is free to move up and down.

The header can also be operated as a rigid header with the cutterbar straight. A typical application is in cereals when cutting above the ground. In this mode, the wing is **locked**.

Operating in Flex Mode

In flex mode, the three sections will be **unlocked** and will move independently to follow the ground contours.

Unlock the wings as follows:

1. Move spring handle (A) in the lower slot to unlock the wing. The unlocking should be audible.
2. If the lock link does not disengage, move the wing by raising and lowering the header, changing the header angle, or driving the combine until it disengages.
NOTE:
The following steps are only required if the above has not worked.

3. Remove the linkage cover. Refer to Removing Linkage Covers, page 37.

4. Retrieve the supplied torque wrench (A) that is stored on the float module frame on the right side.

5. Place the torque wrench (A) on bolt (B) and use it to move the wing until the lock disengages.

6. Replace the torque wrench (A) and reinstall the linkage cover.

7. If necessary, balance the wing. Refer to 3.7.4 Checking and Adjusting Header Wing Balance, page 73.

Operating in Rigid Mode
The three sections will be locked and operate as a rigid cutterbar.

Lock the wings as follows:

1. If the lock link does not engage, move the wing by raising and lowering the header, changing the header angle, or driving the combine until it engages.
2. Move spring handle (A) in the upper slot to lock the wing. The locking should be audible.

3. If the lock link does not engage, move the wing by raising and lowering the header, changing the header angle, or driving the combine until it engages.

NOTE:
The following steps are only required if the above has not worked.

4. Remove the linkage cover. Refer to *Removing Linkage Covers, page 37*.

5. Retrieve the supplied torque wrench (A) that is stored on the float module frame on the right side.

6. Place the torque wrench (A) on bolt (B) and use it to move the wing until the lock engages.

7. Replace the torque wrench (A) and reinstall the linkage cover. The wings will not move relative to the header.
3.7.4 Checking and Adjusting Header Wing Balance

IMPORTANT:
Before proceeding, the header float must be set properly. Refer to Checking and Adjusting Header Float, page 64.

The header wing balance allows the wings to react to changing ground conditions. If set too light, the wings will bounce or not follow ground contours, leaving uncut crop. If set too heavy, the end of the header will dig into the ground. After the header float has been set, the wings must be balanced for the header to follow the ground contours properly.

Checking Wing Balance
This procedure describes how to check the balance of each wing.

IMPORTANT:
To ensure correct wing balance readings, make sure the header float is set properly before proceeding. Refer to Checking and Adjusting Header Float, page 64.

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

If a header wing has a tendency to be in a smile (A) or a frown (B) position, wing balance may require adjusting. Perform the following steps to check if the wings are not balanced, and how much adjustment is required.

The header wings are balanced when it takes an equal amount of force to move a wing up or down.

1. Adjust the reel fore-aft position to between 5 and 6 on the position indicator decal (A) located on the reel right arm.
2. Lower the reel fully.

Figure 3.53: Wing Imbalance
Figure 3.54: Fore-Aft Position
3. Adjust the center-link (A) so that indicator (B) is between B and C on gauge (C).

4. Park combine on level ground and raise header until cutterbar is 152–254 mm (6–10 in.) off the ground.

5. Shut down the engine, and remove the key from the ignition.

6. If installed, move stabilizer/transport wheels so that they are supported by header. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.

7. Remove linkage cover (A) by removing bolt (B) and rotating cover upward until inboard end can be lifted off.

NOTE:
Refer to the decal (A) inside each linkage cover.
8. Unlock the wings by moving spring handles (A) to lower (UNLOCK) position.

NOTE:
If lock link does not engage lower slot, move wing with the torque wrench until lock link moves into slot.

9. Retrieve wrench (A) from float module right leg.

10. Place torque wrench (A) onto bolt (B).
11. Check that pointer (D) is properly positioned as follows:
 a. Use wrench (A) to move bell crank (B) so that lower edge of bell crank is parallel to top-link (C).
 b. Check that pointer (D) is lined up with the top-link (C). Bend pointer if necessary.

12. Move wing upward with torque wrench (A) until the pointer’s lower alignment tab (C) lines up with the upper edge of the top-link (B). Observe the indicator reading (D) on wrench and record it.
13. Move wing downward with torque wrench (A) until the pointer's upper alignment tab (C) lines up with the lower edge of the top-link (B). Observe indicator reading (A) on the wrench and record it.

- If the difference between the readings is 0.5 or less, the wing is balanced and no further adjustment is required. To reinstall the linkage cover, refer to Steps 15, page 78 and 16, page 78.

- If the difference between the readings is more than 0.5, the wing is not balanced. Refer to Adjusting Wing Balance, page 79.

- If the indicator range is as shown, the wing is too light.
• If the indicator range is as shown, the wing is too heavy.

15. If no adjustment is required, place wrench (A) back onto the float module right leg.

16. If no adjustment is required, reinstall linkage cover (A) and secure it with bolt (B). If adjustment is required, refer to *Adjusting Wing Balance, page 79.*
Adjusting Wing Balance

⚠ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

This procedure describes how to adjust the balance of each wing. Before proceeding, refer to Checking Wing Balance, page 73 to determine if adjustments are necessary.

IMPORTANT:

To ensure correct wing balance readings, make sure the header float is set properly before proceeding. Refer to Checking and Adjusting Header Float, page 64. The float module must be sitting level before performing any adjustments.

1. Place torque wrench (A) on bolt (B). Check that wing lock (C) is in lower position.

2. Loosen nut (A) on clevis bolt for the wing requiring adjustment as determined by the wing balance check.

3. Loosen jam nut (B).
4. If necessary, perform the following adjustments:
 - If the wing is too heavy, turn adjuster bolt (B) to move clevis (C) outboard (D).
 - If the wing is too light, turn adjuster bolt (B) to move clevis (C) inboard (E).

5. Adjust clevis (C) position if necessary until indicator readings on torque wrench are within 1/2 increment.

6. Tighten nut (A) on clevis bolt.

7. Torque jam nut (F) to 81 Nm (60 lbf·ft).

8. Move handle (A) to the upper LOCK position.

9. If lock does not engage, move the wing up and down with torque wrench (B) until it locks. When locked, there will be some movement in the linkage.

10. If the cutterbar is not straight when wings are in lock mode, then further adjustments are required. Contact your MacDon Dealer.

11. Return the torque wrench (A) to its storage location on the float module frame.
12. Reinstall linkage cover (A) and secure it with bolt (B).

3.7.5 Header Angle

Header angle is adjustable to accommodate different crop conditions and/or soil types and can be adjusted using the center-link between the combine and the header. Some combines have an adjustable feeder house, which provides the operator an alternate method for controlling header angle.

Refer to Adjusting Header Angle from Combine, page 83 for combine-specific adjustment details.

Header angle (A) is the angle between the header and the ground.

The header angle controls the distance (B) between the cutterbar knife and the ground and is a critical component for effective cutting crop at ground level.

Adjusting the header angle pivots the header at the point of skid shoe/ground contact (C).

Guard angle (D) is the angle between the upper surface of the cutterbar guards and the ground.

![Figure 3.73: Linkage Cover](image)

![Figure 3.74: Header Angle](image)
1. Set the header angle according to the type and condition of crop and soil as follows:
 a. Use shallower settings (A) (position A on the indicator) for normal cutting conditions and wet soil to reduce soil build-up at the cutterbar. Shallow angle settings also minimize damage to the knife in stony fields.
 b. Use steeper settings (D) (position D on the indicator) for lodged crops and crops that are close to the ground such as soybeans.

![Figure 3.75: Center-Link](image)

The shallowest angle (A) (center-link fully retracted) produces the highest stubble when cutting on the ground.

The steepest angle (D) (center-link fully extended) produces the lowest stubble when cutting on the ground.

Choose an angle that maximizes performance for your crop and field conditions. Refer to the table below for a summary of adjustment ranges.

Table 3.13 FD1 Header Angle

<table>
<thead>
<tr>
<th>Header Size</th>
<th>Guard Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1–13.7 m (30–45 ft.)</td>
<td>2.0–7.4°</td>
</tr>
</tbody>
</table>

Refer to *3.6.2 Header Settings, page 43* for recommended header/guard angle settings for your particular crop conditions.
Adjusting Header Angle from Combine

The header/guard angle is adjusted from the combine cab with a switch on the operator’s control handle and an indicator on the center-link or on the monitor in the cab. The header/guard angle is determined by the length of the center-link between the combine float module and the header, or by tilting the feeder house on selected combines.

Case combines:

Case combines use control handle switches to adjust the center-link to change header angle.

1. Press and hold SHIFT button (A) on backside of control handle and press switch (B) to tilt header forward or press switch (C) to tilt the header back.

![Figure 3.77: Case Controls](image1)

![Figure 3.78: Case Controls](image2)
New Holland combines:

New Holland combines use control handle switches to adjust the center-link to change header angle.

1. Press and hold SHIFT button (A) on backside of control handle and press switch (B) to tilt header forward (steeper angle) or switch (C) to tilt header back (shallower angle).

![Figure 3.79: NH CR/CX Controls](image1)

![Figure 3.80: NH CR/CX Controls](image2)
AGCO combines:

AGCO combines use a combination of the reel fore-aft switches on the control handle and a dealer-installed auxiliary rocker switch, which toggles between reel fore-aft and header tilt functionality. The location of the rocker switch varies with combine model.

1. **Gleaner A only:** Open armrest cover (A) (Gleaner A only) to expose row of switches, and press dealer-installed rocker switch (B) to HEADER TILT position.

 NOTE:
 Gleaner A shown. Other AGCO combine models have rocker switch on the console (not shown).

2. Press button (A) on control handle to tilt header forward (steeper angle) or button (B) to tilt header back (shallower angle).
CLAAS combines:

CLAAS (with factory-installed fore-aft / header tilt switch): Newer CLAAS combines use a combination of the reel fore-aft switches on the control handle and a factory-installed auxiliary rocker switch which toggles between reel fore-aft and header tilt functionality.

1. Press HOTKEY switch (A) on operator’s console to deck plate position (the header icon [B] with the arrows pointing to each other).
2. Press and hold switch (A) on rear of control handle.
3. Press switch (C) to tilt header forward (steeper angle) or switch (B) to tilt header back (shallower angle).

Figure 3.86: CLAAS 600/700 Control Handle

Figure 3.87: CLAAS 500 Control Handle

John Deere combines:

John Deere S700: S700 Series combines use a feeder house deckplate tilting system for header fore-aft adjustment, instead of using the MacDon center-link for header tilt.

1. Press switch (A) to tilt header forward (steeper angle) or switch (B) to tilt header back (shallower angle).

Figure 3.88: John Deere 700 Control
OPERATION

John Deere (except S700 Series): John Deere combines use a combination of the reel fore-aft switches on the control handle and a dealer-installed auxiliary rocker switch which toggles between reel fore-aft and header tilt functionality.

1. Press reel fore-aft / header tilt switch (A) on console into HEADER TILT position.

2. Press switch (A) to tilt header forward (steeper angle) or switch (B) to tilt header back (shallower angle).

![Figure 3.89: John Deere Consoles](image1)

![Figure 3.90: John Deere Control Handle](image2)
Versatile combines:

Versatile combines use a combination of the reel fore-aft switches on the control handle and a factory-installed auxiliary rocker switch on the combine control console which toggles between reel fore-aft and header tilt functionality.

1. Press ON switch (A) on console to place controls in HEADER TILT mode.
2. Press button (B) on control handle to tilt header forward (steeper angle) or button (C) to tilt header back (shallower angle).

3.7.6 Reel Speed

Reel speed is one of the factors that determines how crop is moved from the cutterbar onto the drapers.

The reel performs best when it appears to be driven by the ground. It should move the cut crop evenly through the cutterbar and onto the drapers without bunching and with minimal disturbance.

In standing crop, reel speed should be slightly higher than, or equal to, ground speed.

In flattened crop or crop that is leaning away from the cutterbar, the reel speed needs to be higher than the ground speed. To achieve this, either increase the reel speed or decrease the ground speed.

Excessive shattering of grain heads or crop loss over the header backtube may indicate that the reel speed is too high. Excessive reel speed also increases reel component wear and overloads the reel drive.

Slower reel speeds can be used with nine-bat reels, which is advantageous in shatter-prone crops.

NOTE:

For more information about converting a six-bat reel to a nine-bat reel for 9.1 m and 10.7 m (30 ft. and 35 ft.) headers. Refer to 6.2.4 PR15 Tine Tube Reel Conversion Kit, page 547.

For recommended reel speeds in specific crops and conditions, refer to 3.6.2 Header Settings, page 43.

The reel speed is adjustable using the controls in the combine cab. Refer to your combine operator’s manual for adjustment details.

Optional Reel Drive Sprockets

Optional reel drive sprockets for use in special crop conditions are available as an alternative to the factory-installed sprocket.

The header is factory-equipped with a 19-tooth reel drive sprocket, which is suitable for most crops. Other sprockets are available that provide more torque to the reel in heavy cutting conditions or allow for higher reel speeds in light crops when operating at increased ground speeds. Refer to Table 3.14, page 90, and contact your MacDon Dealer for ordering information.
Table 3.14 Optional Reel Drive Sprockets

<table>
<thead>
<tr>
<th>Machine Hydraulics</th>
<th>Combine</th>
<th>Application</th>
<th>Optional Drive Sprocket</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.79–14.48 MPa (2000–2100 psi)</td>
<td>Gleaner Transverse Rotary</td>
<td>Combining down rice</td>
<td>10 tooth</td>
</tr>
<tr>
<td>17.24 MPa (2500 psi)</td>
<td>CLAAS 500, 700 Series, Challenger Axial Rotary</td>
<td>Combining down rice</td>
<td>12 tooth</td>
</tr>
<tr>
<td>20.68 MPa (3000 psi)</td>
<td>NH CR, CX, Case IH 7010, 8010, 7120, 8120, 88 Series</td>
<td>Combining down rice</td>
<td>14 tooth</td>
</tr>
<tr>
<td>Low flow (under 42 L/min [11 gpm])</td>
<td>—</td>
<td>Combining light crops above 16 km/h (10 mph)</td>
<td>21 tooth</td>
</tr>
</tbody>
</table>

For installation details, refer to 5.16.3 Reel Drive Sprocket, page 530.

3.7.7 Ground Speed

Operating at the proper ground speed will result in cleanly cut crops and evenly distributed material into the combine.

Reduce ground speed in difficult cutting conditions to reduce loads on cutting components and drives.

Use lower ground speeds in very light crops (e.g., short soybeans) to allow the reel to pull in short plants. Start at 4.8–5.8 km/h (3.0–3.5 mph) and adjust as required.

Higher ground speeds may require heavier float settings to prevent excessive bouncing that causes uneven cutting and possible damage to the cutting components. If ground speed is increased, draper and reel speeds should generally be increased to handle the extra material.

Figure 3.92, page 91 illustrates the relationship between ground speed and area cut for the various sized headers.
Figure 3.92: Ground Speed versus Acres

Example: A 12.2 m (40 ft.) header operating at a ground speed of 9.7 km/h (6 mph) would produce a cut area of approximately 11.3 hectares (28 acres) in one hour.

3.7.8 Draper Speed

Correct draper speed is an important factor for achieving good flow of the cut crop away from the cutterbar.

The side drapers and feed draper operate independently of each other; therefore, the speeds are controlled differently. The side draper speed is adjusted with a manually adjustable control valve that is mounted on the float module. The float module feed draper speed is fixed to the combine feeder house speed and cannot be independently adjusted.

Adjust the draper speed to achieve efficient crop feeding onto the float module feed draper. Refer to Adjusting Header Draper Speed, page 92.
Adjusting Header Draper Speed

The side drapers carry the cut crop to the float module feed draper, which then feeds it into the combine. The speed is adjustable to suit crops and crop conditions.

The side drapers (A) are driven by hydraulic motors and a pump that is powered by the combine feeder house drive through a gearbox on the float module. Side draper speed is adjustable with the flow control valve on the float module, which regulates the flow to the draper hydraulic motors. Draper speed is also adjustable with an optional control in the cab. See below.

To access the flow control valve, pull bottom of compartment cover (A) to open.

The flow control valve (A) has settings from 0–9 on the barrel to indicate the draper speed. The flow control valve is factory-set to 6, which should be sufficient for normal crop feeding.

To change the draper speed, shut down the combine and rotate the flow control valve dial to adjust the control.

Refer to one of the following for recommended draper speed settings:

- 3.6.2 Header Settings, page 43
- 3.6.3 Optimizing Header for Straight Combining Canola, page 54
If the optional in-cab side draper speed control kit is installed, rotate the knob (A) to the desired setting with the header in either operating or shutdown mode. Set the knob to 6 for normal crop delivery. Switch (B) activates the header tilt or reel fore-aft controls. Refer to Adjusting Header Angle from Combine, page 83.

Feed Draper Speed

The feed draper moves the cut crop from the side drapers into the float module feed auger.

The float module feed draper (A) is driven by a hydraulic motor and a pump that is powered by the combine feeder house drive through a gearbox on the float module.

The feed draper speed is determined by the combine feeder house speed and cannot be independently adjusted.
3.7.9 Knife Speed Data

The header knife drive is powered by the FM100 hydraulic pump, which is driven by the combine feeder house. There is no separate adjustment to control the knife speed.

IMPORTANT:
For variable speed feeder houses, the rpm values shown at right represent the MINIMUM feeder house speeds.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Feeder House Speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere</td>
<td>490</td>
</tr>
<tr>
<td>Case IH</td>
<td>580</td>
</tr>
<tr>
<td>Gleaner</td>
<td>625</td>
</tr>
<tr>
<td>Massey Ferguson</td>
<td>625</td>
</tr>
<tr>
<td>Challenger</td>
<td>625</td>
</tr>
<tr>
<td>New Holland</td>
<td>580</td>
</tr>
<tr>
<td>CLAAS 44</td>
<td>420</td>
</tr>
</tbody>
</table>

IMPORTANT:
Ensure the knife speed is within the range of rpm values in Table 3.16, page 94. Refer to Checking Knife Speed, page 95.

IMPORTANT:
Under normal cutting conditions, knife speed taken at the knife drive pulley should be set between 600–640 rpm (1200–1280 spm). If set to low side of chart, you could experience knife stalling.

<table>
<thead>
<tr>
<th>Header Size (m (ft.))</th>
<th>Recommended Knife Drive Speed Range (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-Knife Drive</td>
</tr>
<tr>
<td>9.1 m (30 ft.)</td>
<td>600–700</td>
</tr>
<tr>
<td>12.1 m (35 ft.)</td>
<td>550–650</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>525–600</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td>—</td>
</tr>
</tbody>
</table>

44. The rear shaft speed on CLAAS combines is 420 rpm (speed shown on cab display monitor also will be 420). The output shaft speed is actually 750 rpm.
OPERATION

Checking Knife Speed

⚠️ **DANGER**
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Stop the engine, and remove the key from the ignition.
2. Open the left endshield. For instructions, refer to *Opening Endshields, page 33.*

⚠️ **WARNING**
Check to be sure all bystanders have cleared the area.

3. Start the engine, engage the header drive, and run the combine at operating rpm.
4. Run float module and header for 10 minutes to warm up oil to 38°C (100°F).
5. Measure the rpm of the knife drive box pulley (A) with a hand-held tachometer.
6. Shut down the combine.
7. Compare pulley rpm measurement with the rpm values in the knife speed chart. Refer to *3.7.9 Knife Speed Data, page 94.*
8. Contact your MacDon Dealer if the pulley rpm measurement exceeds the specified rpm range for your header.

3.7.10 Reel Height

The reel operating position depends on the type of crop and cutting conditions. Set the reel height and fore-aft position to carry material past the knife and onto the drapers with minimal damage to the crop. Refer to *3.7.11 Reel Fore-Aft Position, page 99.*

The reel height is controlled manually or with button presets on the ground speed lever (GSL) in the combine cab. Refer to your combine operator’s manual for instructions on controlling reel height or setting up auto reel height.
presets. Where applicable, this manual contains instructions for presetting reel height on selected combines. Refer to 3.8 Auto Header Height Control (AHHC), page 124.

Table 3.17 Reel Height

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Reel Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lodged rice</td>
<td>Lowered (also change reel speed and/or cam setting)</td>
</tr>
<tr>
<td>Bushy or heavy standing (all)</td>
<td>Raised</td>
</tr>
</tbody>
</table>

The following conditions might result if the reel is set too low:

- Crop loss over the header backtube
- Crop disturbance on the drapers caused by the reel fingers
- Crop being pushed down by the tine tubes

The following conditions might result if the reel is set too high:

- Cutterbar plugging
- Crop lodging and being left uncut
- Grain stalks dropping ahead of cutterbar

Refer to 3.6.2 Header Settings, page 43 for recommended reel heights for specific crops and crop conditions.

IMPORTANT:
Maintain adequate clearance to prevent fingers contacting the knife or the ground. Refer to 5.15.1 Reel Clearance to Cutterbar, page 502.

Checking and Adjusting Reel Height Sensor

The output voltage range of the auto reel height sensor can be checked from inside the combine or manually at the sensor. For in-cab instructions, refer to the combine operator’s manual. To check the voltage range manually, refer to the following procedure.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

IMPORTANT:
Ensure minimum reel height is properly set before adjusting reel height sensor. For instructions, refer to 5.15.1 Reel Clearance to Cutterbar, page 502.

IMPORTANT:
To measure the output voltage of the reel height sensor, the combine engine needs to be running and supplying power to the sensor. Always engage the combine parking brake and stay away from the reel.
Table 3.18 Reel Height Sensor Voltage Limits

<table>
<thead>
<tr>
<th>Combine Type</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Voltage</td>
</tr>
<tr>
<td>Case/New Holland</td>
<td>0.5–0.9 V</td>
</tr>
<tr>
<td>CLAAS</td>
<td>4.1–4.5 V</td>
</tr>
<tr>
<td>John Deere</td>
<td>4.1–4.5 V</td>
</tr>
</tbody>
</table>

NOTE:
For CLAAS combines: To avoid a collision of the reel with the cab, the machine is equipped with an automatic reel height limitation. Some CLAAS combines have an automatic shutoff feature that engages when the automatic reel height limitation is reached. When raising the header by more than 80 percent, the reel is automatically lowered. The automatic lowering of the reel can be manually overridden, and a warning will appear on the CEBIS terminal.

1. Engage the combine parking brake.
2. Start the engine and fully lower the reel.
3. Use the combine display or a voltmeter (if measuring the sensor manually) to measure voltage range Y. Refer to Table 3.18, page 97 for range requirements.
4. If using a voltmeter, measure the voltage between the ground (Pin 2 wire) and the signal (Pin 3 wire) at the reel height sensor (B).
5. Stop the engine and remove key.
6. Adjust length of threaded rod (A) to modify voltage range Y.
7. Repeat checking and adjusting until voltage range Y is within the range specified.
8. Start the engine, and fully raise the reel.
9. Use the combine display or a voltmeter (if measuring the sensor manually), to measure voltage range X. Refer to Table 3.18, page 97 for range requirements.
10. If using a voltmeter, measure the voltage between the ground (Pin 2 wire) and the signal (Pin 3 wire) at the reel height sensor (A).
11. Stop the engine and remove the key.
12. Loosen two M5 hex nuts (B) and rotate sensor (A) to achieve voltage range X.
13. Repeat checking and adjusting until voltage range X is within the range specified.
14. Start the engine and fully lower the reel.
15. Recheck voltage range Y and ensure it is still within the range specified. Adjust if required.

Replacing Reel Height Sensor

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Start engine and lower reel fully.
2. Stop engine and remove key.
3. Disconnect sensor from harness.
4. Remove two hex head bolts (A) from sensor arm (B). Retain hardware for reinstallation.

5. Remove two nyloc nuts and bolts (A) from reel height sensor and remove sensor (B).
6. Install new sensor (B) in sensor bracket and attach using retained bolts (A) and nyloc nuts. Torque bolts (A) to 2–3 Nm (17–27 lbf·in.).
7. Connect sensor arm (B) using retain hex head bolts (A). Torque head bolts (A) to 4 Nm (35 lbf·in.).

8. Connect the sensor to the harness.

9. Check that sensor arm and the threaded rod are parallel. If not, loosen two center lock flange nuts (A), and adjust sensor mounting bracket (B) until the threaded rod (C) is parallel with the sensor arm (D). Tighten center lock flange nuts.

10. Check the sensor voltage range. Refer to Checking and Adjusting Reel Height Sensor, page 96.

3.7.11 Reel Fore-Aft Position

Reel fore-aft position is a critical factor for achieving the best results in adverse conditions. The factory-set reel position suits normal conditions, but the fore-aft position can be adjusted as required using the controls inside the cab.

The reel on non-European-configured headers can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the header’s reel arms to accommodate certain crop conditions. Refer to Repositioning Fore-Aft Cylinders on Non-European-Configured Headers, page 101.
The reel on **European-configured headers** can be moved approximately 67 mm (2.6 in.) farther aft by repositioning the fore-aft cylinders on the header’s reel arms to accommodate certain crop conditions. Refer to *Repositioning Fore-Aft Cylinders on European-Configured Headers, page 104.*

If the combine is equipped with the Multi-Crop Rapid Reel Conversion option, refer to *Repositioning Fore-Aft Cylinders on Non-European-Configured Headers with Multi-Crop Rapid Reel Conversion Option, page 108.*

NOTE:
The Multi-Crop Rapid Reel Conversion option is not available for European-configured headers.

Decal (A) is attached to the right reel support arm for identifying reel position. The aft edge of the cam disc (B) is the reel fore-aft position marker.

For straight standing crop, center the reel over the cutterbar (4–5 on decal).

For crops that are down, tangled, or leaning, it may be necessary to move the reel ahead of the cutterbar (lower number on decal).

NOTE:
If experiencing difficulty picking up flattened crop, adjust to a steeper header angle. Refer to *3.7.5 Header Angle, page 81* for adjustment instructions. Adjust reel position only if header angle adjustments are not satisfactory.

For recommended reel positions in specific crops and crop conditions, refer to *3.6.2 Header Settings, page 43.*

NOTE:
In crops that are difficult to pick up such as rice, or severely lodged crops that require full forward positioning of the reel, set the reel tine pitch to provide proper placement of the crop onto the drapers. Refer to *3.7.12 Reel Tine Pitch, page 111* for adjustment details.

Adjusting Reel Fore-Aft Position

1. Select FORE-AFT mode on the selector switch in the cab.

2. Operate the hydraulics to move the reel to the desired position while using the decal (A) as a reference.

3. Check the reel clearance to cutterbar after making changes to the cam setting. Refer to the following for measurement and adjustment procedures:
 - 5.15.1 Reel Clearance to Cutterbar, page 502
 - 5.15.2 Reel Frown, page 506

IMPORTANT:
Operating with the reel too far forward can result in the fingers contacting the ground. When operating with the reel in this position, lower the skid shoes or adjust the header tilt as required to prevent damaging the fingers.
Repositioning Fore-Aft Cylinders on Non-European-Configured Headers

The reel can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the reel arms. This may be desirable when straight-combining canola.

NOTE:
MD #B5605 (Short Brace Kit for Center Reel Arm) must be installed before repositioning fore-aft cylinders.

If the Multi-Crop Rapid Reel Conversion option is installed, refer to Repositioning Fore-Aft Cylinders on Non-European-Configured Headers with Multi-Crop Rapid Reel Conversion Option, page 108.

NOTE:
The Multi-Crop Rapid Reel Conversion option is not available for European-configured FD1 headers.

For instructions for repositioning the fore-aft cylinders on an European-configured header, refer to Repositioning Fore-Aft Cylinders on European-Configured Headers, page 104.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Reposition the center reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustration for improved clarity.

1. Position reel fully aft with support arms horizontal.
2. Stop engine and remove key.
3. Remove four bolts (A) securing cylinder bracket (B) to reel arm (C). Retain hardware.

![Figure 3.108: Center Arm – Forward Position](image-url)
4. Push/pull reel until bracket (B) lines up with the aft set of holes in reel arm (C).

5. Reinstall four bolts (A) to secure bracket (B) to reel arm at new position.

Reposition the right reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

1. Remove four bolts (A) securing cylinder bracket (B) to the reel arm (C).

2. Push reel back until bracket (B) lines up with the aft set of holes in the reel arm (C).

3. Reinstall the four bolts (A) to secure bracket to reel arm at new position.
Reposition the left reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

1. Remove pin (A) securing cylinder (B) to bracket/light assembly (C).
2. Remove four bolts (D) securing bracket/light assembly (C) to reel arm and remove bracket/light assembly. Retain hardware.
3. Remove cable tie (not shown) securing harness to bracket/light assembly (C) or to reel arm (if necessary).
4. Swivel light to working position as shown.

Figure 3.112: Left Arm – Forward Position
5. Reposition bracket/light assembly (C) onto reel arm as shown, and secure using four bolts (D). Tighten hardware.

6. Push reel back and reinstall cylinder (B) onto bracket/light assembly (C) using pin (A). Secure pin with cotter pin.

7. Secure light harness to bracket/light assembly (C) or to reel arm using plastic cable tie (not shown).

8. Check reel clearance to backsheet, upper cross auger (if installed), and reel braces.

9. Adjust reel tine pitch (if required). For adjustment procedures, refer to 3.7.12 Reel Tine Pitch, page 111.

Repositioning Fore-Aft Cylinders on European-Configured Headers

The reel can be moved approximately 67 mm (2.6 in.) farther aft from factory setting by repositioning the fore-aft cylinders on the reel arms. This may be desirable when straight-combining canola.

For instructions for repositioning the fore-aft cylinders on a non-European-configured header, refer to Repositioning Fore-Aft Cylinders on Non-European-Configured Headers, page 101.

Reposition center reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

NOTE:
Reels on European-configured headers are at their most forward setting when cylinders are set in position 2 on the fore-aft arm brackets. Reels on these headers are in their most aft position when cylinders are set in position 1 on the fore-aft arm brackets.
1. Remove the securing ring (A), pin (B), and washers inside the center arm fore-aft support bracket (C). Retain washers, pin, and ring.

NOTE:
Washers inside center arm support bracket not shown in illustration at right.

2. Push the reel back until the end of the cylinder (A) lines up with the aft setting holes (B) (position 1) in the fore-aft support bracket (C). Position washers (D) on both sides of the cylinder end (A) inside the support bracket (C).

3. Insert pin (A) and secure cylinder (B) and washers in the center arm support bracket (C). Secure pin (A) with ring (D).

NOTE:
Washers inside center arm support bracket not shown in illustration at right.
Reposition right reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

NOTE:
Reels on European-configured headers are at their most forward setting when cylinders are set in position 2 on the fore/aft arm brackets. Reels on these headers are in their most aft position when cylinders are set in position 1 on the fore-aft arm brackets.

1. Remove ring (A), pin (B), and washers (D) securing the reel arm cylinder (C) to the interior of the right fore-aft arm bracket. Retain washers, ring, and pin.

2. Push the reel back until the end of the cylinder (A) lines up with the aft setting holes (B) in the support bracket (C). Position washers (D) on both sides of the cylinder end (A) inside the support bracket (C).
3. Insert pin (A) into the aft setting holes, and through the cylinder end (C) and washers (D). Secure the pin with ring (B).

Reposition left reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

NOTE:
Reels on European-configured headers are at their most forward setting when cylinders are set in position 2 on the support brackets. Reels on these headers are in their most aft position when cylinders are set in position 1 on the support brackets.

1. Remove ring (A) and pin (B) inside the left fore-aft support bracket (D) securing the cylinder (C). Retain pin and ring.
2. Push reel back toward the header until the end of the cylinder (A) lines up with the aft setting holes (B) (position 1) in the support bracket (C).

3. Insert clevis pin (A) into the aft setting holes in the support bracket (B) and through the end of the cylinder (C). Secure pin with ring (D).

4. Check the reel clearance to the backsheet, upper cross auger (if installed), and reel braces.

5. Adjust the reel tine pitch if necessary. Refer to 3.7.12 Reel Tine Pitch, page 111.

Repositioning Fore-Aft Cylinders on Non-European-Configured Headers with Multi-Crop Rapid Reel Conversion Option

The reel can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the reel arms. The Multi-Crop Conversion option is applicable to double-reel headers only.

NOTE:
MD #B5605 (Short Brace Kit for Center Reel Arm) must be installed before repositioning fore-aft cylinders.

NOTE:
Multi-Crop Rapid Reel Conversion option is not available for European-configured headers.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
Reposition the left reel arm cylinder as follows:

NOTE:
Some reel components not shown in illustrations for improved clarity.

1. Position reel fully aft with support arms horizontal.
2. Stop the engine and remove the key from the ignition.
3. Remove ring (A) and clevis pin (B) from inboard side of bracket (C). Retain ring and clevis pin.
4. Push the reel back until the cylinder barrel (D) lines up with reel position 2 hole on bracket.
5. Reinstall clevis pin (B) at the new position and secure with ring (A).

![Image of Left Reel Arm in Forward Position](image1)

Figure 3.123: Left Reel Arm in Forward Position

![Image of Left Reel Arm in Aft Position](image2)

Figure 3.124: Left Reel Arm in Aft Position
Reposition the center reel arm cylinder as follows:

NOTE:
Some reel components not shown in illustrations for improved clarity.

1. Remove ring (A), clevis pin (B), and washers (C) from bracket (D). Retain ring, clevis pin, and washers.

2. Push the reel back until the end of the cylinder (E) lines up with reel position 2 hole on bracket (D). Position washers (C) on both sides of the cylinder end inside the bracket.

3. Reinstall clevis pin (B) at the new position and secure with ring (A).

Reposition the right reel arm cylinder as follows:

NOTE:
Some reel components not shown in illustrations for improved clarity.
1. Remove ring (A), clevis pin (B), and washers (C) from bracket (D). Retain ring, clevis pin, and washers.

2. Push the reel back until end of cylinder (E) lines up with reel position 2 hole on bracket (D).

 NOTE:
 Washers inside center arm support bracket not shown in illustration at right.

3. Reinstall clevis pin (B) at the new position and secure with ring (A).

3.7.12 Reel Tine Pitch

IMPORTANT:

The following describes the conceptual and operational guidelines of the pick-up reel. Please read carefully before operating the machine.

The pick-up reel is designed to pick up flattened and severely lodged crops. Because the cam setting is mainly used to determine how the crop gets delivered onto the drapers, it is not always necessary to increase the tine pitch (select a higher cam setting) to pick up lodged crops.

The positioning of the fingers relative to the ground (tine pitch) is not significantly affected by the cam setting. For example, with the cam position range at 33°, the corresponding finger pitch range is only 5° at the lowest point of the reel's rotation.

For the best results, use the minimum cam setting that delivers the crop past the rear edge of the cutterbar and onto the drapers. Refer to **3.6.2 Header Settings, page 43**.

Reel Cam Settings

The following outlines the function of each cam setting and provides set-up guidelines for various crop conditions.

The setting numbers are visible above the slots on the cam disc. Refer to **Adjusting Reel Cam, page 113**.
Cam Position 1, Reel Position 6 or 7 delivers the most even crop flow onto the drapers without fluffing or disturbing the material.

- This setting will release crop close to the cutterbar and works best if the cutterbar is on the ground.
- Some crops will not be delivered past the cutterbar when the cutterbar is raised off the ground and the reel is pushed forward; therefore, set the initial reel speed approximately equal to the ground speed.

Cam Position 2, Reel Position 3 or 4 is the recommended starting position for most crops and conditions.

- If the crop is stalling on the cutterbar when the reel is in the forward position, increase the cam setting to push the crop past the rear edge of the cutterbar.
- If the crop is getting fluffed or if there is a disruption to the flow across the drapers, decrease the cam setting.
- This setting generates a fingertip speed that is approximately 20% faster than the reel speed.

Cam Position 3, Reel Position 6 or 7 is mainly used to leave long stubble.

- This position allows the reel to reach forward and lift the crop across the knife and onto the drapers.
- This setting generates a fingertip speed that is approximately 30% faster than the reel speed.
Cam Position 4, Reel Position 2 or 3 is used with the reel fully forward to leave the maximum amount of stubble in lodged crops.

- This position allows the reel to reach forward and lift the crop across the knife and onto the drapers.
- This setting generates a fingertip speed that is approximately 35% faster than the reel speed.

Cam Position 4, Header Angle at Maximum, and Reel Fully Forward provides the maximum amount of reel reach below the cutterbar to pick up lodged crops.

- Leaves a significant amount of stubble when cutting height is set to approximately 203 mm (8 in.). In damp materials such as rice, it is possible to double the ground speed because of the reduction of cut material.
- This setting generates a fingertip speed that is approximately 35% faster than the reel speed.

NOTE:
Higher cam settings with the reel fore-aft position set between 4–5 sharply decrease the draper capacity because the reel disrupts the crop flow across the drapers and the fingers engage the crop that is moving on the drapers. High cam settings are recommended only with the reel at, or close to, full forward settings.

IMPORTANT:
The reel to cutterbar clearance should always be checked following adjustments to reel tine pitch and reel fore-aft positions (refer to 5.15.1 Reel Clearance to Cutterbar, page 502). Refer to 3.6.2 Header Settings, page 43 for recommended reel tine pitch in specific crops and crop conditions.

Adjusting Reel Cam

⚠️ **DANGER**
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Turn the latch pin (A) counterclockwise using a 3/4 in. wrench to release the cam disc.
2. Use the wrench on bolt (B) to rotate the cam disc and align the latch pin (A) with the desired cam disc hole position (C) (1 to 4).

NOTE:
Bolt (B) is positioned through the cam disc (transparent view shown in illustration for improved clarity).

3. Turn the latch pin (A) clockwise to engage and lock the cam disc.
4. Repeat the above procedure for the opposite reel.

IMPORTANT:
Ensure the cam is secured into position before operating the machine.
3.7.13 Crop Dividers

Crop dividers are used to help divide the crop when harvesting. They are removable to allow installation of vertical knives and to decrease transport width.

Removing Crop Dividers with Latch Option from Header

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 33.
5. Lift safety lever (A).
6. Hold onto crop divider (B), push lever (C) to open latch, and lower crop divider.

7. Lift crop divider off endsheet and store as follows:
 a. Insert pin (A) on crop divider into hole in endsheet at location shown.
 b. Lift crop divider and position lugs (B) on crop divider into bracket on endsheet. Ensure lugs engage bracket.
8. Close or install endshields. Refer to 3.2.3 Endshields, page 33.
Removing Crop Dividers without Latch Option from Header

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 33.
5. Remove bolt (A), lock washer, and flat washer.
6. Lower crop divider (B) and then lift to remove from endsheet.
7. Close or install endshields. Refer to 3.2.3 Endshields, page 33.

![Figure 3.137: Crop Divider]

Installing Crop Dividers with Latch Option onto Header

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 33.
OPERATION

5. Remove crop divider from storage location by lifting crop divider to disengage lugs (A) at lower end and then lowering it slightly to disengage pin (B) from endsheet.

6. Position crop divider as shown by inserting lugs (A) into holes in endsheet.

7. Lift forward end of crop divider until pin (B) at top of crop divider engages and closes latch (C).

8. Push safety lever (D) downwards to lock pin into latch (C).
9. Pull the tip of the crop divider to ensure there is no lateral movement. If necessary, adjust bolts (A) to tighten crop divider and eliminate lateral movement.

10. Close or install endshields. Refer to 3.2.3 Endshields, page 33.

Installing Crop Dividers without Latch Option onto Header

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 33.
5. Remove crop divider from storage location by lifting crop divider to disengage lugs (A) at lower end and then lowering it slightly to disengage pin (B) from endsheet.
OPERATION

6. Position crop divider as shown by inserting lugs (A) into holes in endsheet.

7. Lift forward end of crop divider and install bolt (A) and special stepped washer (B) (step towards divider). Tighten bolt.

8. Pull the tip of the crop divider to ensure there is no lateral movement. If necessary, adjust bolts (C) to tighten crop divider and eliminate lateral movement.

9. Close or install endshields. Refer to 3.2.3 Endshields, page 33.

3.7.14 Crop Divider Rods

Crop divider rods are used in conjunction with crop dividers. The removable crop divider rods are most useful when crop is bushy or down. In standing crops, using only crop dividers is recommended.

Table 3.19 Crop Divider Rods Recommended Use

<table>
<thead>
<tr>
<th>With Divider Rods</th>
<th>Without Divider Rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Lodged cereal</td>
</tr>
<tr>
<td>Canola</td>
<td>Peas</td>
</tr>
<tr>
<td>Flax</td>
<td>Soybeans</td>
</tr>
<tr>
<td>Grass seed</td>
<td>Sudan grass</td>
</tr>
<tr>
<td>Lentils</td>
<td>Winter forage</td>
</tr>
<tr>
<td></td>
<td>Edible beans</td>
</tr>
<tr>
<td></td>
<td>Milo</td>
</tr>
<tr>
<td></td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>Soybeans</td>
</tr>
</tbody>
</table>
| | Standing cereal
OPERATION

Removing Crop Divider Rods

1. Loosen bolt (A) and remove crop divider rod (B) from both sides of header.

2. Store both crop divider rods (A) inboard on the right side endsheet.

Installing Crop Divider Rods

1. Remove crop divider rods (A) from storage location on inboard of right side endsheet.
2. Position crop divider rod (B) on tip of crop divider as shown and tighten bolt (A).

3. Repeat procedure at opposite end of header.

Rice Divider Rods
Optional rice divider rods provide improved performance in tall and tangled rice crops. The installation and removal procedures for these rods are the same as the installation and removal procedures for standard crop divider rods. Refer to 6.5.10 Rice Divider Rods, page 559.

3.7.15 Setting Auger Position
The auger position has two settings—floating and fixed. The factory setting is the floating position, and is recommended for most crop conditions.

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.
The auger float adjustment arms (A) are located at the bottom left and bottom right of the float module.

If bolt (A) is next to the floating symbol (B), the auger is in the floating position. If bolt (A) is next to the fixed symbol (C), the auger is in the fixed position.

CAUTION

Make sure left and right sides are set to the same position; the two bolts (A) must be in the same location to prevent damage to the machine during operation.

To set the auger position, follow these steps:
1. Extend center-link to the steepest header angle.

2. Raise header to full height, and engage safety props.

3. Shut down combine, and remove key from ignition.

4. Using a 21 mm wrench, loosen bolt (A) until the bolt head is clear of bracket (B).

5. Using the same wrench, move arm (B) forward until bolt (A) is in the slot on bracket next to the fixed symbol (C). The arm can also be moved using a breaker bar in the square hole (D).

 NOTE:
 If changing the auger position from fixed to floating, move arm in opposite direction.

6. Tighten bolt (A) to 122 Nm (90 lbf·ft).

 IMPORTANT:
 Bolt (A) must be properly seated in recess on bracket before tightening bolt. If arm (B) can be moved after tightening bolt, then bolt (A) is not seated properly.

7. Repeat on opposite side.

 IMPORTANT:
 Bolt (A) on each side of the float module must be in the same position to prevent damage to the machine during operation.
3.8 Auto Header Height Control (AHHC)

MacDon’s auto header height control (AHHC) feature works in conjunction with the AHHC option available on certain combine models.

A sensor is installed in the float indicator box (A) on the FM100 Float Module. This sensor sends a signal to the combine allowing it to maintain a consistent cutting height and an optimum float as the header follows ground contours. A two-sensor system is also available as an optional kit. Refer to 6.5.1., page 555.

Figure 3.153: FM100 Float Module

FM100 Float Modules are factory-equipped for AHHC; however, before using the AHHC feature, you must do the following:

1. Ensure that the AHHC sensor’s output voltage range is appropriate for the combine.
 For more information, refer to 3.8.2 Sensor Output Voltage Range – Combine Requirements, page 126.

2. Prepare the combine to use the AHHC feature (applies only to some combine models—refer to the instructions for your combine).

3. Calibrate the AHHC system so that the combine can correctly interpret data from the height sensor on the float module (refer to the instructions for your combine).

 NOTE:
 Once calibration is complete, you are ready to use the AHHC feature in the field. Individual combine settings can improve AHHC performance (refer to your combine instruction manual).
OPERATION

Refer to the following instructions for your specific combine model:

- 3.8.3 Case IH 5088/6088/7088 Combines, page 139
- 3.8.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230 and 7240/8240/9240 Combines, page 150
- 3.8.6 Challenger and Massey Ferguson 6 and 7 Series Combines, page 166
- 3.8.7 Gleaner R65/R66/R75/R76 and S Series Combines, page 173
- 3.8.8 Gleaner S9 Series Combines, page 183
- 3.8.9 John Deere 60 Series Combines, page 197
- 3.8.10 John Deere 70 Series Combines, page 205
- 3.8.11 John Deere S and T Series Combines, page 212
- 3.8.13 CLAAS 500 Series Combines, page 242
- 3.8.14 CLAAS 600 and 700 Series Combines, page 251
- 3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261
- 3.8.16 New Holland Combines (CR Series—Model Year 2015 and Later), page 271

3.8.1 Sensor Operation

The position sensors supplied with the auto header height control (AHHC) system are hall-effect sensors containing sealed connectors. Normal operating signal voltages for the sensors fall between 10% (0.5 VDC) and 90% (4.5 VDC). An increase in sensor voltage correlates to an increase in header height.

Sensor errors result in a 0 V signal, indicating a faulty sensor or incorrect supply voltage.
3.8.2 Sensor Output Voltage Range – Combine Requirements

The auto header height control (AHHC) sensor output must be within a specific voltage range for each combine, or the AHHC feature will not work properly.

Table 3.20 Combine Voltage Limits

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Range (Difference between High and Low Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenger, Gleaner A, Massey Ferguson</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Case IH 5088/6088/7088, 5130/6130/7130, 7010/8010, 7120/8120/9120, 7230/8230/9230, and 7240/8240/9240</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Case IH 2588/2577</td>
<td>2.8 V</td>
<td>7.2 V</td>
<td>4.0 V</td>
</tr>
<tr>
<td>Gleaner R and S Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>John Deere 60, 70, S, and T Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>CLAAS 500/600/700 Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>New Holland CR/CX - 5 V system</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>New Holland CR/CX - 10 V system</td>
<td>2.8 V</td>
<td>7.2 V</td>
<td>4.1–4.4 V</td>
</tr>
</tbody>
</table>

NOTE:
Some combine models do not support checking sensor output voltage from the cab (early Case 23/2588 series, CLAAS 500/600/700 Series). For these models, check output voltage manually. Refer to *Manually Checking Voltage Range: One-Sensor System, page 127* or *Manually Checking Voltage Range: Two-Sensor System, page 129*.

10 Volt Adapter (MD #B6421) – New Holland Combines Only

New Holland combines with a 10 V system require the 10 V adapter (A) (MD #B6421) for proper calibration of the auto header height control (AHHC) feature.

If a 10 V New Holland combine does not have the adapter installed, the AHHC output will always read 0 V, regardless of sensor position.
Use a voltmeter to measure the voltage between Pin 1 (power) and Pin 2 (ground) wires at the AHHC sensor (A). This will determine whether the combine has a 5 V system or a 10 V system.

NOTE:
The combine key must be in the ON position, but the engine does not need to be running.

The three possible voltage readings are as follows:
- 0 V – combine key is in OFF position, or there is a faulty harness/bad connection
- 5 V – standard combine reading
- 10 V – 10 V combine reading; adapter (MD #B6421) is required

Manually Checking Voltage Range: One-Sensor System

The one-sensor system is standard for the FM100 Float Module. If equipped with the optional two-sensor system, refer to *Manually Checking Voltage Range: Two-Sensor System, page 129.*

The output voltage range of the auto header height control (AHHC) sensors in some combines can be checked from the cab. For instructions, refer to your combine operator’s manual or the AHHC instructions later in this document.

To manually check the sensor’s output voltage range, follow these steps:

1. Extend guard angle fully; the header angle indicator should be at D.
2. Position the header 150 mm (6 in.) above the ground, and unlock the float.
3. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.
4. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.

5. Use a voltmeter (A) to measure the voltage between the ground (Pin 2) and signal (Pin 3) wires at the AHHC sensor in the float indicator box. Ensure it is at the high voltage limit for the combine. Refer to Table 3.20, page 126.

NOTE:
The wiring harness connector must be attached to the sensor. Do NOT disconnect it.

6. Fully lower the combine feeder house, and float the header up off the down stops (float indicator should be at 4, and the float module should be fully separated from the header).

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

7. Use a voltmeter (A) to measure the voltage between the ground and signal wires at the AHHC sensor in the float indicator box. It should be at the low voltage limit for the combine. Refer to Table 3.20, page 126.

NOTE:
The wiring harness connector must be attached to the sensor. Do NOT disconnect it.

8. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131.
Manually Checking Voltage Range: Two-Sensor System

FM100 Float Modules equipped with the optional two-sensor system have a left and right sensor located on the back frame of the float module.

To manually check the sensor’s output voltage range, follow these steps:

1. Extend guard angle fully; the header angle indicator should be at D.
2. Position the header 150 mm (6 in.) above the ground, and unlock the float.
3. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

4. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.
5. Use a voltmeter to measure the voltage between the ground (Pin 2) and signal (Pin 3) wires of the AHHC sensor (A) at the back of the float module side frame. Ensure it is at the high voltage limit for the combine. Refer to Table 3.20, page 126.

NOTE:
The wiring harness connector must be attached to the sensor. Do **NOT** disconnect it.

6. Repeat at the opposite side.

7. Fully lower the combine feeder house, and float the header up off the down stops (float indicator [A] should be at 4, and the float module should be fully separated from the header).

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

8. Using a voltmeter, measure the voltage between the ground (Pin 2) and signal (Pin 3) wires of the AHHC sensor (A) at the back of the side frame. Ensure it is at the low voltage limit for the combine. Refer to Table 3.20, page 126.

NOTE:
The wiring harness connector must be attached to the sensor. Do **NOT** disconnect it.

9. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: Two-Sensor System, page 131.

10. Repeat at the opposite side.
Adjusting Voltage Limits: One-Sensor System

Follow this procedure if you have checked the voltage range (either manually or from the cab) and found that the sensor voltage is not within the low and high limits or that the range between the low and high limits is insufficient.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Follow these steps to adjust the high voltage limit:
 a. Extend guard angle fully; the header angle indicator should be at D.
 b. Position header 152–254 mm (6–10 in.) above the ground; the float indicator should be at 0.
 c. Check the high voltage limit using the combine display or a voltmeter. Refer to Table 3.20, page 126.
 d. Loosen sensor-mounting nuts (A).
 e. Slide sensor support (B) to right to increase high voltage limit or to left to decrease it.
 f. Tighten sensor-mounting nuts (A).

2. Follow these steps to adjust the low voltage limit:
 a. Extend guard angle fully; the header angle indicator should be at D.
 b. Fully lower header on the ground; the float indicator should be at 0.
 c. Check the low voltage limit using the combine display or voltmeter. Refer to Table 3.20, page 126.
 d. Loosen sensor-mounting nuts (A).
 e. Rotate sensor (B) clockwise to increase low voltage limit and counterclockwise to decrease it.
 f. Tighten sensor-mounting nuts (A).

3. After making adjustments, recheck both the upper and lower voltage limits to make sure they are within the required range according to Table 3.20, page 126.

Adjusting Voltage Limits: Two-Sensor System

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Extend guard angle fully; the header angle indicator should be at D.
2. Position header 150–254 mm (6–10 in.) above the ground; the float indicator should be at 0.
3. Follow these steps to adjust left sensor voltage:
 a. Loosen sensor-mounting nuts (A).
 b. Rotate sensor (B) counterclockwise to lower the voltage. Rotate sensor clockwise to raise the voltage.
 c. Check that the left sensor is at the correct high voltage limit.
 d. Tighten sensor-mounting nuts (A).

4. Follow these steps to adjust right sensor voltage:
 a. Loosen sensor mounting nuts (A).
 b. Rotate sensor (B) clockwise to lower the voltage. Rotate sensor counterclockwise to raise the voltage.
 c. Check that the right sensor is at the correct high voltage limit.
 d. Tighten sensor mounting nuts (A).
5. Fully lower the header; the float indicator (A) should be at 4.
6. Check that both sensors are at the correct low voltage limit.

Replacing the Auto Header Height Control (AHHC) Sensor (One-Sensor System)

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Disconnect the wiring harness (A) from the existing sensor (B).
2. Remove the two screws (C) that secure the sensor (B) to the sensor arm (D).

3. Swing the sensor arm (A) upwards to gain access to the two bolts (B) securing the sensor (C) to the bracket (D).
4. Remove the two bolts and nuts (B) that secure the sensor (C) to the bracket (D).
5. Pull sensor (C) away from the bracket (D).
IMPORTANT:
To avoid damaging the new sensor, install sensor as follows:

6. Position the new sensor (A) on the bracket (B).
7. Secure with two bolts (C) and nuts (D).

8. Attach sensor arm (A) to the sensor (B) and secure with two screws (C).
9. Reconnect the wiring harness to the plug (B) on the sensor.
10. Check the voltage range of the new sensor, and adjust if necessary. Refer to:
 - *Manually Checking Voltage Range: One-Sensor System, page 127*
 - *Adjusting Voltage Limits: One-Sensor System, page 131*
Replacing Float Indicator Cable

If the float indicator cable is damaged, replace it following these instructions. You will need to order one float indicator cable (MD #187658) from your MacDon Dealer.

NOTE:
Some parts have been removed for illustration purposes.

1. On the left front side of the float module, remove nut, washer, and bolt (A) securing the cable eye on the end of float indicator cable (B) to the float lever. Retain hardware for reinstallation.

2. Loosen jam nuts (C) on float indicator cable (B), and then disconnect the cable from cable stop support (D).

3. Repeat steps on right front side of the float module.

4. Loosen jam nuts (A) securing float indicator cable (B) to both sides of the float indicator bottom support, and then disconnect the cable from the support.

5. Float indicator cable (B) is routed around three pulleys (C) in the float indicator box. Remove the cable and discard.

NOTE:
Pulleys are hidden by other parts in the illustration. Their approximate location is identified.
6. Examine the new float indicator cable (MD #187658). You will see that it is divided into sections. The longer covered section (A) will be installed on the left side of the float module, the middle uncovered section (B) will be installed in the float indicator box, and the shorter covered section (C) will be installed on the right side of the float module. Installation instructions are provided in the following steps.

Figure 3.176: Float Indicator Cable

7. With the longer end of the new float indicator cable on the left, loop the middle section of the cable (the section in between the innermost boot seals and jam nuts) (A) around the three pulleys in the float indicator box as shown at right.
8. Secure the left side of the new float indicator cable (A) to the left side of the float indicator bottom support as follows:
 a. On float indicator cable (A), jam nuts and boot seals are positioned in four locations. Select the second location from the left.
 b. Remove boot seal (B), and slide cable (A) through the slot on the left side of the float indicator bottom support (C).
 c. Insert the threaded end of cable housing (D) into the hole in support (C), and then thread boot seal (B) onto the housing.
 d. Tighten jam nuts (E).

9. Route the left end of the new float indicator cable (A) through hose holder (B), behind gussets (C) at the top of the inboard float spring, through hole (D) into the float module hydraulic/electrical enclosure, and then back through hole (E) in the bottom of the float module hydraulic/electrical enclosure to the front side of the float module.
10. Slide new float indicator cable (B) through the slot in the cable stop support (D), and secure in place with the cable boot seal and jam nuts (C).

11. Secure the cable eye on the end of float indicator cable (B) to the float lever with the nut, washer, and bolt (A) retained from Step 1, page 135. The washer goes between the cable eye and the bolt.

12. Torque nut to 8.6 Nm (76 lbf·in.).

13. Route the right end of the new float indicator cable (A) along top angle (B), behind gussets (C) at the top of the inboard float spring, and then down the side of the float module frame.

14. Slide new float indicator cable (A) through the slot in the cable stop support (D), and secure in place with the cable boot and jam nuts (E).

15. Secure the cable eye on the end of float indicator cable (A) to the float lever with the nut, washer, and bolt retained from Step 1, page 135. The washer goes between the cable eye and the bolt head. Refer to previous illustration.

16. Torque nut to 8.6 Nm (76 lbf·in.).

NOTE:
The cable eye must remain free to turn on the bolt.
17. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

3.8.3 Case IH 5088/6088/7088 Combines

Calibrating the Auto Header Height Control (Case IH 5088/6088/7088)

For best performance of the auto header height control (AHHC) system, perform ground calibration with center-link set to D. When calibration is complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Set the float. Refer to 3.7.3 Header Float, page 64. Position fore-aft in mid span.
3. Start the combine engine, but do NOT engage separator or feeder house.
4. Locate HEADER CONTROL switch (A) on the right console, and set to HT (this is AHHC mode).
5. Press the HEADER LOWER switch (A) on the control handle until the float module and header are fully lowered. You may need to hold the switch for several seconds.

6. Press the HEADER RAISE switch (A) on the control handle. The header should stop at about the halfway point. Continue holding the HEADER RAISE switch, and the header will rise until the feeder house reaches its upper limit. The AHHC system is now calibrated.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Setting the Sensitivity of the Auto Header Height (Case IH 5088/6088/7088)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.
1. Use the HEADER SETTINGS key (M) to display the HEADER SENSITIVITY CHANGE page as shown in Figure 3.187, page 141.

2. Use the UP or DOWN keys (E) or (H) to adjust the highlighted item. The height sensitivity setting range is 0 (least sensitive) to 250 (most sensitive) in increments of 10.

 NOTE:
 Adjustments take effect immediately. Use the CANCEL key to return to the original settings.

3. Use the HEADER SETTINGS key (M) to highlight the next changeable item.

4. Use the ENTER key (D) to save changes and return to the monitor screen. If there are no changes, the screen will return to the monitor screen after 5 seconds.
3.8.4 Case IH 5130/6130/7130 and 5140/6140/7140 Mid-Range Combines

Setting up the Header on the Combine Display (Case IH 5130/6130/7130; 5140/6140/7140)

1. On the main page of the combine display, select TOOLBOX (A).

2. Select the HEAD 1 tab (A). The HEADER SETUP page displays.

 NOTE:
 To locate the HEAD 1 tab, you may need to scroll to the right using side arrows (C).

3. From the CUTTING TYPE menu (B), select PLATFORM.

4. Select the HEAD 2 tab (A). The HEADER SETUP 2 page displays.

5. From the HEADER PRESSURE FLOAT menu (B), select NOT INSTALLED.

6. If you are operating a D1 Draper Header, from the DRAPER GRAIN HEADER STYLE menu (C), select RIGID 2000 SERIES.

 If you are operating an FD1 FlexDraper® Header, from the DRAPER GRAIN HEADER STYLE menu (C), select FLEX 2000 SERIES.
7. Locate the HHC HEIGHT SENSITIVITY field (A), and set as follows:
 - If using a two-sensor system: Set HHC HEIGHT SENSITIVITY to 250.
 - If using a single-sensor system: Set HHC HEIGHT SENSITIVITY to 180.

 NOTE:
 If hunting occurs during operation, decrease this setting by 20 points at a time until hunting no longer occurs.

8. Set the HHC TILT SENSITIVITY (B) to 150. Increase or decrease as desired.

9. From the REEL DRIVE TYPE menu (A), select
 - 4 if you are using a standard 19-tooth drive sprocket
 - 5 if you are using an optional high-torque 14-tooth drive sprocket
 - 6 if you are using an optional high-torque 10-tooth drive sprocket

10. From the REEL HEIGHT SENSOR menu (A), select YES.
11. Locate the AUTOTILT field (A).
 - **If using a two-sensor system:** Select YES in the AUTOTILT field.
 - **If using a single-sensor system:** Select NO in the AUTOTILT field.

CHECKING VOLTAGE RANGE FROM COMBINE CAB (CASE IH 5130/6130/7130; 5140/6140/7140)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the auto header height control (AHHC) system. Refer to the header operator’s manual for instructions on setting float.
3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.
4. Ensure header float is unlocked.

5. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

7. From the GROUP menu, select HEADER (B).
8. From the PARAMETER menu, select LEFT HEIGHT/TILT SENSOR (A).

9. The SETTINGS page updates to display the voltage in the VALUE/STATUS field (A). Lower the feeder house fully, and then raise it 305 mm (12 in.) off the ground to view the full range of voltage readings.

10. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131.

Calibrating Auto Header Height Control (Case IH 5130/6130/7130, 5140/6140/7140)

For best performance of the auto header height control (AHHC), perform these procedures with center-link set to D. When setup and calibration are complete, adjust center-link back to desired header angle. Refer to 3.7.5 Header Angle, page 81.

NOTE:
This procedure applies to combines with a software version below 28.00. For instructions on calibrating the AHHC for combines with software version 28.00 or above, refer to Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 160.

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.

2. Ensure all header and float module electrical and hydraulic connections are made.
3. Start the combine engine, but do **NOT** engage separator or feeder house.

4. Locate HEADER CONTROL switch (A) on the right console, and set to HT (this is AHHC mode).

5. Hold the DOWN button for 10 seconds, or until the combine feeder house has been lowered all the way down (the feeder house will stop moving).

6. Push the RAISE button and hold it until the feeder house travels all the way up. It will stop 61 cm (2 ft.) above ground for 5 seconds, then it will resume lift. This is an indication that calibration is successful.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Setting Preset Cutting Height (Case 5130/6130/7130, 5140/6140/7140)

To set preset cutting height, follow these steps:

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
The indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 4, page 128. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.
1. Engage separator and header.

2. Manually raise or lower header to desired cutting height.

3. Press 1 on button (A). A yellow light next to the button will illuminate.

NOTE:
When setting presets, always set header position before setting reel position. If header and reel are set at the same time, the reel setting will not be saved.

4. Manually raise or lower reel to desired position.

5. Press 1 on button (A). A yellow light next to the button will illuminate.

6. Manually raise or lower header to a second desired cutting height.

7. Press 2 on button (A). A yellow light next to the button will illuminate.

8. Manually raise or lower reel to desired position.

9. Press 2 on button (A). A yellow light next to the button will illuminate.

Up and down arrows should now appear in the MANUAL HEIGHT box (A) on the RUN 1 page on the combine display. This indicates that the auto header height control (AHHC) is functioning.
10. To enable the presets, activate AHHC button (A) to place the header on the ground. To enable the first preset, tap the button once. To enable the second preset, tap the button twice.

To lift the header to maximum working height, hold the SHIFT button on the back of the control handle while tapping AHHC button (A).

11. The maximum working height can be adjusted on the HEADER SETUP page on the combine display. Enter the desired height in the MAXIMUM WORKING HEIGHT field (A).

12. If you need to change the position of one of the presets, you can fine-tune this setting with button (A) on the combine console.
3.8.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230 and 7240/8240/9240 Combines

Checking Voltage Range from the Combine Cab (Case 8010)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

Figure 3.209: Float Lock
3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

4. Ensure header float is unlocked.

5. Select DIAG (A) on the Universal display MAIN screen. The DIAG screen displays.

7. Select HDR HEIGHT/TILT (A). The SENSOR screen displays.

8. Select LEFT SEN (A). The exact voltage is displayed. Raise and lower the header to see the full range of voltage readings.

9. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131.
Setting Header Controls (Case 8010)

The following procedure applies to Case 8010 combines without a shift button on the control handle.

The REEL FORE-AFT switches (A) also control header fore-aft tilt if header is equipped with the fore-aft tilt option. The switches can be configured to allow the Operator to swap between reel fore-aft and header fore-aft tilt.

To set the header controls, follow these steps:

1. To swap between reel fore-aft controls and header fore-aft tilt controls, go to the LAYOUT tab, select FORE/AFT CONTROL (A) from the legend, and place it on one of the operator-configurable screens (HARV1, HARV2, HARV3) or ADJUST under the RUN menu.

 NOTE:
 H F/A (B) is displayed on the status bar on the right of the screen when HEADER is selected with the FORE/AFT CONTROL.

2. If HEADER is selected with the FORE/AFT CONTROL, press the reel aft button on the control handle to tilt the header rearward, or press the reel fore button on the control handle to tilt the header forward.

Checking Voltage Range from the Combine Cab (Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the auto header height control (AHHC) system.

3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.
4. Ensure header float is unlocked.
5. Select DIAGNOSTICS (A) on the MAIN page. The DIAGNOSTICS page opens.
6. Select SETTINGS. The SETTINGS page opens.
7. Select the GROUP arrow (A). The GROUP dialog box opens.
9. Select LEFT HEADER HEIGHT SEN (A), and then select the GRAPH button (B). The exact voltage is displayed at top of page. Raise and lower the header to see the full range of voltage readings.

10. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131.

Calibrating the Auto Header Height Control (Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

NOTE:
This procedure applies to combines with a software version below 28.00. For instructions on calibrating the AHHC for combines with software version 28.00 or above, refer to Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software), page 160.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Ensure all header and float module electrical and hydraulic connections are made.
3. Select TOOLBOX (A) on the MAIN page.

4. Select HEADER tab (A).

 NOTE:
 To locate the HEADER tab, you may need to scroll to the right using side arrows (C).

5. Set appropriate HEADER STYLE (B).

6. Set AUTO REEL SPEED SLOPE.

7. Set HEADER PRESSURE FLOAT to NO if equipped, and ensure REEL DRIVE is HYDRAULIC.
8. Install REEL FORE-BACK (if applicable).

9. Locate the HHC HEIGHT SENSITIVITY field (A), and set as follows:
 - If using a two-sensor system: Set HHC HEIGHT SENSITIVITY to 250.
 - If using a single-sensor system: Set HHC HEIGHT SENSITIVITY to 180.

 NOTE:

 If hunting occurs during operation, decrease this setting by 20 points at a time until hunting no longer occurs.

10. Set the HHC TILT SENSITIVITY (B) to 150. Increase or decrease as desired.

11. Install FORE/AFT CONTROL and HDR FORE/AFT TILT (if applicable).
12. Press HEAD2 at bottom of page.
13. Ensure HEADER TYPE is DRAPER.
 NOTE:
 If recognition resistor is plugged in to header harness, you will not be able to change this.
14. Set cutting type to PLATFORM.
15. Set appropriate HEADER WIDTH and HEADER USAGE.

16. From the REEL HEIGHT SENSOR menu, select YES (A).

17. Locate the AUTOTILT field (A).
 - **If using a two-sensor system:** Select YES in the AUTOTILT field.
 - **If using a single-sensor system:** Select NO in the AUTOTILT field.
 NOTE:
 If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Calibrating the Auto Header Height Control (Case Combines with Version 28.00 or Higher Software)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure header center-link is set to D.
2. Raise header on down stops and unlock float.
3. Place wings in locked position.
4. Select TOOLBOX (A) on the MAIN page

5. Select the HEAD 1 tab (A).

 NOTE:
 To locate the HEAD 1 tab, you may need to scroll to the right using side arrows (B).

![Figure 3.233: Case IH Combine Display](image)

![Figure 3.234: Case IH Combine Display](image)
6. Locate the HEADER SUB TYPE field.

8. Select the HEAD 2 tab (A).
9. In the HEADER SENSORS field (B), select ENABLE.
10. In the HEADER PRESSURE FLOAT field (C), select NO.
11. In the HEIGHT/TILT RESPONSE field (D), select FAST.
12. In the AUTO HEIGHT OVERRIDE field (E), select YES.
13. Press the down arrow (F) to go to the next page.

14. Locate the HHC HEIGHT SENSITIVITY field (A), and set as follows:
 • If using a single-sensor system, set HHC HEIGHT SENSITIVITY to 180.
 • If using a two-sensor system, set HHC HEIGHT SENSITIVITY to 250.

NOTE:
If hunting occurs during operation, decrease this setting by 20 points at a time until hunting no longer occurs.

15. Set the HHC TILT SENSITIVITY (B) to 150. Increase or decrease as desired.
16. From the REEL HEIGHT SENSOR menu, select YES (A).

17. Locate the AUTOTILT field (A).
 - If using a two-sensor system: Select YES in the AUTOTILT field.
 - If using a single-sensor system: Select NO in the AUTOTILT field.

NOTE:
Icons (A) and (B) appear on the monitor only after engaging the separator and header, and then pressing HEADER RESUME button on the control panel.

18. Ensure AUTO HEIGHT icon (A) appears on the monitor and is displayed as shown at location (B). When the header is set for cutting on the ground, this verifies that the combine is correctly using the potentiometer on the header to sense ground pressure.

NOTE:
AUTO HEIGHT field (B) may appear on any of the RUN tabs and not necessarily on the RUN 1 tab.
19. Select CALIBRATION on the combine display, and press the right arrow navigation key to enter the information box.

20. Select HEADER (A), and press ENTER. The CALIBRATION dialog box opens.

 NOTE:
 You can use the up and down navigation keys to move between options.

21. Follow the calibration steps in the order in which they appear in the dialog box. As you proceed through the calibration process, the display will automatically update to show the next step.

 NOTE:
 Pressing the ESC key during any of the steps or letting the system sit idle for more than 3 minutes will cause the calibration procedure to stop.

 NOTE:
 Refer to your combine operator’s manual for an explanation of any error codes.

22. When all steps have been completed, CALIBRATION SUCCESSFUL message is displayed on the page. Exit the CALIBRATION menu by pressing the ENTER or ESC key.

 NOTE:
 If float was set heavier to complete AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Checking Reel Height Sensor Voltages (Case IH)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

2. Select SETTINGS tab (A). The SETTINGS page opens.

3. From the GROUP menu, select HEADER (B).

4. From the PARAMETER menu, select REEL VERTICAL POSITION (C).

5. Select GRAPH tab (A). The REEL VERTICAL POSITION graph displays.

6. Lower the reel to view the high voltage (B). The voltage should be 4.1–4.5 V.

7. Raise the reel to view the low voltage (C). The voltage should be 0.5–0.9 V.

8. If either voltage is out of range, refer to Checking and Adjusting Reel Height Sensor, page 96.
Setting Preset Cutting Height (Case 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240)

To set the preset cutting height, follow these steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
The indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 4, page 128. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Engage separator and header.
2. Manually raise or lower header to a desired cutting height.
3. Press SET #1 switch (A). The light (C) beside switch (A) will illuminate.

 NOTE:
 Use switch (E) for fine adjustments.

 NOTE:
 When setting presets, always set header position before setting reel position. If header and reel are set at the same time, the reel setting will not save.

4. Manually raise or lower reel to desired position.
5. Press SET #1 switch (A). The light (C) beside switch (A) will illuminate.
6. Manually raise or lower header to a second desired cutting height.
7. Press SET #2 switch (B). The light (D) beside switch (B) will illuminate.
8. Manually raise or lower reel to a second desired position.
9. Press SET #2 switch (B). The light (D) beside switch (B) will illuminate.
10. To swap between set points, press HEADER RESUME (A).

11. To raise header at headlands, press and hold SHIFT button (B) at the back of the control handle and press HEADER RESUME switch (C). To lower header, press HEADER RESUME switch (C) once to return to header preset height.

NOTE:
Pressing the HEADER RAISE/LOWER switches (C) and (D) disengages AUTO HEIGHT mode. Press HEADER RESUME (A) to reengage.

3.8.6 Challenger and Massey Ferguson 6 and 7 Series Combines

Checking Voltage Range from the Combine Cab (Challenger and Massey Ferguson)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation, causing a malfunction of the auto header height control (AHHC) system.
3. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.

4. Go to the FIELD page on the combine monitor, and then press the diagnostics icon. The MISCELLANEOUS page displays.

5. Press the VMM DIAGNOSTIC button (A). The VMM DIAGNOSTIC page displays.

6. Go to the ANALOG IN tab (A), and then select VMM MODULE 3 by pressing the text box below the four tabs. The voltage from the AHHC sensor is now displayed on page as HEADER HEIGHT RIGHT POT and HEADER HEIGHT LEFT POT. The readings may be slightly different.
7. Fully lower the combine feeder house (float module should be fully separated from the header).

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

8. Read voltage.
9. Raise header so cutterbar is 150 mm (6 in.) off the ground.
10. Read voltage.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131 or Adjusting Voltage Limits: Two-Sensor System, page 131.

Engaging the Auto Header Height Control (Challenger and Massey Ferguson)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The following system components are required in order for the auto header height control (AHHC) to work:

- Main module (PCB board) and header driver module (PCB board) mounted in card box in fuse panel module (FP)
- Multi-function control handle operator inputs
- Operator inputs mounted in the control console module (CC) panel

NOTE:
In addition to the above components, the electrohydraulic header lift control valve is an integral part of the system.

Engage the AHHC as follows:

1. Scroll through the header control options on the combine display using the header control switch until the AHHC icon (A) is displayed in the first message box. The AHHC will adjust the header height in relation to the ground according to the height setting and sensitivity setting.
Calibrating the Auto Header Height Control (Challenger and Massey Ferguson)

NOTE:
For best performance of the auto header height control (AHHC) system, perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. On the FIELD screen, press the DIAGNOSTICS icon (A). The MISCELLANEOUS screen appears.

3. Press the CALIBRATIONS button (A). The CALIBRATIONS screen appears.
4. Press the HEADER button (A). The HEADER CALIBRATION screen displays a warning.

5. Read the warning message, and then press the green check mark button.

6. Follow the on-screen prompts to complete calibration.

NOTE:
The calibration procedure can be canceled at any time by pressing the cancel button in the bottom right corner of the screen. While the header calibration is running, the calibration can also be canceled by using the UP, DOWN, TILT RIGHT, or TILT LEFT buttons on the control handle.

NOTE:
If the combine does not have HEADER TILT installed or if it is inoperable, you may receive warnings during calibration. Press the green check mark if these warnings appear. This will not affect the AHHC calibration.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
OPERATION

Adjusting the Header Height (Challenger and Massey Ferguson)

Once the auto header height control (AHHC) is activated, press and release the HEADER LOWER button on the control handle. The AHHC will automatically lower the header to the selected height setting.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

You can adjust the selected AHHC height using the HEIGHT ADJUSTMENT knob (A) on the control console. Turning the knob clockwise increases the selected height, and turning the knob counterclockwise decreases the selected height.

![Figure 3.260: Height Adjustment Knob on the Combine Control Console](image)

Adjusting the Header Raise/Lower Rate (Challenger and Massey Ferguson)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press the Header icon (A) on the FIELD screen. The HEADER screen displays.

![Figure 3.261: Challenger Combine Display](image)

3. Go to the TABLE SETTINGS tab.
4. Press up arrow on MAX UP PWM to increase percentage number and increase raise speed. Press down arrow on MAX UP PWM to decrease percentage number and decrease raise speed.
5. Press up arrow on MAX DOWN PWM to increase percentage number and increase lower speed. Press down arrow on MAX DOWN PWM to decrease percentage number and decrease lower speed.

Setting the Sensitivity of the Auto Header Height Control (Challenger and Massey Ferguson)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press the HEADER icon on the FIELD screen. The HEADER screen appears.
2. Press the HEADER CONTROL button (A). The HEADER CONTROL screen appears. You can adjust sensitivity on this screen using the up and down arrows.

3. Adjust the sensitivity to the maximum setting.

4. Activate the AHHC, and press the HEADER LOWER button on the control handle.

5. Decrease the sensitivity until the feeder house remains steady and does not bounce up and down.

 NOTE:
 This is the maximum sensitivity and is only an initial setting. The final setting must be made in the field, as the system reaction will vary with changing surfaces and operating conditions.

 NOTE:
 If maximum sensitivity is not needed, a less sensitive setting will reduce the frequency of header height corrections and component wear. Partially opening the accumulator valve will cushion the action of the header lift cylinders and reduce header hunting.

3.8.7 Gleaner R65/R66/R75/R76 and S Series Combines

Checking Voltage Range from the Combine Cab (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
OPERATION

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

![Figure 3.266: Float Lock](image)

3. Ensure pointer (A) on the float indicator box is on 0. If necessary, adjust the cable take-up bracket (B) until pointer is on 0.

![Figure 3.267: Float Indicator Box](image)
4. Ensure header float is unlocked.

5. Press and hold button (A) on the heads-up display for 3 seconds to enter diagnostic mode.

6. Scroll down using button (B) until LEFT is displayed on the LCD screen.

7. Press the OK button (C). The number indicated on the LCD screen is the voltage reading from the sensor of the AHHC. Raise and lower the header to see the full range of voltage readings.

Engaging the Auto Header Height Control (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The following system components are required in order for the auto header height control (AHHC) to work:

- Main module (PCB board) and header driver module (PCB board) mounted in card box in fuse pane module (FP).
- Multi-Function Control Handle operator inputs.
- Operator inputs mounted in the control console module (CC) panel.

NOTE:
In addition to the above components, the electrohydraulic header lift control valve also is an integral part of the system.
OPERATION

Figure 3.269: Combine Auto Header Height Controls

1. Press the AUTO MODE (A) button until the AHHC LED light (B) begins flashing. If the RTC light is flashing, press the AUTO MODE (A) button again until it switches to AHHC.

2. Briefly press button (A) on the control handle. The AHHC light should change from flashing to solid. The header also should drop toward the ground. The AHHC is now engaged and can be adjusted for height and sensitivity.

3. Use controls to adjust height and sensitivity to changing ground conditions such as shallow gullies and field drainage trenches.

Figure 3.270: Control Handle
Calibrating the Auto Header Height Control (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

Calibration should be done on flat, level ground without the header clutches engaged. Header height and header tilt must not be in auto or standby modes. The engine rpm must be above 2000 rpm. The header tilt option on 2004 and earlier model combines does not work with MacDon headers. This system will have to be removed and disabled in order to calibrate the auto header height control (AHHC). Refer to combine manual for instructions.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

Figure 3.271: Combine Auto Header Height Controls

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.5 Header Angle, page 81.

1. Ensure center-link is set to D.
2. Press AUTO MODE button (A) until the AHHC light (B) is illuminated.
3. Press and hold CAL1 button (C) until you see the following lights flash: raise header (D), lower header (E), tilt auto mode (F), and AHHC (B).
OPERATION

4. Fully lower the header, and continue to hold the HEADER LOWER button for 5–8 seconds to ensure float module has separated from header.

5. Press CAL2 button (G) until lower header light (E) stops flashing, and release it when the raise header light (D) begins flashing.

6. Raise header to its maximum height (ensure the header is resting on the down-stop pads).

7. Press CAL2 button (G) until the raise header light (D) turns off.

NOTE:
The following steps are applicable only to 2005 and newer combines with the Smartrac feeder house.

8. Wait for the HEADER TILT LEFT light (not shown) to start flashing, and then tilt header to the maximum left position.

9. Press CAL2 button (G) until the HEADER TILT LEFT light (not shown) stops flashing, and release button when the HEADER TILT RIGHT light (not shown) begins flashing.

10. Tilt the header to the maximum right position.

11. Press CAL2 button (G) until all of the following lights flash: raise header (D), lower header (E), height auto mode (A), right header and left header (not shown), and tilt auto mode (F).

12. Center the header.

13. Press CAL1 button (C) to exit calibration and save all values to the memory. All lights should stop flashing.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Turning off the Accumulator (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

The accumulator will affect the combine's reaction time and greatly inhibit the auto header height control's performance.

Refer to the combine operator's manual for proper procedure when turning accumulator off and on. For best performance, turn the feeder house accumulator off.

NOTE:
The accumulator is located in front of the front left axle beam.

![Figure 3.272: Combine Accumulator ON/OFF Switch](image)

A - Accumulator Lever (Off Position)
Adjusting the Header Raise/Lower Rate (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The auto header height control (AHHC) system’s stability is affected by hydraulic flow rates. Ensure that the header raise (A) and header lower (B) adjustable restrictors in the hydraulic manifold are adjusted so that it takes approximately 6 seconds to raise the header from ground level to maximum height (hydraulic cylinders fully extended), and approximately 6 seconds to lower the header from maximum height to ground level.

If there is too much header movement (for example, hunting) when the header is on the ground, adjust the lower rate to a slower rate of drop: 7 or 8 seconds.

NOTE:
Make this adjustment with the hydraulic system at normal operating temperature (54.4°C [130°F]) and the engine running at full throttle.

Adjusting Ground Pressure (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
The indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 4, page 128. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.
1. Ensure the header is in auto header height control (AHHC) mode. This is indicated by the AUTO MODE LED light (A) displaying a continuous, solid light.

2. The header will lower to the height (ground pressure) corresponding to the position selected with the height control knob (B). Turn the knob counterclockwise for minimum ground pressure, and clockwise for maximum ground pressure.

Adjusting the Sensitivity of the Auto Header Height Control (AHHC) (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The SENSITIVITY ADJUSTMENT dial (A) controls the distance the cutterbar must travel up or down before the AHHC reacts and raises or lowers the feeder house.

When the SENSITIVITY ADJUSTMENT dial (A) is set to maximum (turned completely clockwise), only small changes in ground height are needed to cause the feeder house to raise or lower. In this position, the cutterbar
OPERATION

moves up and down approximately 19 mm (3/4 in.) before the control module signals the hydraulic control valve to raise or lower the header frame.

When the SENSITIVITY ADJUSTMENT dial (A) is set to minimum (turned completely counterclockwise), large changes in ground height are needed to cause the feeder house to raise or lower. In this position, the cutterbar moves up and down approximately 51 mm (2 in.) before the control module signals the hydraulic control valve to raise or lower the header frame.

The HEADER SENSE LINE input also changes the range of the sensitivity. When connected to a draper, the counterclockwise position (least sensitive) allows for approximately 102 mm (4 in.) of vertical travel before correction is made.

Troubleshooting Alarms and Diagnostic Faults (Gleaner R65/R66/R75/R76 and Pre-2016 S Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

Display type:
Displayed on tachometer (A) as XX or XXX.
Figure 3.278: Combine Heads-Up Display

NOTE:
Displayed on LCD (A) as XX in. or XXX cm.

Alarm conditions:
If an error message is received from the fuse panel, an audible alarm sounds. The alarm buzzer sounds five times every 10 seconds. The LCD on the electronic instrument panel (EIP) indicates the header system in error as HDR CTRL followed by HGT ERR for height, and HDR CTRL followed by TILT ERR for tilt. The header height LED flashes yellow two times every second.

When an alarm condition occurs, a green LED flashes on and off (green, yellow, or red depending on the input). In addition, a message is displayed on the LCD to identify the nature of the alarm. For example, HYD TEMP, OPEN, SHRT will be flashed alternately.

Diagnostic fault failures:
Refer to Figure 3.278, page 182.

Pressing the header height switch (B) for a minimum of 5 seconds will put the EIP in header diagnostic mode. The LCD (shown on previous screen) will display the message HDR DIAG when the EIP has entered header diagnostic mode.

In this mode, after 3 seconds, header fault parameter labels are displayed on the EIP LCD. All the information displayed is read-only.

The OK (C) and CLEAR (D) buttons allow you to scroll through the list of parameters. If there are no active fault codes, the EIP LCD will display NO CODE.

When a parameter is displayed, its label is displayed for 3 seconds, after which its value is automatically displayed.
Pressing the OK button (C) while the value is displayed will advance to the next parameter and display its label.
When a parameter label is displayed and the OK button (C) is pressed before 3 seconds, the parameter’s value will be displayed.

Pressing AREA (E) will cycle through the options. When LEFT is displayed on the LCD, press the OK button (C), and the auto header height control (AHHC) voltage will be shown on the display.

Press the DIST button (F) to cycle back through the table.

Press the CLEAR button (D) to exit header diagnostics and return to normal mode.

Refer to 3.8.1 Sensor Operation, page 125.

3.8.8 Gleaner S9 Series Combines

Setting up the Header (Gleaner S9 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The AGCO Tyton terminal (A) is used to set up and manage a MacDon draper header on a Gleaner S9 combine. Use the touch screen display to select the desired item on the screen.

1. On the top right quadrant of the home screen, touch the COMBINE icon (A). The COMBINE MAIN MENU opens.
2. On the COMBINE MAIN MENU, touch HEADER SETTINGS (A). The HEADER SETTINGS screen opens.

Figure 3.281: Header Settings in Combine Main Menu
3. Touch the HEADER CONFIGURATION field (A). A screen showing predefined headers opens.
 - If your MacDon header is already set up, it appears on the header list. Touch the MacDon header title (B) to highlight the selection in blue, and then touch the green check mark (E) to continue.
 - If only the default header (D) is shown, touch the ABC button (C), and use the on-screen keyboard to enter the MacDon header information. When complete, select one of the following options to return to the HEADER SETTINGS screen:
 - The green check mark (E) saves the settings
 - The garbage can icon (F) deletes the highlighted header from the list
 - The red X (G) cancels the change(s)

Figure 3.282: Header Configuration Menu on Header Settings Page
4. To specify the type of header installed on the machine, touch the HEADER TYPE field (A).

5. A list of predefined header types appears.
 - For MacDon D1 Series Draper and FD1 Series FlexDraper headers, touch POWER FLOW (A)
 - Touch the green check mark (B) to save the selection and continue

6. Make sure that the HEADER HAS REEL ATTACHED check box (A) is checked.
7. Touch the REEL DIAMETER field (A) and a numeric keypad displays. Enter 40 for a MacDon reel.

8. Touch the REEL PPR (Pulses Per Revolution) field (B) and enter 30 as the value for your MacDon header. (PPR is determined by the number of teeth on the reel speed sprocket).

9. Touch the green check mark (B) at the bottom of the numeric keypad (A) when complete, or the red X to cancel.

10. When complete, touch the green check mark (A) at the bottom of the HEADER SETTINGS screen.
Setting up Reel Settings (Gleaner S9 Series)

⚠️ CAUTION

Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. From the COMBINE MAIN MENU, touch REEL SETTINGS (A) to open the REEL SETTINGS screen.

2. To set minimum reel speed, touch the SPEED MINIMUM FIELD (B). The on-screen keyboard displays. Enter the desired value. Touch the green check mark to accept the new value, or the red X to cancel. The reel speed is shown in mph and rpm.

 NOTE:

 At the bottom of the REEL SETTINGS screen, the reel diameter and reel pulses per revolution (PPR) are displayed. These values have already been set in the HEADER SETTINGS screen.

3. Reel speed is calibrated in the REEL SETTINGS screen by touching the CALIBRATE button (A) in the top right of the screen.
4. The CALIBRATION WIZARD opens and displays a hazard message warning screen.

5. Make sure to meet all the conditions listed on the CALIBRATION WIZARD warning screen. Press the green check mark to accept and start reel calibration. Pressing the red X will cancel the calibration procedure.

6. A message appears in the CALIBRATION WIZARD stating that reel calibration has started. The reel will begin turning slowly and increase to high speed. A progress bar is provided. If necessary, touch the red X to cancel. Otherwise, wait for the message that reel calibration has completed successfully. Touch the green check mark to save the calibrated settings.

Setting up Automatic Header Controls (Gleaner S9 Series)

Automatic header functions are configured on the HEADER SETTINGS screen.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.
1. **Automatic Control Functions**: There are toggle (OFF/ON) switches on the HEADER SETTINGS screen for the automatic control functions. For MacDon headers, ensure the following two functions are enabled as shown:
 - RTC (return to cut) (A)
 - AHHC (automatic header height control) (B)

 All other switches are disabled (not highlighted).

2. **The Sensitivity** setting (C) controls how responsive a control (RTC or AHHC) is to a given change in sensor feedback. The setting fields are located directly below the toggle switches. To enter a new sensitivity setting, touch the setting field below the specific toggle switch, and enter the new value in the on-screen keyboard.
 - Increase sensitivity if the combine does not change the feeder position quickly enough when in Auto Mode.
 - Decrease sensitivity if the combine hunts for a position in Auto Mode.

 NOTE:

 Recommended sensitivity starting points for MacDon headers are:
 - 50 for RTC (A)
 - 60 for AHHC (B)

3. **Header Speed**: The HEADER CONTROL SPEED area (A) on the HEADER SETTINGS screen is used to adjust the following speeds:
 - Tilt left and right is the lateral tilt of the combine faceplate
 - Header up and down (slow and fast speeds) is a two-stage button with slow speed on the first detent and fast on the second

 NOTE:

 Recommended header control speed starting points
 - Slow: 45 up / 40 down
 - Fast: 100 up / 100 down
4. **Header Offsets (A):** Offset distances are important for yield mapping. There are two adjustable dimensions on the HEADER SETTINGS screen:

 - Header Lateral Offset: the distance between the centerline of the header and the centerline of the machine. This should be set at 0 for a MacDon header.
 - Feeder House to Cutter: the distance from the machine interface to the cutterbar. This should be set at 68 for a MacDon header.
Calibrating the Header (Gleaner S9 Series)

The auto header control functions are configured on the HEADER SETTINGS screen.

⚠️ **CAUTION**

Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. On the COMBINE MAIN MENU, touch HEADER SETTINGS (A).

2. Touch CALIBRATE (A) at the bottom right of the screen. The HEADER CALIBRATION screen displays.

![Figure 3.297: Combine Main Menu](image)

![Figure 3.298: Calibration](image)
The right side of the screen shows the Header Calibration information (A). Results are shown for a variety of sensors (B):

- Left and right header sensor (voltage) (values will be the same with MacDon headers)
- Header height sensor (mA)
- Tilt position sensor (mA)

The following valid modes are shown with check marks (C) below the sensor values (B):

- Return to cut
- Automatic header height control

⚠️ **CAUTION**

Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.

3. On the control handle, touch the HEADER DOWN button (A). Sensor values start changing on the HEADER CALIBRATION screen as the header lowers.

NOTE:

The header needs to be lowered all the way, and then raised off the ground. The range should be between 0.5 and 4.5 V. If the value is not in that range, the sensor needs to be adjusted. Refer to Adjusting Voltage Limits: One-Sensor System, page 131 or Adjusting Voltage Limits: Two-Sensor System, page 131.

4. When the sensor values are stable, touch the CALIBRATE icon (A).
5. The hazard message warning screen for HEADER CALIBRATION appears. Make sure that all conditions are met.

6. Touch the green check mark at the bottom of the screen to start the CALIBRATION WIZARD.

A progress bar is provided and the calibration can be stopped at any time by touching the red X. The header moves automatically and erratically during this process.

7. When the calibration is complete, a message displays, and summary information (A) is shown. Green check marks confirm the functions have been calibrated (B). Touch the bottom green check mark (C) to save.
NOTE:
Touch the CALIBRATION icon (A) on the COMBINE MAIN MENU screen to open the CALIBRATION MENU where you can choose from a variety of calibrations including header and reel calibration.

Operating Header (Gleaner S9 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The following controls are used to operate the auto header height control (AHHC) functions:

- Tyton Terminal (A)
- Control Handle (B)
- Throttle (C)
- Header Control Cluster (D)

Use the combine operator’s manual to familiarize yourself with the controls.

1. With the header running, set lateral tilt switch (A) to MANUAL.
2. Engage the AHHC by pressing the switch (B) upward to the \textit{I} position.
3. Press the AHHC control switch (A) on the control handle to engage the AHHC. The header moves to the current setpoint position.

![Figure 3.308: AHHC on Control Handle](image)

4. Use the HEADER HEIGHT SETPOINT control dial (A) as necessary to fine-tune the position.

![Figure 3.309: Header Control Cluster](image)

Header In-Field Settings

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. To view header group settings, touch the HEADER icon (A) on the right side of the home screen.

2. The following information is displayed:
 - CURRENT POSITION of the header (B).
 - SETPOINT cut-off position (C) (indicated by red line)
 - HEADER symbol (D) – touch to adjust the setpoint cut-off position using the scroll wheel on the right side of the Tyton terminal.
 - CUT HEIGHT for the AHHC (E) – fine-tune with the header height setpoint control dial on the header control cluster.
 - HEADER WORKING WIDTH (F)

![Figure 3.310: Header Groups](image)
3. Touching a field opens the on-screen keyboard so that values can be adjusted. Enter the new value and touch the green check mark when complete.

NOTE:
The scroll wheel (A) is located on the right side of the Tyton terminal.

NOTE:
HEADER HEIGHT SETPOINT control dial (A) is on the header control cluster.

3.8.9 John Deere 60 Series Combines

Checking Voltage Range from the Combine Cab (John Deere 60 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

3. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.
4. Press the DIAGNOSTIC button (D) on the monitor—DIA appears on the monitor.

5. Press the UP button (A) until EO1 appears on the monitor—this is the header adjustments.

6. Press the ENTER button (C).

7. Press the UP (A) or DOWN button (B) until 24 is displayed on the top portion of the monitor—this is the voltage reading for the sensor.

8. Ensure header float is unlocked.

9. Start the combine, and fully lower feeder house to the ground.

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

10. Check the sensor reading on the monitor. The reading should be above 0.5 V.

11. Raise the header so it is just off the ground. The reading on the monitor should read below 4.5 V.

12. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, refer to *Adjusting Voltage Limits: One-Sensor System, page 131*.
Calibrating the Auto Header Height Control (John Deere 60 Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Rest header on down stops, and unlock float.
3. Put wings in locked position.
4. Start the combine.
5. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
6. Press the CAL button (B). DIA-CAL appears on the monitor.

![Figure 3.316: John Deere Combine Display](image)
7. Press the UP or DOWN buttons until HDR appears on the monitor.
8. Press the ENTER button. HDR H-DN appears on the monitor.
9. Fully lower feeder house to the ground.

 NOTE:
 You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

10. Press the CAL button (A) to save the calibration of the header. HDR H-UP appears on the monitor.
11. Raise the header 3 feet off the ground and press the CAL button (A). EOC appears on the monitor.
12. Press the ENTER button (B) to save the calibration of the header. Your AHHC is now calibrated.

 NOTE:
 If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to Checking Voltage Range from the Combine Cab (John Deere 60 Series), page 197.

 NOTE:
 After the calibration is complete, adjust combine operation settings to ensure proper field operation.

 NOTE:
 If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Turning the Accumulator Off (John Deere 60 Series)

The accumulator is a hydraulic device that cushions the shock of hydraulic fluid when installing a heavy header onto the combine.

NOTE:
The accumulator should not be used when operating the combine with an FD1 and FM100 attached.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.
1. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.

2. Press the UP button (B) until EO1 appears on the monitor, and press ENTER (D). This is the header adjustment.

3. Press the UP (B) or DOWN (C) button until 132 is displayed on the top portion of the monitor. This is the reading for the accumulator.

4. Press ENTER (D) to select 132 as the accumulator reading (this will allow you to change the display to a three-digit number so it has a 0 in it, for example, x0x).

5. Press the UP (B) or DOWN (C) button until the desired number is displayed, and press the CAL button (E).

6. Press ENTER (D) to save the changes. The accumulator is now deactivated.

Setting the Sensing Grain Header Height to 50 (John Deere 60 Series)

In order for a John Deere 60 Series combine to accurately read the height sensors on a MacDon FD1 header, the combine’s sensitivity needs to be set to 50.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To set the sensing grain header height, follow these steps:

1. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.

2. Press the UP button (B) until EO1 appears on the monitor, and press ENTER (D). This is the header adjustment.

3. Press the UP (B) or DOWN (C) button until 128 is displayed on the top portion of the monitor. This is the reading for the sensor.

4. Press ENTER (D) to select 128 as the sensor reading (this will allow you to change the display to a three-digit number so it has a 50 in it).

5. Press the UP (B) or DOWN (C) button until the desired number is displayed, and press the CAL button (E).

6. Press ENTER (D) to save the changes. The height is now set.
NOTE:
Do NOT use the active header float function (A) in combination with the MacDon auto header height control (AHHC)—the two systems will counteract one another. The header symbol (B) on the display should NOT have a wavy line under it and should appear exactly as shown on the Active Header Control Display in Figure 3.321, page 203.

Figure 3.321: John Deere Combine Display

Setting the Sensitivity of the Auto Header Height Control (John Deere 60 Series)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
2. Press the UP button (B) until EO1 appears on the monitor, and press ENTER (D). This is the header adjustment.
3. Press the UP (B) or DOWN (C) button until 112 is displayed on the monitor. This is your sensitivity setting.

 NOTE:
 The lower the reading, the higher the sensitivity. Ideal operating range is typically between 50 and 80.
4. Press ENTER (D) to select 112 as the sensitivity setting (this will allow you to change the first digit of the number sequence).
5. Press UP (B) or DOWN (C) until the desired number is displayed, then press the CAL button (E). This will bring you to the second digit. Repeat this procedure until the desired setting is achieved.
6. Press ENTER (D) to save changes.

 NOTE:
 The numbers depicted on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.

Figure 3.322: John Deere Combine Display
Adjusting the Threshold for the Drop Rate Valve (John Deere 60 Series)

This procedure explains how to adjust the point at which the restrictor valve opens allowing full flow to the lift cylinders.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
The numbers depicted on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.

1. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
2. Press the UP button (B) until EO1 appears on the monitor and press ENTER (C). This is the header adjustment.
3. Press the UP (B) or DOWN button until 114 is displayed on the top portion of the monitor. This is the setting that adjusts when the fast drop rate starts with respect to the dead band.

NOTE:
The default setting is 100. Ideal operating range is typically between 60 and 85.
4. Press ENTER (C) to select 114 as the fast drop rate (this will allow you to change the first digit of the number sequence).
5. Press UP (B) or DOWN (E) until the desired number is displayed, then press the CAL button (D). This will bring you to the second digit. Repeat this procedure until the desired setting is achieved.
6. Press ENTER (C) to save changes.
3.8.10 John Deere 70 Series Combines

Checking Voltage Range from the Combine Cab (John Deere 70 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

3. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.
4. Press the HOME PAGE button (A) on the main screen of the monitor.

5. Ensure the three icons (A) depicted in the illustration at right appear on the monitor.

6. Use scroll knob (A) to highlight the middle icon (the green i) and press the check mark button (B) to select it. This will bring up the Message Center.
7. Use the scroll knob to highlight DIAGNOSTIC ADDRESSES (A) from the right column and select it by pressing the check mark button.

8. Use the scroll knob to highlight the drop-down box (B) and press the check mark button to select it.

9. Use the scroll knob to highlight LC 1.001 VEHICLE (A) and press the check mark button to select it.

10. Use the scroll knob to highlight the down arrow (A) and press the check mark button to scroll through the list until 029 DATA (B) is displayed and voltage reading (C) appears on the monitor.

11. Ensure header float is unlocked.

12. Start the combine and fully lower feeder house to the ground.

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.
13. Check the sensor reading on the monitor.

14. Raise the header so it is just off the ground and recheck the sensor reading.

15. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, refer to Adjusting Voltage Limits: One-Sensor System, page 131.

Calibrating Feeder House Speed (John Deere 70 Series)

The feeder house speed must be calibrated before you calibrate the auto header height control (AHHC) system. Refer to the combine operator’s manual for instructions.

Calibrating the Auto Header Height Control (John Deere 70 Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:

If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Place wings in locked position.
4. Start the combine.
5. Press the button located fourth from the left along the top of the monitor (A) to select the icon that resembles an open book with a wrench on it (B).
6. Press the top button (A) a second time to enter diagnostics and calibration mode.
7. Select HEADER in box (A) by scrolling down to the box using the scroll knob, and then pressing the check mark button (knob and button are shown in Figure 3.334, page 209).

8. Scroll down to the lower right icon that resembles an arrow in a diamond (B) and press the check mark button to select it.

9. Follow the steps listed on the monitor to perform the calibration.

NOTE:
If an error code appears on screen, the sensor is not in the correct working range. Refer to Checking Voltage Range from the Combine Cab (John Deere S and T Series), page 212 to check and adjust the range.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting the Sensitivity of the Auto Header Height Control (John Deere 70 Series)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press button (A) twice and the current sensitivity setting will appear on the monitor (the lower the reading, the lower the sensitivity).
2. Use scroll knob (B) to adjust the sensitivity setting. The adjustment will be saved automatically.

NOTE:
If the screen remains idle for a short period of time, it will automatically return to the previous screen. Pressing the check mark button (C) also will return the monitor to the previous screen.

NOTE:
The numbers depicted on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.
Adjusting the Manual Header Raise/Lower Rate (John Deere 70 Series)

The weight of the header will dictate the rate at which the header can be raised or lowered during operation.

To manually adjust the header raise/lower rate, do the following steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press button (A) and the current raise/lower rate setting will appear on the monitor (the lower the reading, the slower the rate).

2. Use scroll knob (B) to adjust the rate. The adjustment will be saved automatically.

NOTE:
If the screen remains idle for a short period of time, it will automatically return to the previous screen. Pressing the check mark button (C) will also return the monitor to the previous screen.

NOTE:
The numbers depicted on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.
3.8.11 John Deere S and T Series Combines

Checking Voltage Range from the Combine Cab (John Deere S and T Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

3. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.
4. Press the CALIBRATION icon (A) on the main screen of the monitor. The CALIBRATION screen appears.

5. Press the DIAGNOSTIC READINGS icon (A) on the CALIBRATION screen. The DIAGNOSTIC READINGS screen appears. This screen provides access to calibrations, header options, and diagnostic information.

6. Select AHHC RESUME (A) and a list of calibration options appears.
7. Select the AHHC SENSING option.
8. Press the icon that resembles an arrow in a box (A). The AHHC SENSING menu appears and five screens of information are displayed.

9. Press icon (A) until it reads Page 5 near the top of the screen and the following sensor readings appear:
 - LEFT HEADER HEIGHT
 - CENTER HEADER HEIGHT
 - RIGHT HEADER HEIGHT

 A reading is displayed for both left and right sensors. On the MacDon header, there may be one sensor located in the float indicator box (standard) or two sensors located at the back of the float module side frame (optional).

10. Ensure header float is unlocked.
11. Start the combine and fully lower feeder house to the ground.

 NOTE:
 You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

12. Check the sensor reading on the monitor.
13. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, refer to *Adjusting Voltage Limits: One-Sensor System, page 131.*
Calibrating the Auto Header Height Control (John Deere S and T Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Place wings in locked position.
4. Press the DIAGNOSTIC icon (A) on the main screen of the monitor. The CALIBRATION screen appears.
5. Select THRESHING CLEARANCE (A) and a list of calibration options appears.

Figure 3.346: John Deere Combine Display

Figure 3.347: John Deere Combine Display
6. Select FEEDER HOUSE SPEED (A) from the list of calibration options.

NOTE:
Feeder house speed calibration must be done before header calibration.

7. With FEEDER HOUSE SPEED selected, press icon (A). The icon will turn green.

8. Click button (A) and instructions will appear on screen to guide you through the remaining calibration steps.
9. Select HEADER (A) from the list of calibration options.

10. With HEADER selected, press icon (A). The icon will turn green.

11. Click button (A) and instructions will appear on screen to guide you through the remaining calibration steps.

NOTE:
If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to *Checking Voltage Range from the Combine Cab (John Deere S and T Series)*, page 212.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting the Sensitivity of the Auto Header Height Control (John Deere S and T Series)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press button (A) twice and the current sensitivity setting will appear on the monitor.

2. Press the – or + icon (A) to adjust rates.

NOTE:
The numbers depicted on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.
Adjusting the Manual Header Raise/Lower Rate (John Deere S and T Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
The indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 4, page 128. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Press button (A) and the current sensitivity setting will appear on the monitor.

2. Press the – or + icon (A) to adjust rates.

NOTE:
The numbers depicted on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.
Setting Preset Cutting Height (John Deere S and T Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
The indicator (A) should be at position 0 (B) with the header (152 mm [6 in.]) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 4, page 128. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Press the COMBINE – HEADER SETUP icon (A) on the main screen. The COMBINE – HEADER SETUP screen appears. This screen is used to set various header settings such as reel speed, header width, and height of feeder house for acre counter engagement.

3. Select AUTO HEIGHT SENSING (A), RETURN TO CUT (B), and REEL POSITION (C) icons.

NOTE:
If REEL POSITION icon (C) cannot be selected (no check mark), the reel height sensor requires calibration. Refer to *Calibrating Reel Height Sensor (John Deere S and T Series)*, page 227.

4. Engage the header.
5. Move header to desired position and use knob (A) to fine tune position.
6. Move reel to desired position.

7. Press and hold preset switch 2 (B) until 1 reel height icon flashes on monitor.
8. Repeat previous three steps for preset switch 3 (C).
9. Select an appropriate ground pressure setting. Use preset button 2 (B) on the control handle for a low ground pressure setting in muddy or soft soil conditions, and preset 3 (C) for a high ground pressure setting in firm soil conditions and a higher ground speed.

NOTE:
Preset button 1 (A) is reserved for header lift on the headland and is not used for cutting on ground.
NOTE:
When the AHHC is engaged, the AHHC icon (A) appears on the monitor and the number indicating which button was pressed (B) is displayed on the screen.

Figure 3.365: Combine Display

Calibrating Feeder House Fore-Aft Tilt Range (John Deere S and T Series)
For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

This procedure applies only to model year 2015 and later John Deere S and T Series combines.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The feeder house fore/aft tilt is controlled by buttons (C) and (D) at the back of the control handle.

Figure 3.366: John Deere Control Handle
NOTE:
The feeder house fore/aft tilt controls can be changed to work with buttons E and F by pressing the control handle icon (A) and then selecting FEEDER HOUSE FORE/AFT TILT from the drop-down menu (B).

To calibrate the feeder house fore-aft tilt range, follow these steps:
1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Place wings in locked position.
4. Press the DIAGNOSTIC icon (A) on the main screen of the monitor. The CALIBRATION screen displays.
5. Select the CALIBRATIONS drop-down menu (A) to view the list of calibration options.

6. Press the arrow (A) to cycle up through the calibration options and select FEEDER HOUSE FORE/AFT TILT RANGE.

7. Press the ENTER icon (A).
8. Follow the instructions that appear on the screen. As you proceed through the calibration process, the display will automatically update to show the next step.

NOTE:
If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to *Checking Voltage Range from the Combine Cab (John Deere S and T Series)*, page 212.

Checking Reel Height Sensor Voltages (John Deere S and T Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press the CALIBRATION icon (A) on the main screen of the monitor. The CALIBRATION screen appears.

2. Press the DIAGNOSTIC READINGS icon (A) on the CALIBRATION screen. The DIAGNOSTIC READINGS screen appears. This screen provides access to calibrations, header options, and diagnostic information.
3. Select the drop-down menu (A) to view the list of calibration options.

4. Scroll down and select REEL RESUME (A).

5. Press the ENTER icon (A). The REEL RESUME page displays.
6. Press the NEXT PAGE icon (A) to cycle to page 3.

7. Lower the reel to view the low voltage (B). The voltage should be 0.5–0.9 V.

8. Raise the reel to view the high voltage (A). The voltage should be 4.1–4.5 V.

9. If either voltage is not within the correct range, refer to Checking and Adjusting Reel Height Sensor, page 96.

Calibrating Reel Height Sensor (John Deere S and T Series)

This procedure applies only to model year 2015 and later John Deere S and T Series combines.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To calibrate reel height, follow these steps:
1. Place header off the ground 15–25 cm (6–10 in.).

2. Press the DIAGNOSTIC icon (A) on the main screen of the monitor. The CALIBRATION screen displays.

3. Select the CALIBRATIONS drop-down menu (A) to view the list of calibration options.

4. Scroll through the list of options and select REEL POSITION.

5. Press the ENTER icon (B).

6. Follow the instructions that appear on the screen. As you proceed through the calibration process, the display will automatically update to show the next step. This calibration requires you to use the reel raise (A) and reel lower (B) switches on the control handle.
7. Press and hold REEL LOWER switch until reel is fully lowered. Continue holding REEL LOWER switch until prompted by the display.

8. Press and hold REEL RAISE switch until reel is fully raised. Continue holding REEL RAISE switch until prompted by the display.

9. When all steps have been completed, CALIBRATION COMPLETE message is displayed on the screen. Exit the CALIBRATION menu by pressing the ENTER icon (A).

NOTE:
If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to Checking Reel Height Sensor Voltages (John Deere S and T Series), page 225.
3.8.12 John Deere S7 Series Combines

Setting up Header (John Deere S7 Series)

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator's manual for updates.

1. Press the header button (A) on the panel below the display. The HEADER page opens.

2. Select the HEADER TYPE field (A). The HEADER DETAILS window opens.

Figure 3.386: John Deere S7 Display

Figure 3.387: John Deere S7 Display – Header Page
3. Verify correct header width is displayed under WIDTH.

4. To change header width, select field (A). The WIDTH window opens.

5. Use the on-screen keypad to enter the correct header width, and then press OK.

6. Press window close button (A) in top right corner of the window to return to the HEADER page.
OPERATION

7. The raise/lower speed, tilt speed, height sensitivity, and tilt sensitivity can all be adjusted from this page. Select the option (A) you would like to adjust. This example shows the raise/lower speed adjustment.

8. Use the + and – buttons (A) to adjust the setting.

9. Press window close button in top right corner of the window to return to the HEADER page.

10. Select the AUTO CONTROL icons (A). The AUTO HEADER CONTROLS page opens.
11. If the header has not been calibrated yet, an error icon will appear on the HEIGHT SENSING button (A). Select button (A) to view error message.

12. Read error message and then press OK.

13. Proceed to *Checking Voltage Range from the Combine Cab (John Deere S7 Series)*, page 234.
Checking Voltage Range from the Combine Cab (John Deere S7 Series)

The auto header height sensor output must be within a specific range, or the feature will not work properly.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere S7 Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>3.0 V</td>
</tr>
</tbody>
</table>

Check the sensor’s output voltage range from combine cab according to instructions that follow.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Position header 150 mm (6 in.) above ground, and unlock float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:

If header is not on down stops during next two steps, voltage may go out of range during operation causing a malfunction of auto header height control (AHHC) system.

![Figure 3.396: Float Lock](image-url)
3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

4. On the HARVESTING page, select MENU icon (A) in the bottom right corner of the screen.

5. On the MENU page, select the SYSTEM tab (A). The MENU opens.

6. Select DIAGNOSTICS CENTER icon (B). The DIAGNOSTICS CENTER page opens.
7. Select AHC - SENSING (A). The AHC - SENSING DIAGNOSTICS page displays.

Figure 3.400: John Deere S7 Display – Diagnostics Center

8. Select SENSOR tab (A) to view sensor voltages. The center header height sensor voltage (B) must be between 0.5 and 4.5 V, with at least 3 V of variation between 0 and 4 on the float indicator box.

NOTE:
If the optional Auto Lateral Tilt AHHC kit is installed, the left and right header height sensors must also be in the same 0.5–4.5 V range.

9. If sensor voltage adjustment is required, refer to Adjusting Voltage Limits: One-Sensor System, page 131.

Figure 3.401: John Deere S7 Display – Checking Sensor Voltage

Calibrating Feeder House (John Deere S7 Series)

Feeder house calibration must be done before header calibration.

For best performance of auto header height control (AHHC), perform these procedures with center-link set to D. When setup and calibration are complete, adjust center-link back to desired header angle. For instructions, refer to Adjusting Header Angle from Combine, page 83.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Place wings in locked position.
4. On the HARVESTING page, select the MENU icon (A) in the bottom right corner of screen. The MENU opens.

5. Select the MACHINE SETTINGS tab (A).
6. Select the CALIBRATIONS & PROCEDURES icon (B). The CALIBRATIONS & PROCEDURES page displays.

7. Select HEADER tab (A).
8. Select FEEDER HOUSE RAISE SPEED CALIBRATION (B). The FH RAISE SPEED CALIBRATION page displays.
9. Select CALIBRATE (A) at the bottom of the page. A calibration overview displays.

10. Read the calibration overview, and then press START.

11. Follow the instructions on the screen. As you proceed through the calibration process, the display will automatically update to show next step.
12. When calibration is complete, select SAVE to confirm calibration.

Calibrating Header (John Deere S7 Series)

Feeder house calibration must be done before header calibration. If feeder house has not yet been calibrated, refer to Calibrating Feeder House (John Deere S7 Series), page 236.

For best performance of auto header height control (AHHC), perform these procedures with header at steepest angle. When setup and calibration are complete, adjust center-link back to desired header angle.

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator's manual for updates.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Place wings in locked position.
4. On the HARVESTING page, select the MENU icon (A) in the bottom right corner of screen. The MENU opens.
5. Select the MACHINE SETTINGS tab (A).

6. Select the CALIBRATIONS & PROCEDURES icon (B). The CALIBRATIONS & PROCEDURES page displays.

7. Select HEADER tab (A).

8. Select HEADER CALIBRATION (B). The HEADER CALIBRATION page displays.

9. Select CALIBRATE (A) at bottom of page. The calibration overview window opens.
10. Press button (A) on console to set engine to high idle.

11. Select START on calibration overview page.

12. Follow instructions that appear on combine display. As you proceed through calibration process, display will automatically update to show next step.

NOTE:
If an error code appears during calibration, sensor is out of voltage range and will require adjustment. Refer to *Adjusting Voltage Limits: One-Sensor System, page 131.*

13. When calibration is complete, select SAVE to confirm calibration.
3.8.13 CLAAS 500 Series Combines

Calibrating the Auto Header Height Control (CLAAS 500 Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Use the < key (A) or > key (B) to select AUTO HEADER, and press the OK key (C). The E5 screen displays whether the automatic header height is on or off.
3. Use the – key (A) or the + key (B) to turn the AHHC on, and press the OK key (C).
4. Engage the threshing mechanism and the header.
5. Use the < or > key to select CUTT. HEIGHT LIMITS, and press the combine controls OK key.

6. Follow the procedure displayed on the screen to program the upper and lower limits of the header into the CEBIS.

7. Use the < or > key to select SENSITIVITY CAC, and press the combine controls OK key.

 NOTE:
 Setting the sensitivity of the AHHC system affects the reaction speed of the AHHC on the header.

8. Use the – key or the + key to change the setting of the reaction speed, and press the combine controls OK key.

9. Use line (A) or value (B) to determine the sensitivity setting.

 NOTE:
 The setting can be adjusted from 0–100%. When sensitivity is adjusted to 0%, the signals from the sensing bands have no effect on the automatic cutting height adjustment. When sensitivity is adjusted to 100%, the signals from the sensing bands have maximum effect on the automatic cutting height adjustment. The recommended starting point is 50%.

 NOTE:
 If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting Cutting Height (CLAAS 500 Series)

Cutting heights can be programmed into the preset cutting height and auto contour systems. Use the preset cutting height system for cutting heights above 150 mm (6 in.), and use the auto contour system for cutting heights below 150 mm (6 in.).

Setting Preset Cutting Height (CLAAS 500 Series)

🔥 CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Start the engine.
2. Activate the machine enable switch.
3. Engage the threshing mechanism.
4. Engage the header.
5. Briefly press button (A) in order to activate the auto contour system, or briefly press button (B) in order to activate the preset cutting height system.

NOTE:
Button (A) is used only with auto header height control (AHHC) function. Button (B) is used only with the return to cut function.

6. Use the < key (C) or > key (D) to select the CUTTING HEIGHT screen, and press the OK key (E).
7. Use the – key (A) or the + key (B) to set the desired cutting height. An arrow indicates the selected cutting height on the scale.

![Figure 3.421: Control handle Buttons](image)

![Figure 3.422: CLAAS Combine Controls](image)
8. Briefly press button (A) or button (B) in order to select the set point.

9. Repeat Step 7, page 244 for the set point.

Setting Cutting Height Manually (CLAAS 500 Series)

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use button (A) to raise the header or button (B) to lower the header to the desired cutting height.

2. Press and hold button (C) for 3 seconds to store the cutting height into the CEBIS (an alarm will sound when the new setting has been stored).

3. Program a second set point, if desired, by using button (A) to raise the header or button (B) to lower the header to the desired cutting height, and briefly press button (C) to store the second set point into the CEBIS (an alarm will sound when the new setting has been stored).

NOTE:
For above the ground cutting, repeat Step 1, page 245, and use button (D) instead of button (C) while repeating Step 2, page 245.
Setting the Sensitivity of the Auto Header Height Control (CLAAS 500 Series)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
The upper and lower limits of the header must be programmed into the CEBIS before adjusting the sensitivity of the AHHC system. The setting can be adjusted from 0–100%. When sensitivity is adjusted to 0%, the signals from the sensing bands have no effect on the automatic cutting height adjustment. When sensitivity is adjusted to 100%, the signals from the sensing bands have maximum effect on the automatic cutting height adjustment. The recommended starting point is 50%.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use the < key (C) or the > key (D) to select SENSITIVITY CAC, and press the OK key (E).
2. Use the – key (A) or the + (B) key to change the reaction speed setting, and press the OK key (E).
3. Use line (A) or value (B) to determine the sensitivity setting.

Figure 3.425: CLAAS Combine Controls

Figure 3.426: CLAAS Combine Display
Figure 3.427: Flow Chart for Setting the Sensitivity of the Float Optimizer
Adjusting Auto Reel Speed (CLAAS 500 Series)

The preset reel speed can be set when the automatic header functions are activated.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use the < or > key to select REEL WINDOW. Window E15 will display the current advance or retard speed of the reel in relation to the ground speed.

2. Press the OK key (C) to open the REEL SPEED window.

3. Use the – key (A) or the + key (B) to set the reel speed in relation to the current ground speed. Window E15 will display the selected reel speed.
4. Manually adjust the reel speed by rotating the rotary switch to the reel position (A), and then use the – or + key to set the reel speed.

5. Press and hold button (A) or button (B) for 3 seconds to store the setting into the CEBIS (an alarm will sound when the new setting has been stored).

NOTE:
Whenever button (A) or button (B) is pressed for 3 seconds, the current positions for reel speed and cutting height are stored.
6. Use the < or > key to select the REEL WINDOW. Window E15 will display the current advance or retard speed of the reel in relation to the ground speed.

7. Press the OK key (E), and use the < key (C) or the > key (D) to select the REEL FORE AND AFT window.

8. Use the – key (A) or the + key (B) to set the reel fore-aft position.

NOTE:
Control handle button (A) or button (B) also can be used to set the reel fore-aft position.
9. Press and hold button (A) or button (B) for 3 seconds to store the setting into the CEBIS (an alarm will sound when the new setting has been stored).

NOTE:
Whenever button (A) or button (B) is pressed for 3 seconds, the current positions for reel speed and cutting height are stored.

3.8.14 CLAAS 600 and 700 Series Combines

Calibrating the Auto Header Height Control (CLAAS 600 and 700 Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to **D**. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.5 *Header Angle, page 81.*

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to **D**.
2. Ensure that the header float is unlocked.
3. Place wings in locked position.
4. Use control knob (A) to highlight the AUTO CONTOUR icon (B) and press control knob (A) to select it.
5. Use control knob (A) to highlight the icon that resembles a header with up and down arrows (not shown), and press control knob (A) to select it. The highlighted header icon (B) will be displayed on the screen.

6. Use control knob (A) to highlight the icon that resembles a header with up and down arrows (C), and press control knob (A) to select it.

7. Use control knob (A) to highlight the icon that resembles a screwdriver (B).

8. Engage the combine separator and feeder house.

9. Press control knob (A) and a progress bar chart will appear.
10. Fully raise the feeder house. The progress bar chart will advance to 25% (A).

11. Fully lower the feeder house. The progress bar chart will advance to 50%.

12. Fully raise the feeder house. The progress bar chart will advance to 75%.

13. Fully lower the feeder house. The progress bar chart will advance to 100%.

14. Ensure the progress bar chart displays 100% (A). The calibration procedure is now complete.

NOTE:
If the voltage is not within the range of 0.5–4.5 V at any time throughout the calibration process, the monitor will indicate learning procedure not concluded.

NOTE:
If float was set heavier to complete ground calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting Cutting Height (CLAAS 600 and 700 Series)

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Lower the header to desired cutting height or ground pressure setting. The float indicator box should be set to 1.5.

2. Hold the left side of the header raise and lower switch (A) until you hear a ping.

NOTE:

You can set two different cutting heights.

Figure 3.442: CLAAS Combine Display, Console, and Control Handle
Setting the Sensitivity of the Auto Header Height Control (CLAAS 600 and 700 Series)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use control knob (A) to highlight the HEADER/REEL icon (B), and press control knob (A) to select it. The HEADER/REEL dialog box opens.

2. Select HEADER icon.

4. Select SENSITIVITY CAC (B) from the list.
5. Select the SENSITIVITY CAC icon (A).

NOTE:
To set the sensitivity, you will have to change the CUTTING HEIGHT ADJUSTMENT (B) from the 0 default. The settings from 1–50 provide a faster response, whereas the settings from -1 to -50 provide a slower response. For best results, make adjustments in increments of five.

6. Increase the CUTTING HEIGHT ADJUSTMENT setting if the reaction time between the header and the float module is too slow while cutting on the ground, and decrease the CUTTING HEIGHT ADJUSTMENT setting if the reaction time between the header and the float module is too fast.

7. Increase the sensitivity if the header is lowered too slowly, and decrease the sensitivity if the header hits the ground too hard or is lowered too quickly.

Adjusting Auto Reel Speed (CLAAS 600 and 700 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use control knob (A) to highlight the HEADER/REEL icon (B), and press control knob (A) to select it. The HEADER/REEL dialog box opens.
2. Use control knob (A) to select REEL SPEED (B), and adjust the reel speed (if you are NOT using Auto Reel Speed). A graph displays in the dialog box.

3. Select ACTUAL VALUE (A) from the AUTO REEL SPEED dialog box (if you are using Auto Reel Speed). The ACTUAL VALUE dialog box indicates the auto reel speed.

4. Use control knob (A) to raise or lower the reel speed.

NOTE:
This option is only available at full throttle.
Calibrating Reel Height Sensor (CLAAS 600 and 700 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To calibrate reel height, follow these steps:

1. Place header off the ground 15–25 cm (6–10 in.).

2. Use control knob (A) to highlight the FRONT ATTACHMENT icon (B) and press control knob (A) to select it.

3. Use control knob (A) to highlight the REEL icon (B), and press control knob to select it.
4. Highlight the REEL HEIGHT icon (A), and press control knob to select it.

5. Select LEARNING END STOPS (B) from the list.

6. Use control knob (A) to highlight the screwdriver icon (B).

7. Press control knob and a progress bar chart (A) will appear.

8. Follow the prompts on the screen to raise the reel.

9. Follow the prompts on the screen to lower the reel.
10. Ensure the progress bar chart displays 100% (A). The calibration procedure is now complete.

Adjusting Auto Reel Height (CLAAS 600 and 700 Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To adjust the auto reel height, follow these steps:

1. Use the HOTKEY rotary dial (A) to select the REEL icon (B).
2. Use control knob (A) to select the AUTO REEL HEIGHT icon (B) at the top of the page.

NOTE:
The AUTO REEL HEIGHT icon (C) at the center of the page should be highlighted black. If it is not black, either the end stops have not been set or the AHHC is not active. For instructions, refer to *Calibrating Reel Height Sensor (CLAAS 600 and 700 Series)*, page 258.

3. Adjust the auto reel height position for the current AHHC position using the outer scroll knob (A). To lower the preset reel position, turn the scroll knob counterclockwise; to raise the preset reel position, turn the scroll knob clockwise. The display will update the current setting (B).

NOTE:
If the AUTO REEL HEIGHT icon in the center of the page is not black, an AHHC position is not currently active.

3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year)

This section applies only to pre-2015 CR/CX models. For New Holland CR models 6.80, 6.90, 7.90, 8.90, 9.90, and 10.90, refer to *3.8.16 New Holland Combines (CR Series—Model Year 2015 and Later)*, page 271.

Checking Voltage Range from the Combine Cab (New Holland)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system.

3. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.
4. Ensure header float is unlocked.

5. Select DIAGNOSTICS (A) on the main screen. The DIAGNOSTICS screen displays.

6. Select SETTINGS. The SETTINGS screen displays.

7. Select the GROUP drop-down arrow (A). The GROUP dialog box displays.

9. Select LEFT HEADER HEIGHT SEN (A), and then select GRAPH button (B). The exact voltage is displayed at the top of the screen.

10. Raise and lower the header to see the full range of voltage readings.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131.

Setting up Auto Header Height Control (New Holland CR/CX Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

1. Select HEADER LATERAL FLOAT on the combine display, and press ENTER.

2. Use the up and down navigation keys to move between options, and select INSTALLED.
3. Select HEADER AUTOFLOAT, and press ENTER.

4. Use the up and down navigation keys to move between options, and select INSTALLED.

Figure 3.466: New Holland Combine Display

Calibrating the Auto Header Height Control (New Holland CR/CX Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

Check the following conditions before starting the header calibration procedure:

- The header is attached to the combine.
- The combine is on level ground, with the header level to the ground.
- The header is on down stops, and the center-link is set to D.
- The engine is running.
- The combine is not moving.
- No faults have been received from the Header Height Controller (HHC) module.
- Header/feeder is disengaged.
- Lateral float buttons are NOT pressed.
- ESC key is NOT pressed.

To calibrate the AHHC, follow these steps:
1. Select CALIBRATION on the combine display, and press the RIGHT ARROW navigation key to enter the information box.

2. Select HEADER (A), and press ENTER. The CALIBRATION dialog box opens.

 NOTE:
 You can use the up and down navigation keys to move between options.

3. Follow the calibration steps in the order in which they appear in the dialog box. As you proceed through the calibration process, the display will automatically update to show the next step.

 NOTE:
 Pressing the ESC key during any of the steps or letting the system sit idle for more than 3 minutes will cause the calibration procedure to stop.

 NOTE:
 Refer to your combine operator’s manual for an explanation of any error codes.

4. When all steps have been completed, CALIBRATION SUCCESSFUL message is displayed on the screen. Exit the CALIBRATION menu by pressing the ENTER or ESC key.

 NOTE:
 If float was set heavier to complete AHHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

5. If the unit does not function properly, conduct the maximum stubble height calibration.
Calibrating Maximum Stubble Height

This procedure describes how to calibrate the area counter to stop or start counting at the correct height. Program the header to a height that will never be reached while cutting. The area counter will stop counting when the header is above the programmed height, and will begin counting when the header is below the programmed height.

Select the height of the header that corresponds to the description above.

IMPORTANT:

- If the value is set too low, area may NOT be counted since the header is sometimes raised above this threshold although the combine is still cutting.

- If the value is set too high, the area counter will keep counting even when the header is raised (but below this threshold) and the combine is no longer cutting crop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Select the MAXIMUM STUBBLE HEIGHT calibration dialog box. As you proceed through the calibration process, the display will automatically update to show the next step.

2. Move header to the correct position using the header up or down control switch on the multifunction handle.

3. Press ENTER to continue. As you proceed through the calibration process, the display will automatically update to show the next step.

4. Press ENTER or ESC to close the calibration screen. The calibration is now complete.
Adjusting Header Raise Rate (New Holland CR/CX Series)

If necessary, the header raise rate (the first speed on the HEADER HEIGHT rocker switch of the multifunctional handle) can be adjusted.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

1. Select HEADER RAISE RATE on the combine display.
2. Use the + or – buttons to change the setting.
3. Press ENTER to save the new setting.

NOTE:
The raise rate can be changed from 32–236 in steps of 34. The factory setting is 100.

Setting the Header Lower Rate (New Holland CR/CX Series)

If necessary, the header lower rate (the automatic header height control button or second speed on the header height rocker switch of the multi-function handle) can be adjusted.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
1. Select HEADER LOWER RATE on the combine display.
2. Use the + or – buttons to change the setting to 50.
3. Press ENTER to save the new setting.

NOTE:
The lower rate can be changed from 2–247 in steps of 7. It is factory-set to 100.

Setting the Sensitivity of the Auto Header Height Control (New Holland CR/CX Series)

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
For New Holland CR models 6.80, 6.90, 7.90, 8.90, 9.90, and 10.90, refer to **3.8.16 New Holland Combines (CR Series—Model Year 2015 and Later), page 271.**

CAUTION
Check to be sure all bystanders have cleared the area.

1. Engage threshing and feeder house.
2. Select HEIGHT SENSITIVITY on the combine display screen.
3. Use the + or – buttons to change the setting to 200.
4. Press ENTER to save the new setting.

NOTE:
The sensitivity can be changed from 10–250 in steps of 10. It is factory-set to 100.
Setting Preset Cutting Height (New Holland CR/CX Series)

To set the preset cutting height, follow these steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

NOTE:
The indicator (A) should be at position 0 (B) with the header (152 mm [6 in.]) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 4, page 128. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Engage the threshing mechanism and the feeder with switches (A) and (B).
2. Set HEADER MEMORY rocker switch (D) in STUBBLE HEIGHT/AUTOFLOAT mode position (A) or (B).
3. Lower the header to the desired cutting height using the HEADER HEIGHT and HEADER LATERAL FLOAT momentary switch (C).
4. Lightly press AUTOMATIC HEADER HEIGHT CONTROL button (E) for a minimum of 2 seconds to store the height position. A beep will confirm the setting.

NOTE:
It is possible to store two different header height values by using HEADER MEMORY rocker switch (D) in STUBBLE HEIGHT/AUTOFLOAT mode position (A) or (B).

5. To change one of the memorized header height set points while the combine is in use, use the HEADER HEIGHT AND HEADER LATERAL FLOAT rocker switch (C) (slow up/down) to raise or lower header to the desired value. Lightly press the AUTOMATIC HEADER HEIGHT CONTROL button (E) for a minimum
of 2 seconds to store the new height position. A beep will confirm setting.

NOTE:
Fully pressing AUTOMATIC HEADER HEIGHT CONTROL button (E), will disengage float mode.

NOTE:
It is not necessary to press rocker switch (D) again after changing header height set point.

3.8.16 New Holland Combines (CR Series—Model Year 2015 and Later)

This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to [3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261.](#)

Checking Voltage Range from the Combine Cab (New Holland CR Series)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to [3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261.](#)

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the auto header height control (AHHC) system.

3. Adjust the cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.

4. Ensure header float is unlocked.
5. Select DIAGNOSTICS (A) on the main screen. The DIAGNOSTICS screen displays.

7. Select HEADER HEIGHT/TILT (A) from the GROUP drop-down menu.

8. Select HEADER HEIGHT SENS. L (B) from the PARAMETER drop-down menu.
9. Select GRAPH (A). The exact voltage (B) is displayed at the top of the screen.

10. Raise and lower the header to see the full range of voltage readings.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits: One-Sensor System, page 131.

Setting up Auto Header Height Control (New Holland CR Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261.

1. Ensure center-link is set to D.

2. Select TOOLBOX (A) on the main screen. The TOOLBOX screen displays.
3. Simultaneously press both the UNLOAD (A) and RESUME (B) buttons on the control handle.

NOTE:
Software in some New Holland combines may not allow you to change the header from FLEX to PLATFORM or the header type from DEFAULT to 80/90 at the main menu. This is now a dealer setting, and requires you to access the DEALER SETTING screen by pressing and holding both the UNLOAD and RESUME buttons on the control handle for approximately 10 seconds. The DEALER SETTING screen should appear and will allow you to change the header and header type settings.

4. Select HEAD 1 (A). The HEADER SETUP 1 screen displays.

5. Select the CUTTING TYPE drop-down arrow (B) and change the CUTTING TYPE to PLATFORM (C).

6. Select the HEADER SUB TYPE drop-down arrow (A). The HEADER SUB TYPE dialog box displays.
7. Set HEADER SUB TYPE to 80/90 (A) for a New Holland combine.

9. Select the AUTOFLOAT drop-down arrow and set AUTOFLOAT to INSTALLED (A).

10. Select the AUTO HEADER LIFT drop-down arrow and set AUTO HEADER LIFT to INSTALLED (B).

NOTE:
With AUTO HEADER LIFT installed and AHHC engaged, the header will lift up automatically when you pull back on the control handle.

11. Set the values for MANUAL HHC RAISE RATE (C) and MANUAL HHC LOWER RATE (D) for best performance according to ground conditions.
12. Set the values for HHC HEIGHT SENSITIVITY (A) and HHC TILT SENSITIVITY (B) for best performance according to ground conditions.

13. From the REEL HEIGHT SENSOR menu, select YES.

Calibrating the Auto Header Height Control (New Holland CR Series)

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.5 Header Angle, page 81.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator's manual for updates.

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.
OPERATION

Check the following conditions before starting the header calibration procedure:

- The header is attached to the combine.
- The combine is on level ground, with the header level to the ground.
- The header is on down stops, and the center-link is set to D.
- The engine is running.
- The combine is not moving.
- No faults have been received from the header height controller (HHC) module.
- Header/feeder is disengaged.
- Lateral float buttons are NOT pressed.
- ESC key is NOT pressed.

To calibrate the AHHC, follow these steps:

1. Select CALIBRATIONS (A) on the main screen. The CALIBRATION screen displays.

2. Select the CALIBRATION drop-down arrow (A).

Figure 3.491: New Holland Combine Display

Figure 3.492: New Holland Combine Display
3. Select HEADER (A) from the list of calibration options.

4. Follow the calibration steps in the order in which they appear on the screen. As you proceed through the calibration process, the display will automatically update to show the next step.

 NOTE:
 Pressing the ESC key during any of the steps or letting the system sit idle for more than 3 minutes will cause the calibration procedure to stop.

 NOTE:
 Refer to your combine operator’s manual for an explanation of any error codes.

5. When all steps have been completed, CALIBRATION COMPLETED message is displayed on the screen.

 NOTE:
 If float was set heavier to complete AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Checking Reel Height Sensor Voltages (New Holland)

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

2. Select SETTINGS tab (A). The SETTINGS page opens.

3. From the GROUP menu (B), select HEADER.

4. From the PARAMETER menu (C), select REEL VERTICAL POSITION.

5. Select GRAPH tab (A). The REEL VERTICAL POSITION graph displays.

6. Lower the reel to view the high voltage (B). The voltage should be 4.1–4.5 V.

7. Raise the reel to view the low voltage (C). The voltage should be 0.5–0.9 V.

8. If either voltage is out of range, refer to Checking and Adjusting Reel Height Sensor, page 96.
Setting Preset Cutting Height (New Holland CR Series – 2015 and Later)

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261.

The console has two buttons used for auto height presets. The toggle switch that was present on previous models is now configured as shown at right. MacDon headers only require the first two buttons (A) and (B). The third button (C) is not configured.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

To set preset cutting height, follow these steps:
1. Engage separator and header.
2. Select preset button 1 (A). A yellow light on the button will illuminate.
3. Raise or lower the header to desired cutting height.
4. Hold RESUME button (C) on multifunction handle to set the preset.

NOTE:
When setting presets, always set header position before setting reel position. If header and reel are set at the same time, the reel setting will not save.

5. Raise or lower the reel to desired position.

6. Hold RESUME button (C) on multifunction handle to set the preset.

7. Repeat Step 2, page 281 to Step 6, page 282, using preset button 2.

8. Lower header to the ground.

9. Select RUN SCREENS (A) on the main screen.

10. Select the RUN tab that shows MANUAL HEIGHT.

NOTE:
The MANUAL HEIGHT field may appear on any of the RUN tabs. When an auto height preset button is pressed, the display will change to AUTO HEIGHT (A).

11. Press one of the auto height preset buttons to select a preset cutting height.
Setting Maximum Work Height (New Holland CR Series)

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines (CR/CX Series—Pre-2015 Model Year), page 261.

1. Select TOOLBOX (A) on the main screen. The TOOLBOX screen displays.

2. Select FEEDER (A). The FEEDER SETUP screen displays.

3. Select the MAXIMUM WORK HEIGHT field (B).

4. Set MAXIMUM WORK HEIGHT to desired value.

5. Press SET and then press ENTER.
Configuring Reel Fore-Aft, Header Tilt, and Header Type (New Holland CR Series)

This procedure applies only to 2016 New Holland CR models 6.90, 7.90, 8.90, and 9.90.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Simultaneously press the UNLOAD (A) and RESUME (B) buttons on the control handle.

2. On the HEAD 1 screen, change the CUTTING TYPE from FLEX to PLATFORM as shown at location (A).
3. On the HEAD 2 screen, change HEADER SUB TYPE from DEFAULT to 80/90 as shown at location (A).

There are now two different buttons for ON GROUND presets. The toggle switch that was present on previous models is now configured as shown at right. MacDon headers only require the first two buttons (A) and (B). The third button down (C) is not configured.
3.9 Leveling the Header

The float module is factory-set to provide the proper level for the header and should not normally require adjustment.

If the header is NOT level, perform the following checks prior to adjusting the leveling linkages:

- Check the combine tire pressures.
- Check that the combine feeder house is level. Refer to your combine operator’s manual for instructions.
- Check that the top of the float module is level and parallel with the feeder house.

NOTE:
The float springs are NOT used to level the header.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Park the combine on level ground.
2. Set the header approximately 150 mm (6 in.) off the ground, and check that the float linkage is against the down stops. Note the high and low end of the header.
3. Shut down the engine and remove the key.
4. Set wing float lock (A) to engaged. Refer to Operating in Rigid Mode, page 71.
5. Check, and if necessary adjust the float. Refer to Checking and Adjusting Header Float, page 64.

Figure 3.511: Wing Lock
6. Adjust the header level by making small adjustments (1/4–1/2 turn) to nut (A) on each float lock. Adjust each side equally but in opposite directions as follows:

NOTE:
Setscrew (B) does not require loosening for adjustments up to one-half turn of nut (A).

a. On low side of header, turn nut (A) **clockwise** to raise header.

b. On high side of header, turn nut (A) **counterclockwise** to lower header.

NOTE:
Adjustment of more than two turns in either direction may adversely affect header float.

NOTE:
Ensure a minimum clearance of 2–3 mm (1/8 in.) (A) between the frame and the back of the bell crank lever.

NOTE:
Check the float after leveling header. Refer to *Checking and Adjusting Header Float, page 64.*
3.10 Unplugging the Cutterbar

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION
Wear heavy gloves when working around or handling knives.

⚠️ CAUTION
Lowering rotating reel on a plugged cutterbar will damage the reel components.

To unplug cutterbar, reverse the combine feeder house. If still plugged, do the following:

1. Stop the forward movement of the machine and disengage the header drives.
2. Raise the header to prevent it from filling with dirt, and engage the header drive clutch.
3. Disengage the header drive clutch and fully raise the header if plug does NOT clear.
4. Shut off the engine, remove the key from the ignition, and engage the park brake.
5. Engage the header safety props.
6. Clean off the cutterbar by hand.

NOTE:
If cutterbar plugging persists, refer to 7 Troubleshooting, page 561.
3.11 Unplugging the Float Module

1. Stop the forward movement of the machine and disengage the header drives.
2. Raise the header slightly off the ground, and raise the reel.
3. Reverse the combine feed according to the manufacturers specifications (reverse feed varies among different combine models).
4. Engage the header drive.
3.12 Transporting the Header

⚠️ WARNING
Do NOT drive the combine with header attached on a road or highway at night, or in conditions which reduce visibility, such as fog or rain. The width of the header may not be apparent under these conditions.

3.12.1 Transporting Header on Combine

⚠️ CAUTION
- Check local laws for width regulations and lighting or marking requirements before transporting on roads.
- Follow all recommended procedures in your combine operator’s manual for transporting, towing, etc.
- Disengage header drive clutch when travelling to and from the field.
- Before driving combine on a roadway, be sure flashing amber lamps, red tail lamps, and head lamps are clean and working properly. Pivot amber lamps for best visibility by approaching traffic. Always use lamps when travelling on roads to provide adequate warning to other vehicles.
- Do NOT use field lamps on roads—they may confuse other drivers.
- Before driving on a roadway, clean slow moving vehicle signs and reflectors, adjust rear view mirrors, and clean windows.
- Lower the reel fully and raise the header unless transporting in hills.
- Maintain adequate visibility and be alert for roadside obstructions, oncoming traffic, and bridges.
- When travelling downhill, reduce speed and keep header at a minimum height to provide maximum stability if forward momentum is stopped for any reason. Raise header completely at bottom of grade to avoid contacting the ground.
- Travel at safe speeds to ensure complete machine control and stability at all times.

3.12.2 Towing

Headers with the Slow Speed Transport/Stabilizer Wheel option can be towed behind a properly configured MacDon windrower or an agricultural tractor. For instructions, refer to the combine operator’s manual.
OPERATION

Attaching Header to Towing Vehicle

⚠️ CAUTION
Adhere to the following slow speed transport instructions to prevent loss of control leading to bodily injury and/or machine damage:

- Weight of towing vehicle must exceed header weight to ensure adequate control and braking performance.
- Do NOT tow with any highway-capable vehicle. Use only an agricultural tractor, agricultural combine, or a properly configured MacDon windrower.
- Ensure reel is fully lowered and back on support arms to increase header stability during transport. For headers with hydraulic reel fore-aft, never connect the fore-aft couplers to each other or the circuit will be complete and the reel could creep forward during transport.
- Check that all pins are properly secured in transport position at wheel supports, cutterbar support, and hitch.
- Check tire condition and pressure prior to transporting.
- Connect hitch to towing vehicle using a proper hitch pin with a spring locking pin or other suitable fastener.
- Attach hitch safety chain to towing vehicle. Adjust safety chain length to provide only enough slack to permit turning.
- Connect header seven-pole plug wiring harness to mating receptacle on towing vehicle. (The seven-pole receptacle is available from your MacDon Dealer parts department.)
- Ensure lights are functioning properly and clean the slow moving vehicle sign and other reflectors. Use flashing warning lights unless prohibited by law.

Towing the Header

⚠️ CAUTION
Adhere to the following slow speed transport instructions to prevent loss of control leading to bodily injury and/or machine damage:

- Do NOT exceed 32 km/h (20 mph). Reduce transport speed to less than 8 km/h (5 mph) for corners and slippery or rough conditions.
- Turn corners at only very low speeds (8 km/h [5 mph] or less) as header stability is reduced while cornering.
- Do NOT accelerate when making or coming out of a turn.
- Obey all highway traffic regulations in your area when transporting on public roads. Use flashing amber lights unless prohibited by law.
3.12.3 Converting from Transport to Field Position

Removing Tow-Bar

1. Block the tires to prevent the header from rolling, and unhook the header from the towing vehicle.

2. Disconnect the electrical connector (A) on the tow-bar.

3. Remove pin (B) from the tow-bar, and disassemble the outer section (C) from the inner section (D).

4. Disconnect the electrical connector (A) at the front wheel.

5. Remove clevis pin (A) and set aside for reinstallation.

6. Push latch (B) and lift the tow-bar (C) from the hook.
Release latch.

7. Install clevis pin (A).
Storing the Tow-Bar

The tow-bar consists of two sections, an inner half (A) and an outer half (B), to make storage and handling easier.

1. Place the inner end of the outer half of the tow-bar into the cradle (A) on the left side of the header backtube.

2. Secure clevis/pintle end of the tow-bar in support (B) on the endsheet using hitch pin (C). Secure with lynch pin.

3. Install the rubber strap (D) on the cradle (A).

![Figure 3.517: Tow-Bar Assembly](image1)

![Figure 3.518: Tow-Bar Storage – Left Side](image2)
4. Place the inner end of the inner half of the tow-bar into the cradle (A) on the right side of the header backtube.

5. Secure the tube end of the tow-bar in support (B) on the endsheet using clevis pin (C). Secure with hairpin.

6. Install the rubber strap (D) on the cradle (A).

7. Attach the header to the combine. Refer to the combine operator’s manual for instructions.

IMPORTANT:
Carrying the tow-bar on the header will affect the main header float. Refer to the combine operator’s manual for adjustment procedures.

8. Place the transport wheels into field position. Refer to the following:
 - *Moving Front (Left) Wheels into Field Position, page 295*
 - *Moving Rear (Right) Wheels into Field Position, page 296*
Moving Front (Left) Wheels into Field Position

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise the header fully and engage the header safety props.
2. Swivel the front wheel assembly (A) so the wheels are aligned with the lower frame.
3. Remove pin (B) and pull the wheel assembly towards the rear of header. Store the pin in hole (C) at the top of the leg.
4. Pull handle (D) upwards to release and lower the linkage into the vertical support.

5. Align lift hook (A) with lug (B) and lift the wheel assembly to engage the pin in the lift hook. Ensure latch (C) is engaged.
6. Install clevis pin (D) and secure to the center of the axle with hairpin.
7. Lift the wheel assembly to the desired height and slide the linkage (A) into the appropriate slot in the vertical support.

8. Push down on the handle (B) to lock.

Moving Rear (Right) Wheels into Field Position

1. Pull pin (A) on the left rear wheel. Swivel the wheel clockwise and lock with pin.

2. Remove pin (A) and store at location (B).

3. Pull handle (C) upwards to release.

4. Lift the wheel to the desired height, and engage the support channel into slot (D) in the vertical support.

5. Push down on handle (C) to lock.
6. Pull the pin (A) on brace (B) on the right wheel in front of the cutterbar. Disengage the brace from the cutterbar, and lower the brace against the axle (C).

7. Remove pin (D), lower support (E) onto axle, and reinsert pin into support.

8. Swing the axle (C) clockwise towards the rear of the header.

9. Pull pin (A) on right axle, swivel the wheel counterclockwise to position shown, and lock with pin (A).

10. Remove the hairpin (B) from the latch (C).

11. Lift the wheel, lift latch (C), and engage lug (D) onto the left axle. Ensure the latch closes.

12. Secure the latch with hairpin (B), ensuring the open end of the pin faces the rear of the combine.

NOTE:
The hairpin can become dislodged by crop if installed with the open end facing the cutterbar.

IMPORTANT:
Check that wheels are locked and that handle is in locked position.
13. Complete the conversion by ensuring the left side (A) and right side (B) wheels are in the position shown.

![Figure 3.527: Field Position](image)

3.12.4 Converting from Field to Transport Position

Moving Front (Left) Wheels into Transport Position

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ **CAUTION**

Stand clear of wheels and release linkage carefully as wheels will drop once the mechanism is released.

1. Pull the handle (B) upwards to release and raise the linkage (A) fully upwards into the vertical support.
2. Raise the header fully, stop the engine, and remove the key from ignition. Engage the header safety props.

![Figure 3.528: Suspension Linkage](image)
3. Remove the hair pin and clevis pin (A).

4. Pull the latch handle (B) to release the suspension linkage (C), and pull the suspension linkage away from the spindle (D).

5. Lower the wheels slowly.

6. Lower the handle (B) to lock.
7. Remove the pin (A) from storage at the top of the leg (B).
8. Move and swivel the wheels clockwise until the connector (C) is turned towards the front end of the header.
9. Insert pin (A) and turn to lock.
10. Lower the header until the left wheels are just touching the ground.

Moving Rear (Right) Wheels into Transport Position
1. Remove the hairpin (A) from the latch (B).
2. Lift the latch (B), disengage the right axle (C), and lower to the ground.

⚠️ **CAUTION**
Stand clear of wheels and release linkage carefully as wheels will drop once the mechanism is released.

3. Pull handle (D) carefully to release the spring and lower the wheel to the ground.
4. Lift the wheel and linkage with handle (E) and position the linkage in the bottom slot.
5. Lower the handle (C) to lock.
6. Remove the pin (A) and install at location (B) to secure the linkage. Turn the pin to lock.

7. Pull the pin (D), swivel the wheel (C) counterclockwise 90°, and release the pin to lock.

8. Ensure the left wheel is in the transport position as shown.

9. Pull the pin (A) and swivel the right rear wheel (B) clockwise 90°.
10. Lock the wheel (A) with pin (B). Move the right axle (C) to the front of the header.

11. Remove the pin (A), raise support (B) to the position shown, and reinsert pin.

IMPORTANT:
Ensure the pin (A) engages the tube on the axle.

12. Swing the brace (C) into the position shown and insert the brace into the slot (D) behind the cutterbar. Position the brace so that pin (E) engages the hole in the bracket (F). The right wheel is now in transport position.

13. Disengage the header cylinder lift stops.

15. Start the combine and lower the header to the ground.
Attaching Tow-Bar

The tow-bar consists of two sections which make storage and handling easier.

1. Unhook the rubber strap (D) from the cradle (A) on the right side of the header.
2. Remove the clevis pin (C) and detach the tube end from the support (B).
3. Replace the clevis pin (C).
4. Lift the inner half of the tow-bar off the header and place it near the left side of the header.

5. Unhook the rubber strap (D) from the cradle (A) on the left side of the header.
6. Remove the hitch pin (C) from the support (B), and remove the tow-bar.
7. Install the rubber strap (D) on the cradle (A).
8. Connect the outer half (B) of the tow-bar to the inner half (A).

9. Lift the outer half (B) and insert it into the inner half (A).

10. Secure the two halves together with the L-pin (A) and then turn to lock. Secure the L-pin with ring (B).

11. Connect the electrical harness to connector (C).
12. Position the tow-bar (A) onto the axle, and push against the latch (B) until the tow-bar pins drop into the hooks (C).

13. Check that latch (B) has engaged the tow-bar.

14. Install the clevis pin (D) and secure with hairpin.

15. Connect the electrical harness (A) at the front wheel.
3.13 Storing the Header

Perform the following procedures at the end of each operating season:

⚠️ **CAUTION**

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

⚠️ **CAUTION**

Cover cutterbar and knife guards to prevent injury from accidental contact.

1. Clean the header thoroughly.
2. Store the machine in a dry, protected place if possible. If storing outside, always cover with a waterproof canvas or other protective material.

 NOTE:

 If storing the machine outside, remove the drapers and store them in a dark, dry place. If not removing the drapers, store the header with the cutterbar lowered so water and snow will not accumulate on the drapers. The weight of water and snow accumulation puts excessive stress on the drapers and header.

3. Lower the header onto blocks to keep the cutterbar off the ground.
4. Lower the reel completely. If stored outside, tie the reel to the frame to prevent rotation caused by the wind.
5. Repaint all worn or chipped painted surfaces to prevent rust.
6. Loosen the drive belts.
7. Lubricate the header thoroughly leaving excess grease on the fittings to keep moisture out of the bearings.
8. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.
9. Check for worn components and repair as necessary.
10. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at the beginning of next season.
11. Replace or tighten any missing or loose hardware. Refer to 8.1 Torque Specifications, page 577.
4 Header Attachment/Detachment

This chapter includes instructions for setting up, attaching, and detaching the header.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IH 7010, 8010, 7120, 8120, 9120, 5130, 6130, 7130, 7230, 8230, 9230</td>
<td>4.3 Case IH Combines, page 332</td>
</tr>
<tr>
<td>John Deere 60, 70, S, and T Series</td>
<td>4.5 John Deere Combines, page 348</td>
</tr>
<tr>
<td>CLAAS 500, 700 (R Series)</td>
<td>4.6 CLAAS Combines, page 355</td>
</tr>
<tr>
<td>New Holland CR, CX</td>
<td>4.7 New Holland Combines, page 363</td>
</tr>
</tbody>
</table>

NOTE:

Ensure the applicable functions (e.g., Automatic Header Height Control [AHHC], draper header option, hydraulic center-link option, hydraulic reel drive) are enabled on the combine and the combine computer. Failure to do so may result in improper header operation.

4.1 Float Module Feed Auger Configurations

The FM100 feed auger can be configured to suit various crop conditions; there are four configurations available. Check the conversion instructions to determine if additional auger flighting kits are required.

Narrow configuration is a standard configuration for the following combines:

- Gleaner (R6/75, R6/76, S6/77, S6/7/88, S96/7/8)
- New Holland CR (920/940/960, 9020/40/60/65, 6090/7090, 8060/8070/8080)

![Figure 4.1: Narrow Configuration (Rear View)](image)

Figure 4.1: Narrow Configuration (Rear View)

A - 514 mm (20-1/4 in.)
B - 356 mm (14 in.)

NOTE:

Dimensions are the same for both ends of the auger. They should be within 15 mm (9/16 in.) of the numbers given.
To convert to Narrow configuration from Medium or Wide configuration, refer to 4.1.3 Converting from Medium Configuration or Wide Configuration to Narrow Configuration, page 315.

To convert to Narrow configuration from Ultra Narrow configuration, refer to 4.1.4 Converting from Ultra Narrow Configuration to Narrow Configuration, page 317.

Medium configuration is a standard configuration for the following combines:

- Challenger (66/67/680B, 54/560C, 54/560E)
- John Deere (95/96/97/9860, 95/96/97/9870, S65/66/67/68/690, T670)
- Massey Ferguson (96/97/9895, 9520/40/60, 9545/65, 9380)
- New Holland CR (970/980, 9070/9080, 8090/9090, X.90, X.80)
- New Holland CX (8X0, 80X0, 8.X0, 8080/8090 Elevation)
- Versatile (RT490)

To convert to Medium configuration from Narrow or Ultra Narrow configuration, refer to 4.1.1 Converting from Ultra Narrow Configuration or Narrow Configuration to Medium Configuration, page 310.

To convert to Medium configuration from Wide configuration, refer to 4.1.2 Converting from Wide Configuration to Medium Configuration, page 313.
Wide configuration is an optional configuration for the following combines:

- Challenger (670B/680B, 540C/560C, 540E/560E)
- CLAAS (590R/595R, 660/670, 760/770/780)
- John Deere (T670)
- Massey Ferguson (9895, 9540, 9560, 9545, 9565, 9380)
- New Holland CX (8X0, 80X0, 8.X0)

NOTE:
This configuration may increase combine capacity on wide feeder house combines in certain crop conditions.

NOTE:
In some conditions, feeding may be further improved by removing all bolt-on flighting. Refer to 4.1.7 Optional Modification to Wide Configuration, page 322.

To convert to Wide configuration from Medium configuration, refer to 4.1.5 Converting from Medium Configuration to Wide Configuration, page 318.

To convert to Wide configuration from Narrow or Ultra Narrow configuration, refer to 4.1.6 Converting from Ultra Narrow or Narrow Configuration to Wide Configuration, page 320.

Ultra Narrow configuration is an optional configuration that may improve feeding performance on combines with narrow feeder houses. It may also be helpful when harvesting rice.

NOTE:
Dimensions are the same for both ends of the auger. They should be within 15 mm (9/16 in.) of the numbers given.
To convert to Ultra Narrow configuration from Medium or Wide configuration, refer to 4.1.8 Converting from Medium Configuration or Wide Configuration to Ultra Narrow Configuration, page 323.

To convert to Ultra Narrow configuration from Narrow configuration, refer to 4.1.9 Converting from Narrow Configuration to Ultra Narrow Configuration, page 327.

4.1.1 Converting from Ultra Narrow Configuration or Narrow Configuration to Medium Configuration

Two kits of MD #287031 are required to convert to this configuration.

Ultra Narrow, Narrow, and Medium auger configurations are shown at right. When converting from Ultra Narrow configuration or Narrow configuration to Medium configuration, you will need to replace the existing flightings (A) with flightings (B).

![Figure 4.5: Auger Configurations (Rear View)](image)

1. To improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

NOTE:
Some parts have been removed from the illustrations for clarity.

45. MD #287031 contains wear-resistant flightings, and is available only through MacDon Parts.
2. Remove bolts (A) and access cover (B) from right end of auger. Retain for later reassembly.

 NOTE:
 If necessary, remove multiple access covers for better access.

3. Remove hardware (C) and bolt-on flighting (D) from the right side of the auger. Repeat for all the remaining hardware and bolt-on flighting. Discard flighting, but retain hardware to attach new flighting.

4. Repeat Steps 2, page 311 and 3, page 311 at the left side of the feed auger.

5. Remove flighting slot plug (B), M6 bolt (A), and tee nut from inside the feed auger. Repeat at the left side of the feed auger. Retain plug and hardware for reinstallation.

6. Install two bolt-on flightings (A) on the right side of the auger as shown, and secure each flighting with six carriage head bolts and nuts at locations (B).

 IMPORTANT:
 Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

 NOTE:
 Flightings are **NOT** included in this kit. Order flighting kits MD #287031 separately.

7. Torque all nuts and bolts to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).
8. Install two bolt-on flightings (A) on the left side of the auger as shown, and secure each flighting with six carriage head bolts and nuts retained from Step 3, page 311 at location (B).

IMPORTANT:
Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

NOTE:
Flightings are **NOT** included in this kit. Order flighting kits MD #287031 separately.

9. Torque all nuts and bolts to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).

10. Use the access hole (A) to position the flighting slot plug (B) from inside the feed auger (as shown) and secure with a 20 mm long M6 hex head bolt (C) and tee nut. Use flighting and hardware retained from Step 5, page 311. Repeat for the remaining locations used to mount the flighting in Step 3, page 311 and Step 4, page 311.

11. Install additional auger fingers. A total of 22 auger fingers is recommended for this configuration. Refer to *Installing Feed Auger Fingers, page 431.*
4.1.2 Converting from Wide Configuration to Medium Configuration

One kit of MD #287031 is required to convert to this configuration.

Wide and Medium auger configurations are shown at right. When converting from Wide configuration to Medium configuration, you will need to install new flightings (A).

1. If necessary to improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

 NOTE:
 Auger illustrated without header for clarity.

2. Remove bolts (A) and remove the access cover (B) on the right side of the auger. Retain for later reassembly.

 NOTE:
 If necessary, remove multiple access covers for ease of access.

3. Remove and discard the two flighting slot plugs (C) on the right side of the auger.

46. MD #287031 contains wear-resistant flightings, and is available only through MacDon Parts.
4. Install bolt-on flighting (A) on the right side of the auger as shown, and secure with six carriage head bolts and six nuts at location (B).

IMPORTANT:
Bolt heads must be installed on inside of auger to prevent damage to internal components.

5. Torque all nuts and bolts to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).

6. Repeat Step 2, page 313 and Step 3, page 313 at the left side of auger.

7. Install bolt-on flighting (A) on the left side as shown, and secure with six carriage head bolts and six nuts at location (B).

IMPORTANT:
Bolt heads must be installed on inside of auger to prevent damage to internal components.

8. Torque all nuts and bolts (B) to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).

9. Remove extra auger fingers. A total of 22 fingers are recommended for this configuration. Refer to *Removing Feed Auger Fingers, page 429.*
4.1.3 Converting from Medium Configuration or Wide Configuration to Narrow Configuration

Two of either MD #287032 or B6400 are required to convert to this configuration. Extra hardware is included in these kits. Be sure to use the correct hardware in the correct location to prevent damage and to maximize performance.

Medium, Wide, and Narrow auger configurations are shown at right. When converting from Medium or Wide configuration to Narrow configuration, you will need to replace the existing flightings (A) with flightings (B).

NOTE:
The flighting should fit tight against the auger tube; however, gaps are not uncommon. Crop material may collect in this gap, but generally this will not affect performance. If desired, silicone sealant may be used to fill these gaps.

1. To improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

NOTE:
Some parts have been removed from the illustrations for clarity.

47. MD #287032 is available only through MacDon Parts. B6400 is available only through Whole Goods. Both kits contain wear-resistant flightings.
2. Remove bolts (A) and access cover (B) from the right side of the auger. Retain for reassembly.

3. Remove hardware (C) and bolt-on flighting (D) from the auger.

4. Remove and discard the flighting slot plug (E) located close to the end of the flighting (D).

5. **Converting from Medium configuration:** Repeat above steps for the other flighting on the right side.

6. **Converting from Wide configuration:** Remove bolts (A), access cover (B), and two flighting slot plugs (C) from the right side of the auger.

7. Repeat Steps 2, page 316 to 6, page 316 at the left side of the feed auger.

8. Install two bolt-on flightings (A) on the right side as shown, and secure each flighting with six carriage head bolts (MD #136178) and nuts (MD #135799) at locations (B).

 IMPORTANT:
 Bolt heads must be installed on inside of auger to prevent damage to internal components.

9. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf-ft).

10. Install flighting slot plug (MD #213084) at location (C) from inside the auger and secure with an M6 hex head bolt (MD #252703) and tee nut (MD #197263). Repeat for the other flighting mounting locations.
11. Install two bolt-on flightings (A) on the left side as shown, and secure each flighting with six carriage head bolts (MD #136178) and nuts (MD #135799) at locations (B).

IMPORTANT:
Bolt heads must be installed on inside of auger to prevent damage to internal components.

12. Torque all nuts and bolts to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).

13. Install flighting slot plug (C) (MD #213084) from inside the auger and secure with an M6 hex head bolt (MD #252703) and tee nut (MD #197263). Repeat for the other flighting mounting location used to mount the previous flighting in Step 3, page 316.

14. Remove extra auger fingers. A total of 18 fingers is recommended for this configuration. Refer to *Removing Feed Auger Fingers*, page 429.

4.1.4 Converting from Ultra Narrow Configuration to Narrow Configuration

The Ultra Narrow and Narrow auger configurations are shown at right. Existing flightings (A) are removed from the auger when converting to the Narrow configuration.

1. If necessary to improve access and ease installation, remove float module from combine. For instructions, refer to *4 Header Attachment/Detachment*, page 307.
2. Remove bolts (A) and access cover (B). Retain for reassembly.

 NOTE:
 Some parts are removed from the illustration for clarity.

3. Remove hardware from location (C), and remove bolt-on flighting (D) from feed auger.

4. Repeat procedure for the remaining three inboard flightings.

5. Install additional auger fingers. A total of 18 fingers are recommended for this configuration. Refer to *Installing Feed Auger Fingers, page 431* for instructions.

4.1.5 Converting from Medium Configuration to Wide Configuration

The Medium and Wide auger configurations are shown at right. When converting from the Medium configuration to the Wide configuration, you will need to remove existing flightings (A) from auger and add auger fingers. Four flighting plugs (MD #213084), M6 hex head bolts (MD #252703), and M6 tee nuts (MD #197263) are needed to cover exposed flighting mounting holes after the flightings are removed. These parts can be ordered from a MacDon Dealer.

1. If necessary to improve access and ease installation, remove float module from combine. For instructions, refer to *4 Header Attachment/Detachment, page 307*.

 NOTE:
 Some parts have been removed from the illustrations for clarity.
2. Remove bolts (A) and access cover (B). Retain for reassembly.

3. Remove hardware from location (C), and remove bolt-on flighting (D) from the feed auger.

4. Install flighting slot plug (A) (MD #213084) in the flighting slot from inside the auger. Secure with M6 hex head bolts (B) (MD #252703) and tee nuts (MD #197263).

5. Repeat above steps at the left side of the auger.

6. Install additional fingers. A total of 30 fingers are recommended for this configuration. Refer to Installing Feed Auger Fingers, page 431.
4.1.6 Converting from Ultra Narrow or Narrow Configuration to Wide Configuration

One kit of MD #287031 is required to convert to this configuration. Two flighting plugs (MD #213084), two M6 hex head bolts (MD #252703), and two M6 tee nuts (MD #197263) are recommended to close the flighting mounting locations. These parts can be ordered from a MacDon Dealer.

The Narrow, Ultra Narrow, and Wide auger configurations are shown at right. When converting from Narrow or Ultra Narrow configuration to Wide configuration, you will need to replace the existing flightings (A).

NOTE:
Some parts have been removed from the illustrations for clarity.

1. If necessary to improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

48. MD #287031 contains wear-resistant flightings, and is available only through MacDon Parts.
2. Remove bolts (A) and access cover (B) from the right side of the auger. Retain for later reassembly.

3. Remove hardware (C) and bolt-on flighting (D) from the right side of the auger. Discard flighting, but retain hardware to attach the new flighting.

4. Remove flighting slot plug, bolt, and tee nut (E). Retain for later reinstallation.

 NOTE:
 Only two flighting slot plugs (E) should be removed—one from each outboard side of the auger.

5. Repeat Step 2, page 321 and Step 3, page 321 for the remaining bolt-on flighting(s).

6. Install the new bolt-on flighting (A) using six carriage head bolts and nuts (B) on the right side of the auger.

 IMPORTANT:
 Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

 NOTE:
 Flightings are **NOT** included in this kit. Order flighting kit MD #287031 separately.

7. Reinstall flighting slot plug (C) removed in Step 4, page 321.

8. Install the new bolt-on flighting (A) on the left side of the auger using six carriage head bolts and nuts (B).

 IMPORTANT:
 Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

 NOTE:
 Flightings are **NOT** included in this kit. Order flighting kit MD #287031 separately.

10. Install the remaining flighting slot plugs (MD #213084) using the M6 hex head bolts (MD #252703) and tee nuts (MD #197263) in the locations previously used to mount the flighting in Step 3, page 321 and Step 5, page 321.

11. Install additional auger fingers. There should be a total of 30 fingers in this configuration. Auger fingers and all required parts are included in kit. Refer to *Installing Feed Auger Fingers, page 431.*
4.1.7 Optional Modification to Wide Configuration

In some conditions, feeding may be further improved by removing all bolt-on flightings (A). Four flighting plugs (MD #213084), M6 bolts (MD #252703), and M6 tee nuts (MD #197263) are recommended to cover the flighting mounting holes. These parts can be ordered from a MacDon Dealer.

1. To improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

NOTE:
Some parts have been removed from the illustrations for clarity.

2. Remove two bolts and access cover (A).
3. Remove hardware (B), and bolt-on flighting (C).
4. Install flighting slot plugs (MD #213084) in the flighting mounting locations (D) and secure with M6 bolts (MD #252703) and tee nuts (MD #197263).
5. Repeat at the left side of the auger.
6. Install additional auger fingers. A total of 30 fingers are recommended for this configuration. Refer to Installing Feed Auger Fingers, page 431.
4.1.8 Converting from Medium Configuration or Wide Configuration to Ultra Narrow Configuration

Four kits of either MD #287032 or B6400 and some hole-drilling are required to convert to the Ultra Narrow configuration. Extra hardware is included in these kits. Be sure to use the correct hardware in the correct location to prevent damage and to maximize performance.

Medium, Wide, and Ultra Narrow auger configurations are shown at right. When converting to the Ultra Narrow configuration, existing flightings (A) are removed and new flightings (B) are installed.

1. If necessary to improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

NOTE:
Some parts have been removed from the illustrations for clarity.

49. MD #287032 is available only through MacDon Parts. B6400 is available only through Whole Goods. Both kits contain wear-resistant flightings.
2. Remove bolts (A) and access cover (B) from the right side of the auger. Retain for reassembly.

3. Remove hardware (C) and bolt-on flighting (D) from the auger.

4. Remove the flighting slot plug (E) located close to the end of the flighting (D).

5. **Converting from Medium configuration:** Repeat above steps for the other bolt-on flighting on the same side.

6. **Converting from Wide configuration:** Remove bolts (A), access cover (B), and two flighting slot plugs (C) from the right side of the auger.

7. Repeat Steps 2, page 324 to 6, page 324 at the left side of the auger.

8. Position two bolt-on flightings (A) on the right side, as shown. Temporarily secure flightings with two carriage head bolts and nuts at each location (B).
9. Position another bolt-on flighting (A) outboard of the temporarily installed flighting (B). Mark hole locations (C) of the bolt-on flighting onto the temporarily installed bolt-on flighting (B).

10. Remove temporarily installed bolt-on flighting (B) from the auger and drill two 11 mm (7/16 in.) holes at the marked locations.

11. Install the bolt-on flighting (B) with newly drilled holes using six carriage head bolts and nuts.

IMPORTANT:
Carriage bolt heads must be installed on inside of auger to prevent damage to internal components.

12. Repeat Steps 9, page 325 to 11, page 325 to the remaining bolt-on flighting on the right side of the auger.

13. Position two bolt-on flightings (A) on the left side, as shown. Temporarily secure flightings with two carriage head bolts and nuts at each location (B).

14. Position another bolt-on flighting (A) outboard of the temporarily installed flighting (B). Mark hole locations (C) of the bolt-on flighting onto the temporarily installed bolt-on flighting.

15. Remove temporarily installed bolt-on flighting (B) from the auger and drill two 11 mm (7/16 in.) holes at the marked locations.

16. Install the bolt-on flighting (B) with newly drilled holes using six carriage head bolts and nuts.

IMPORTANT:
Carriage bolt heads must be installed on inside of auger to prevent damage to internal components.

17. Repeat Steps 14, page 325 to 16, page 325 to the remaining bolt-on flighting on the left side of the auger.
18. Place bolt-on flighting (A) outboard of the other flighting (B) on the left side of the auger, as shown.

19. Temporarily secure bolt-on flighting (A) with two button head bolts and nuts at location (C).

20. Stretch flighting (A) to fit auger tube as shown. Use slotted holes on flighting to get the best fit around the auger tube.

21. With flighting in the desired position, mark hole locations (A) on auger tube.

22. Remove the flighting (B) from auger, and drill 11 mm (7/16 in.) holes at the marked locations (A) on auger tube.

23. Remove nearest access cover(s). Retain for reinstallation.

24. Install the bolt-on flighting (B) using two button head bolts and nuts at location (C), and four flange head bolts and nuts at location (A).

IMPORTANT:
Ensure bolt heads at location (C) are on the inboard (crop side) and nuts are on the outboard side of the flighting.

25. Repeat Steps 18, page 326 to 24, page 326 for the remaining flighting on the left side of the auger.
26. Place bolt-on flighting (A) outboard of the other flighting (B) on the right side of the auger as shown.

27. Temporarily secure bolt-on flighting (A) with two button head bolts and nuts at location (C).

28. Repeat Steps 20, page 326 to for both pieces of flighting on the right side of the auger.

29. Install flighting slot plugs (MD #213084) in the flighting mounting locations and secure with M6 bolts and tee nuts.

30. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then retorque them to 58–64 Nm (43–47 lbf-ft).

NOTE:
The flighting should fit tightly against the auger tube; however, gaps are not uncommon. Crop material may collect in these gaps, but this should not affect performance. If desired, use silicone sealant to fill these gaps.

31. Add or remove auger fingers to optimize feeding for your combine and crop conditions. Refer to Installing Feed Auger Fingers, page 431 or Removing Feed Auger Fingers, page 429.

32. If not adding or removing auger fingers, reinstall all access covers and secure with bolts. Coat bolts with medium-strength threadlocker (Loctite® 243 or equivalent) and torque to 8.5 Nm (75 lbf-in).

4.1.9 Converting from Narrow Configuration to Ultra Narrow Configuration

Two kits of either MD #287032 or B640050 and some hole-drilling are required to convert to this configuration. Extra hardware is included in these kits. Be sure to use the correct hardware at the correct location to prevent damage and to maximize performance.

NOTE:
Additional holes on the auger are needed before these flightings (A) can be installed.

50. MD #287032 is available only through MacDon Parts. B6400 is available only through Whole Goods. Both kits contain wear-resistant flightings.
1. If necessary to improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 307.

NOTE:
Some parts have been removed from the illustrations for clarity.

2. Place new bolt-on flighting (A) outboard of the existing flighting (B) on the left side of the auger, as shown.

3. Mark hole locations (C) of the new bolt-on flighting (A) onto existing bolt-on flighting (B).

4. Remove nearest access cover to existing bolt-on flighting (B). Retain hardware for reassembly.

5. Remove existing bolt-on flighting (B) from the auger. Retain hardware for reassembly.

6. Drill two 11 mm (7/16 in.) holes at the marked locations of existing bolt-on flighting (B).

7. Reinstall existing bolt-on flighting (B) on the auger.

NOTE:
Ensure carriage bolt heads are on the inside of the auger to prevent damage to internal components.

8. Place new bolt-on flighting (A) outboard of the existing flighting (B) of the left side of the auger, as shown.

9. Secure with two button head bolts (MD #135723) and nuts (MD #135799) at location (C).

IMPORTANT:
Ensure bolt heads are on the inboard (crop side) and nuts are on the outboard side of the flighting.
10. Stretch flighting (A) to fit auger tube as shown. Use slotted holes on flighting to get the best fit around the auger tube.

11. With flighting in desired position, mark hole locations (A) and drill 11 mm (7/16 in.) holes in auger tube.

12. Remove nearest access cover(s). Retain for reinstallation.

13. Secure bolt-on flighting on the newly drilled holes (A) using four flange head bolts and nuts.

14. Repeat Steps 2, page 328 to 13, page 329 for the other flighting on the left side of the auger.

15. Place flighting (A) outboard of the existing flighting (B) on the right side of the auger, as shown.

16. Repeat Steps 3, page 328 to 13, page 329 for both flightings on the right side of the auger.

17. Install flighting slot plugs (MD #213084) in the flighting mounting locations and secure with M6 bolts (MD #252703) and tee nuts (MD #197263).

18. Torque all nuts and bolts to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque nuts and bolts again to 58–64 Nm (43–47 lbf·ft).

NOTE:
The flighting should fit tightly against the auger tube; however, gaps are not uncommon. Crop material may collect in these gaps, but this should not affect performance. If desired, use silicone sealant to fill these gaps.
19. Add or remove auger fingers as necessary to optimize feeding for your combine and crop conditions. Refer to Installing Feed Auger Fingers, page 431 or Removing Feed Auger Fingers, page 429.

20. If not adding or removing auger fingers, reinstall all access covers and secure with bolts. Coat bolts with medium-strength threadlocker (Loctite® 243 or equivalent) and torque to 8.5 Nm (75 lbf-in).
4.2 Float Module Setup
The following sections outline the recommended float module setup guidelines for your specific combine model and crop type; however, the recommendations cannot cover all conditions.

If feeding problems develop with the float module, refer to 7 Troubleshooting, page 561.

4.2.1 Using Auger Flighting
The auger flighting on the FM100 can be configured for specific combines and crop conditions. Refer to 4.1 Float Module Feed Auger Configurations, page 307 for combine/crop specific configurations.

4.2.2 Using Stripper Bars
Stripper bar kits may have been supplied with your header to improve feeding in certain crops such as rice. They are NOT recommended in cereal crops.

For servicing information, refer to 5.13 Float Module Stripper Bars and Feed Deflectors, page 482.
4.3 Case IH Combines

4.3.1 Attaching Header to Case IH Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. On the combine, ensure the lock handle (A) is positioned so the hooks (B) can engage the float module.

⚠️ CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the header until the feeder house saddle (A) is directly under the float module top cross member (B).

3. Raise the feeder house slightly to lift the header, ensuring the feeder saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.
5. On the left side of the feeder house, lift lever (A) on the float module and push handle (B) on the combine to engage locks (C) on both sides of the feeder house.

6. Push down on the lever (A) so the slot in the lever engages the handle and locks the handle in place.

7. If lock (C) does not fully engage the pin on the float module, loosen bolts (D) and adjust lock. Retighten bolts.

8. Open the cover on the receptacle (A) located on the left side of the float module.

9. Press the lock button (B) and pull the handle (C) to the fully-open position.

10. Clean the receptacle mating surfaces.

11. Remove the hydraulic quick coupler (A) from the combine, and clean the mating surfaces.
12. Position the coupler onto the coupler receptacle (A) and push the handle (B) (not shown) to engage the multicoupler pins into the receptacle.

13. Push the handle (B) to the closed position until the lock button (C) snaps out.

14. Remove the cover from the electrical receptacle (A). Ensure the receptacle is clean and has no signs of damage.

15. Remove the electrical connector (A) from the storage cup on the combine and route it to the float module receptacle.
16. Align the lugs on the connector (A) with the slots in the receptacle (B), push the connector onto the receptacle, and turn the collar on the connector to lock it in place.

17. Detach safety chain (C) from support bracket (B).

18. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from support bracket.

19. Pull back the collar (A) on the end of the driveline, and push the driveline onto the combine output shaft (B) until the collar locks.
20. Disengage the float locks by pulling each float lock handle (A) away from the float module and setting it in the unlocked position (B).

Figure 4.59: Float Lock Handle (Right Side Shown in Detail, Left Side Opposite)
4.3.2 Detaching Header from Case IH Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

 IMPORTANT:

 If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.*

 IMPORTANT:

 If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer Wheels, page 60.*

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

4. Push back the collar (A) on the end of the driveline and pull the driveline out of the combine output shaft (B) until the collar disengages.

![Figure 4.60: Float Lock Handle](image1)

![Figure 4.61: Driveline](image2)
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Attach safety chain (E) to support bracket (B).

7. Remove the electrical connector (A) and replace the cover (B).

8. Push in the lock button (C) and pull the handle (D) to release the multicoupler (E).

9. Position the multicoupler (A) onto the storage plate (B) on the combine.

10. Place the electrical connector (C) in the storage cup (D).
11. Push the handle (A) on the float module receptacle to the closed position until the lock button (B) snaps out. Close the cover.

12. Lift the lever (A) and pull and lower the handle (B) to disengage the feeder house/float module lock (C).

13. Lower the feeder house until it disengages the float module support.

14. Back the combine away slowly from the float module.
4.4 AGCO (Challenger, Gleaner, and Massey Ferguson) Combines

4.4.1 Attaching Header to a Challenger, Gleaner, or Massey Ferguson Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Use the lock handle (B) to retract the lugs (A) at the base of the feeder house.

⚠️ CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly approach the header until the feeder house is directly under the float module top cross member (A) and the alignment pins (C) (refer to Figure 4.69, page 341) on the feeder house are aligned with the holes (B) in the float module frame.
NOTE:
Your combine feeder house may not be exactly as shown.

3. Raise the feeder house slightly to lift the header, ensuring the feeder house saddle (A) is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.

5. Use the lock handle (B) to engage lugs (A) with the float module.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.
6. Start the engine and lower the header.

7. Stop the engine and remove the key from the ignition.

NOTE:
The FM100 Float Module is equipped with a multicoupler that connects to the combine. If your combine is equipped with individual connectors, a multicoupler kit (single-point connector) must be installed. Refer to Table 4.1, page 342 for a list of kits and installation instructions that are available through your combine Dealer.

Table 4.1 Multicoupler Kits

<table>
<thead>
<tr>
<th>Combine</th>
<th>Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenger</td>
<td>71530662</td>
</tr>
<tr>
<td>Gleaner R/S Series</td>
<td>71414706</td>
</tr>
<tr>
<td>Massey Ferguson</td>
<td>71411594</td>
</tr>
</tbody>
</table>

8. Disengage the float locks by pulling each float lock handle (A) away from the float module and setting it in the unlocked position (B).

![Figure 4.72: Float Lock Handle (Right Side Shown in Detail, Left Side Opposite)](image-url)
9. Raise the handle (A) to release the multicoupler (B) from the float module.

10. Push the handle (A) on the combine to the fully-open position.

11. Clean the mating surfaces of the multicoupler (B) and receptacle if necessary.

12. Position the multicoupler (A) onto the combine receptacle, and pull the handle (B) to fully engage the multicoupler into the receptacle.

13. Connect the reel fore-aft/header tilt selector harness (C) to the combine harness (D).
14. Detach safety chain (C) from support bracket (B).

15. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from support bracket.

16. Pull back the collar (A) on the end of the driveline, and push the driveline onto the combine output shaft (B) until the collar locks.
4.4.2 Detaching Header from a Challenger, Gleaner, or Massey Ferguson Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.
2. Stop the engine and remove the key from the ignition.

IMPORTANT:

If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.*

IMPORTANT:

If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer Wheels, page 60.*

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

4. Disconnect the driveline (A) from the combine output shaft (B).
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Disconnect the harness at the connector (A).

7. Move the handle (B) on the combine multicoupler to the full open position to release the multicoupler (C) from the combine.

8. Raise the handle (A) on the float module, and place the multicoupler (B) on the float module receptacle.

9. Lower the handle (A) to lock the multicoupler (B).
10. Use the lock handle (B) to retract the lugs (A) at the base of the feeder house.

11. Lower the feeder house until the saddle (A) disengages and clears the float module support (B).

12. Back the combine away slowly from the float module.
4.5 John Deere Combines

The FD1 Series FlexDraper® Header is compatible with John Deere 60, 70, S, and T Series combines.

4.5.1 Attaching Header to John Deere Combine

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Push the handle (A) on the combine multicoupler receptacle towards the feeder house to retract the pins (B) at the bottom corners of the feeder house. Clean the receptacle.

⚠️ **CAUTION**

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the header until the feeder house saddle (C) is directly under the float module top cross member (D).

3. Raise the feeder house slightly to lift the header ensuring the feeder house saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.

5. Pull the handle (A) on the float module to release the multicoupler (B) from the storage position. Remove the multicoupler, and push the handle back into the float module to store.
6. Position the multicoupler (A) onto the receptacle, and pull the handle (B) to engage the lugs on the multicoupler into the handle.

7. Pull the handle (B) to a horizontal position and ensure the multicoupler (A) is fully engaged into the receptacle.

8. Ensure that both feeder house pins (A) are fully engaged into the float module brackets.

NOTE:
If the pins (A) do not fully engage the float module brackets, loosen the bolts (B) and adjust the bracket as required.

9. Tighten bolts (B).

10. Slide the latch (A) to lock the handle (B) in position and secure with the lynch pin (C).

11. If the float module is equipped with the reel fore-aft/header tilt selector, connect the harness (D) to the combine connector (E).
12. Detach safety chain (C) from support bracket (B)

13. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from the support bracket.

14. Pull back the collar (A) on the end of the driveline, and push the driveline onto the combine output shaft (B) until the collar locks.
15. Disengage the float locks by pulling each float lock handle (A) away from the float module, and setting it in the unlocked position (B).

Figure 4.93: Float Lock Handle (Right Side Shown in Detail, Left Side Opposite)
4.5.2 Detaching Header from John Deere Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

 IMPORTANT:

 If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.

 IMPORTANT:

 If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer Wheels, page 60.

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

4. Open the shield (A) on the combine, pull back the collar on the driveline (B), and pull the driveline off the combine output shaft.
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Lift the handle (A) on the float module.

7. Disconnect the harness (A) from the combine connector.

8. Remove the lynch pin (B) and slide the lock (C) to release the handle (D).

9. Lift the handle (D) to full vertical position to release the multicoupler (E) from the combine.
10. Position the multicoupler (A) on the float module receptacle and lower the handle (B) to lock the multicoupler.

![Figure 4.99: Multicoupler Storage](image)

11. Push the handle (A) on the combine towards the feeder house to disengage the feeder house pin (B) from the float module.

![Figure 4.100: Feeder House Locks](image)

12. Lower the feeder house until the saddle (A) disengages and clears the float module support (B).

13. Back the combine away slowly from the float module.

![Figure 4.101: Header/Feeder House](image)
4.6 CLAAS Combines

The FD1 Series FlexDraper® Header is compatible with CLAAS 500, 600, and 700 Series combines.

4.6.1 Attaching Header to CLAAS Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Move the handle (A) on the FM100 Float Module into the raised position, and ensure the pins (B) at the bottom corners of the float module are retracted.

⚠️ CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the header until the feeder house saddle (A) is directly under the float module top cross member (B).

3. Raise the feeder house slightly to lift the header, ensuring the feeder saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.
5. Remove the locking pin (B) from the float module pin (A).

6. Lower the handle (A) to engage the float module pins (B) into the feeder house. Reinsert the locking pin (C) and secure with the hairpin.

7. Stop the engine and remove the key from the ignition.

8. Unscrew the knob (A) on the combine coupler (B) to release the coupler from the combine receptacle and clean the coupler.
9. Place the float module receptacle cover (A) onto the combine receptacle.

10. Clean the mating surface of the coupler (A) and position onto the float module receptacle (B).

11. Turn the knob (C) to secure the coupler to the receptacle.
12. Detach safety chain (C) from support bracket (B).

13. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from the support bracket.

14. Attach the driveline (A) to the combine output shaft.
15. Disengage both header float locks by pulling each float lock handle (A) away from the float module and setting it in the unlocked position (B).
4.6.2 Detaching Header from CLAAS Combine

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.
2. Stop the engine and remove the key from the ignition.

IMPORTANT:
If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.

IMPORTANT:
If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer Wheels, page 60.

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

4. Disconnect the driveline (A) from the combine.
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Remove the cover (A) from the combine receptacle.

7. Position the coupler (A) onto the combine receptacle, and turn the knob (B) to secure the coupler to the receptacle.
8. Place the cover (A) on the float module receptacle.

9. Remove the locking pin (A) from the float module pin (B).

10. Raise the handle (C) to disengage the float module pins (B) from the feeder house.

11. Replace the locking pin (A) in the float module pin, and secure with the hairpin.

12. Lower the feeder house until the feeder house posts (A) disengage the float module (B).

13. Back the combine away slowly from the float module.
4.7 New Holland Combines

The FD1 Series FlexDraper® is compatible with the following New Holland combines:

<table>
<thead>
<tr>
<th>Series</th>
<th>Combine Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>920, 940, 960, 970, 980</td>
</tr>
<tr>
<td></td>
<td>9020, 9040, 9060, 9065, 9070, 9080</td>
</tr>
<tr>
<td></td>
<td>6090, 7090, 8080, 8090, 9090</td>
</tr>
<tr>
<td></td>
<td>6.80, 6.90, 7.90, 8.90, 9.90, 10.90</td>
</tr>
<tr>
<td>CX</td>
<td>840, 860, 870, 880</td>
</tr>
<tr>
<td></td>
<td>8070, 8080, 8090</td>
</tr>
<tr>
<td></td>
<td>8080 Elevation, 8090 Elevation</td>
</tr>
</tbody>
</table>

4.7.1 Attaching Header to New Holland CR/CX Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Ensure the handle (A) is positioned so the hooks (B) can engage the float module.

![Figure 4.120: Feeder House Locks](image)
CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the float module until the feeder house saddle (A) is directly under the float module top cross member (B).

3. Raise the feeder house slightly to lift the header, ensuring the feeder saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.

5. Lift lever (A) on the float module on the left side of the feeder house, and push the handle (B) on the combine to engage the locks (C) on both sides of the feeder house.

6. Push down on the lever (A) so the slot in the lever engages the handle and locks the handle in place.

7. If the lock does not fully engage the pin (D) on the float module when the lever (A) and handle (B) are engaged, loosen bolts (E) and adjust the lock (C). Retighten bolts.

8. Open the cover on the receptacle (A) located on the left side of the float module.

9. Push in the lock button (B) and pull the handle (C) to the full open position.

10. Clean the receptacle mating surfaces.
11. Remove the hydraulic quick coupler (A) from the storage plate on the combine, and clean the mating surface of the coupler.

12. Position the coupler (A) onto the float module receptacle, and push the handle (B) to engage the pins into the receptacle.

13. Push the handle (B) to closed position until the lock button (C) snaps out.

14. Remove the cover on the float module electrical receptacle.

15. Remove the connector (D) from the combine.

16. Align the lugs on the connector (D) with the slots in the float module receptacle, and push the connector onto the receptacle. Turn the collar on the connector to lock it in place.

17. Detach safety chain (C) from support bracket (B).

18. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from support bracket.
19. Pull back the collar on the end of the driveline, and push the driveline onto the combine output shaft (A) until the collar locks.

20. Disengage the float locks by pulling each float lock handle (A) away from the float module and setting it in the unlocked position (B).
4.7.2 Detaching Header from New Holland CR/CX Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.
2. Stop the engine and remove the key from the ignition.

IMPORTANT:
If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.*

IMPORTANT:
If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer Wheels, page 60.*

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

4. Disconnect the driveline (A) from the combine.
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Attach safety chain (E) to support bracket (B).

7. Push in the lock button (B), and pull the handle (C) to release the multicoupler (A).

8. Push the handle (A) to the closed position until the lock button (B) snaps out. Close the cover.
9. Position the hydraulic quick coupler (A) onto the storage plate (B) on the combine.

10. Remove the electrical connector (A) from the float module.

11. Connect the electrical connector to the combine at location (A).
12. Replace the cover (A) on the float module receptacle.

13. Lift the lever (A) and pull and lower the handle (B) to disengage the feeder house/float module lock (C).

14. Lower the feeder house (A) until the feeder house disengages the float module support (B).

15. Back the combine slowly away from the header.
4.7.3 CR Feeder Deflectors

For New Holland combines only: Short feeder deflectors have been factory-installed on the float module to improve feeding into the feeder house. Remove the feeder deflectors if necessary. Refer to 5.13.3 Replacing Feed Deflectors on New Holland CR Combines, page 483.

Long feeder kits are provided for narrow feeder house combines and can be installed to replace the short feeder deflectors.

<table>
<thead>
<tr>
<th>Feeder House Size</th>
<th>Feeder Kit Size</th>
<th>MacDon Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250–1350 mm (49–65 in.)</td>
<td>Short: 200 mm (7-7/8 in.)</td>
<td>MD #213613, 213614</td>
</tr>
<tr>
<td>1100 mm (43-1/2 in.) and below</td>
<td>Long: 325 mm (12-13/16 in.)</td>
<td>MD #213592, 213593</td>
</tr>
</tbody>
</table>
4.8 Attaching and Detaching Header from Float Module

Attaching/detaching procedures are the same for all makes and models of combines. Headers can be attached to the float module from either field or transport configurations.

The procedures in this manual require that the float module remains attached to the combine. Attach/detach the float module only if performing the following tasks:

- Detaching the header for use on a windrower
- Changing headers
- Performing certain maintenance tasks

4.8.1 Detaching Header from Float Module

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ WARNING

Keep hands clear of the area between guards and knife at all times.

⚠️ CAUTION

Wear heavy gloves when working around or handling knives.

1. Start the engine and the lower header.
2. Increase clearance under the float module feed draper by tilting the header and fully extending the cylinder (B) until indicator (A) is at position D.
3. Raise the reel to its full height.
4. Stop the engine and the remove key from the ignition.
5. Engage the reel safety props.
6. Move lever (A) to lock position to engage wing locks.

7. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).
8. Remove two bolts (A) and fillers (B) from the transition pan support angle (C). Repeat on opposite side.

10. Remove the 9/16 in. nut from bolt (B).

11. Use a 24 mm (15/16 in.) wrench on hex bolt (C) to rotate latch downwards and slightly raise the feed deck to remove bolt (B).

12. Rotate the latch (C) up and back to lower the float module deck and disengage the transition pan tube.

14. Repeat for opposite side of the feed draper deck.

CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

15. Disengage the reel safety props, start the engine, lower the reel, and fully raise the header.

16. Stop the engine, remove the key from the ignition, and engage the combine safety props.
17. Loosen nut and bolt (A), and disengage hook (B) from leg on both sides of float module.

18. Rotate hook (B) 90° for storage, and retighten bolt (A) and nut.

19. Place a 150 mm (6 in.) block (A) under the header leg. This will assist with disconnecting the center-link.

20. Disengage combine lift cylinder locks, start engine, and lower header until the header leg rests on the block or stabilizer wheels are the ground.
21. Disconnect the hydraulic center-link as follows:
 a. Remove the lynch pin and clevis pin (A), and lift the center-link (B) clear of the bracket.
 b. Replace the clevis pin (A) and secure with lynch pin.

 NOTE:
 It may be necessary to raise or lower the feeder house to adjust the length of the center-link and relieve excess load on the center-link.

 NOTE:
 - If on the ground: Push reel fully forward to reduce oil loss.
 - If on transport: Pull reel fully back.

22. Disconnect electrical connector (A).

 NOTE:
 If colored plastic ties are missing, replace them before disconnecting hoses.

23. Disconnect the case drain, knife, and draper drive hydraulic hoses at the coupler bracket (B). Cap off ends immediately to avoid loss of oil.

24. Store and secure hoses on float module frame.

25. Disconnect the quick disconnects (if installed) as follows:
 a. Line up the slot (A) in the collar with the pin (B) on the connector.
 b. Push the collar towards the pin, and pull the connector to disengage.
 c. Install plugs or caps on the hose ends (if equipped).
NOTE:
If colored plastic ties are missing, replace them before disconnecting hoses.

26. Disconnect the reel hydraulics (A). Immediately cap hoses to prevent oil loss.

27. Store and secure the hoses and electrical connector on the float module at position (A) as shown.

28. Ensure the header is on the ground or is supported by the wheels in transport mode.

CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

29. Start the engine and slowly back away in a straight line from header.

30. Stop the engine and remove the key from the ignition.

4.8.2 Attaching Header to Float Module

FD1 Series headers can be attached to the float module from either field or transport configuration.

DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:
Stabilizer / slow speed transport wheels can be used to support the header. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 59.
1. Prop up the hydraulic center-link (A) with a pin (or equivalent tool) at location (B) as shown.

![Figure 4.154: Center-Link](image)

2. Ensure the latches (A) at the front corners of the float module are rotated towards the rear of the float module.

![Figure 4.155: Latch](image)

CAUTION

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

3. Start engine, and lower the combine feeder house so that float module arms (A) are aligned with header balance channels (B).

4. Drive slowly forward, maintaining alignment between float module arms (A) and header balance channels (B).

5. Keep float module arms (A) just under the balance channels (B) to ensure float module legs seat properly in the header linkage supports at (C).

IMPORTANT:

Keep hydraulic hoses clear to prevent damage when driving into header.

6. Continue forward until float module arms (A) contact stops in balance channels (B).

![Figure 4.156: Float Module Underside](image)
7. Adjust the length of the center-link (A) using the header angle hydraulics to approximately align the center-link eye (B) with the hole in the header bracket.

8. Shut down the engine and remove the key from the ignition.

9. Connect the center-link as follows:
 a. Pull pin (B) part way out of the bracket (C), and remove the prop from under the center-link (A).
 b. Install the pin (B) through the center-link bracket (C), and secure with lynch pin.

⚠️ **CAUTION**

Always connect center-link before fully raising header.

⚠️ **CAUTION**

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

10. Start the engine and slowly raise the float module while making sure the float module legs engage the header legs.

11. Raise the header to its full height, stop the engine, and remove the key from the ignition.

12. Engage the safety props on the combine.
13. Replace the pin (B) in the header legs and secure with ring (A).

14. **For FD1 Series Combine Header:** Loosen nut and bolt (A), and reposition hook (B) as shown to engage float module arm. Tighten bolt and nut (A).

15. Match the colored cable ties and connect the reel hydraulics (A) at the right end of the float module.

⚠ **CAUTION**

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

16. Remove the lift cylinder locks, start the engine, and lower the header to the ground. Adjust the header angle to the steepest setting (longest center-link).

17. Raise the reel to its full height.

18. Shut down the engine and remove the key from the ignition.

19. Engage the reel safety props.

⚠ **WARNING**

Keep hands clear of the area between guards and knife at all times.
20. Remove screw (A) and remove nut and bolt (B) from both sides of the opening to allow the attachment of the float module deck.

21. Rotate the latch (C) forward and down to engage the transition pan tube.

22. Use a 24 mm (15/16 in.) wrench on hex bolt (C) to rotate latch downwards and slightly raise the feed deck. Install nut and bolt (B) to lock the latch position.

24. Repeat for the opposite side of the feed draper deck.

25. Install fillers (B) on the transition pan support angle (C) using two bolts (A).
26. Use a clean cloth to remove debris from couplers and receptacles.

27. Connect the following hydraulic hoses at the coupler bracket (A):
 • Knife pressure (orange cable tie)
 • Knife return (blue cable tie)
 • Draper pressure (no cable tie)
 • Draper return (red cable tie)
 • Case drain (no cable tie)

 NOTE:
 Match the hydraulic hose cable ties to the cable ties on the coupler bracket fittings.

28. Attach electrical connector (B).

29. Connect the quick disconnects (if installed) as follows:
 a. Remove the covers (if installed) from the receptacles and hose ends.
 b. Check the connectors and clean if necessary.
 c. Push the hose connector (A) onto the mating receptacle (B) until the collar on the mating receptacle snaps into the lock position.

 NOTE:
 Ensure the hoses are clear of the driveline and adjacent structure.

 NOTE:
 It is not necessary to bleed the system by loosening fittings.

30. Check the float and confirm the header is level. Refer to the following:
 • Checking and Adjusting Header Float, page 64
 • 3.9 Leveling the Header, page 286

CAUTION

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

31. Start the combine and perform the following inspections:
 • Raise and lower the reel to ensure the hoses are properly connected.
 • Run the header to ensure the hoses are properly connected.

32. Check for leaks.
5 Maintenance and Servicing

The following instructions provide information about routine header service. Detailed maintenance and service information is available in the technical service manual that is available from your Dealer. A parts catalog is provided in the plastic manual case inside the left endshield of the header.

Log hours of operation and use the maintenance record provided (refer to 5.3.1 Maintenance Schedule/Record, page 385) to keep track of your scheduled maintenance.

5.1 Preparing Machine for Servicing

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION

To avoid personal injury, follow all the safety precautions listed before servicing header or opening drive covers.

1. Lower the header fully. If it is necessary to service the header in the raised position, always engage the safety props.
2. Stop the engine and remove the key from the ignition.
3. Engage the park brake.
4. Wait for all moving parts to stop.
5.2 Maintenance Specifications

5.2.1 Installing a Sealed Bearing

1. Clean the shaft and apply a rust-preventive coating.
2. Install flangette (A), bearing (B), and second flangette (C), and then lock the collar (D).

 NOTE:
 The locking cam is only on one side of the bearing.

3. Install flangette bolts (E). Do **NOT** tighten.
4. Position the shaft correctly, and lock the lock collar with a punch. Lock the collar in the same direction the shaft rotates, and tighten the setscrew in the collar.
5. Tighten flangette bolts (E).
6. Loosen the flangette bolts on the mating bearing (one turn) and then retighten. This will allow the bearing to properly line up.
5.3 Maintenance Requirements

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine’s life. Log hours of operation, use the maintenance record, and keep copies of your maintenance records (refer to 5.3.1 Maintenance Schedule/Record, page 385).

Periodic maintenance requirements are organized according to service intervals. If a service interval specifies more than one timeframe, e.g., 100 hours or annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).

When servicing the machine, refer to the appropriate section in this Maintenance and Servicing chapter and use only specified fluids and lubricants. Refer to inside back cover for recommended fluids and lubricants.

CAUTION
Carefully follow safety messages. Refer to 5.1 Preparing Machine for Servicing, page 383 and 1 Safety, page 1.

5.3.1 Maintenance Schedule/Record

<table>
<thead>
<tr>
<th>Action:</th>
<th>✓ – Check</th>
<th>✦ – Lubricate</th>
<th>▲ – Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Hour meter reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Service date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Serviced by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Use</td>
<td>Refer to 5.3.2 Break-In Inspection, page 388.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of Season</td>
<td>Refer to 5.3.4 End-of-Season Service, page 389.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Hours or Daily (Whichever Occurs First)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✗ Hydraulic hoses and lines; refer to 5.3.5 Checking Hydraulic Hoses and Lines, page 390</td>
<td>NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✗ Knife sections, guards, and hold-downs; refer to 5.8 Knife, page 437</td>
<td>NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✗ Tire pressure; refer to 5.17.3 Checking Tire Pressure, page 544</td>
<td>NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✗ Hydraulic oil level at reservoir; refer to 5.4.1 Checking Oil Level in Hydraulic Reservoir, page 407</td>
<td>NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE AND SERVICING

<table>
<thead>
<tr>
<th>50 Hours or Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knifeheads; refer to Every 25 Hours, page 390</td>
</tr>
<tr>
<td>NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.</td>
</tr>
</tbody>
</table>

50 Hours or Annually

<table>
<thead>
<tr>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driveline and driveline universals; refer to Every 50 Hours, page 391</td>
<td></td>
</tr>
<tr>
<td>Upper cross auger center support and U-joint; refer to Every 50 Hours, page 391</td>
<td></td>
</tr>
<tr>
<td>Center draper roller bearings, 3 locations; refer to Every 50 Hours, page 391</td>
<td></td>
</tr>
<tr>
<td>Knife drive box lubricant (first 50 hours only); refer to Changing Oil in Knife Drive Box, page 461</td>
<td></td>
</tr>
<tr>
<td>Header drive gearbox lubricant (first 50 hours only); refer to Changing Oil in Header Drive Gearbox, page 405</td>
<td></td>
</tr>
</tbody>
</table>

100 Hours or Annually (Whichever Occurs First)

<table>
<thead>
<tr>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auger to pan and feed draper clearance; refer to 5.7.1 Adjusting Auger to Pan Clearance, page 419</td>
<td></td>
</tr>
<tr>
<td>Draper seal; refer to 5.14.5 Adjusting Deck Height, page 492</td>
<td></td>
</tr>
<tr>
<td>Gearbox lubricant level; refer to Checking Oil Level in Header Drive Gearbox, page 404</td>
<td></td>
</tr>
<tr>
<td>Reel drive chain tension; refer to 5.16.2 Reel Drive Chain Tension, page 528</td>
<td></td>
</tr>
<tr>
<td>Reel finger/cutterbar clearance; refer to Adjusting Reel Clearance, page 505</td>
<td></td>
</tr>
<tr>
<td>Knife drive belt tension; refer to 5.9.2 Knife Drive Belts, page 462</td>
<td></td>
</tr>
<tr>
<td>Wheel bolt torque; refer to 5.17.1 Checking Wheel Bolt Torque, page 542</td>
<td></td>
</tr>
<tr>
<td>Knife drive box lubricant level; refer to Checking Knife Drive Box, page 454</td>
<td></td>
</tr>
<tr>
<td>Knife drive box mounting bolts; refer to Checking Mounting Bolts, page 455</td>
<td></td>
</tr>
<tr>
<td>Auger drive chain; refer to Every 100 Hours, page 393</td>
<td></td>
</tr>
<tr>
<td>Float pivots; refer to Every 100 Hours, page 393</td>
<td></td>
</tr>
<tr>
<td>Float module auger pivots; refer to Every 100 Hours, page 393</td>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE AND SERVICING

<table>
<thead>
<tr>
<th>Maintenance Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float spring tensioners; refer to Every 100 Hours, page 393</td>
<td></td>
</tr>
<tr>
<td>Reel drive chain; refer to Every 100 Hours, page 393</td>
<td></td>
</tr>
<tr>
<td>Upper cross auger right bearing; refer to Every 100 Hours, page 393</td>
<td></td>
</tr>
<tr>
<td>200 Hours or Annually (Whichever Occurs First)</td>
<td></td>
</tr>
<tr>
<td>Draper roller bearings; refer to 5.14.6 Header Draper Roller Maintenance, page 494</td>
<td>✔</td>
</tr>
<tr>
<td>250 Hours or Annually (Whichever Occurs First)</td>
<td></td>
</tr>
<tr>
<td>Draper seal; refer to 5.14.5 Adjusting Deck Height, page 492</td>
<td>✔</td>
</tr>
<tr>
<td>Reel drive U-joint; refer to Every 250 Hours, page 396</td>
<td>❖</td>
</tr>
<tr>
<td>Bell crank linkage; refer to 3.9 Leveling the Header, page 286</td>
<td>❖</td>
</tr>
<tr>
<td>Transport axle pivot bushings; refer to Every 250 Hours, page 396</td>
<td>❖</td>
</tr>
<tr>
<td>Hydraulic oil filter; refer to 5.4.4 Changing Oil Filter, page 410</td>
<td>▲</td>
</tr>
<tr>
<td>500 Hours or Annually (Whichever Occurs First)</td>
<td></td>
</tr>
<tr>
<td>Draper seal; refer to 5.14.5 Adjusting Deck Height, page 492</td>
<td>✔</td>
</tr>
<tr>
<td>Reel shaft bearings; refer to Every 500 Hours, page 397</td>
<td>❖</td>
</tr>
<tr>
<td>Stabilizer/slow speed transport wheel bearings; refer to Every 500 Hours, page 397</td>
<td>❖</td>
</tr>
<tr>
<td>Header drive gearbox chain tension; refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 423</td>
<td>✔</td>
</tr>
<tr>
<td>1000 Hours or 3 Years (Whichever Occurs First)</td>
<td></td>
</tr>
<tr>
<td>Knife drive box lubricant; refer to Changing Oil in Knife Drive Box, page 461</td>
<td>▲</td>
</tr>
<tr>
<td>Header drive gearbox lubricant; refer to Changing Oil in Header Drive Gearbox, page 405</td>
<td>▲</td>
</tr>
<tr>
<td>Hydraulic oil; refer to 5.4.3 Changing Oil in Hydraulic Reservoir, page 409</td>
<td>▲</td>
</tr>
</tbody>
</table>
5.3.2 Break-In Inspection

Break-in inspection involves checking belts, fluids, and performing general machine inspections for loose hardware or other areas of concern. Break-in inspections ensure that all components can operate for an extended period without requiring service or replacement. The break-in period is the first 50 hours of operation after the machine’s initial start up.

<table>
<thead>
<tr>
<th>Inspection Instance</th>
<th>Item</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Minutes</td>
<td>Check hydraulic oil level in reservoir (check after first run-up and after the hydraulic hoses have filled with oil).</td>
<td>5.4.1 Checking Oil Level in Hydraulic Reservoir, page 407</td>
</tr>
<tr>
<td>5 Hours</td>
<td>Check for loose hardware and tighten to required torque.</td>
<td>8.1 Torque Specifications, page 577</td>
</tr>
<tr>
<td>5 Hours</td>
<td>Check knife drive belts tension (check periodically for first 50 hours).</td>
<td>Checking and Tensioning Knife Drive Belts, page 464</td>
</tr>
<tr>
<td>10 Hours</td>
<td>Check auger drive chain tension.</td>
<td>5.7.2 Checking Auger Drive Chain Tension, page 421</td>
</tr>
<tr>
<td>10 Hours</td>
<td>Check knife drive box mounting bolts.</td>
<td>Checking Mounting Bolts, page 455</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Change float module gearbox oil.</td>
<td>Changing Oil in Header Drive Gearbox, page 405</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Change float module hydraulic oil filter.</td>
<td>5.4.4 Changing Oil Filter, page 410</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Change knife drive box lubricant.</td>
<td>Changing Oil in Knife Drive Box, page 461</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Check gearbox chain tension.</td>
<td>5.6.5 Adjusting Gearbox Drive Chain Tension, page 418</td>
</tr>
<tr>
<td>50 Hours</td>
<td>Check deck height adjustment.</td>
<td>5.14.5 Adjusting Deck Height, page 492</td>
</tr>
</tbody>
</table>

5.3.3 Preseason Servicing

Perform the following procedures at the beginning of each operating season:

⚠️ **CAUTION**

- Review this manual to refresh your memory on the safety and operating recommendations.
- Review all the safety decals and other decals on the header and note the hazard areas.
- Be sure all the shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
- Ensure you have a first aid kit and fire extinguisher. Know where they are and how to use them.

1. Lubricate the machine completely. Refer to 5.3.6 Lubrication and Servicing, page 390.
2. Adjust the tension on the drive belts. Refer to Checking and Tensioning Knife Drive Belts, page 464.
3. Perform all annual maintenance tasks. Refer to 5.3.1 Maintenance Schedule/Record, page 385.

5.3.4 End-of-Season Service

Perform the following procedures at the end of each operating season:

⚠️ **CAUTION**

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

⚠️ **CAUTION**

Cover cutterbar and knife guards to prevent injury from accidental contact.

1. Clean the header thoroughly.
2. Bring the machine for storage in a dry and protected place if possible. If storing outside, always cover the machine with a waterproof canvas or other protective material.

 NOTE:
 If storing the machine outside, remove the drapers and store them in a dark, dry place. If not removing the drapers, store the header with the cutterbar lowered so water and snow will not accumulate on the drapers. The weight of water and snow accumulation puts excessive stress on the drapers and header.
3. Lower the header onto blocks to keep the cutterbar off the ground.
4. Lower the reel completely. If stored outside, tie the reel to the frame to prevent rotation caused by the wind.
5. Repaint all worn or chipped painted surfaces to prevent rust.
6. Loosen the drive belts.
7. Lubricate the header thoroughly leaving excess grease on the fittings to keep moisture out of the bearings.
8. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.
9. Lubricate the knife. Refer to the inside back cover for recommended lubricants.
10. Check for worn components and repair as necessary.
11. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at the beginning of next season.
12. Replace or tighten any missing or loose hardware. Refer to 8.1 Torque Specifications, page 577.
5.3.5 Checking Hydraulic Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

⚠️ WARNING
- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure. Keep hands and body away from pin holes and nozzles which eject fluids under high pressure.
- If any fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

- Use a piece of cardboard or paper to search for leaks.

IMPORTANT:
Keep hydraulic coupler tips and connectors clean. Allowing dust, dirt, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do NOT attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.

5.3.6 Lubrication and Servicing

⚠️ CAUTION
To avoid personal injury, before servicing header or opening drive covers, follow procedures in 5.1 Preparing Machine for Servicing, page 383.

Refer to inside back cover for recommended lubricants.

Log hours of operation and use the Maintenance Record provided to keep a record of scheduled maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 385.

Service Intervals

Every 25 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.
Knifehead: Lubricate the knifehead (A) every 25 hours. Check for signs of excessive heating on the first few guards after greasing. If required, relieve the pressure by pressing the check-ball in the grease fitting.

IMPORTANT:
Overgreasing the knifehead puts pressure on the knife causing it to rub against the guards, resulting in excessive wear from binding. Do **NOT** overgrease the knifehead. Apply only one to two pumps using a mechanical grease gun (do **NOT** use an electric grease gun). If more than six to eight pumps of the grease gun are required to fill the cavity, replace the seal in the knifehead. Refer to 5.8.3 Removing Knifehead Bearing, page 439.

Every 50 Hours
Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Figure 5.5: Every 50 Hours

51. U-joint has an extended lubrication cross and bearing kit. Stop greasing when greasing becomes difficult or if U-joint stops taking grease. Overgreasing will damage U-joint. Six to eight pumps are sufficient at first grease (factory). Decrease grease interval as U-joint wears and requires more than six pumps.
52. Use high temperature extreme pressure (EP2) performance grease with 10% max molybdenum disulphide (NLGI Grade 2) lithium base.
Every 100 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Figure 5.7: Every 100 Hours

A - Float Pivot – Right and Left
B - Auger Drive Chain. Refer to Lubricating Auger Drive Chain, page 402
C - Driveline Guard – Two Places
D - Reel Drive Chain – One Place. Refer to Lubricating Reel Drive Chain, page 400
Figure 5.8: Every 100 Hours

A - Knife Drive Box (Check Oil Level [B] on Dipstick [C]: Between Lowest Edge of Hole [D] and Bottom [E] of Dipstick)
F - Upper Cross Auger Bearing (One Place)
G - Main Drive Gearbox Oil Level. Refer to *Lubricating Header Drive Gearbox, page 404*
Figure 5.9: Every 100 Hours

A - Auger Pivots
Every 250 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Figure 5.10: Every 250 Hours

A - Reel U-joint (One Place)
B - Flex Linkage (Two Places) – Both Sides

53. U-joint has an extended lubrication cross and bearing kit. Stop greasing when greasing becomes difficult or if U-joint stops taking grease. Overgreasing will damage U-joint. Six to eight pumps are sufficient at first grease (factory). Increase grease interval as U-joint wears and requires more than six pumps.
Every 250 Hours

A - Frame/Wheel Pivot (Front and Rear) – Both Sides
B - Front Wheel Pivot (One Place)

Every 500 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.
MAINTENANCE AND SERVICING

Figure 5.12: Every 500 Hours

A - Reel Right Bearing (One Place)
B - Reel Center Bearing (One Place)
C - Wheel Bearings (Four Places)
D - Reel Left Bearing (One Place)
Greasing Procedure

Greasing points are identified on the machine by decals showing a grease gun and grease interval in hours of operation. Grease point layout decals are located on the header and on the right side of the float module.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Refer to inside back cover for recommended lubricants.

Log hours of operation and use the Maintenance Record provided to keep a record of scheduled maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 385.

1. Wipe grease fitting with a clean cloth before greasing to avoid injecting dirt and grit.

 IMPORTANT:
 Use clean, high-temperature, extreme-pressure grease only.

2. Inject grease through fitting with grease gun until grease overflows fitting (except where noted).

3. Leave excess grease on fitting to keep out dirt.

4. Replace any loose or broken fittings immediately.

5. Remove and thoroughly clean any fitting that will not take grease. Also clean lubricant passageway. Replace fitting if necessary.
Lubricating Reel Drive Chain

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove six bolts (A) securing upper cover (B) to the reel drive and lower cover (C).
MAINTENANCE AND SERVICING

3. Remove three bolts (A) and remove lower cover (B) if necessary.

4. Apply a liberal amount of grease to the chain (A).

5. Position lower drive cover (B) onto the reel drive (if previously removed), and secure with three bolts (A).
MAINTENANCE AND SERVICING

6. Position upper drive cover (B) onto the reel drive and lower cover (C), and secure with six bolts (A).

Figure 5.20: Drive Cover

Lubricating Auger Drive Chain

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Lubricate the auger drive chain every 100 hours. The auger drive chain can be lubricated with the float module attached to the combine, but it is easier with the float module detached.

The auger drive cover consists of an upper and lower cover, and a metal inspection panel. Only the metal inspection panel needs to be removed to grease the chain.

1. Remove four bolts (A) and the metal inspection panel (B).

Figure 5.21: Auger Drive Inspection Panel
2. Apply a liberal amount of grease to the chain (A), drive sprocket (B), and idler sprocket (C).

3. Rotate the auger and apply grease to more areas of the chain, if necessary.

4. Reinstall metal inspection panel (B) and secure with four bolts (A).
Lubricating Header Drive Gearbox

Checking Oil Level in Header Drive Gearbox

Check the header drive gearbox oil level every 100 hours.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground and ensure the gearbox is in working position.
2. Shut down the engine, and remove the key from the ignition.
3. Remove the oil level plug (A) and check that the oil level is up to the bottom of the hole.
4. Reinstall the oil level plug (A).
5. Add oil if required. Refer to Adding Oil to Header Drive Gearbox, page 405.

Figure 5.24: Header Drive Gearbox
Adding Oil to Header Drive Gearbox

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the cutterbar to the ground, and ensure the gearbox is in working position.
2. Shut down the engine, and remove the key from the ignition.
3. Remove filler plug (B) and the oil level plug (A).
4. Add oil into the filler plug (B) until it runs out of the oil level plug hole (A). Refer to the inside back cover for recommended fluids and lubricants.
5. Replace the oil level plug (A) and the filler plug (B).

Figure 5.25: Header Drive Gearbox

Changing Oil in Header Drive Gearbox

Change the header drive gearbox oil after the first 50 hours of operation and every 1000 hours (or 3 years) thereafter.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Start engine.
2. Engage the header to warm up the oil.
3. Raise or lower the header to position the oil drain plug (A) at its lowest point.
4. Shut down the engine, and remove the key from the ignition.
5. Place a suitably sized container (approximately 4 liters [1 US gal]) underneath the gearbox drain to collect the oil.
6. Remove the oil drain plug (A) and the filler plug (C), and allow the oil to drain.
7. Replace the oil drain plug (A) and remove the oil level plug (B).

Figure 5.26: Header Drive Gearbox
8. Add oil into the filler plug (C) until it runs out of the oil level hole (B). Refer to this book’s inside back cover for recommended lubricants.

NOTE:
The header drive gearbox holds approximately 2.5 liters (2.6 quarts) of oil.

9. Replace the oil level plug (B) and the filler plug (C).
5.4 Hydraulics

The FM100 Float Module’s hydraulic system drives the float module feed draper, header drapers, and knife drives. The combine’s hydraulic system drives the reel hydraulics.

The float module frame acts as an oil reservoir. Refer to inside back cover for oil requirements.

5.4.1 Checking Oil Level in Hydraulic Reservoir

Check the hydraulic oil level in the reservoir every 25 hours.

1. Check the oil level using the lower sight (A) and the upper sight (B) with the cutterbar just touching the ground and with center-link retracted.

 NOTE:
 Check the level when the oil is cold.

 NOTE:
 For extremely hilly terrain, a hillside extension kit can be installed. Refer to 6.1.1 Hillside Extension Kit, page 545.

2. Ensure the oil is at the appropriate level for the terrain as follows:
 - **Hilly terrain**: Maintain level so lower sight (A) is full, and upper sight (B) is up to one-half filled.
 - **Normal terrain**: Maintain level so lower sight (A) is full, and upper sight (B) is empty.

 NOTE:
 It may be necessary to slightly reduce the oil level when ambient temperatures are above 35°C (95°F) to prevent overflow at the breather when normal operating temperatures are reached.
5.4.2 Adding Oil to Hydraulic Reservoir

Follow this procedure to top up the oil in the hydraulic reservoir. To change the hydraulic oil, refer to 5.4.3 Changing Oil in Hydraulic Reservoir, page 409.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the combine, and remove the key from the ignition.
2. Clean any dirt or debris from the filler cap (A).
3. Loosen and remove the filler cap (A) by turning it counterclockwise.
4. Add warm oil (approximately 21°C [70°F]) and fill to the required level. Refer to this manual’s inside back cover for oil type and specification.

IMPORTANT:
Warm oil will flow through the screen better than cold oil. Do **NOT** remove the screen.

5. Reinstall the filler cap (A).
6. Recheck oil level. Refer to 5.4.1 Checking Oil Level in Hydraulic Reservoir, page 407.
5.4.3 Changing Oil in Hydraulic Reservoir

Change the hydraulic oil in the reservoir every 1000 hours or 3 years (whichever comes first).

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Start engine.
2. Engage the header to warm up the oil.
3. Shut down the combine, and remove the key from the ignition.
4. Place a suitably sized container (at least 40 liters [10 gallons]) under each of the two oil drain plugs (A) located at the back on each side of the frame.
5. Remove the oil drain plugs (A) with a 1-1/2 in. hex socket and allow the oil to drain.
6. Replace the oil drain plugs (A) when reservoir is empty.
7. Change the oil filter if required. Refer to 5.4.4 Changing Oil Filter, page 410.
8. Add approximately 75 liters (20 gallons) of oil to the reservoir. Refer to 5.4.2 Adding Oil to Hydraulic Reservoir, page 408.

Figure 5.29: Reservoir Drain
5.4.4 Changing Oil Filter

Change the oil filter after the first 50 hours of operation and every 250 hours thereafter.

Obtain filter part (MD #202986) from your MacDon Dealer.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Clean around the mating surfaces of the filter (B) and manifold (A).
2. Place a suitably sized container (approximately 1 liter [0.26 gallons]) under the oil drain spout (C) to collect oil runoff.
3. Remove the spin-off filter (B) and clean the exposed filter port in the manifold (A).
4. Apply a thin film of clean oil to the O-ring provided with the new filter.
5. Turn the new filter into the manifold (A) until the O-ring contacts the mating surface. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:

Do **NOT** use a filter wrench to install the new filter. Overtightening can damage the O-ring and filter.

![Figure 5.30: FM100 Hydraulics (Cover Opened to Show Manifold)]
5.5 Electrical System

5.5.1 Replacing Light Bulbs

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Use a Phillips screwdriver to remove the screws (A) from the fixture, and remove the plastic lens. Retain screws (A).

2. Replace the bulb, and reinstall the plastic lens and screws.

NOTE:

Use bulb trade #1156 for amber transport lights and #1157 for red tail light (Slow Speed Transport option).

Figure 5.31: Left Transport Light

Figure 5.32: Optional Slow Speed Transport (Red and Amber Lights)
5.6 Header Drive

The header drive consists of a driveline from the combine to the FM100 Float Module gearbox that drives the feed auger and hydraulic pumps. The pumps provide hydraulic power to the drapers, knives, and optional equipment.

5.6.1 Removing Driveline

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

NOTE:
The driveline normally remains attached to the float module and is stored on the support bracket provided when not in use.

1. Shut down the combine, and remove the key from the ignition.
2. If the float module is attached to the combine, remove the driveline from the combine by pulling the quick disconnect collar to release the driveline yoke at the combine shaft.
3. Remove the two nuts (A) securing the shield (B) to the gearbox.
4. Slide the shield (B) over the driveline shield to expose the quick disconnect on the gearbox. Do NOT disconnect the tether (C).
5. Pull the quick disconnect collar to release the driveline yoke, and pull the driveline off the gearbox shaft.
6. Slide the shield (B) off the driveline.
7. Pull the driveline collar (A) away from the power take-off (PTO) support (B). Slide the yoke (C) off the support bracket (B), and release collar (A).
5.6.2 Installing Driveline

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

IMPORTANT:
If the combine output shaft splines match the float module input shaft splines, ensure the driveline is installed with the longer guard at the float module gearbox end.

IMPORTANT:
Ensure the driveline length corresponds with the length specifications for your specific equipment. Refer to 2.2 Specifications, page 21.

1. Position combine end of driveline (A) onto storage support (B). Pull back the collar (C) on the driveline and slide driveline onto support until it locks in place. Release collar (C).
2. For drivelines equipped with safety chains, attach chain (D) at combine end to driveline storage support (B).

3. Slide the shield (A) over the driveline (B).
4. Position driveline quick disconnect onto float module gearbox shaft, pull back collar, and slide onto shaft until it locks in place. Release the collar.
5. Position the shield (A) on the gearbox and secure with bolts (C).
6. For drivelines equipped with safety chains, attach chain (D) at module end to chain (E) on shield.
5.6.3 Removing Driveline Guard

The main driveline guard must remain attached to the driveline during operation, but it can be removed for maintenance purposes.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:
The driveline does NOT need to be removed from the float module in order to remove the driveline guard.

1. Shut down the combine, and remove the key from the ignition.
2. Pull the driveline collar (A) away from the power take-off (PTO) support (B). Slide the yoke (C) off the support bracket (B), and release collar (A).

3. Lift the combine end of the driveline (A) from the hook, and extend the driveline until it separates. Hold the float module end of the driveline (B) to prevent it from dropping and hitting the ground.

Figure 5.37: Combine End of Driveline

Figure 5.38: Separated Driveline
4. Use a slotted screwdriver to release grease fitting/lock (A).

5. Rotate the driveline guard locking ring (A) counterclockwise using a screwdriver until the lugs (B) line up with the slots in the guard.

6. Pull the guard off the driveline.
5.6.4 Installing Driveline Guard

1. Slide the guard onto the driveline, and line up the slotted lug on the locking ring (A) with the arrow (B) on the guard.

2. Push the guard onto the ring until the locking ring is visible in the slots (A).

3. Use a slotted screwdriver to rotate ring (A) clockwise and lock ring in guard.
4. Push the grease fitting (A) back into the guard.

5. Assemble the driveline.

NOTE:
The splines are keyed to align the universals. Align weld (A) with the missing spline (B) when assembling.

6. Position the combine end of the driveline (A) on the power take-off (PTO) storage support (B). Pull back the collar (C) on the driveline and slide driveline onto the support until the driveline yoke (D) locks onto support. Release collar (C).
5.6.5 Adjusting Gearbox Drive Chain Tension

The gearbox drive chain tension is factory-set, but tension adjustments are required after the first 50 hours, then every 500 hours or annually (whichever comes first). The gearbox drive chain, located inside the gearbox, requires no other regular maintenance.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header.
2. Shut down the combine, and remove the key from the ignition.
3. Remove two bolts and the chain adjusting cover (A). Ensure there is no gasket (B) damage.
4. Remove the retainer plate (C).
5. Tighten bolt (D) to 6.8 Nm (60 lbf•in).
6. Refer to Table 5.1, page 418 and back off (loosen) bolt (D) based on your gearbox configuration.

NOTE:
A properly tensioned chain has 10–14 mm (3/8–9/16 in.) of deflection at its midpoint.

7. Reinstall the retainer plate (C).
8. Reinstall the chain adjusting cover (A) and gasket (B). Torque hardware to 9.5 Nm (84 lbf•in).

Table 5.1 Adjusting Bolt Tightness on Configured Gearboxes

<table>
<thead>
<tr>
<th>Gearbox Configuration</th>
<th>Gear Ratios</th>
<th>Back Off Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAAS</td>
<td>22/38 sprocket ratio, 74 pitch chain</td>
<td>1 turn</td>
</tr>
<tr>
<td>Case, New Holland,</td>
<td>29/38 sprocket ratio, 78 pitch chain</td>
<td>1 turn</td>
</tr>
<tr>
<td>and AGCO (Challenger,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleaner, Massey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferguson)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Deere</td>
<td>37/38 sprocket ratio, 80 pitch chain</td>
<td>2-1/2 turn</td>
</tr>
</tbody>
</table>

Figure 5.47: Chain Tensioner

5.7 Auger

The FM100 Float Module auger feeds the cut crop from the draper decks into the combine feeder house.

5.7.1 Adjusting Auger to Pan Clearance

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

IMPORTANT:

Maintain an appropriate distance between the auger and the auger pan. Too little clearance may result in the fingers or flighting contacting and damaging the feed draper or pan when operating the header at certain angles. Look for evidence of contact when greasing the float module.

1. Extend the center-link to the steepest header angle, and position the header 150–254 mm (6–10 in.) off the ground.
2. Lock header wings. Refer to Locking/Unlocking Header Wings, page 70.
3. Shut down the combine, and remove the key from the ignition.
4. Ensure the float lock linkage is on the down stops (washer [A] cannot be moved) at both locations.

![Figure 5.48: Float Lock](image)
5. Before adjusting the auger to pan clearance, check the auger float position to determine how much clearance is required:

- If the bolt head (A) is closest to the floating symbol (B), the auger is in the floating position.

⚠️ **CAUTION**

Make sure the two bolts (A) are in the same location to prevent damage to the machine during operation.

- If the bolt head (A) is closest to the fixed symbol (B), the auger is in the fixed position.
6. Loosen two nuts (B).

7. Turn bolt (A) clockwise to increase clearance (C); turn bolt counterclockwise to decrease clearance.
 - If feed auger is in rigid position, set clearance to 22–26 mm (7/8–1.0 in.).
 - If feed auger is in floating position, set clearance to 11–15 mm (7/16–5/8 in.).

NOTE:
The clearance increases between 25–40 mm (1–1-1/2 in.) when the center-link is fully retracted.

8. Repeat Steps 6, page 421 and 7, page 421 for the opposite end of the auger.

IMPORTANT:
Adjusting one side of the auger can affect the other side so recheck both sides after final adjustment is made.

9. Tighten nuts (B) on both ends of the feed auger. Torque the nuts to 93–99 Nm (68–73 lbf·ft).

5.7.2 Checking Auger Drive Chain Tension

The auger is chain-driven by the float module drive system sprocket attached to the side of the auger.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground.

2. Raise the reel and engage the reel safety props. Refer to *Engaging Reel Safety Props, page 31*.

3. Shut down the combine, and remove the key from the ignition.

NOTE:
Gearbox chain tension should be adjusted prior to checking and adjusting the auger drive chain tension. Refer to *5.6.5 Adjusting Gearbox Drive Chain Tension, page 418.*
4. Rotate the auger (A) by hand in reverse direction, until it cannot turn anymore.

5. Mark a line (B) across the drum and cover.

6. Rotate the auger (A) by hand, in forward direction, until it cannot turn anymore and mark a line (C) across the drum and cover.

7. Measure the distance between the two lines (B) and (C).

For a new chain:

- If the difference between (B) and (C) is 1–4 mm (0.04–0.16 in.), no adjustment is required.
- If the difference between (B) and (C) is greater than 4 mm (0.16 in.), the auger drive chain tension needs adjusting. Refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 423.

For a used chain:

- If the difference between (B) and (C) is 3–8 mm (0.12–0.31 in.), no adjustment is required.
- If the difference between (B) and (C) is greater than 8 mm (0.31 in.), the auger drive chain tension needs adjusting. Refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 423.
- If the difference between (B) and (C) is less than 3 mm (0.12 in.), the auger drive chain needs adjusting. Refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 423.
5.7.3 Adjusting Auger Drive Chain Tension

The auger is chain-driven by the float module drive system sprocket attached to the side of the auger.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the combine, and remove the key from the ignition.
2. Detach the header from the combine. Refer to 4 Header Attachment/Detachment, page 307.
3. Loosen jam nut (B).
4. Loosen idler nut (A) slightly to allow idler to move by hand.
5. Rotate auger in reverse to take up slack in upper strand of chain.
6. Turn adjuster thumbscrew (C) clockwise to move the idler sprocket until it is finger tight only. Then back off 1-1/2 turns.

NOTE:

Do **NOT** overtighten.

7. Tighten the idler nut (A) and torque to 258–271 Nm (190–200 lbf-ft).
8. Check chain tension. Refer to 5.7.2 Checking Auger Drive Chain Tension, page 421.

Figure 5.54: Auger Drive (Left Side)
5.7.4 Removing Auger Drive Chain

The chain tensioner can take up slack for only a single pitch. Replace the chain when the chain has worn or stretched beyond the limits of the tensioner.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:

Replace chain with endless chain (MD #220317).

1. Tilt header fully back to maximize space between auger and feed pan.
3. On the left side of the auger, remove the four bolts (A) and inspection panel (B).
4. Remove bolts (C) and remove indicator/clamp (D) that holds the two covers (G) and (H) together.
5. Remove bolt and washer (J) that secure the bottom cover.
6. Remove the two bolts (E) and remove cover retainer (F).
7. Rotate top (G) and bottom (H) cover forward to remove.

Figure 5.55: Auger Drive (Left Side)
8. Loosen jam nut (C) and turn thumbscrew (D) counterclockwise to release the bolt holding sprocket (B) and to allow the sprocket to be raised up to release chain tension.

IMPORTANT:
Do NOT loosen the thin nut (E) on the inboard side of the idler sprocket spindle.

9. Loosen idler sprocket nut (A), and raise sprocket (B) to the uppermost position to release the tension on the chain. Tighten nut (A) to hold sprocket.

10. Remove screw (F) and washer (G).

11. Remove the two bolts and nuts (A).

NOTE:
A second person may be needed to lift or support the auger to remove the bolts.

NOTE:
The bolts on the left side of the auger are longer than the bolts on the right side.

12. Place a wooden block under the drive end of the auger (B) to prevent the auger from dropping and damaging the feed draper.

13. Use a pry bar (A) to slide the auger to the right.
14. Remove drive sprocket (A) and chain (B) from spline shaft.

15. Maneuver auger (A) sideways and forward so that endless chain (B) can be removed from auger.

5.7.5 Installing Auger Drive Chain

1. Place drive chain (B) over the sprocket on the drive side of auger (A).
2. Place drive sprocket (A) into chain (B) and align the sprocket onto the shaft.

NOTE:
The shoulder of drive sprocket (A) should face the auger.

3. Slide the auger drum assembly toward the casting, and then reinstall the two bolts and nuts (A).

4. Remove the blocks from under the auger.

5. Rotate the auger in reverse to take up the slack in the lower strand of the chain.

IMPORTANT:
Do **NOT** loosen the thin nut (C) on the inboard side of the idler sprocket spindle.

6. Turn the adjuster thumbscrew (D) clockwise to move the idler sprocket (B) until it is FINGER TIGHT ONLY.

NOTE:
Do **NOT** overtighten.

7. Tighten the idler nut (A) and torque to 258–271 Nm (190–200 lbf ft).
8. Tighten the jam nut (A).

9. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to threads of screw (B).

10. Install washer (C) and secure it with screw (B).

11. Position bottom cover (H) and secure with bolt and washer (J).

12. Position top cover (G). Secure top and bottom cover with clamp/indicator (D) and bolts (C).

13. Install inspection panel (B) and secure with four bolts (A). Tighten bolts (A) and torque to 2.7–4.1 Nm (24–36 lbf-in).

14. Install cover retainer (F) and secure with two bolts (E).

5.7.6 Using Auger Flighting

The auger flighting on the FM100 can be configured for specific combines and crop conditions. Refer to 4.1 Float Module Feed Auger Configurations, page 307 for combine/crop specific configurations.

5.7.7 Auger Fingers

The FM100 auger uses retracting tines to feed the crop into the combine feeder house. Some conditions may require the removal or installation of fingers for optimal crop feeding. Replace any worn or damaged fingers.

IMPORTANT:
Only install hollow fingers in a FM100. The use of solid fingers will cause severe damage to the machine.
Removing Feed Auger Fingers

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel.
2. Shut down the combine, and remove the key from the ignition.
3. Engage the reel safety props.
4. Remove bolts (A) and remove the access cover (B) closest to the finger you are removing.

5. Remove hairpin (A), pull finger (B) out of finger holder (C) from inside the auger, and then remove the finger from the auger by pulling it out through plastic guide (D).

Figure 5.67: Auger Access Hole Cover

Figure 5.68: Auger Finger
6. Remove the bolts (A) and tee nuts securing the plastic guide (B) to the auger, and remove the guide from inside the auger.

7. Coat bolts (B) with medium-strength threadlocker (Loctite® 243 or equivalent), and then position plug (A) into the hole from inside the auger, and secure with two bolts (B) and tee nuts. Torque to 8.5 Nm (75 lbf·in).

8. Coat bolts (A) with medium-strength threadlocker (Loctite® 243 or equivalent) and replace the access cover (B) using the bolts to secure the access cover in place. Torque bolts to 8.5 Nm (75 lbf·in).
Installing Feed Auger Fingers

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:

Not all parts needed for this procedure are included in this kit, and depending on the original configuration of the feed auger, additional parts may need to be ordered. Refer to 4.1 Float Module Feed Auger Configurations, page 307 to see which parts are available.

1. Raise the reel.
2. Shut down the combine, and remove the ignition key.
3. Engage the reel safety props.
4. Remove bolts (A) and access cover (B) from the access cutout closest to the finger that needs to be installed or replaced.

If you are replacing an existing auger finger, refer to Step 5, page 431, otherwise proceed to Step 7, page 433 for installation instructions for new auger fingers.

Removing an existing auger finger:

5. Remove the hairpin (A), pull the finger (B) out of the bushing (C) from inside the auger, and remove the finger from the auger by pulling it through the plastic guide (D).

If you are replacing the plastic finger guide before installing the auger finger, refer to Step 6, page 432, otherwise refer to Step 9, page 433.
6. Remove the bolts (A) securing the plastic finger guide (B) to the auger. Remove the guide (B) from inside the auger, and proceed to Step 8, page 433.
Installing a new auger finger:

7. Remove the two bolts (B), tee nuts, and plug (A).

8. Coat bolts (A) with medium-strength threadlocker (Loctite® 243 or equivalent), and then insert the plastic finger guide (B) from inside the auger and secure it with bolts and tee nuts. Torque bolts to 8.5 Nm (75 lbf-in).

NOTE:
When installing additional fingers, ensure you install an equal number on each side of the auger.

9. From inside the auger, insert the new auger finger (B) through the plastic guide (D).

10. Insert the finger (B) into finger holder (C) and secure with hairpin (A).

NOTE:
Note the orientation of the hairpin (A). The round part should face the direction of auger rotation; the formed side (that is, the S-shaped side) must face the chain drive side of the auger.
11. Coat bolts (A) with medium-strength threadlocker (Loctite® 243 or equivalent), then replace the access cover (B) and secure with bolts. Torque to 8.5 Nm (75 lbf∙in).

Checking Auger Finger Timing

This procedure is for checking the setting that determines when the fingers are fully extended from the auger.

NOTE:

Left side of auger shown.

2. Shut down the combine and remove the key from the ignition.

3. Check that indicator (B) is set to the same position (A) at each end of the auger. Factory setting is B. There are two different auger tine extension positions: A and B. Setting A would be used for canola and setting B would be used for grains.

CAUTION

To avoid damaging the auger beyond repair, it is extremely important that both sides are at the same setting.

4. If necessary, loosen nuts (C) and adjust position of indicator (B). Tighten nuts.

5. Disengage reel safety props. Refer to *Disengaging Reel Safety Props, page 32*
Adjusting Auger Finger Timing

To adjust auger finger timing, follow these steps:

NOTE:
Left side of auger shown.

2. Shut down the combine and remove the key from the ignition.
3. Locate indicator (A) that specifies when the fingers in the drum extend. There are two settings for the indicator: A and B.

4. Loosen nuts (A) and adjust finger timing indicator (B) to desired position.

IMPORTANT:
It is extremely important that both sides are set at the same position; if not, the drum will be damaged beyond repair.

NOTE:
If the finger timing indicator is pointing at setting A, it indicates that at that point the auger fingers will be fully extended. This allows the crop to be engaged and released earlier before entering the feeder house. This setting is best used for canola or bushy crops.
NOTE:
If the indicator is pointing at setting B, it indicates that at that point the auger fingers will be fully extended. This allows the crop to be engaged and released later before entering the feeder house. This setting is best used for grains or beans.

7. Tighten nuts (A) once adjustment is complete. Torque nuts to 92–138 Nm (68–10 lbf-ft).
5.8 Knife

⚠️ WARNING
Keep hands clear of the area between guards and knife at all times.

⚠️ CAUTION
Wear heavy gloves when working around or handling knives.

⚠️ CAUTION
To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 383.

5.8.1 Replacing Knife Section

Inspect the knife sections daily and ensure they are firmly bolted to the knife back and are not worn or damaged (worn and damaged sections leave behind uncut plants). Worn or damaged sections can be replaced without removing the knife from the cutterbar.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

NOTE:
For dirty, sandy conditions, coarsely serrated knife sections last longer than finely serrated sections. Finely serrated sections perform best in thin-stemmed grasses and plants with fibrous stems.
1. Shut down the engine, and remove the key from the ignition.
2. Stroke the knife as required to center knife section (A) between guards (E).
3. Remove and retain nuts (B).
4. Remove bars (C) and lift knife section (A) off the knife bar.
5. Remove splice bar (D) if knife section is under the bar.
6. Clean dirt off the knife back, and position the new knife section onto the knife back.

IMPORTANT:
Do **NOT** mix finely and coarsely serrated knife sections on the same knife.
7. Reposition bars (C) and/or splice bars (D), and install nuts (B).

NOTE:
If replacing screws, ensure they are fully inserted. Do **NOT** use nuts to draw screws into the knife bar.
8. Torque nuts to 9.5 Nm (7 lbf-ft).

5.8.2 Removing Knife

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING
Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

1. Shut down the engine, and remove the key from the ignition.
2. Manually stroke the knife to its outer limit.
3. Clean the area around the knifehead.
4. Remove grease fitting (B) from the pin.

NOTE:
Removing the grease fitting will make it easier to reinstall the knifehead pin later.
5. Remove bolt and nut (A).
6. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.
7. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.

8. Push the knife assembly inboard until it is clear of the output arm.

9. Seal the knifehead bearing with plastic or tape to keep out dirt and debris unless it is being replaced.

10. Wrap a chain around the knifehead and pull out the knife.

5.8.3 Removing Knifehead Bearing

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

⚠️ WARNING
Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

IMPORTANT:
Repeat this procedure for each knife.

1. Shut down the engine, and remove the key from the ignition.

2. Remove the knife. Refer to 5.8.2 Removing Knife, page 438.

 NOTE:
 Because the bearing is being replaced, it is not necessary to wrap the knifehead to protect the bearing.

3. Use a flat-ended tool with the same approximate diameter as pin (A). Tap seal (B), bearing (C), plug (D), and O-ring (E) from the underside of the knifehead.

 NOTE:
 Seal (B) can be replaced without removing the bearing. When changing the seal, check the pin and needle bearing for wear and replace if necessary.

![Figure 5.88: Knifehead Bearing Assembly](image-url)
5.8.4 Installing Knifehead Bearing

1. Place O-ring (E) and plug (D) into knifehead.

 IMPORTANT:
 Install the bearing with the stamped end (the end with the identification markings) facing up.

2. Use a flat-ended tool (A) with the same approximate diameter as bearing (C), and push the bearing into the knifehead until the top of the bearing is flush with the step in the knifehead.

3. Install seal (B) into the knifehead with the lip facing outwards.

 IMPORTANT:
 To prevent premature knifehead or knife drive box failure, ensure there is a tight fit between the knifehead pin and the needle bearing, and also between the knifehead pin and the output arm.

4. Install the knife. Refer to 5.8.5 Installing Knife, page 440.

5.8.5 Installing Knife

WARNING

Stand to rear of knife during installation to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

1. Slide the knife into place and align the knifehead with the output arm.

 NOTE:
 Remove the grease fitting from the knifehead pin for easier installation of knifehead pin.

2. Install knifehead pin (A) through output arm (C) and into the knifehead.

3. Position the pin so that groove (B) is 1.5 mm (1/16 in.) above the output arm (C).

4. Secure pin with 5/8 x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf·ft).
5. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

6. Slowly apply grease to the knifehead until slight downward movement of the knifehead is observed.

IMPORTANT:
Do **NOT** overgrease the knifehead. Overgreasing leads to knife misalignment causing excessive heating of guards and overloading of drive systems. If overgreasing occurs, remove the grease fitting to release pressure.

5.8.6 Spare Knife

A spare knife can be stored in the header frame tube (A) at the left end. Ensure the spare knife is secured in place.

5.8.7 Knife Guards

Perform **DAILY** inspections to ensure the knife guards are aligned and the knife sections are contacting the shear surfaces of the knife guards.

Adjusting Knife Guards

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

NOTE:
Use guard straightening tool (MD #140135) available from your MacDon Dealer.
1. Position tool (A) as shown, and pull up to adjust the guard tips upwards.

2. Position tool (A) as shown, and push down to adjust the guard tips downwards.

NOTE:
If material is tough to cut, install stub guards with top guard and adjuster plate. A kit is available from your MacDon Dealer. Refer to **6.3.5 Stub Guard Conversion Kit, page 550.**
Replacing Pointed Guards

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Replacing standard and drive side guards

1. Shut down the combine, and remove the key from the ignition.
2. Stroke the knife manually until the knife sections are spaced midway between the guards.
3. Remove two nuts (B) and bolts attaching guard (A) and hold-down (C) (if applicable) to the cutterbar.
4. Remove guard (A), hold-down (C), and the plastic wearplate (if installed).

IMPORTANT:
The first four outboard guards (B) on the drive sides of the header do not have ledger plates. Ensure proper replacement guards are installed at these locations.

Figure 5.95: Pointed Guards

Figure 5.96: Pointed Guards
A - Standard B - Drive Side
5. Position new guard (A), hold-down (C), and the plastic wearplate (if applicable) onto the cutterbar. Secure with two nuts (B) and bolts, but do **NOT** tighten.

6. Check and adjust the clearance between the hold-downs and the knife. Refer to *Checking Pointed Guard Hold-Downs, page 447.*

Replacing center guard

NOTE:

The guard at the center of a double-knife header (where the two knives overlap) requires a slightly different replacement procedure.

1. Shut down the combine, and remove the key from the ignition.

2. Remove the two nuts (B) and bolts attaching guard (A) and top guide (C) to the cutterbar.

3. Remove guard (A), the plastic wearplate (if installed), top guide (C), and adjuster bar (D).
4. Position the plastic wearplate (if applicable), replacement center guard (A), the adjuster bar, and top guide (B) onto the cutterbar. Install bolts, but do **NOT** tighten.

IMPORTANT:
Ensure center guard (A) (right of the cutterbar split) has offset cutting surfaces.

NOTE:
Top guide (B) must accommodate the two overlapping knives at the center guard location. Ensure the proper replacement guard is installed at this location.

5. Check and adjust the clearance between the hold-down and knife. Refer to *Checking Pointed Guard Hold-Downs, page 447.*

![Figure 5.99: Center Guards](image)
Replacing Stub Guards

Stub guards, complete with top guides and adjuster plates, are designed to cut tough crops and are factory-installed at the outer ends of specific headers.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Replacing standard, drive side, and end guard

1. Shut down the engine, and remove the key from the ignition.
2. Stroke the knife manually until the knife sections are spaced midway between the guards.
3. Remove the two nuts (A) and bolts attaching guard (B) and top guide (C) to the cutterbar.
4. Remove guard (B), the plastic wearplate (if installed), top guide (C), and adjuster bar (D).

IMPORTANT:
The first four outboard guards (A) on the drive sides of the header do not have ledger plates. Ensure the proper replacement guards are installed at these locations.

![Figure 5.100: Stub Guards](image)

![Figure 5.101: Stub Guards](image)

A - Drive Side Guard B - Standard Guard (with Ledger Plate)
5. Position the plastic wearplate (if applicable), replacement guard (B), adjuster bar (D), and top guide (C), and then install bolts and nuts (A). Do **NOT** tighten.

6. Check and adjust the clearance between the hold-downs and the knife. Refer to *Checking and Adjusting Stub Guard Hold-Downs, page 450.*

Checking Pointed Guard Hold-Downs

This procedure is applicable to headers with pointed guards.

Measure clearance between hold-downs and knife sections as follows:

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down engine, and remove key from ignition.

2. Manually stroke knife to locate section (A) under hold-down (B).

3. At standard guard locations, push knife section (A) down against guard (C) and measure clearance between hold-down (B) and knife section (A) with a feeler gauge. The clearance should be 0.1–0.6 mm (0.004–0.024 in.).

4. If necessary, refer to *Adjusting Hold-Downs with Pointed Guards, page 448.*
Double-knife:

5. Manually stroke knife to locate sections (A) and (C) under center hold-down (B).

6. Measure clearance between knife sections (A) and (B) with a feeler gauge. The clearances should be:
 - At tip (E) of hold-down: 0.1–0.4 mm (0.004–0.016 in.)
 - At rear (F) of hold-down: 0.1–1.0 mm (0.004–0.040 in.)

7. If necessary, refer to Adjusting Hold-Down at Double-Knife Center Pointed Guard, page 449.

Adjusting Hold-Downs with Pointed Guards

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.

2. Use a feeler gauge to measure the clearance between the standard guard hold-down (A) and the knife section. Ensure the clearance is 0.1–0.6 mm (0.004–0.024 in.).

3. To lower the front of the hold-down and decrease clearance, turn bolt (B) clockwise; to raise the front of the hold-down and increase clearance, turn bolt (B) counterclockwise.

 NOTE:
 For larger adjustments, it may be necessary to loosen nuts (C), turn adjuster bolt (B), and then retighten nuts.
4. Use a feeler gauge to measure the clearance between the center guard hold-down (A) and the knife section. Ensure the clearance is between the following measurements:
 - **At guide tip (B):** 0.1–0.4 mm (0.004–0.016 in.)
 - **At rear of guide (C):** 0.1–1.0 mm (0.004–0.040 in.)

5. Adjust the clearance as follows:
 a. Tighten nuts (D) until finger tight.
 b. Turn the three adjuster bolts (E) clockwise to raise the front of the hold-down and increase clearance, or counterclockwise to lower the front of the hold-down and decrease clearance.
 c. When all the adjustments are complete and the specified clearances are achieved, torque nuts (D) to 88 Nm (65 lbf-ft).

WARNING
Check to be sure all bystanders have cleared the area.

6. Complete the hold-down adjustments, run the header at low engine speed, and listen for noise caused by insufficient clearance.

NOTE:
Insufficient hold-down clearance will result in overheating of the knife and guards—readjust as necessary.

Adjusting Hold-Down at Double-Knife Center Pointed Guard

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Shut down combine, and remove key from ignition.
2. Manually stroke knives so that sections (A) are under hold-down (B) as shown.
3. Loosen nuts (C) and back off bolts (D) until they don’t contact cutterbar.
4. Lightly clamp hold-down (B) to guard (E) with a C-clamp or equivalent. Position clamp on trash bar at location (F) as shown.
5. Turn bolts (D) until they contact cutterbar, then tighten **ONE** turn.
6. Remove clamp.
7. Tighten nuts (C) and torque to 45 Nm (35 lbf-ft).
8. Check clearances. Refer to **Checking Pointed Guard Hold-Downs, page 447**.
Checking and Adjusting Stub Guard Hold-Downs

This procedure is applicable to single- and double-knife headers with stub guards.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

Measure clearance between hold-downs and knife sections as follows:

1. Shut down the combine, and remove the key from the ignition.
2. Manually stroke knife to locate section under hold-down (A).
3. **Standard guard**: At standard guard locations, push knife section (B) down against guard (C) and measure clearance between hold-down (A) and knife section (B) with a feeler gauge. The clearance should be as follows:
 - **At hold-down tip (D)**: 0.1–0.4 mm (0.004–0.016 in.)
 - **At rear of hold-down (E)**: 0.1–1.0 mm (0.004–0.040 in.)
 - **At sheet metal hold-down (F)**: 0.1–0.6 mm (0.004–0.024 in.)
4. If necessary, refer to *Adjusting Hold-Downs with Stub Guards, page 451.*
5. **Double-knife center stub guard**: Manually stroke knife to locate sections under hold-down (B).

6. Measure clearance between knife sections (A) and (C) with a feeler gauge. The clearance should be as follows:
 - **At hold-down tip (D)**: 0.1–0.4 mm (0.004–0.016 in.)
 - **At rear of hold-down (E)**: 0.1–1.0 mm (0.004–0.040 in.)

7. If necessary, refer to *Adjusting Hold-Downs with Stub Guards, page 451.*

Adjusting Hold-Downs with Stub Guards

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.

2. Use a feeler gauge to measure the clearance between the stub guard hold-down (A) and the knife section. Ensure the clearance is between the following measurements:
 - **At guide tip (B)**: 0.1–0.4 mm (0.004–0.016 in.)
 - **At rear of guide (C)**: 0.1–1.0 mm (0.004–0.040 in.)

3. Adjust the clearance as follows:
 a. Tighten nuts (D) until they are finger tight.
 b. To lower the front of the hold-down and decrease clearance, turn the three adjuster bolts (E) clockwise; to raise the front of the hold-down and increase clearance, turn the adjuster bolts (E) counterclockwise.
 c. Torque the nuts (D) to 72 Nm (53 lbf·ft) after all the adjustments are complete and the specified clearances are achieved.

WARNING

Check to be sure all bystanders have cleared the area.
4. Complete the hold-down adjustments, run the header at low engine speed, and listen for noise caused by insufficient clearance.

NOTE:
Insufficient hold-down clearance will result in overheating of the knife and guards—readjust as necessary.

5.8.8 Knifehead Shield

The knifehead shield attaches to the endsheet and reduces the knifehead opening to prevent cut crop from accumulating in the knifehead cut-out.

The shields and mounting hardware are available from your MacDon Dealer.

IMPORTANT:
Remove the shields when cutting with the cutterbar on the ground in muddy conditions. Mud may pack into the cavity behind the shield which could result in knife drive box failure.
Installing Knifehead Shield

The knifehead shield is supplied in flattened form, but it can be bent to suit installation on pointed or stub guard cutterbars. Knifehead shields differ slightly depending on header size and guard configuration, so ensure you are using the proper knifehead shield for your header. Refer to your parts catalog for proper replacement parts.

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ CAUTION
Wear heavy gloves when working around or handling knives.

1. Raise the reel to its full height, lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Engage the reel arm locks.
4. Place the knifehead shield (A) against the endsheet as shown. Align the shield so the cutout matches the profile of the knifehead and/or hold-downs.
5. Bend the knifehead shield (A) along the slit to conform to the endsheet.
6. Align the mounting holes and secure with two 3/8 x 1/2 in. Torx® head bolts (B).
7. Tighten the bolts (B) just enough to hold the knifehead shield (A) in place while allowing it to be adjusted as close to the knifehead as possible.
8. Rotate the knife drive box pulley manually to move the knife and check for areas of contact between the knifehead and knifehead shield (A). Adjust the shield to eliminate interference with the knife if necessary.
9. Tighten the bolts (B).
5.9 Knife Drive System

5.9.1 Knife Drive Box

⚠️ CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 383.

Double-knife headers have a knife drive box at each end. Knife drive boxes are belt driven by a hydraulic motor, and convert rotational motion into the reciprocating motion of the knife.

![Figure 5.113: Left Side Knife Drive Box Shown – Right Side Similar](image)

Checking Knife Drive Box

Single-knife headers have one knife-drive box and double-knife headers have two knife-drive boxes. To access the knife drive box(es), endshield(s) must be fully opened.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Press down on the latch in the opening (A) on the inboard side of the endsheet.
2. Pull endshield open using handle depression (B).

![Figure 5.114: Endshield Latch Access](image)
3. Swivel the endshield toward the back of the header and use the safety latch (B) to secure the endshield support tube (A) to the endsheet.

IMPORTANT:
The knife drive box breather is shipped in position (A) (forward) to prevent oil loss during transport. The breather must be repositioned to location (B) to prevent oil loss during normal operation. Failure to do so can result in damage to the knife drive box.

4. Check position of plug (A) and breather (B) at knife drive box. Position MUST be as shown.

5. Remove breather (B) and check oil level. The oil level should be between the bottom edge (C) of the lower hole (D) and the bottom (E) of the breather.

NOTE:
Check oil level with top of knife drive box horizontal and with the breather (B) screwed in.

6. Reinstall breather and tighten.

Checking Mounting Bolts
Check the torque on the four knife drive box mounting bolts (A) and (B) after the first 10 hours operation and every 100 hours thereafter.

1. Torque the side bolts (A) first, then torque the bottom bolts (B). Torque all bolts to 271 Nm (200 lbf-ft).
Removing Knife Drive Box

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the combine, and remove the key from the ignition.
2. Open the endshield. Refer to Opening Endshields, page 33.
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.
4. Loosen the belt tension by turning tensioning bolt (B) counterclockwise.
5. To provide clearance between the knife drive box pulley and the endsheet, open access cover (A) on the endsheet behind the cutterbar.
6. Remove belt (A) from drive pulley (B).
7. Slip belt (A) over and behind knife drive box pulley (C). Use the notch in the pulley to assist with belt removal.
8. Manually stroke the knife to its outer limit.
9. Clean the area around the knifehead.
10. Remove grease fitting (B) from the pin.

NOTE:
Removing the grease fitting will make it easier to reinstall the knifehead pin later.

11. Remove bolt and nut (A).
12. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.
13. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.
14. Push the knife assembly inboard until it is clear of the output arm.
15. Seal the knifehead bearing with plastic or tape to keep out dirt and debris unless it is being replaced.
16. Remove bolt (A) that clamps the knife drive arm (B) to the knife drive box output shaft.
17. Remove knife drive arm (B) from the knife drive box output shaft.
18. Remove the four knife drive box mounting bolts (C) and (D).

NOTE:
Do **NOT** remove bolt (E); it is factory-set to properly position the knife drive box in the correct fore-aft position.

CAUTION
The knife drive box and pulley weigh over 35 kg (65 lb.)
Use care when removing or installing. Lug (L) can be used for lifting.

19. Remove the knife drive box from the header and set aside.
Removing Knife Drive Box Pulley

Before removing the knife drive box pulley, remove the knife drive box from the header. Refer to *Removing Knife Drive Box, page 456*.

1. Loosen and remove knife drive box pulley clamping bolt (A) and nut (B).
2. Using a three-jaw puller, remove knife drive box pulley (C).

![Figure 5.123: Knife Drive Box and Pulley](image)

Installing Knife Drive Box Pulley

Before removing the knife drive box pulley, remove the knife drive box from the header. Refer to *Removing Knife Drive Box, page 456*.

1. Ensure the splines and bores in the pulley and drive arm are free of paint, oil, and solvents.
2. Apply two bands (A) of medium-strength threadlocker (Loctite® 243 or equivalent) around the shaft as shown at right. Apply one band at the end of the spline and the second band in the middle.
3. Press pulley (B) onto shaft until flush with the end of the shaft.
4. Secure the pulley with a 5/8 x 3 in. hex head bolt with distorted thread NC lock nut and torque to 217 Nm (160 lbf·ft).

![Figure 5.124: Knife Drive Box](image)
Installing Knife Drive Box

NOTE:
If the pulley was removed from the knife drive box, refer to *Installing Knife Drive Box Pulley, page 458*. If the pulley was **NOT** removed, proceed to Step 1, *page 459*.

⚠️ **CAUTION**

The knife drive box and pulley weigh over 35 kg (65 lb.)
Use care when removing or installing. Lug (L) can be used for lifting.

1. Position the knife drive box onto the header mount and install the belt onto the pulley.
2. Secure the knife drive box to the frame using two 5/8 x 1-3/4 in. grade 8 hex head bolts (A) on the side and two 5/8 x 2-1/4 in. grade 8 hex head bolts (B) on the bottom.
3. Tighten knife drive box side bolts (A) slightly, then tighten bottom bolts (B) to ensure proper contact with the vertical and horizontal mounting surfaces. Do **NOT** torque the bolts at this time.
4. Apply two bands (A) of medium-strength threadlocker (Loctite® 243 or equivalent) to the output shaft as shown. Apply one band at the end of the output shaft and the second band in the middle.
5. Slide output arm (B) onto the output shaft. Rotate the pulley to ensure the splines are properly aligned and the drive arm clears the frame on the inboard stroke.
6. Position output arm (A) to the farthest outboard position.

7. Move output arm (A) up or down on the splined shaft until it is almost contacting the knifehead (B) (exact clearance [C] is set during the knifehead pin installation).

8. Torque output arm bolt (A) to 217 Nm (160 lbf-ft).

9. Slide the knife into place and align the knifehead with the output arm.

NOTE:
Remove the grease fitting from the knifehead pin for easier installation of knifehead pin.

10. Install knifehead pin (A) through output arm (C) and into the knifehead.

11. Position the pin so that groove (B) is 1.5 mm (1/16 in.) above the output arm (C).
12. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

13. Slowly apply grease to the knifehead until slight downward movement of the knifehead is observed.

IMPORTANT:

Do NOT overgrease the knifehead. Overgreasing leads to knife misalignment causing excessive heating of guards and overloading of drive systems. If overgreasing occurs, remove the grease fitting to release pressure.

14. Tighten the knife drive box side bolts (A) first, then tighten the bottom bolts (B). Torque to 271 Nm (200 lbf·ft).

15. Move the output arm to the mid-stroke position, and ensure the knife bar doesn’t contact the front of the first guard. If the knife drive box requires adjustment, contact your MacDon Dealer.

16. Install and tension the knife drive belts.
 - For untimed belts, refer to Checking and Tensioning Knife Drive Belts, page 464.

17. Close the endshield. Refer to Closing Endshields, page 34.

Changing Oil in Knife Drive Box

![Figure 5.130: Knifehead](image)

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Change the knife drive box lubricant after the first 50 hours of operation and every 1000 hours (or 3 years) thereafter.

1. Shut down the combine, and remove the key from the ignition.

2. Raise the header and place a container large enough to hold approximately 2.2 liters (2.3 quarts) under the knife drive box to collect the oil.

3. Open the endshield. Refer to Opening Endshields, page 33.
4. Remove the breather/dipstick (A) and the drain plug (B).
5. Allow the oil to drain from the knife drive box and into the container placed below it.
6. Reinstall the drain plug (B).
7. Add oil to the knife drive box. Refer to inside back cover for recommended fluids and lubricants.
8. Close the endshield. Refer to Closing Endshields, page 34.

5.9.2 Knife Drive Belts

Knife Drive Belts

The knife drive box is driven by a V-belt that is powered by a hydraulic motor on the header left endsheet. There is an identical drive system at the opposite end of 12.2 m and 13.7 m (40 ft. and 45 ft.) double-knife headers.

Removing Knife Drive Belt

The knife drive belt removal procedure is the same for both sides of a double-knife header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
1. Shut down the combine, and remove the key from the ignition.

2. Open the endshield. Refer to Opening Endshields, page 33.

3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.

4. Loosen the belt tension by turning tensioning bolt (B) counterclockwise.

5. To provide clearance between the knife drive box pulley and the endsheet, open access cover (A) on the endsheet behind the cutterbar.

6. Remove belt (A) from drive pulley (B).

7. Slip belt (A) over and behind knife drive box pulley (C). Use the notch in the pulley to assist with belt removal.
Installing Knife Drive Belts

The procedure for installing untimed knife drive belts is the same for both sides of the header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the combine, and remove the key from the ignition.
2. Route knife drive belt (A) around knife drive box pulley (C) and knife drive pulley (B). Use the notch in the pulley to assist with the belt installation.

NOTE:
Ensure the drive motor is fully forward, do **NOT** pry the belt over the pulley.

3. Tension the knife drive belt. Refer to *Checking and Tensioning Knife Drive Belts, page 464.*
4. Install access cover (A) and secure with bolt.
5. Close the endshield. Refer to *Closing Endshields, page 34.*

Checking and Tensioning Knife Drive Belts

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

IMPORTANT:
To prolong the belt and drive life, do **NOT** overtighten the belt.

1. Shut down the combine, and remove the key from the ignition.
2. Open the left endshield. Refer to *Opening Endshields, page 33.*
MAINTENANCE AND SERVICING

NOTE:
Belt guide removed for illustration purposes.

3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.

4. Check drive belt tension. A properly tensioned drive belt (C) should deflect 24–28 mm (15/16–1-1/8 in.) when 133 N (30 lbf) of force is applied at the midspan. If the belt needs to be tensioned, turn the adjuster bolt (B) clockwise to move the drive motor until proper tension is set.

5. Ensure the clearance between belt (A) and belt guide (B) is 1 mm (1/16 in.).

6. Loosen the three bolts (C), and adjust the position of guide (B) as required.

7. Tighten the three bolts (C).

8. Close the endshield. Refer to Closing Endshields, page 34.

NOTE:
Readjust the tension of a new belt after a short run-in period (about 5 hours).

9. Double-knife headers only: Repeat procedure on the other side of the header.
5.10 Feed Draper

The feed draper is located on the FM100 Float Module and conveys cut crop to the auger.

CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 383.

5.10.1 Replacing Feed Draper

Replace draper if torn, cracked, or missing slats.

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise header and reel to full height, stop the engine, and remove key from the ignition.
2. Engage reel safety props and header safety props.
3. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side.

4. Unlatch the feed deck pan handle (A) from the pan handle latch supports (B) on either side of the feed deck. This will drop the door down and allow access to feed deck draper and rollers.

NOTE:

Some parts removed from illustration for clarity.
5. Remove nuts and screws (A), and remove the draper connector straps (B).

6. Pull the draper from the deck.

7. Install new draper (A) over the drive roller (B). Make sure the draper guides fit into the drive roller grooves (C).

8. Pull draper along bottom of feed deck and over idler roller (D).
9. Connect the draper joint with the connector straps (B) and secure with nuts and screws (A). Ensure the screw heads face towards the rear of the deck, and tighten only until the end of the screws are flush with the nuts.

10. Adjust the draper tension. Refer to **5.10.2 Adjusting Feed Draper Tension, page 468**.

11. Close the feed deck by latching the pan handle latch supports (B) on either side of the feed deck to the feed deck pan handle (A).

NOTE:
Some parts removed from illustration for clarity.

5.10.2 Adjusting Feed Draper Tension

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator's seat, and always engage safety props before going under the machine for any reason.

1. Raise the header to its full height, stop the engine, and remove key from the ignition.
2. Engage the header safety props.
3. Ensure the draper guide (rubber track on the underside of the draper) is properly engaged in the groove on the drive roller and the idler roller is between the guides.
NOTE:
The default position of spring retainer (white indicator) is the center of the spring box window (A); however, the position of the spring retainer varies with draper tracking adjustment at the factory.

4. Check the position of white indicator (A). If feed draper tracks properly and spring retainers on both sides are positioned within the following dimensions, than no adjustment is necessary:
 - Loosened to 3 mm (1/8 in.) (B) (aft of center in indicator window [A])
 - Tightened to 6 mm (1/4 in.) (C) (forward of center in indicator window [A])

NOTE:
Left side of float module shown. Right side is opposite.

5. If adjustment is necessary, proceed to Step 6, page 469

6. To adjust feed draper tension, loosen jam nut (A) and turn bolt (B) clockwise to increase draper tension or counterclockwise to decrease draper tension.

7. Adjust the draper tension until the white indicator (C) is within the range described in Step 4, page 469.

IMPORTANT:
To avoid uneven draper tracking, adjust both sides equally.

8. Tighten jam nut (A).

5.10.3 Feed Draper Drive Roller
This roller is powered and moves the draper on the float module, conveying crop to the auger.

Removing Feed Draper Drive Roller

DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the header and reel to full height, strop the engine, and remove the key from the ignition.
2. Engage reel safety props and header safety props.
3. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side.

4. Remove nuts and screws (A), and remove the draper connector straps (B).

5. Pull the draper from the deck.

6. Remove two bolts (B) from the drive roller cover (A).
7. Move the drive roller cover plate (A) to the left.

8. Slide drive roller (A) with bearing assembly (B) to the right until left end comes off of spline.

9. Lift left end out of the frame.

10. Slide assembly (A) to the left, guiding bearing housing (B) through frame opening (C).

11. Remove roller (A).
Installing Feed Draper Drive Roller

1. Apply grease to the spline.
2. Slide drive roller cover plate (A) onto right end of roller (B).
3. Guide bearing end (C) of drive roller through frame opening (D).
4. Slide left end of drive roller (A) onto spline of motor (B).
5. Secure the bearing and housing (A) with the drive roller cover plate on the frame using two bolts (B).
6. Install the feed deck draper. Refer to 5.10.1 Replacing Feed Draper, page 466.
7. Tension the feed draper. Refer to 5.10.2 Adjusting Feed Draper Tension, page 468.

Replacing Feed Draper Drive Roller Bearing
Removing Feed Draper Drive Roller Bearing

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator's seat, and always engage safety props before going under the machine for any reason.

1. Raise header and reel to full height, stop the engine, and remove key from the ignition.

2. Engage reel safety props and header safety props.

3. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side.

4. Loosen the setscrew (B) on the bearing lock (A).

5. Using a hammer and punch, tap the bearing lock (A) in the direction opposite to the auger rotation to release the lock.

Figure 5.157: Feed Draper Tensioner

Figure 5.158: Feed Draper Drive Roller Bearing
6. Remove two nuts (A).

![Figure 5.159: Feed Draper Drive Roller Bearing](image1)

7. Remove bearing housing (A).

NOTE:
If bearing is seized on shaft, it may be easier to remove the drive roller assembly. For instructions refer to *Removing Feed Draper Drive Roller, page 469.*

![Figure 5.160: Feed Draper Drive Roller Bearing](image2)

Installing Feed Draper Drive Roller Bearing

1. Install the drive roller bearing housing (A) onto the shaft (B), and secure with two bolts and nuts (C).

![Figure 5.161: Feed Draper Drive Roller Bearing](image3)
2. Install bearing lock collar (A) onto the shaft.
3. Using a hammer and punch, tap the bearing lock in the direction of auger rotation to lock.
4. Tighten bearing lock setscrew (B).
5. Tension the feed draper. Refer to 5.10.2 Adjusting Feed Draper Tension, page 468.

![Figure 5.162: Feed Draper Drive Roller Bearing](image1)

5.10.4 Feed Draper Idler Roller

This roller is non-powered on the feed draper.

Removing Feed Draper Idler Roller

1. Engage the feeder house safety props.
2. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side.

3. Remove nuts and screws (A), and remove the draper connector straps (B).
4. Open feed deck pan.

![Figure 5.163: Feed Draper Tensioner](image2)

![Figure 5.164: Draper Connector](image3)
5. Remove nut (D) to have better access to the other two nuts (C).

6. Remove two bolts (A) and nuts (C) from both ends of the idler roller.

7. Remove the idler roller assembly (B).

Installing Feed Draper Idler Roller

1. Position the idler roller assembly (B) in the float module deck.

2. Install two bolts (A) and nuts (C) at both ends of the idler roller.

 NOTE:

 Do **NOT** overtighten the bolts (A).

3. Install nut (A).

 IMPORTANT:

 Maintain a 2–4 mm (1/16–3/16 in.) gap (C) between the plate (B) and nut (A) to allow the idler roller to float and to move when belt is tensioned or adjusted.
4. Close the feed draper and secure with connector straps (B), screws (A), and nuts.

5. Tension the feed draper. Refer to 5.10.2 Adjusting Feed Draper Tension, page 468.

Replacing Feed Draper Idler Roller Bearing
1. Remove the dust cap (A).

2. Remove nut (A).

3. Use a hammer to tap the bearing assembly (B) until it slides off the shaft.
4. Secure the housing (D) and remove the internal retaining ring (A), bearing (B), and two seals (C).

5. Apply oil to bore before assembly.

6. Install the seals (C) into the housing (D).

NOTE:
Ensure the flat side of the seal is facing inboard.

7. Pack bearing (B) with grease and install.

8. Install the retaining ring (A).

9. Brush shaft with oil. Carefully rotate the housing (D) with seals (C), bearing (B), and retaining ring (A) onto the shaft by hand to prevent seal damage.

10. Secure the bearing assembly to the shaft with nut (A).

11. Fill bearing cavity with grease, and install the dust cap (B).

12. Check that grease fitting is working.
5.11 Lowering Float Module Feed Deck Pan

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Start combine, raise header fully, and engage header lift cylinder locks.
2. Stop engine and remove key.
3. Rotate latches (A) to unlock handle (B).

NOTE:
Parts have been removed from illustration at right for clarity.

4. Hold pan (A) and rotate handles (B) downward to release pan.
MAINTENANCE AND SERVICING

5. Lower plastic pan (A) and check for shipping materials/debris that may have fallen under float module draper.

Figure 5.175: Feed Deck Pan (Rear View)
5.12 Raising Float Module Feed Deck Pan

1. Raise feed deck pan (A).
2. Engage lock handle (B) in feed deck pan hooks (C).
3. Rotate handles (B) upwards, bringing the feed deck pan (A) into locking position.

NOTE:
Ensure that all three deck pan hooks (C) are secured on the lock handle (B).

4. Hold feed deck pan (A) in place, and rotate latches (B) to lock handle (C).
5.13 Float Module Stripper Bars and Feed Deflectors

5.13.1 Removing Stripper Bars

1. Detach the header from the combine. Refer to 4 Header Attachment/Detachment, page 307.

2. Remove the four bolts and nuts (A) securing the stripper bar (B) to the float module frame, and remove the stripper bar.

3. Repeat at the opposite side.

Figure 5.178: Stripper Bar
5.13.2 Installing Stripper Bars

1. Detach the header from the combine. Refer to 4 Header Attachment/Detachment, page 307.

2. Position the stripper bar (B) so the notch is at the corner of the frame.

3. Secure the stripper bar (B) to the float module with four bolts and nuts (A). Ensure the nuts are facing the combine.

4. Repeat at the opposite side.

5.13.3 Replacing Feed Deflectors on New Holland CR Combines

1. Detach the header from the combine. Refer to 4 Header Attachment/Detachment, page 307.

2. Remove the two bolts and nuts (B) securing the feed deflector (A) to the float module frame, and remove the feed deflector.

3. Position the replacement feed deflector (A), and secure with bolts and nuts (B) (ensure the nuts are facing the combine). Do NOT tighten nuts.
4. Adjust deflector (A) so that distance (C) between pan and deflector is 4–6 mm (5/32–1/4 in.).

5. Tighten nuts (B).

6. Repeat for opposite deflector.

8. After attaching header to combine, extend center-link fully, and check gap between deflector and pan. Maintain the 4–6 mm (5/32–1/4 in.) gap.

Figure 5.181: Pan and Deflector Distance
5.14 Header Drapers

There are two header drapers. They convey cut crop to the float module feed draper and auger. Replace the drapers if torn, cracked, or missing slats.

5.14.1 Removing Side Drapers

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator's seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel and engage the reel safety props.
2. Raise the header and engage the safety props.
3. Move the draper until the draper joint is in the work area.

NOTE:

The D1 Series deck can also be shifted towards the center to provide an opening at the endsheet.

4. Shut down the combine, and remove the key from the ignition.
5. Release the tension on the draper. Refer to 5.14.3 Adjusting Draper Tension, page 488.
6. Remove the screws (A) and tube connectors (B) at the draper joint.
7. Pull the draper from deck.

![Figure 5.182: Draper Connector](image-url)
5.14.2 Installing Side Drapers

⚠️ WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

NOTE:
Check the deck height before installing the drapers. Refer to 5.14.5 Adjusting Deck Height, page 492.

1. Apply talc, baby powder, or talc/graphite lubricant mix to the draper surface that forms the seal with the cutterbar and to the underside of the draper guides.

2. Insert the draper into the deck at the outboard end under the rollers. Pull the draper into the deck while feeding it at the end.

3. Feed in the draper until it can be wrapped around the drive roller.

4. Insert the opposite end of the draper into the deck over the rollers. Pull the draper fully into the deck.

5. Loosen the mounting bolts (B) on the rear deck deflector (A) (this may help with draper installation).

Figure 5.183: Installing Draper

Figure 5.184: Draper Seal
6. Attach the ends of the draper with tube connectors (B), screws (A) (with the heads facing the center opening), and nuts.

7. Adjust the draper tension. Refer to 5.14.3 Adjusting Draper Tension, page 488.

8. Check clearance (A) between drapers (B) and cutterbar (C). Clearance should be 0–3 mm (0–1/8 in.). Refer to 5.14.5 Adjusting Deck Height, page 492 to adjust if necessary.

9. If adjustment of the backsheet deflector (A) is required, loosen nut (D) and move the deflector until there is a 1–7 mm (1/32–5/16 in.) gap (C) between the draper (B) and the deflector.

10. Operate the drapers with the engine at idle so the talc or talc/graphite lubricant makes contact and adheres to the draper seal surfaces.
5.14.3 Adjusting Draper Tension

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under machine for any reason.

1. Ensure the white indicator bar (A) is at the halfway point in the window.

⚠️ WARNING
Check to be sure all bystanders have cleared the area.

2. Start the engine and fully raise the header.
3. Shut down the combine and remove the key from the ignition.
4. Engage the header safety props.

5. Ensure the draper guide (the rubber track on the underside of the draper) is properly engaged in the groove (A) on the drive roller.

Figure 5.188: Left Side Tension Adjuster Shown – Right Side Opposite

Figure 5.189: Drive Roller
6. Ensure the idler roller (A) is between the draper guides (B).

NOTE:
The drapers are tensioned at the factory and rarely need adjustment. If adjustment is required, tension the drapers just enough to prevent slipping and to keep the draper from sagging below the cutterbar.

![Figure 5.190: Idler Roller](image1)

IMPORTANT:
Do **NOT** adjust nut (C). This nut is used for draper alignment only.

7. To loosen the adjuster bolt (A), turn it counterclockwise. The white indicator bar (B) will move outboard in the direction of arrow (D) to indicate that the draper is loosening. Loosen until the white indicator bar is at the halfway point in the window.

8. To tighten the adjuster bolt (A), turn it clockwise. The white indicator bar (B) will move inboard in the direction of arrow (E) to indicate that the draper is tightening. Tighten until the white indicator bar is at the halfway point in the window.

IMPORTANT:
- To avoid premature failure of the draper, draper rollers, and/or tightener components, do not operate with the tension set so the white bar is not visible.
- To prevent scooping dirt, ensure the draper is tight enough that it does not sag below the point where the cutterbar contacts the ground.

![Figure 5.191: Left Side Tension Adjuster Shown – Right Side Opposite](image2)
5.14.4 Adjusting Header Draper Tracking

The draper tracking is adjusted by aligning the drive and idler draper rollers.

⚠️ CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 383.

NOTE:

The images shown in the following procedure are applicable to the left draper deck. Use opposite views for the right draper deck.

Figure 5.192: Draper Tracking Adjustments

1. Refer to the following table to determine which roller requires adjustment and which adjustments are necessary.

Table 5.2 Header Draper Tracking

<table>
<thead>
<tr>
<th>Tracking</th>
<th>At Location</th>
<th>Adjustment</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td>Drive roller</td>
<td>Increase X</td>
<td>Tighten nut (E). Refer to Fig. 5.193, page 491</td>
</tr>
<tr>
<td>Forward</td>
<td>Drive roller</td>
<td>Decrease X</td>
<td>Loosen nut (E). Refer to Fig. 5.193, page 491</td>
</tr>
</tbody>
</table>
Table 5.2 Header Draper Tracking (continued)

<table>
<thead>
<tr>
<th>Tracking</th>
<th>At Location</th>
<th>Adjustment</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td>Idler roller</td>
<td>Increase Y</td>
<td>Tighten nut (H) in Fig. 5.194, page 491</td>
</tr>
<tr>
<td>Forward</td>
<td>Idler roller</td>
<td>Decrease Y</td>
<td>Loosen nut (H) in Fig. 5.194, page 491</td>
</tr>
</tbody>
</table>

2. Adjust drive roller (A) to change X (refer to Table 5.2, page 490) as follows:
 a. Loosen nuts (C) and jam nut (D).
 b. Turn the adjuster nut (E).

 NOTE:
 Some parts removed from illustration for illustration purposes.

3. Adjust idler roller (B) to change Y (refer to Table 5.2, page 490) as follows:
 a. Loosen nut (F) and jam nut (G).
 b. Turn the adjuster nut (H).

 NOTE:
 If the draper does not track at the idler roller end after the idler roller adjustment, the drive roller is likely not square to the deck. Adjust the drive roller, and then readjust the idler roller.
5.14.5 Adjusting Deck Height

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

IMPORTANT:

New factory-installed drapers are pressure and heat checked at the factory. The gap between draper and cutterbar is set to 0–3 mm (0–1/8 in.). This is to prevent material from entering into the side drapers and stalling them. You may need to decrease the deck clearance to 1 mm (1/16 in.).

1. Shut down the combine, and remove key from ignition.

2. Check that clearance (A) between draper (B) and cutterbar (C) is 0–3 mm (0–1/8 in.).

3. Take measurement at deck supports (A) with the header in working position. Depending on the header size, there are between two and eight supports per deck.

4. Loosen the draper tension. Refer to 5.14.3 Adjusting Draper Tension, page 488.

Figure 5.195: Draper Seal

Figure 5.196: Draper Deck Supports
5. Lift the front edge of draper (A) past cutterbar (B) to expose the deck support.

6. Measure and note the thickness of the draper belt.

7. Loosen the two lock nuts (A) on deck support (B) **ONE HALF-TURN ONLY.**

NOTE:
The number of deck supports (B) is determined by the header reels: four on single-reel headers, and eight on double-reel headers.

8. Tap deck (C) to lower the deck relative to the deck supports. Tap deck support (B) using a punch to raise the deck relative to the deck supports.

9. To create a seal, adjust deck (A) so that clearance (B) between cutterbar (C) and deck is 1 mm (1/16 in.) plus the draper thickness as measured in Step 6, page 493.

10. Tighten deck support hardware (D).

11. Recheck gap (B). Refer to Step 9, page 493.

12. Tension the draper. Refer to **5.14.3 Adjusting Draper Tension, page 488.**
13. If required, adjust the backsheet deflector (A) by loosening nut (D) and moving the deflector until there is a 1–7 mm (1/32–5/16 in.) gap (C) between draper (B) and the deflector.

5.14.6 Header Draper Roller Maintenance

The draper rollers have non-greaseable bearings; however, the external seal should be checked every 200 hours (more frequently in sandy conditions) to achieve maximum bearing life.

Inspecting Draper Roller Bearing

Using an infrared thermometer, check for bad draper roller bearings as follows:

1. Engage the header and run the drapers for approximately three minutes.

2. Check the temperature of the draper roller bearings at each of the roller arms (A), (B), and (C) on each deck. Ensure the temperature does not exceed 44°C (80°F) above the ambient temperature.

 Replace roller bearings that exceed maximum recommended temperature. Refer to
 • Replacing Header Draper Idler Roller Bearing, page 496, and
 • Replacing Header Draper Drive Roller Bearing, page 499.

Draper Deck Idler Roller

Removing Side Draper Deck Idler Roller

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:

If the draper connector is not visible, engage the header until the connector is accessible (preferably close to the outboard end of the deck).
MAINTENANCE AND SERVICING

1. Start the engine, raise the header, and raise the reel.
2. Shut down the combine, and remove the key from the ignition.
3. Engage the reel safety props, and engage the header safety props.
4. Loosen the draper by turning adjuster bolt (A) counterclockwise.

5. Remove the screws (A), tube connectors (B), and nuts from the draper joint to uncouple the draper.
6. Pull the draper off the idler roller.

7. Remove the bolts (A) and washer at both ends of the idler roller.

NOTE:
Remove the bolt at the back of the deck first. This will give you extra room to access the bolt under the cutterbar.

8. Spread the roller arms (B) and (C), and remove the idler roller.

Figure 5.202: Tensioner

Figure 5.203: Draper Connector

Figure 5.204: Idler Roller
Replacing Header Draper Idler Roller Bearing

1. Remove the draper idler roller assembly. Refer to Removing Side Draper Deck Idler Roller, page 494.

2. Remove the bearing assembly (A) and seal (B) from the roller tube (C) as follows:
 a. Attach a slide hammer (D) to the threaded shaft (E) in the bearing assembly.
 b. Tap out the bearing assembly (A) and seal (B).

3. Clean the inside of the roller tube (C), check the tube for signs of wear or damage, and replace if necessary.

4. Install the new bearing assembly (A) by pressing the outer race of the bearing into the tube until it is 14–15 mm (9/16–19/32 in.) (B) from the outside edge of the tube.

5. Apply grease in front of the bearing assembly (A). Refer to the inside back cover of this book for grease specifications.

6. Install a new seal (C) at the roller opening, and install a flat washer (1.0 in. I.D. x 2.0 in. O.D.) on the seal.

7. Tap the seal (C) into the roller opening with a suitably sized socket. Tap the washer and the bearing assembly (A) until the seal is 3–4 mm (1/8–3/16 in.) (D) from the outside edge of the tube.
Installing Header Draper Idler Roller

1. Position the stub shaft into the idler roller in the forward arm (B) on the deck.
2. Push on the roller to slightly deflect the forward arm so the stub shaft at the rear of the roller can be slipped into the rear arm (C).
3. Install bolts (A) with washers, and torque to 93 Nm (70 lbf·ft).
4. Wrap the draper over the idler roller, close the draper, and set the tension. Refer to 5.14.2 Installing Side Drapers, page 486.
5. Run the machine and verify the draper tracks correctly. Adjust the draper tracking if required. Refer to 5.14.4 Adjusting Header Draper Tracking, page 490.

Draper Deck Drive Roller

Removing Side Draper Drive Roller

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:
If the draper connector is not visible, engage the header until the connector is accessible (preferably close to the outboard end of the deck).

1. Start the engine, raise the header, and raise the reel.
2. Shut down the combine, and remove the key from the ignition.
3. Loosen the draper by turning the adjuster bolt (A) counterclockwise.
4. Remove the tube connectors (B), screws (A), and nuts from the draper joint to uncouple the draper.

5. Pull the draper off the drive roller.

6. Align the setscrews with the hole (A) in the guard. Remove the two setscrews holding the motor onto the drive roller.

 NOTE:
 The setscrews are 1/4 turn apart.

7. Remove the four bolts (B) securing the motor to the drive roller arm.

 NOTE:
 It may be necessary to remove the plastic shield (C) to gain access to the top bolt.

8. Remove the bolt (A) securing the opposite end of the drive roller (B) to the support arm.

9. Remove the drive roller (B).
Replacing Header Draper Drive Roller Bearing

1. Remove the draper idler roller assembly. Refer to Removing Side Draper Drive Roller, page 497.

2. Remove the bearing assembly (A) and seal (B) from the roller tube (C) as follows:
 a. Attach a slide hammer (D) to the threaded shaft (E) in the bearing assembly.
 b. Tap out the bearing assembly (A) and seal (B).

3. Clean the inside of the roller tube (C), check the tube for signs of wear or damage, and replace if necessary.

4. Install the new bearing assembly (A) by pressing the outer race of the bearing into the tube until it is 14–15 mm (9/16–19/32 in.) (B) from the outside edge of the tube.

5. Apply grease in front of the bearing assembly (A). Refer to the inside back cover of this book for grease specifications.

6. Install a new seal (C) at the roller opening, and install a flat washer (1.0 in. I.D. x 2.0 in. O.D.) on the seal.

7. Tap the seal (C) into the roller opening with a suitably sized socket. Tap the washer and the bearing assembly (A) until the seal is 3–4 mm (1/8–3/16 in.) (D) from the outside edge of the tube.

Figure 5.212: Idler Roller Bearing

Figure 5.213: Idler Roller Bearing
Installing Side Draper Drive Roller

1. Position the drive roller (B) between the roller support arms.

2. Install the bolt (A) to secure the drive roller to the arm closest to the cutterbar. Torque bolt to 95 Nm (70 lbf·ft).

3. Grease the motor shaft and insert into the end of the drive roller (B).

4. Secure the motor to the roller support with four bolts (B). Torque to 27 Nm (20 lbf·ft).

 NOTE:

 Tighten any loosened bolts and reinstall the plastic shield (C) if previously removed.

5. Ensure the motor is all the way into the roller, and tighten the two setscrews (not shown) through the access hole (A).

6. Wrap the draper over the drive roller and attach the ends of the draper using the tube connectors (B), screws (A), and nuts.

 NOTE:

 The heads of the screws must face the center opening.
7. Tension the draper. Locate adjuster bolt (A) and follow the directions on the decal (B) or refer to 5.14.3 Adjusting Draper Tension, page 488 for the proper draper tensioning.

8. Disengage the reel and header safety props.

9. Start the engine and lower the header and reel.

10. Run the machine to verify the draper tracks correctly. If further adjustment is necessary, refer to 5.14.4 Adjusting Header Draper Tracking, page 490.

Figure 5.217: Draper Tensioner (Left Side Shown, Right Opposite)
5.15 Reel

⚠️ CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 383.

5.15.1 Reel Clearance to Cutterbar

The minimum clearance between the reel fingers and the cutterbar ensures that the reel fingers do not contact the cutterbar during operation. The clearance is set at the factory, but some adjustment may be necessary before operation.

The finger to guard/cutterbar clearances with reels fully lowered are shown in Table 5.4, page 503.

Table 5.3 Finger to Guard/Cutterbar Clearance

<table>
<thead>
<tr>
<th>Header Width (m (ft.))</th>
<th>(X) 3 mm (+/- 1/8 in.) at Reel Ends and Flex Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 m (30 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>10.7 m (35 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
</tbody>
</table>

Figure 5.218: Finger Clearance

Measuring Reel Clearance

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

IMPORTANT:

Measurements must be taken at both ends of each reel and at the cutterbar flex locations with the header in full-frown mode. Refer to Table 5.4, page 503.
Table 5.4 Finger to Guard/Cutterbar Clearance

<table>
<thead>
<tr>
<th>Header Width</th>
<th>(X) 3 mm (+/- 1/8 in.) at Reel Ends and Flex Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 m (30 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>10.7 m (35 ft.)</td>
<td></td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td></td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td></td>
</tr>
</tbody>
</table>

1. Park the header on level ground.
2. Move spring handles (A) down to (UNLOCK) position.
3. Raise header and place two 150 mm (6 in.) blocks (A) under the cutterbar, just inboard of the wing flex points.
4. Lower header fully, allowing it to flex into a full frown mode.
5. Set the fore-aft position to the middle position (5) on the fore-aft position decal (A).

6. Lower the reel fully.

7. Shut down the engine, and remove the key from the ignition.

8. Measure the clearance (X) between points (C) and (D) at the ends of each reel (A), and at the flex locations (B). (Refer to Figure 5.224, page 504 for measurement locations.)

 NOTE:
The reel is factory-set to provide more clearance at the center of the reel than at the ends (frown) to compensate for reel flexing.

 NOTE:
When measuring reel clearance at the center of a double reel header, measure the lowest reel.

9. Check all possible points of contact between points (C) and (D). Depending on the reel fore-aft position, minimum clearance can result at the guard tine, hold-down, or cutterbar.

10. Adjust the reel if necessary. Refer to Adjusting Reel Clearance, page 505.
Adjusting Reel Clearance

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Adjust outboard reel arm lift cylinders to set clearance at outboard ends of reel as follows:
 a. Loosen bolt (A).
 b. Turn cylinder rod (B) out of clevis to raise reel and increase clearance to cutterbar, or turn cylinder rod into clevis to lower reel and decrease clearance.
 c. Tighten bolt (A).
 d. Repeat at opposite side.

3. Adjust center arm lift cylinder stop (A) to change clearance at inboard ends of reels and clearance at flex points as follows:
 a. Loosen nut (B).
 b. Turn nut (C) counterclockwise to raise reel and increase clearance to cutterbar, or clockwise to lower reel and decrease clearance.
 c. Tighten nut (B).

4. Check measurements and if necessary, repeat adjustment procedures.

5. Move reel back to ensure steel end fingers do not contact deflector shields.

6. If contact occurs, adjust reel upward to maintain clearance at all reel fore-aft positions. If contact cannot be avoided after adjusting the reel, trim steel end fingers to obtain proper clearance.

7. Periodically check for evidence of contact, and adjust clearance as required.
5.15.2 Reel Frown

The reel is factory-set to frown (provide more clearance at the center of the reel than at the ends) to compensate for reel flexing.

Adjusting Reel Frown

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Adjust the frown by repositioning the hardware connecting the reel tube arms to the reel discs.

NOTE:

Measure the frown profile before disassembling the reel for servicing so the profile can be maintained during reassembly.

1. Position the reel over the cutterbar (between 4 and 5 on the fore-aft position decal [A]) to provide adequate clearance at all reel fore-aft positions.

2. Record the measurement at each reel disc location for each reel tube.

3. Shut down the engine, and remove the key from the ignition.

4. Start with the reel disc closest to the center of the header and proceed outward towards the ends adjusting the header profile as follows:

 a. Remove bolts (A).

 b. Loosen bolt (B) and adjust arm (C) until the desired measurement is obtained between the reel tube and cutterbar.

 NOTE:
 Allow the reel tubes to curve naturally and position the hardware accordingly.

 c. Reinstall the bolts (A) in the aligned holes and tighten.

Figure 5.227: Fore-Aft Position Decal

Figure 5.228: Reel Disc
5.15.3 Centering Double Reel

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

To center the reel, follow these steps:

1. Raise the header enough to put 150 mm (6 in.) blocks under the outboard skid shoes. Lower the header slowly to force it into a full smile.

2. Shut down the engine, and remove the key from the ignition.

3. Loosen bolt (A) on each brace (B).

4. Move forward end of reel center support arm (C) laterally as required, to center both reels.

5. Tighten bolts (A) and torque to 359 Nm (282 lbf-ft).

![Figure 5.229: Reel Center Support Arm](image)

5.15.4 Reel Fingers

IMPORTANT:

Keep the reel fingers in good condition and straighten or replace them as necessary.

Removing Steel Fingers

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

1. Lower the header, raise the reel, and engage the reel safety props.

2. Shut down the combine, and remove the key from the ignition.

3. Remove the tine tube bushings from the applicable tine tube at the center and left reel discs. Refer to *Removing Bushings from Five-, Six-, or Nine-Bat Reels, page 511.*
MAINTENANCE AND SERVICING

4. Attach tine tube arms (B) (temporarily) to the reel disc at the original attachment locations (A).

5. Cut the damaged finger so it can be removed from the tine tube.

6. Remove bolts from the existing fingers and slide the fingers over to replace the finger that was cut off in Step 4, page 508 (remove the tine tube arms [B] from the tine tubes as necessary).

Figure 5.230: Tine Tube Arm

Installing Steel Fingers

⚠️ WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

1. Remove the applicable finger. Refer to Removing Steel Fingers, page 507.

2. Slide the new fingers and tine tube arm (A) onto the end of the tube.

3. Install the tine tube bushings. Refer to Installing Bushings on Five-, Six-, or Nine-Bat Reels, page 516.

4. Attach the fingers to the tine tube with bolts and nuts (B).

Figure 5.231: Tine Tube
Removing Plastic Fingers

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

1. Shut down the engine and remove key from the ignition.
2. Remove screw (A) using a Torx® Plus 27 IP socket wrench.
3. Push the clip at the top of the finger back towards the reel tube as shown and remove the finger from the tube.
Installing Plastic Fingers

WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

1. Position the finger on the rear of the finger tube. Engage the lug at the bottom of the finger in the lower hole in the tine tube.
2. Lift the top flange gently and rotate the finger as shown until the lug in the top of the finger engages the upper hole in the finger tube.

IMPORTANT:
Do NOT apply force to the finger prior to tightening the mounting screw. Applying force without tightening the mounting screw will break the finger or shear the locating pins.

3. Install screw (A) using a Torx® Plus 27 IP socket wrench and torque to 8.5–9.0 Nm (75–80 lbf·in).

Figure 5.234: Installing Plastic Finger

Figure 5.235: Installing Plastic Finger
5.15.5 Tine Tube Bushings

Removing Bushings from Five-, Six-, or Nine-Bat Reels

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

⚠️ WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

1. Lower the header, raise the reel, and engage the reel safety props.

2. Shut down the engine, and remove the key from the ignition.

 NOTE:
 If replacing only the cam end bushing, refer to Step 8, page 512.

Center disc and tail end bushings

3. Remove the reel endshields and endshield support (C) from the tail end of the reel at the applicable tine tube location.

 NOTE:
 There are no endshields on the center disc.

4. Remove bolts (A) securing tine tube arm (B) to the disc.

 IMPORTANT:
 Note the hole locations in the arm and disc and ensure the bolts (A) are reinstalled at the original locations.

Figure 5.236: Tail End
5. Release the bushing clamps (A) using a small screwdriver to separate the serrations. Pull the clamp off the tine tube.

![Figure 5.237: Bushing Clamp](image)

6. Rotate tine tube arm (A) until clear of the disc and slide the arm inboard off of bushing (B).

7. Remove the bushing halves (B). If required, remove the next tine or plastic finger so the arm can slide off the bushing. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 509
 - Removing Steel Fingers, page 507

![Figure 5.238: Bushing](image)

Cam end bushings

8. Remove the endshields and endshield support (A) at the applicable tine tube location on the cam end.

NOTE:

Removing cam end bushings requires the tine tube be moved through the disc arms to expose the bushing.

![Figure 5.239: Cam End](image)
9. Remove the reel endshields and endshield support (C) from the tail end of the reel at the applicable tine tube location.

NOTE:
There are no endshields on the center disc.

10. Remove the bolts (A) securing the tine tube arms (B) to the tail and center discs.

11. Release the bushing clamps or disconnect the support channels from the tine tube support (if installed) depending on which tine tube is being moved. Three tine tubes (A) require channel disconnection and two tine tubes (B) require only bushing clamp removal.

12. Remove bolt (A) from the cam linkage so the tine tube (B) is free to rotate.
13. Release the bushing clamps (A) at the cam disc using a small screwdriver to separate the serrations. Move the clamps off the bushings.

![Figure 5.243: Bushing Clamp](image1)

14. Slide the tine tube (A) outboard to expose the bushing (B).

15. Remove the bushing halves (B). If required, remove the next tine or plastic finger so the arm can slide off the bushing. Refer to the following procedures if necessary:
 - Removing Plastic Fingers, page 509
 - Removing Steel Fingers, page 507

![Figure 5.244: Cam End](image2)

Tine tube bushings (if installed)

16. Locate the support (A) that requires a new bushing.

17. Remove the four bolts (B) securing channels (C) to the support (A).

18. Remove screw (E) and remove the finger (D) if it is too close to the support to allow access to the bushing. Refer to Removing Plastic Fingers, page 509.

![Figure 5.245: Tine Tube Support](image3)
19. Release the bushing clamps (A) using a small screwdriver to separate the serrations.

20. Move the clamps (A) off the bushings.

21. On each reel, there are three right-facing supports (A). Slide the support off the bushing halves (B).
22. On each reel, there are two left-facing supports (A). Rotate the supports until the flanges clear the channels before moving them off the bushing (B). Move the tine tube slightly away from the reel if necessary.

23. Remove the bushing halves (B) from the tine tubes.

Figure 5.249: Opposite Support

Installing Bushings on Five-, Six-, or Nine-Bat Reels

⚠️ **WARNING**

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

Ensure tine tube is supported at all times to prevent damage to the tube or other components.

NOTE:

Use a pair of modified channel lock pliers (A) to install bushing clamps (C). Secure pliers in a vise and grind a notch (B) into the end of each arm to fit the clamp as shown.

Figure 5.250: Modified Pliers
Cam end bushings

1. Position the bushing halves (B) on the tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

2. Slide the tine tube (A) towards the tail end of the reel to insert the bushing (B) into the tine tube arm. If the tine tube supports are installed, ensure the bushings at those locations slide into the support.

3. Reinstall the previously removed fingers or tines. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 509
 - Removing Steel Fingers, page 507

4. Install the bushing clamp (A) onto the tine tube adjacent to the flangeless end of the bushing (B).

5. Position the clamp (A) on the bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

6. Tighten the clamp (A) using modified channel lock pliers (B) until finger pressure will NOT move the clamp.

 IMPORTANT:
 Overtightening clamp may result in breakage.
7. Line up the tine tube (B) with the cam arm and install bolt (A). Torque bolt to 165 Nm (120 lbf·ft).

8. Install the bolts (A) securing tine tube arm (B) to the center disc.

9. Install tine tube arm (B) and endshield support (C) to the tail end of the reel at the applicable tine tube location and secure with bolts (A).

NOTE:
There are no endshields on the center discs.

10. Install the endshield support (A) at the applicable tine tube location at the cam end.

11. Reinstall the reel endshields. Refer to *Replacing Reel Endshields, page 523.*
Center disc and tail end bushings

12. Position the bushing halves (B) on the tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

13. Slide the tine tube (A) onto the bushing (B) and position against the disc at the original location.

14. Reinstall the previously removed fingers or tines. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 509
 - Removing Steel Fingers, page 507

15. Install the bushing clamp (A) onto the tine tube adjacent to the flangeless end of the bushing (B).

16. Position the clamp (A) on the bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

17. Tighten the clamp (A) using modified channel lock pliers (B) until finger pressure will NOT move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.
18. Install the bolts (A) securing tine tube arm (B) to the center disc.

19. Install tine tube arm (B) and endshield support (C) to the tail end of the reel at the applicable tine tube location and secure with bolts (A).

NOTE:
There are no endshields on the center discs.

![Figure 5.260: Tail End](image)
Tine tube support (if installed) bushings

20. Position the bushing halves (B) on the tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

21. On each reel, there are three right-facing supports (A). Slide the support onto the bushing (B).

22. On each reel, there are two left-facing supports (A). Rotate the support (A) until its flanges clear the channels (C) before moving the support onto the bushing (B).

NOTE:
If necessary, move the tine tube (D) slightly away from the reel to allow the support flange enough room to clear the channel.
23. Install the bushing clamp (A) onto the tine tube adjacent to the flangeless end of the bushing (B).

24. Position the clamp (A) on the bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

25. Tighten the clamp (A) using modified channel lock pliers (B) until finger pressure will NOT move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.

26. Reattach the channels (C) to the three right-facing supports (A) on each reel with screws (B) and nuts. Torque screws to 43 Nm (32 lbf-ft).

27. Using screws (E), reinstall any fingers (D) that were previously removed. Refer to *Installing Plastic Fingers, page 510.*
28. Reattach the channels (C) to the two left-facing supports (A) on each reel with screws (B) and nuts. Torque screws to 43 Nm (32 lbf∙ft).

29. Using screws (E), reinstall any fingers (D) that were previously removed. Refer to Installing Plastic Fingers, page 510.

5.15.6 Reel Endshields

Reel endshields and supports do not require regular maintenance, but they should be checked periodically for damage and loose or missing fasteners. Slightly dented or deformed endshields and supports are repairable, but it’s necessary to replace severely damaged components.

You can attach reel endshields to either end of the reel.

Replacing Reel Endshields

\[\textbf{DANGER}\]

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and reel.
2. Shut down the engine, and remove the key from the ignition.
3. Rotate the reel manually until the reel endshield (A) requiring replacement is accessible.
4. Remove three bolts (B).
MAINTENANCE AND SERVICING

5. Lift end of reel endshield (A) off support (B).

6. Remove the reel endshield from the supports.

7. Remove the reel endshield (A) from support (B).

8. Install new reel endshield (C) onto support (B).

9. Reattach reel endshield (A) onto support (B), ensuring it is installed on top of reel endshield (C).

10. Reinstall bolts (D).

11. Tighten all hardware.
Replacing Reel Endshield Supports

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and reel.
2. Shut down the engine, and remove the key from the ignition.
3. Rotate the reel manually until the reel endshield requiring replacement is accessible.
4. Remove bolt (B) from support (A).
5. Remove bolts (C) from support (A) and two adjacent supports.

6. Move the reel endshields (A) away from the tine tube and rotate the support (B) towards the reel to remove it.
7. Insert tabs of new support (B) into the slots in the reel endshields (A). Ensure the tabs engage both reel endshields.
8. Secure support (B) to the disc with bolt (C) and nut. Do **NOT** tighten.
9. Secure the reel endshields (A) to support (B) with bolt (D) and nut. Do **NOT** tighten.
10. Reattach the supports with bolts (E) and nuts.
11. Check the clearance between the tine tube and reel endshield support and adjust if necessary.
12. Torque nuts to 27 Nm (20 lbf·ft).
5.16 Reel System

The hydraulically driven reel motor drives the chain case that is attached between the reels on a double-reel header.

5.16.1 Reel Drive Cover

Removing Reel Drive Cover

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove six bolts (A) securing upper cover (B) to the reel drive and lower cover (C).

3. Remove three bolts (A) and remove lower cover (B) if necessary.

Figure 5.274: Drive Cover

Figure 5.275: Lower Drive Cover (Upper Cover Removed)
Installing Reel Drive Cover

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Position lower drive cover (B) onto the reel drive (if previously removed), and secure with three bolts (A).

2. Position upper drive cover (B) onto the reel drive and lower cover (C), and secure with six bolts (A).
5.16.2 Reel Drive Chain Tension

Loosening Reel Drive Chain

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower reel, shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Loosen six nuts (A). Slide the motor (B) and motor mount (C) down towards the reel shaft.

Tightening Reel Drive Chain

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the reel, shut down the engine, and remove the key from the ignition.
2. Ensure the six bolts (A) securing the motor mount to the chain case are loose.
3. Slide the motor (A) and motor mount (B) upward until the chain (C) is tight.

4. Ensure there is 3 mm (1/8 in.) of slack at the chain midspan. Adjust if necessary.

5. Tighten six nuts (A).

6. Torque nuts (A) to 73 Nm (54 lbf-ft).

7. Install the drive cover. Refer to *Installing Reel Drive Cover, page 527.*
5.16.3 Reel Drive Sprocket

For Case IH and New Holland combine models, configure the combine according to the reel sprocket size in order to optimize the auto reel to ground speed control. Refer to the combine service manual for more information.

Removing Reel Drive Sprocket

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove drive reel drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Loosen the drive chain (A). Refer to Loosening Reel Drive Chain, page 528.
4. Remove the drive chain (A) from the drive sprocket (B).
5. Remove the cotter pin (A), slotted nut (B), and flat washer (C) from the motor shaft.
6. Remove the drive sprocket (D). Ensure the key remains in the shaft.

IMPORTANT:

To avoid damaging the motor, use a puller if the drive sprocket (D) does not come off by hand. Do NOT use a pry bar and/or hammer to remove the drive sprocket.
Installing Reel Drive Sprocket

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Align the keyway in sprocket (D) with the key on the motor shaft, and slide the sprocket onto the shaft. Secure with flat washer (C) and slotted nut (B).

2. Torque slotted nut (B) to 54 Nm (40 lbf·ft).

3. Install cotter pin (A). If necessary, tighten the slotted nut (B) to the next slot to install the cotter pin.

4. Install the drive chain (A) onto the drive sprocket (B).

5. Tighten the drive chain. Refer to Tightening Reel Drive Chain, page 528.

6. Replace reel drive cover. Refer to Installing Reel Drive Cover, page 527.
5.16.4 Double-Reel U-Joint

The double-reel drive U-joint allows each reel to move independently of the other.

Lubricate the U-joint according to the specifications. Refer to 5.3.6 Lubrication and Servicing, page 390.

Replace the U-joint if severely worn or damaged. Refer to Removing Double-Reel U-Joint, page 532.

Removing Double-Reel U-Joint

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Support the inboard end of the right reel with a front end loader and nylon slings (A) (or equivalent lifting device).
 IMPORTANT:
 Avoid damaging or denting the center tube by supporting the reel as close to the end disc as possible.

4. Remove the six bolts (A) attaching U-joint flange (B) to driven sprocket (C).
5. Remove the U-joint.
 NOTE:
 It may be necessary to move the right reel sideways so that the U-joint can clear the tube.
Installing Double-Reel U-Joint

NOTE:
It may be necessary to move the right reel sideways so that the U-joint can clear the reel tube.

1. Position U-joint flange (B) onto driven sprocket (C) as shown. Install six bolts (A) and hand-tighten. Do NOT torque the bolts.

2. Position the right reel tube against the reel drive and engage the stub shaft into the U-joint pilot hole.

3. Rotate the reel until the holes in the end of the reel tube and U-joint flange (B) line up.

4. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to four 1/2 in. bolts (A) and secure with lock washers.

5. Torque to 102–115 Nm (75–85 lbf-ft).

6. Remove temporary reel support (A).

7. Install the drive cover. Refer to Installing Reel Drive Cover, page 527.
5.16.5 Reel Drive Motor

The reel drive motor does not require regular maintenance or servicing. If problems occur with the motor, remove it and have it serviced by your MacDon Dealer.

Removing Reel Drive Motor

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Loosen the drive chain. Refer to Loosening Reel Drive Chain, page 528.
3. Remove the drive sprocket. Refer to Removing Reel Drive Sprocket, page 530.
4. Mark hydraulic lines (A) and their locations in the motor (B) to ensure correct reinstallation.
5. Disconnect hydraulic lines (A) at motor (B). Cap or plug open ports and lines.
6. Remove four nuts and bolts (C), and remove the motor (B). Retrieve the spacer (if installed) from between motor (B) and the motor mount.
7. If the motor is being replaced, remove the hydraulic fittings from the old motor and install them in the new motor using the same orientations. Refer to Reference, page 577 for torque specifications.

Installing Reel Drive Motor

1. Slide motor mount (A) up or down so the motor mounting holes (B) are accessible through the openings in the chain case.
2. Attach motor (A) (and spacer if previously removed) to motor mount (B) with four 1/2 x 1-3/4 in. countersunk bolts and nuts (C).

3. Torque nuts (C) to 73 Nm (54 lbf·ft).

4. If installing a new motor, install the hydraulic fittings (not shown) from the original motor and torque to 110–120 Nm (81–89 lbf·ft).

5. Remove the caps or plugs from the ports and lines and connect hydraulic lines (A) to hydraulic fittings (B) on motor (C).

NOTE:
Ensure hydraulic lines (A) are installed in their original locations.

6. Install the drive sprocket. Refer to *Installing Reel Drive Sprocket, page 531*.

7. Tighten the drive chain. Refer to *Tightening Reel Drive Chain, page 528*.

5.16.6 Replacing Drive Chain on Double Reel

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.

2. Remove drive reel drive cover. Refer to *Removing Reel Drive Cover, page 526*.

3. Loosen the drive chain. Refer to *Loosening Reel Drive Chain, page 528*.
4. Support the inboard end of the right reel with a front end loader and nylon slings (A) (or equivalent lifting device). **IMPORTANT:**
Avoid damaging or denting the center tube by supporting the reel as close to the end disc as possible.

5. Remove the four bolts (A) securing the reel tube to the U-joint flange (B).

6. Move the right reel sideways to separate the reel tube (A) from the U-joint (B).

7. Remove the drive chain (C).

8. Route the new chain (C) over the U-joint (B) and position onto the sprockets.
9. Position the right reel tube against the reel drive and engage the stub shaft into the U-joint pilot hole.

10. Rotate the reel until the holes in end of the reel tube and U-joint flange line up.

11. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to four 1/2 in. bolts (A) and secure with lock washers.

12. Torque to 102–115 Nm (75–85 lbf-ft).

13. Remove the temporary reel support (A).

14. Tighten the drive chain. Refer to Tightening Reel Drive Chain, page 528.

15. Replace reel drive cover. Refer to Installing Reel Drive Cover, page 527.

5.16.7 Replacing Drive Chain on Single Reel

1. Remove drive reel drive cover. Refer to Removing Reel Drive Cover, page 526.

2. Loosen the drive chain. Refer to Loosening Reel Drive Chain, page 528.

3. Lift chain (A) off drive sprocket (B).

4. Lower the chain until free of lower sprocket (C) and remove the chain from the drive.

5. Position new chain (A) around the bottom teeth on lower sprocket (C).

6. Lift the chain onto drive sprocket (B) ensuring all the links are properly engaged in the teeth.

7. Tighten the drive chain. Refer to Tightening Reel Drive Chain, page 528.

8. Replace reel drive cover. Refer to Installing Reel Drive Cover, page 527.
5.16.8 Replacing Reel Speed Sensor

The reel speed sensors (and the procedures for replacing them) vary with the combine model.

Replacing AGCO (Challenger, Gleaner, and Massey Ferguson) Sensor

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Disconnect the electrical connector (A).

4. Cut the cable tie (A) securing the harness to the cover.
5. Remove two screws (B), sensor (C), and harness. If necessary, bend the cover (D) to remove the harness.
6. Feed the wire of the new sensor behind the cover (D) and through the chain case.
7. Locate the new sensor in support (E) and attach with two screws (B).
8. Adjust the gap between the sensor disc (F) and the sensor (C) to 0.5–1.5 mm (0.02–0.06 in.).
9. Connect the electrical harness (A).

IMPORTANT:
Ensure the sensor electrical harness does NOT contact the chain or sprocket.

10. Reinstall the drive cover. Refer to *Installing Reel Drive Cover, page 527.*

11. Verify proper operation of the sensor.

Figure 5.304: Electrical Harness
Replacing John Deere Reel Speed Sensor

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Disconnect the electrical connector (D).
4. Remove the top nut (C) and remove the sensor (B).
5. Remove the top nut from the new sensor and position the sensor into the support. Secure with top nut (C).
6. Adjust the gap between the sensor disc (A) and the sensor (B) to 3 mm (1/8 in.) using nut (C).
7. Connect to harness at (D).

IMPORTANT:
Ensure the sensor electrical harness does NOT contact the chain or sprocket.

8. Reinstall the drive cover. Refer to Installing Reel Drive Cover, page 527.

Replacing CLAAS 400 Series Reel Speed Sensor

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Disconnect the electrical connector (C).
4. Remove the top nuts (D) and remove the sensor (B).
5. Remove the top nut from the new sensor and position the sensor into the support. Secure with top nut (D).
6. Adjust the gap between the sensor disc (A) and the sensor (B) to 3 mm (1/8 in.) using nuts (D).
7. Connect to harness at (C).

IMPORTANT:
Ensure the sensor electrical harness does NOT contact the chain or sprocket.

8. Reinstall the drive cover. Refer to Installing Reel Drive Cover, page 527.
DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 526.
3. Disconnect the sensor’s (A) electrical connector located behind chain case.
4. Remove cable ties (B).
5. Remove shield (C) and rivets (D).
6. Remove nut (E) and remove the sensor (A).
7. Position the new sensor (A) into the support (F). Secure with nut (E).
8. Adjust speed sensor to achieve a gap of 1–3 mm (1/16–1/8 in.) from the sensor disc (G).
9. Route harness as shown and secure with shield (C) and rivets (D).
10. Secure harness to sensor support with cable ties (B) as shown.

IMPORTANT:
Ensure the sensor electrical harness does NOT contact the chain or sprocket.

11. Reinstall the drive cover. Refer to Installing Reel Drive Cover, page 527.
5.17 Transport System (Optional)

Refer to 6.4.4 Stabilizer Wheels and Slow Speed Transport Package, page 553 for more information.

5.17.1 Checking Wheel Bolt Torque

If a transport system is installed, adhere to the following procedure for torquing the wheel bolts:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Turn off the engine and remove key.
2. Follow the bolt tightening sequence shown, and torque the wheel bolts to 110–120 Nm (80–90 lbf-ft).

IMPORTANT:
Whenever a wheel is removed and reinstalled, check the wheel bolt torque after one hour of operation and every 100 hours thereafter.

![Figure 5.308: Bolt Tightening Sequence](image)
5.17.2 Checking Axle Bolt Torque

If a transport system is installed, adhere to the following procedure for torquing the axle bolts:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Figure 5.309: Axle Bolts

1. Check and tighten axle bolts **DAILY** until torque is maintained as follows:
 - (A): 244 Nm (180 lbf·ft)
 - (B): 203 Nm (150 lbf·ft)
 - (C): 244 Nm (180 lbf·ft)
5.17.3 Checking Tire Pressure

Check the tire inflation pressure and inflate according to the information provided in Table 5.5, page 544.

⚠️ WARNING

- Service tires safely.
- A tire can explode during inflation, which could cause serious injury or death.
- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- Do NOT exceed maximum inflation pressure indicated on tire label or sidewall.
- Replace tires that have defects.
- Replace wheel rims that are cracked, worn, or severely rusted.
- Never weld a wheel rim.

- Never use force on an inflated or partially inflated tire.
- Make sure the tire is correctly seated before inflating to operating pressure.
- If the tire is not correctly positioned on the rim or is overinflated, the tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can thrust the tire in any direction endangering anyone in the area.
- Make sure all the air is removed from the tire before removing the tire from the rim.
- Do NOT remove, install, or repair a tire on a rim unless you have the proper equipment and experience to perform the job.
- Take the tire and rim to a qualified tire repair shop.

Table 5.5 Tire Pressure

<table>
<thead>
<tr>
<th>Size</th>
<th>Load Range</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST205/75 R15</td>
<td>D</td>
<td>517 kPa (75 psi)</td>
</tr>
<tr>
<td>ST205/75 R15</td>
<td>E</td>
<td>552 kPa (80 psi)</td>
</tr>
</tbody>
</table>
6 Options and Attachments

The following options and attachments are available for use with your header. See your MacDon Dealer for availability and ordering information.

6.1 Float Module

6.1.1 Hillside Extension Kit

The Hillside Extension kit allows overfilling the hydraulic reservoir on FM100 Float Modules. This allows operation on steep hillsides while maintaining oil supply to the suction side of pump.

Installation instructions are included in the kit.

MD #B6057
6.2 Reel

6.2.1 Multi-Crop Rapid Reel Conversion Kit

For use on double reel headers only, the multi-crop rapid reel conversion kit decreases the time required to change the fore-aft cylinder position on the reel support arm from the normal operating location to a farther aft location that minimizes crop disturbance. The kit also allows the reel fore-aft cylinders to be quickly moved to the normal operating location.

MD #B6590

NOTE:
The Multi-Crop Rapid Reed Conversion kit is not available for European-configured FD1 Series headers.

6.2.2 Reel Arm Extension Kit (European-configured Headers Only)

This kit provides extensions for the outer reel support arms on a European-configured FD1 Series header. These extensions provide the additional reel arm length required to properly install a vertical knife mount kit (MD #B5757, MD #B6572) onto the header. The Reel Arm Extension kit also includes reel fore-aft brackets allowing quick reel repositioning from the reel’s most forward position to its most rearward position.

MD #B5691
6.2.3 Lodged Crop Reel Finger Kit

The steel fingers (A) provided in the Lodged Crop Reel Finger kit attach to the ends of every other tine bar and help to clear material in heavy, hard-to-cut crops such as lodged rice.

Each kit contains three fingers for the cam end of the reel and three fingers for the tail end. Hardware and installation instructions are included in the kit.

MD #B4831

6.2.4 PR15 Tine Tube Reel Conversion Kit

These kits allow conversion from a six-bat reel to a nine-bat reel and conversion from a five-bat reel to a six-bat reel.

Order the following bundles according to your header size and type:

Five-bat to six-bat reels:
- 9.1 m (30 ft.) – Plastic Fingers MD #B6344
- 10.7 m (35 ft.) – Plastic Fingers MD #B6345

Six-bat to nine-bat reels:
- 9.1 m (30 ft.) – Plastic Fingers MD #B6347

NOTE:
You must also order additional endshields when converting the reel.

6.2.5 Reel Endshield Kit

The steel shields provided in the reel endshield kit attach to the ends of the reels and help to clear material in heavy, hard-to-cut crops. They are standard equipment on all headers (except those with nine-bat reels). Hardware and installation instructions are included in the kit.

See your MacDon Dealer for more information.
6.2.6 Tine Tube Reinforcing Kit

Tine tube reinforcing kits are available for five- and six-bat reels. They are designed to support high reel loads when cutting extremely heavy crops. Installation instructions are provided in the kit.

- Five-Bat Reels – MD #B5825
- Six-Bat Reels – MD #B5826

Figure 6.6: Five-Bat Reinforcing Kit Shown – Six-Bat Reinforcing Kit Similar
6.3 Cutterbar

6.3.1 Cutterbar Wearplate

Cutterbar wearplates are recommended for cutting on the ground when the soil is adhering to the steel.

Order one of the following bundles based on header size:

- 13.7 m (45 ft.) – MD #B5114

![Figure 6.7: Cutterbar Wearplates](image)

6.3.2 Knifehead Shield

Knifehead shields attach to the endsheets and reduce the knifehead opening to prevent cut crop, particularly severely lodged crop, from accumulating over the knifehead and damaging the knife drive box and endsheet.

Order the following bundles according to

- Regular guards – MD #220101
- Stub guards – MD #220103

![Figure 6.8: Knifehead Shield](image)
6.3.3 Extended Center Filler

The Extended Center Filler kit (MD #B6450) includes a reinforced flap 3 mm (1/8 in.) thick that extends onto the feed draper of a MacDon FM100 Float Module to help reduce loss when cutting crops such as beans and peas. Installation instructions are included with the kit.

MD #B6450

6.3.4 Rock Retarder

The rock retarder (A) consists of a steel angle that is bolted to the cutterbar immediately aft of the knife, and helps prevent rocks and large debris from being swept onto the drapers with the crop. Installation instructions are included with the kit.

Order bundles by header size:

- 9.1–10.7 m (30–35 ft.) – MD #B5084
- 12.2–13.7 m (40–45 ft.) – MD #B5085

6.3.5 Stub Guard Conversion Kit

Stub guards, complete with top guides and adjuster shoes, are designed to cut tough crops.

Installation and adjustment instructions are included in the kits.

Order one of the following bundles according to your header size:

- 4.6 m (15 ft.) – MD #B5009
- 6.1 m (20 ft.) – MD #B5010
- 7.6 m (25 ft.) – MD #B5011
- 9.1 m (30 ft.) – MD #B5012
- 10.7 m (35 ft.) – MD #B5013
6.3.6 **FD1 Series Vertical Knife Mounts and Double Vertical Knife Hose Kits**

Installation and adjustment instructions are included in the bundle.

Order the FD1 vertical knife bundles according to the left or right side:

For European-configured FD1 Series headers:
- Left Vertical Knife – MD #B6137
- Right Vertical Knife – MD #B6138

For non-European-configured FD1 Series headers:
- Left Vertical Knife – MD #B5757
- Right Vertical Knife – MD #B6572

NOTE:

Vertical knife kit bundles are size-specific and are required to complete vertical knife installations on both European-configured and non-European-configured headers.

Order the following FD1 vertical knife hose kit bundles:
- Double Vertical Knife Hose, Flex 9.1 m (30 ft.) – MD #B6247
- Double Vertical Knife Hose, Flex 10.7 m (35 ft.) – MD #B6248
- Double Vertical Knife Hose, Flex 12.2 m (40 ft.) – MD #B6249
- Double Vertical Knife Hose, Flex 13.7 m (45 ft.) – MD #B6250

NOTE:
If mounting onto multiple non-European-configured headers, you will also require the auxiliary vertical knife plumbing kit MD #B5406.

6.3.7 **Vertical Knife Plumbing Kits**

Order one of the following bundles according to your header type:
- FD130 – MD #B6247
- FD135 – MD #B6248
- FD140 – MD #B6249
- FD145 – MD #B6250

6.3.8 **Roto-Shear Completion Package**

This package contains the plumbing and components necessary to connect two roto-shears to existing vertical knife plumbing kits.

MD #B6432

54. The Left Vertical Knife Mount kit (MD #B6137) cannot be installed onto the header by itself and must be installed with the Right Vertical Knife Mount kit (MD #B6138).

55. The Right Vertical Knife Mount kit (MD #B6138) can be installed onto the header either by itself or with the Left Vertical Knife Mount kit (MD #B6137).
6.4 Header

6.4.1 Divider Latch Kit

Divider latch kits attach to the endsheets. They allow for quick removal and storage of endsheet divider cones and, if required, reduce the transport width of the header. Installation instructions are included in the kit.

MD #B6158

![Figure 6.12: Divider Latch](image)

6.4.2 Stabilizer Wheels

Stabilizer wheels help stabilize the header in field conditions that would otherwise cause the header to bounce, resulting in uneven cutting heights. Installation and adjustment instructions are included in the kit.

Available as an attachment for use with 9.1 m, 10.7 m, 12.2 m, and 13.7 m (30 ft., 35 ft., 40 ft., and 45 ft.) headers.

MD #C1986

![Figure 6.13: Stabilizer Wheel](image)
6.4.3 Secondary Stabilizer Wheel

The secondary stabilizer wheel is added to existing stabilizer wheels to help stabilize the header in field conditions that would otherwise cause the header to bounce and result in uneven cutting height. Installation and adjustment instructions are included with the kit.

Available as an attachment for use with 9.1 m, 10.7 m, 12.2 m, and 13.7 m (30 ft., 35 ft., 40 ft., and 45 ft.) headers.

MD #B617966

6.4.4 Stabilizer Wheels and Slow Speed Transport Package

Stabilizer / slow speed transport wheels help to stabilize the header in field conditions that would otherwise cause the header to bounce, resulting in uneven cutting heights. This system is similar to the Stabilizer Wheel option. Refer to 6.4.2 Stabilizer Wheels, page 552.

Stabilizer / slow speed transport wheels are used to convert the header into transport mode for slow-speed towing behind a properly-configured combine (or agricultural tractor). A tow pole and installation instructions are included in the kit.

MD #C2007

56. Kit consists of one wheel assembly; two kits are required to upgrade both sides of the header.
6.4.5 Backsheet Extension Kit

The Backsheet Extension kit (A) helps retain small seeds in shatter prone crops such as canola. They are usually used with headers equipped with upper cross augers (UCA).

A base kit is required for 9.1 m (30 ft.) FD1 headers and larger. Headers larger than 9.1 m (30 ft.) will need additional extension kits. Order the following bundles according to your header size:

Order the following bundles according to your FD1 Series Header size:

- 9.1 m (30 ft.) – MD #B6355 FD1 Backsheet Extension
- 10.7 m (35 ft.) – MD #C2045 FD1 Backsheet Panel Extensions
- 12.2 m (40 ft.) – MD #C2046 FD1 Backsheet Panel Extensions
- 13.7 m (45 ft.) – MD #C2047 FD1 Backsheet Panel Extensions

6.4.6 Center Skid Shoes Kit

The Center Skid Shoes kit provides improved performance when cutting low to the ground.

Installation instructions are included in the kit.

MD #B5615
6.5 Crop Delivery

6.5.1 FM100 Dual Auto Header Height Control (AHHC) Sensor Kit

This kit adds two sensors to the float linkage, adding automatic lateral tilt compensation for the header. When installed, the combine will automatically tilt the feeder house from side to side to follow uneven terrain during operation. Installation instructions are included in the kit.

NOTE:
Not recommended for extremely hilly conditions.

MD #B6211

Figure 6.17: Dual AHHC Sensors

6.5.2 FM100 Feed Auger Flighting

Auger flighting (A) on the FM100 can be configured to specific combines and crop conditions. Refer to 4.1 Float Module Feed Auger Configurations, page 307 for combine/crop specific configurations.

Figure 6.18: FM100 Feed Auger Flighting
6.5.3 In-Cab Draper Speed Control (ICDSC) Kit

Installing this kit allows Operators to adjust the side draper’s speed from the combine’s cab.

- MD #B6208 – Cab Draper Control, John Deere
- MD #B6385 – Cab Draper Control, Case New Holland
- MD #B6387 – Cab Draper Control, Generic

6.5.4 Draper Deflector (Narrow)

Narrow metal draper deflectors attach to the inboard side of the endsheets to prevent material from falling through the gap between the endsheet and the draper while minimizing reel carryover in bushy crops.

Refer to the header parts catalog for the necessary parts.
6.5.5 Draper Deflector (Wide)

Wide metal draper deflectors attach to the inboard side of the endsheets to prevent material from falling through the gap between the endsheet and the draper.

IMPORTANT:

The wide draper deflector is **NOT** compatible with the Upper Cross Auger option.

![Figure 6.21: Draper Deflector (Wide)](image)

6.5.6 Stripper Bars

Stripper bars improve feeding in certain crops such as rice. They are **NOT** recommended in cereal crops.

Select the stripper bar kit based on combine feeder house width. Refer to Table 6.1, page 557.

NOTE:

MD #B6043 is for John Deere S6X0 Series only.

![Figure 6.22: Stripper Bar](image)

Table 6.1 Stripper Bar Configurations and Recommendations

<table>
<thead>
<tr>
<th>Bundle (MD #)</th>
<th>Stripper Bar Length</th>
<th>Opening Width (Installed on FM100)</th>
<th>Recommended Feeder House Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6042</td>
<td>265 mm (10-1/2 in.)</td>
<td>1317 mm (52 in.)</td>
<td>1250–1350 mm (49–65 in.)</td>
</tr>
<tr>
<td>B6043</td>
<td>265 mm (10-1/2 in.)</td>
<td>1317 mm (52 in.)</td>
<td>For John Deere S6X0 Series only</td>
</tr>
<tr>
<td></td>
<td>(with cutout)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6044</td>
<td>325 mm (13 in.)</td>
<td>1197 mm (47 in.)</td>
<td>For specialty crops only</td>
</tr>
<tr>
<td>B6045</td>
<td>365 mm (14-1/2 in.)</td>
<td>1117 mm (44 in.)</td>
<td>1100 mm (43-1/2 in.) and below</td>
</tr>
<tr>
<td>B6046</td>
<td>403 mm (16 in.)</td>
<td>1041 mm (41 in.)</td>
<td>For specialty crops only</td>
</tr>
<tr>
<td>B6213</td>
<td>515 mm (20 in.)</td>
<td>817 mm (32 in.)</td>
<td>For specialty crops only</td>
</tr>
</tbody>
</table>
6.5.7 Auger Dent Repair Kit

This kit allows Operators to repair dents close to the finger/guide area that the feed auger may have sustained during regular use.

Attachment hardware and installation instructions are included in the kit.

MD #237563

Instruction MD #147606

![Figure 6.23: Auger Dent Repair Kit](image)

6.5.8 Upper Cross Auger (UCA)

The upper cross auger (A) attaches in front of the backtube and improves crop feeding into the center of the header in heavy crop conditions. It is ideal for high-volume harvesting of forages, oats, canola, mustard, and other tall, bushy, hard-to-feed crops.

Order from the following list of kits according to your header size:

For FD1 North American headers:

- 9.1 m (30 ft.) – MD #B6462
- 10.7 m (35 ft.) – MD #B6463
- 12.2 m (40 ft.) – MD #B6464
- 13.7 m (45 ft.) \(^{57}\) – MD #B6398

![Figure 6.24: Upper Cross Auger](image)

\(^{57}\) This is a 12.2 m (40 ft.) auger, and is backtube mounted. It does NOT span the full length of the header.
6.5.9 European Combine Upper Cross Auger (UCA)

The European Combine UCA (A) attaches in front of the backtube and improves crop feeding at the center of the header in heavy crop conditions.

This kit is ideal for high-volume harvesting of forages, oats, canola, rapeseed, mustard, and other tall, bushy, and hard-to-feed crops.

IMPORTANT:
This optional kit is **ONLY** available for European markets, and should **ONLY** be used on combines. Do **NOT** use the European Combine UCA on self-propelled windrowers, as damage will occur at higher operating speeds.

Order from the following bundles according to your header size:

- 9.1 m (30 ft.) – MD #B6585
- 10.7 m (35 ft.)– MD #B6586
- 12.2 m (40 ft.) – MD #B6587
- 13.7 m (45 ft.)58 – MD #B6588

6.5.10 Rice Divider Rods

Rice divider rods attach to the left and right crop dividers and divide tall and tangled rice crops in a similar manner to standard crop divider rods performing in standing crops. Installation instructions are included in the kit.

MD #B5609

58. This is a 12.2 m (40 ft.) auger, and is backtube mounted. It does **NOT** span the full length of the header.
Troubleshooting

7.1 Crop Loss at Cutterbar

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Does not pick up downed crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutterbar too high</td>
<td>Lower cutterbar</td>
<td>3.7.1 Cutting off the Ground, page 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7.2 Cutting on the Ground, page 62</td>
</tr>
<tr>
<td>Header angle too low</td>
<td>Increase header angle</td>
<td>3.7.5 Header Angle, page 81</td>
</tr>
<tr>
<td>Reel too high</td>
<td>Lower reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Reel too far back</td>
<td>Move reel forward</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Ground speed too fast for reel speed</td>
<td>Increase reel speed or reduce ground speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7.7 Ground Speed, page 90</td>
</tr>
<tr>
<td>Reel fingers not lifting crop sufficiently</td>
<td>Increase finger pitch aggressiveness</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Reel fingers not lifting crop sufficiently</td>
<td>Install lifter guards</td>
<td>See your MacDon Dealer</td>
</tr>
</tbody>
</table>

Symptom: Heads shattering or breaking off

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Ground speed too fast</td>
<td>Reduce ground speed</td>
<td>3.7.7 Ground Speed, page 90</td>
</tr>
<tr>
<td>Crop too ripe</td>
<td>Operate at night when humidity is higher</td>
<td></td>
</tr>
</tbody>
</table>

Symptom: Material accumulating in gap between cut-out in endsheet and knifehead

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop heads leaning away from knifehead hole in endsheet</td>
<td>Add knifehead shields (except in damp or sticky soils)</td>
<td>5.8.8 Knifehead Shield, page 452</td>
</tr>
</tbody>
</table>

Symptom: Strips of uncut material

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowding uncut crop</td>
<td>Allow enough room for crop to be fed to cutterbar</td>
<td></td>
</tr>
<tr>
<td>Broken knife sections</td>
<td>Replace broken sections</td>
<td>5.8.1 Replacing Knife Section, page 437</td>
</tr>
</tbody>
</table>

Symptom: Excessive bouncing at normal field speed

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float set too light</td>
<td>Adjust header float</td>
<td>3.7.3 Header Float, page 64</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Refer to</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Symptom: Divider rod running down standing crop</td>
<td>Divider rods too long</td>
<td>Remove divider rod</td>
</tr>
<tr>
<td>Symptom: Crop not being cut at ends</td>
<td>Reel not frowning or not centered in header</td>
<td>Adjust reel horizontal position or reel frown</td>
</tr>
<tr>
<td></td>
<td>Knife hold-downs not adjusted properly</td>
<td>Adjust hold-downs so knife works freely but still keep sections from lifting off guards</td>
</tr>
<tr>
<td></td>
<td>Knife sections or guards are worn or broken</td>
<td>Replace all worn and broken cutting parts</td>
</tr>
<tr>
<td></td>
<td>Header is not level</td>
<td>Level header</td>
</tr>
<tr>
<td></td>
<td>Reel fingers not lifting crop properly ahead of knife</td>
<td>Adjust reel position and/or finger pitch</td>
</tr>
<tr>
<td></td>
<td>Divider runs down thick crop at ends preventing proper feeding due to material bridging the cutter guards</td>
<td>Replace 3–4 end guards with stub guards</td>
</tr>
<tr>
<td>Symptom: Bushy or tangled crop flows over divider rod, builds up on endsheets</td>
<td>Divider rods providing insufficient separation</td>
<td>Install long divider rods</td>
</tr>
<tr>
<td>Symptom: Cut grain falling ahead of cutterbar</td>
<td>Ground speed too slow</td>
<td>Increase ground speed</td>
</tr>
<tr>
<td></td>
<td>Reel speed too slow</td>
<td>Increase reel speed</td>
</tr>
<tr>
<td></td>
<td>Reel too high</td>
<td>Lower reel</td>
</tr>
<tr>
<td></td>
<td>Cutterbar too high</td>
<td>Lower cutterbar</td>
</tr>
<tr>
<td></td>
<td>Reel too far forward</td>
<td>Move reel back on arms</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Refer to</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cutting at speeds over 10 km/h (6 mph) with 10-tooth reel drive sprocket</td>
<td>Replace with 19-tooth reel drive sprocket</td>
<td>5.16.3 Reel Drive Sprocket, page 530</td>
</tr>
<tr>
<td>Worn or broken knife components</td>
<td>Replace components</td>
<td>5.8 Knife, page 437</td>
</tr>
</tbody>
</table>
7.2 Cutting Action and Knife Components

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Ragged or uneven cutting of crop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Knife hold-downs not adjusted properly | Adjust hold-downs | • Adjusting Hold-Downs with Pointed Guards, page 448
• Adjusting Hold-Downs with Stub Guards, page 451 |
| Knife sections or guards are worn or broken | Replace all worn and broken cutting parts | 5.8 Knife, page 437 |
| Knife is not operating at recommended speed | Check engine speed of combine | Refer to the combine operator’s manual |
| Ground speed too fast for reel speed | Reduce ground speed or increase reel speed | • 3.7.6 Reel Speed, page 89
• 3.7.7 Ground Speed, page 90 |
| Reel fingers not lifting crop properly ahead of knife | Adjust reel position/finger pitch | • 3.7.11 Reel Fore-Aft Position, page 99
• 3.7.12 Reel Tine Pitch, page 111 |
| Cutterbar too high | Lower cutting height | 3.7.1 Cutting off the Ground, page 58 or 3.7.2 Cutting on the Ground, page 62 |
| Header angle too flat | Steepen header angle | 3.7.5 Header Angle, page 81 |
| Bent knife causing binding of cutting parts | Straighten bent knife and align guards | 5.8.7 Knife Guards, page 441 |
| Cutting edge of guards not close enough or parallel to knife sections | Align guards | 5.8.7 Knife Guards, page 441 |
| Tangled/tough-to-cut crop | Install stub guards | • See your MacDon Dealer
• Adjusting Hold-Downs with Pointed Guards, page 448 or Adjusting Hold-Downs with Stub Guards, page 451
• 6.3.5 Stub Guard Conversion Kit, page 550 |
<p>| Reel too far back | Move reel forward | 3.7.11 Reel Fore-Aft Position, page 99 |
| Loose knife drive belt | Adjust drive belt tension | Checking and Tensioning Knife Drive Belts, page 464 |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Knife plugging</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Reel too high or too far forward | Lower reel or move reel rearward | • 3.7.10 Reel Height, page 95
• 3.7.11 Reel Fore-Aft Position, page 99 |
| Ground speed to slow | Increase ground speed | 3.7.7 Ground Speed, page 90 |
| Loose knife drive belt | Adjust drive belt tension | Checking and Tensioning Knife Drive Belts, page 464 |
| Improper knife hold-down adjustment | Adjust hold-down | • Adjusting Hold-Downs with Pointed Guards, page 448
• Adjusting Hold-Downs with Stub Guards, page 451 |
| Dull or broken knife section | Replace knife section | 5.8.1 Replacing Knife Section, page 437 |
| Bent or broken guards | Align or replace guards | 5.8.7 Knife Guards, page 441 |
| Reel fingers not lifting crop properly ahead of knife | Adjust reel position/ finger pitch | • 3.7.11 Reel Fore-Aft Position, page 99
• 3.7.12 Reel Tine Pitch, page 111 |
| Steel pick-up fingers contacting knife | Increase reel clearance to cutterbar or adjust “frown” | • 5.15.1 Reel Clearance to Cutterbar, page 502
• 5.15.2 Reel Frown, page 506 |
| Float too heavy | Adjust springs for lighter float | 3.7.3 Header Float, page 64 |
| Mud or dirt build-up on cutterbar | Raise cutterbar by lowering skid shoes | 3.7.2 Cutting on the Ground, page 62 |
| Mud or dirt build-up on cutterbar | Install cut-out sections | Installing Knifehead Shield, page 453 |
| Mud or dirt build-up on cutterbar | Flatten header angle | 3.7.5 Header Angle, page 81 |
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife is not operating at recommended speed</td>
<td>Check engine speed of combine or header knife speed</td>
<td></td>
</tr>
</tbody>
</table>
 - Refer to combine operator’s manual
 - *Checking Knife Speed, page 95* |

Symptom: Excessive header vibration

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife hold-downs not adjusted properly</td>
<td>Adjust hold-downs</td>
<td></td>
</tr>
</tbody>
</table>
 - *Adjusting Hold-Downs with Pointed Guards, page 448*
 - *Adjusting Hold-Downs with Stub Guards, page 451* |
| Knife not operating at recommended speed | Check engine speed of combine | Refer to combine operator’s manual |
| Excessive knife wear | Replace knife |
 - *5.8.2 Removing Knife, page 438*
 - *5.8.5 Installing Knife, page 440* |
| Loose or worn knifehead pin or drive arm | Tighten or replace parts | *5.8.1 Replacing Knife Section, page 437* |

Symptom: Excessive vibration of float module and header

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect knife speed</td>
<td>Adjust knife speed</td>
<td>Checking Knife Speed, page 95</td>
</tr>
<tr>
<td>Driveline U-joints worn</td>
<td>Replace U-joints</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Bent cutterbar</td>
<td>Straighten cutterbar</td>
<td>See your MacDon Dealer</td>
</tr>
</tbody>
</table>

Symptom: Excessive breakage of knife sections or guards

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife hold-downs not adjusted properly</td>
<td>Adjust hold-downs</td>
<td></td>
</tr>
</tbody>
</table>
 - *Adjusting Hold-Downs with Pointed Guards, page 448*
 - *Adjusting Hold-Downs with Stub Guards, page 451* |
| Cutterbar operating too low in stony conditions | Raise cutterbar using skid shoes | *3.7.2 Cutting on the Ground, page 62* |
| Float is set too heavy | Adjust float springs for lighter float | *3.7.3 Header Float, page 64* |
| Bent or broken guard | Straighten or replace guard | *5.8.7 Knife Guards, page 441* |
| Header angle too steep | Flatten header angle | *3.7.5 Header Angle, page 81* |

Symptom: Knife back breakage

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent or broken guard</td>
<td>Straighten or replace guard</td>
<td>5.8.7 Knife Guards, page 441</td>
</tr>
<tr>
<td>Worn knifehead pin</td>
<td>Replace knifehead pin</td>
<td></td>
</tr>
</tbody>
</table>
 - *5.8.3 Removing Knifehead Bearing, page 439*
 - *5.8.4 Installing Knifehead Bearing, page 440* |
| Dull knife | Replace knife |
 - *5.8.2 Removing Knife, page 438*
 - *5.8.5 Installing Knife, page 440* |
7.3 Reel Delivery

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Reel not releasing material in normal standing crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Reel tines too aggressive</td>
<td>Reduce cam setting</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Reel too far back</td>
<td>Move reel forward</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Symptom: Reel not releasing material in lodged and standing crop (reel fully lowered)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel tines too aggressive for standing crop</td>
<td>Reduce cam setting (one or two)</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Symptom: Wrapping on reel end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel tines too aggressive</td>
<td>Reduce cam setting</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td>Crop conditions</td>
<td>Install optional endshields</td>
<td>See your MacDon dealer</td>
</tr>
<tr>
<td>Reel not centered in header</td>
<td>Center reel in header</td>
<td>5.15.3 Centering Double Reel, page 507</td>
</tr>
<tr>
<td>Symptom: Reel releases crop too quickly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel tines not aggressive enough</td>
<td>Increase cam setting</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Move reel back</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Symptom: Reel will not lift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel lift couplers are incompatible or defective</td>
<td>Change quick coupler</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Reel will not turn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick couplers not properly connected</td>
<td>Connect couplers</td>
<td>4 Header Attachment/Detachment, page 307</td>
</tr>
<tr>
<td>Reel drive chain disconnected or broken</td>
<td>Connect/replace chain</td>
<td>• 5.16.6 Replacing Drive Chain on Double Reel, page 535</td>
</tr>
<tr>
<td>Symptom: Reel motion uneven under no load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive slack in reel drive chain</td>
<td>Tighten chain</td>
<td>Tightening Reel Drive Chain, page 528</td>
</tr>
<tr>
<td>Symptom: Reel motion is uneven or stalls in heavy crops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td>Reel fingers not aggressive enough</td>
<td>Move to a more aggressive finger pitch notch</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Relief valve on has low relief pressure setting</td>
<td>Increase relief pressure to manufacturer’s recommendations</td>
<td>Refer to the combine operator’s manual.</td>
</tr>
<tr>
<td>Low oil reservoir level on</td>
<td>Fill to proper level</td>
<td>Refer to the combine operator’s manual.</td>
</tr>
<tr>
<td>NOTE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sometimes there is more than one reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief valve malfunction</td>
<td>Replace relief valve</td>
<td>Refer to the combine operator’s manual.</td>
</tr>
<tr>
<td>Cutting tough crops with standard torque (19-tooth) reel drive sprocket</td>
<td>Replace with high torque (10-tooth or 14-tooth) reel drive sprocket</td>
<td>5.16.3 Reel Drive Sprocket, page 530</td>
</tr>
<tr>
<td>Symptom: Plastic fingers cut at tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient reel to cutterbar clearance</td>
<td>Increase clearance</td>
<td>5.15.1 Reel Clearance to Cutterbar, page 502</td>
</tr>
<tr>
<td>Symptom: Plastic fingers bent rearward at tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel digging into ground with reel speed slower than ground speed</td>
<td>Raise header</td>
<td>• 3.7.1 Cutting off the Ground, page 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3.7.2 Cutting on the Ground, page 62</td>
</tr>
<tr>
<td>Reel digging into ground with reel speed slower than ground speed</td>
<td>Decrease header tilt</td>
<td>3.7.5 Header Angle, page 81</td>
</tr>
<tr>
<td>Reel digging into ground with reel speed slower than ground speed</td>
<td>Move reel aft</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Symptom: Plastic fingers bent forward at tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel digging into ground with reel speed faster than ground speed</td>
<td>Raise header</td>
<td>• 3.7.1 Cutting off the Ground, page 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3.7.2 Cutting on the Ground, page 62</td>
</tr>
<tr>
<td>Reel digging into ground with reel speed faster than ground speed</td>
<td>Decrease header tilt</td>
<td>3.7.5 Header Angle, page 81</td>
</tr>
<tr>
<td>Reel digging into ground with reel speed faster than ground speed</td>
<td>Move reel aft</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive plugging at cutterbar with wads of crop accumulating at cutterbar while maintaining reel operation</td>
<td>Correct plugging/cutting issues</td>
<td>3.10 Unplugging the Cutterbar, page 288</td>
</tr>
<tr>
<td>Excessive plugging at cutterbar with wads of crop accumulating at cutterbar while maintaining reel operation</td>
<td>Stop reel before plugging becomes excessive</td>
<td>3.10 Unplugging the Cutterbar, page 288</td>
</tr>
</tbody>
</table>
7.4 Header and Drapers

Table 7.1 FD1 Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Insufficient header lift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low relief pressure</td>
<td>Increase relief pressure</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Insufficient side draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed control set too low</td>
<td>Increase speed control setting</td>
<td>3.7.8 Draper Speed, page 91</td>
</tr>
<tr>
<td>Combine header drive too slow</td>
<td>Adjust to correct speed for combine model</td>
<td>Refer to the combine operator’s manual</td>
</tr>
<tr>
<td>Symptom: Insufficient feed draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief pressure too low</td>
<td>Test side draper hydraulic system</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Worn out gear pump</td>
<td>Replace gear pump</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Combine header drive too slow</td>
<td>Adjust to correct speed for combine model</td>
<td>Refer to the combine operator’s manual</td>
</tr>
<tr>
<td>Symptom: Feed draper will not move</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers are loose</td>
<td>Tighten drapers</td>
<td>5.10.2 Adjusting Feed Draper Tension, page 468</td>
</tr>
<tr>
<td>Drive or idler roller wrapped with material</td>
<td>Loosen draper and clean rollers</td>
<td>5.10.2 Adjusting Feed Draper Tension, page 468</td>
</tr>
<tr>
<td>Slat or connector bar jammed by frame or material</td>
<td>Loosen draper and clear obstruction</td>
<td>5.10.2 Adjusting Feed Draper Tension, page 468</td>
</tr>
<tr>
<td>Roller bearing seized</td>
<td>Replace roller bearing</td>
<td>5.14.6 Header Draper Roller Maintenance, page 494</td>
</tr>
<tr>
<td>Low hydraulic oil</td>
<td>Fill combine hydraulic oil reservoir to full level</td>
<td>Refer to the combine operator’s manual</td>
</tr>
<tr>
<td>Drapers are loose</td>
<td>Tighten drapers</td>
<td>5.14.3 Adjusting Draper Tension, page 488</td>
</tr>
<tr>
<td>Drive or idler roller wrapped with material</td>
<td>Loosen draper and clean rollers</td>
<td>5.14.3 Adjusting Draper Tension, page 488</td>
</tr>
<tr>
<td>Slat or connector bar jammed by frame or material</td>
<td>Loosen draper and clear obstruction</td>
<td>5.14.3 Adjusting Draper Tension, page 488</td>
</tr>
<tr>
<td>Roller bearing seized</td>
<td>Replace roller bearing</td>
<td>5.14.6 Header Draper Roller Maintenance, page 494</td>
</tr>
<tr>
<td>Low hydraulic oil</td>
<td>Fill combine hydraulic oil reservoir to full level</td>
<td>Refer to the combine operator’s manual</td>
</tr>
<tr>
<td>Incorrect compensator setting at pump</td>
<td>Adjust compensator setting</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Draper stalling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material not feeding evenly off knife</td>
<td>Lower reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
</tbody>
</table>
Table 7.1 FD1 Troubleshooting (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material not feeding evenly off knife</td>
<td>Install stub guards</td>
<td>• 5.8.7 Knife Guards, page 441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6.3.5 Stub Guard Conversion Kit, page 550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Hesitation in flow of bulky crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header angle too low</td>
<td>Increase header angle</td>
<td>3.7.5 Header Angle, page 81</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Increase side draper speed</td>
<td>3.7.8 Draper Speed, page 91</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Install upper cross auger</td>
<td>Refer to 6.5.8 Upper Cross Auger (UCA), page 558</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Add flighting extensions</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Drapers back-feed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers running too slow in heavy crop</td>
<td>Increase draper speed</td>
<td>3.7.8 Draper Speed, page 91</td>
</tr>
<tr>
<td>Symptom: Crop is thrown across opening and under opposite side draper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers running too fast in light crop</td>
<td>Reduce draper speed</td>
<td>3.7.8 Draper Speed, page 91</td>
</tr>
<tr>
<td>Symptom: Material accumulates inside or under front edge of draper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deck height improperly adjusted</td>
<td>Adjust deck height</td>
<td>5.14.5 Adjusting Deck Height, page 492</td>
</tr>
<tr>
<td>Symptom: Material accumulating on end deflectors and releasing in bunches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End deflectors too wide</td>
<td>For headers with manual deck shift only, trim deflector or replace with narrow deflector (MD #172381)</td>
<td>3.10 Unplugging the Cutterbar, page 288</td>
</tr>
</tbody>
</table>
7.5 Cutting Edible Beans

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Plants being stripped and complete or partial plants left behind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header off ground</td>
<td>Lower header to ground and run on skid shoes and/or cutterbar</td>
<td>3.7.2 Cutting on the Ground, page 62</td>
</tr>
</tbody>
</table>
| Float set too light—rides on high spots and does not lower soon enough | Set float for the following conditions:
- Dry ground: 100–150 lbf
- Wet ground: 50–100 lbf | 3.7.3 Header Float, page 64 |
<p>| Reel too high | Fully retract reel cylinders | 3.7.10 Reel Height, page 95 |
| Reel too high with cylinders fully retracted | Adjust reel height | 3.7.10 Reel Height, page 95 |
| Finger pitch not aggressive enough | Adjust finger pitch | 3.7.12 Reel Tine Pitch, page 111 |
| Reel too far aft | Move reel forward until the fingertips skim the soil surface with header on the ground and the center-link properly adjusted | 3.7.11 Reel Fore-Aft Position, page 99 |
| Header angle too shallow | Lengthen center-link | Adjusting Header Angle from Combine, page 83 |
| Header angle too shallow | Increase header angle by fully retracting lift cylinders (if cutting on ground) | Adjusting Header Angle from Combine, page 83 |
| Reel too slow | Adjust reel speed to be marginally faster than ground speed | 3.7.6 Reel Speed, page 89 |
| Ground speed too fast | Lower ground speed | 3.7.7 Ground Speed, page 90 |
| Skid shoes too low | Raise skid shoes to highest setting | 3.7.2 Cutting on the Ground, page 62 |
| Dirt packs on bottom of cutterbar and raises cutterbar off the ground | Install plastic wear strips on bottom of cutterbar and skid shoes | See your MacDon Dealer |
| Dirt packing on bottom of cutterbar with plastic wear strips on cutterbar and raises cutterbar off the ground | Ground too wet – allow soil to dry | |
| Dirt packing on bottom of cutterbar with plastic wear strips on cutterbar and raises cutterbar off the ground | Manually clean the bottom of cutterbar when excessive accumulation occurs | |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic wear strip for cutterbar has been installed over top of steel wearplates</td>
<td>Remove steel cutterbar wearplates when installing the plastic wear strips for cutterbar</td>
<td></td>
</tr>
<tr>
<td>Header not level</td>
<td>Level header</td>
<td>3.9 Leveling the Header, page 286</td>
</tr>
<tr>
<td>Worn or damaged knife sections</td>
<td>Replace sections or replace knife</td>
<td>5.8 Knife, page 437</td>
</tr>
<tr>
<td>Parts of vines get caught in pointed guard tip. (Occurs more in row-cropped beans that are hilled from cultivating.)</td>
<td>Install stub guard conversion kit</td>
<td>6.3.5 Stub Guard Conversion Kit, page 550</td>
</tr>
<tr>
<td>Symptom: Excessive losses at dividers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divider rod running down crop and shattering pods</td>
<td>Remove divider rod</td>
<td>3.7.13 Crop Dividers, page 115</td>
</tr>
<tr>
<td>Vines and plants build up on endsheet</td>
<td>Install divider rod</td>
<td>3.7.13 Crop Dividers, page 115</td>
</tr>
<tr>
<td>Symptom: Plant vines pinched between top of draper and cutterbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutterbar fills with debris when draper to cutterbar gap is properly adjusted</td>
<td>Raise header fully at each end of field (or as required) and shift decks back and forth to help clean out cutterbar</td>
<td></td>
</tr>
<tr>
<td>Shifting the decks with header raised does not clean out cutterbar debris.</td>
<td>Manually remove debris from cutterbar cavity to prevent damaging the drapers</td>
<td></td>
</tr>
<tr>
<td>Symptom: Crop accumulating at guards and not moving rearward onto drapers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel finger pitch not aggressive enough</td>
<td>Increase finger aggressiveness (cam position)</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
<tr>
<td>Reel too high</td>
<td>Lower reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Minimum reel clearance to cutterbar setting too high</td>
<td>Adjust minimum reel height with cylinders fully retracted</td>
<td>5.15.1 Reel Clearance to Cutterbar, page 502</td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Reposition reel</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Symptom: Crop wrapping around reel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Symptom: Reel shattering pods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Reposition reel</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel speed too high</td>
<td>Reduce reel speed</td>
<td>3.7.6 Reel Speed, page 89</td>
</tr>
<tr>
<td>Bean pods too dry</td>
<td>Cut at night when heavy dew is present and pods have softened</td>
<td>—</td>
</tr>
<tr>
<td>Reel finger pitch not aggressive enough</td>
<td>Increase finger aggressiveness (cam position)</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
</tbody>
</table>

Symptom: Cutterbar guards breaking

Float insufficient (float setting too heavy)	Increase float (adjust to lighter float setting)	3.7.3 Header Float, page 64
Excessive number of rocks in field	Consider installing optional stub guards Tip: Install a few guards on one section of the cutterbar and compare the performance of the two different guard styles	5.8.7 Knife Guards, page 441
		6.3.5 Stub Guard Conversion Kit, page 550

Symptom: Cutterbar pushing too much debris and dirt

Header too heavy	Readjust float to make header lighter	3.7.3 Header Float, page 64
		Checking and Adjusting Header Float, page 64
Header angle too steep	Decrease header angle with center-link	3.7.5 Header Angle, page 81
Header angle too steep	Shorten the center-link	3.7.5 Header Angle, page 81
Guards plug with debris or and soil	Install stub guard kit	6.3.5 Stub Guard Conversion Kit, page 550
Insufficient support for header	Install center skid shoes on header	3.7.2 Cutting on the Ground, page 62

Symptom: Crop wrapping around reel ends

| Uncut crop interfering on reel ends | Add reel endshields | Refer to the header parts catalog |
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Cutterbar fills up with dirt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive gap between draper and cutterbar</td>
<td>Adjust front deck supports to achieve proper clearance between cutterbar and draper</td>
<td>5.14.5 Adjusting Deck Height, page 492</td>
</tr>
<tr>
<td>Excessive gap between draper and cutterbar</td>
<td>Raise header fully at each end of field (or as required) and shift decks back and forth to help clean out cutterbar</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Reel occasionally carries over plants in same location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel fingers bent and hooking plants from drapers</td>
<td>Straighten fingers (steel)</td>
<td>—</td>
</tr>
<tr>
<td>Dirt accumulation on end of fingers preventing plants from falling off fingers onto drapers</td>
<td>Raise reel</td>
<td>3.7.10 Reel Height, page 95</td>
</tr>
<tr>
<td>Dirt accumulation on end of fingers preventing plants from falling off fingers onto drapers</td>
<td>Adjust reel fore-aft position to move fingers out of the ground</td>
<td>3.7.11 Reel Fore-Aft Position, page 99</td>
</tr>
<tr>
<td>Symptom: Cutterbar pushing soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire tracks or row crop ridges</td>
<td>Cut at angle to crop rows or ridges</td>
<td>—</td>
</tr>
<tr>
<td>Rolling terrain along length of field</td>
<td>Cut at 90° to undulations (provided knife floats across without digging in)</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Reel carries over an excessive amount of plants or wads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive accumulation of crop on drapers (up to reel center tube)</td>
<td>Increase draper speed</td>
<td>3.7.8 Draper Speed, page 91</td>
</tr>
<tr>
<td>Finger pitch too slow</td>
<td>Increase finger pitch</td>
<td>3.7.12 Reel Tine Pitch, page 111</td>
</tr>
</tbody>
</table>
8 Reference

8.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

8.1.1 Metric Bolt Specifications

Table 8.1 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lb-f·ft) (*lb-f·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 8.1: Bolt Grades
Table 8.2 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8.3 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>

Figure 8.2: Bolt Grades

Figure 8.3: Bolt Grades
Table 8.4 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.5 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
<th>8.8 (Cast Aluminum)</th>
<th>10.9 (Cast Aluminum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>lbf-ft</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
<td>28</td>
<td>55</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
<td>52</td>
<td>100</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
8.1.3 Flare-Type Hydraulic Fittings

1. Check flare (A) and flare seat (B) for defects that might cause leakage.

2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.

3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 8.6, page 580.

4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.

5. Assess final condition of connection.

![Figure 8.6: Hydraulic Fitting](image_url)

Table 8.6 Flare-Type Hydraulic Tube Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>59</sup></th>
<th>Flats from Finger Tight (FFFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>lbf·ft</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>4–5</td>
<td>3–4</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>7–8</td>
<td>5–6</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>18–19</td>
<td>13–14</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>19–21</td>
<td>14–15</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>30–33</td>
<td>22–24</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>57–63</td>
<td>42–46</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>81–89</td>
<td>60–66</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>113–124</td>
<td>83–91</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/16–12</td>
<td>136–149</td>
<td>100–110</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>160–176</td>
<td>118–130</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>228–250</td>
<td>168–184</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>264–291</td>
<td>195–215</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>359–395</td>
<td>265–291</td>
</tr>
<tr>
<td>-40</td>
<td>3–12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

⁵⁹ Torque values shown are based on lubricated connections as in reassembly.
8.1.4 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.

3. Check that O-ring (A) is NOT on threads and adjust if necessary.

4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until back up washer (D) and O-ring (A) contact part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).

8. Check final condition of fitting.
Table 8.7 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>60</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

⁶⁰ Torque values shown are based on lubricated connections as in reassembly.
8.1.5 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is NOT on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 8.8, page 583.
6. Check final condition of fitting.

![Figure 8.9: Hydraulic Fitting](image)

Table 8.8 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^\text{61})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

\(^{61}\) Torque values shown are based on lubricated connections as in reassembly.
8.1.6 O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 8.9, page 584.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 8.9 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value(^{62})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note(^{63})</td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note(^{63})</td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1-3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
</tbody>
</table>

\(^{62}\) Torque values and angles shown are based on lubricated connection as in reassembly.

\(^{63}\) O-ring face seal type end not defined for this tube size.
Table 8.9 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value<sup>64</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-14</td>
<td>Note<sup>63</sup></td>
<td>7/8</td>
<td>–</td>
</tr>
<tr>
<td>-16</td>
<td>1-7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1-11/16</td>
<td>1-1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1-2</td>
<td>1-1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

8.1.7 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks and scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The Turns From Finger Tight (TFFT) values are shown in Table 8.10, page 585. Make sure that tube end of a shaped connector (typically 45 degree or 90 degree) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.10 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

⁶⁴ Torque values and angles shown are based on lubricated connection as in reassembly.
8.2 Conversion Chart

Table 8.11 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td>Unit Name</td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>acre</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>US gallons per minute</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>pound force</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>foot</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>horsepower</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Pressure</td>
<td>megapascal</td>
<td>MPa</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>pound feet or foot pounds</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>pound inches or inch pounds</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>ºC</td>
<td>(ºC x 1.8) + 32 = degrees Fahrenheit</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>feet per minute</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>feet per second</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>miles per hour</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>US gallon</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>ml</td>
<td>ounce</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 = cubic inch</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>pound</td>
</tr>
</tbody>
</table>
8.3 Unloading and Assembly

Refer to the instructions for your specific header for unloading, assembly, and setup procedures that are included with your shipment. The instruction part numbers are shown in the following table:

<table>
<thead>
<tr>
<th>Shipping Destination</th>
<th>Header Description</th>
<th>MacDon Instruction Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>FD1 Series FlexDraper® Combine Header and FM100 Float Module</td>
<td>MD #214685</td>
</tr>
<tr>
<td>Export (anywhere other than North America)</td>
<td>FD1 Series FlexDraper® Combine Header and FM100 Float Module</td>
<td>MD #214686</td>
</tr>
</tbody>
</table>
Index

A

AGCO combines
attaching header to combine 340
replacing reel speed sensors 538

AHHC
definition .. 19
See also auto header height control

API
definition .. 19

ASTM
definition .. 19

augers... 419
auger drive sprockets
adjusting auger drive chain tension 423
auger position .. 121
auger to pan clearance 419
drive chains .. 421
See also chains
adjusting chain tension 423
checking chain tension 421
installing ... 426
lubricating ... 402
removing ... 424

feed auger configurations 307
converting from
medium to narrow .. 315
medium to ultra narrow 323
medium to wide .. 318
narrow to medium 310
narrow to ultra narrow 327
narrow to wide .. 320
ultra narrow to medium 310
ultra narrow to narrow 317
ultra narrow to wide 320
wide to medium ... 313
wide to narrow ... 315
wide to ultra narrow 323
modifying wide configuration 322

fingers ... 428
adjusting auger finger timing 435
checking finger timing 434
installing ... 431
removing ... 429

flighting .. 31, 428
optional FM100 feed auger flighting 555
tension springs
checking and adjusting 54
tines, See fingers

auto header height control (AHHC), See specific combine section

Case IH 2300 combines
calibrating
maximum stubble height 267
how AHHC works ... 124
sensor operation ... 125
sensor output voltage
checking voltage range manually 127
combine output voltage requirements 126

Case IH 2500 combines
calibrating
maximum stubble height 267
how AHHC works ... 124
sensor operation ... 125
sensor output voltage
checking voltage range manually 127
combine output voltage requirements 126

Case IH 5088/6088/7088 combines 139
adjusting
sensitivity .. 140
calibrating
AHHC .. 139
maximum stubble height 267
how AHHC works ... 124
sensor operation ... 125
sensor output voltage
checking voltage range manually 127
combine output voltage requirements 126

Case IH 5130/6130/7130 combines 142
adjusting
preset cutting height 147
calibrating
AHHC .. 146
maximum stubble height 267
checking voltage range manually 127
how AHHC works ... 124
sensor operation ... 125
sensor output voltage
checking voltage range from the cab 144
combine output voltage requirements 126
setting up header on combine display 142

Case IH 5140/6140/7140 combines 142
adjusting
preset cutting height 147
calibrating
AHHC .. 146
maximum stubble height 267
checking voltage range manually 127
how AHHC works ... 124
sensor operation ... 125
sensor output voltage
checking voltage range from the cab 144
setting up header on combine display 142

Case IH 7010 combines 150
adjusting
preset cutting height 150
calibrating
AHHC .. 156
maximum stubble height267
how AHHC works ..124
sensor operation ...125
sensor output voltage
 checking voltage range from the cab153
 checking voltage range manually127
 combine output voltage requirements126
Case IH 7120/8120/9120 combines150
 adjusting
 preset cutting height165
 calibrating
 AHHC ..156
 maximum stubble height267
 how AHHC works124
 sensor operation125
 sensor output voltage
 checking voltage range from the cab153
 checking voltage range manually127
 combine output voltage requirements126
Case IH 7230/8230/9230 combines150
 adjusting
 preset cutting height165
 calibrating
 AHHC ..156
 maximum stubble height267
 how AHHC works124
 sensor operation125
 sensor output voltage
 checking voltage range from the cab153
 checking voltage range manually127
 combine output voltage requirements126
Case IH 7240/8240/9240 combines150
 adjusting
 preset cutting height165
 calibrating
 AHHC ..156
 maximum stubble height267
 how AHHC works124
 sensor operation125
 sensor output voltage
 checking voltage range from the cab153
 checking voltage range manually127
 combine output voltage requirements126
Case IH 8010 combines150
 adjusting
 preset cutting height165
 calibrating
 AHHC ..156
 maximum stubble height267
 header controls
 setting without a shift button on GSL153
 how AHHC works124
 sensor operation125
 sensor output voltage
 checking voltage range from the cab153
 checking voltage range manually127
 combine output voltage requirements126
Case IH combines
 checking reel height sensor voltage164
 Case IH combines with version 28.00 software
 calibrating the AHHC160
Challenger 6 series combines166
 adjusting
 header height171
 raise/lower rate171
 sensitivity ..172
 calibrating
 AHHC ..169
 maximum stubble height267
 engaging AHHC168
 how AHHC works124
 sensor operation125
 sensor output voltage
 checking voltage range from the cab166
 checking voltage range manually127
 combine output voltage requirements126
Challenger 7 series combines166
 calibrating
 maximum stubble height267
 how AHHC works124
 sensor operation125
 sensor output voltage
 checking voltage range from the cab166
 checking voltage range manually127
 combine output voltage requirements126
CLAAS 500 series combines242
 adjusting
 auto reel speed248
 cutting height244
 cutting height manually245
 preset cutting height244
 sensitivity ..246
 calibrating
 AHHC ..242
 maximum stubble height267
 how AHHC works124
 sensor operation125
 sensor output voltage
 check voltage range manually127
CLAAS 600 series combines251
 adjusting
 auto reel speed256
 cutting height254
 reel height ...260
 sensitivity ..255
 calibrating
 AHHC ..251
 reel height ...258
CLAAS 700 series combines251
 adjusting
 auto reel speed256
 cutting height254
 reel height ...260
INDEX

adjusting
preset cutting height .. 220
John Deere S7 series combines .. 230
calibrating
feeder house .. 236
header .. 239
sensor output voltage
checking voltage range from cab............................ 234
setting up header ... 230
John Deere T series combines .. 212
adjusting
raise/lower rate manually 219
sensitivity ... 218
calibrating
AHHC ... 215
feeder house fore-aft tilt 222
reel height .. 227
checking reel height sensor voltage 225
sensor output voltage
checking voltage range from the cab 212
combine output voltage requirements 126
New Holland 2015 CR series combines 271
calibrating AHHC .. 277
engaging AHHC .. 274
sensor output voltage
checking voltage range from the cab 271
setting preset cutting height 281
New Holland combines
10 V adapter (MD #B6421) 126
checking reel height sensor voltage 280
New Holland CR series combines
setting maximum work height 283
New Holland CR/CX series combines 261
adjusting
header lower rate ... 268
header raise rate ... 268
preset cutting height ... 270
sensitivity ... 269
calibrating
AHHC ... 265
maximum stubble height 267
configuring
header tilt .. 284
header type .. 284
reel fore-aft ... 284
engaging AHHC .. 264
how AHHC works ... 124
sensor operation .. 125
sensor output voltage
checking voltage range from the cab 261
checking voltage range manually 127
combine output voltage requirements 126
sensor replacing .. 133

sensor output voltage
adjusting voltage limits
one sensor system ... 131
two sensor system ... 131
axle bolts .. 543

B
bearings
feed draper
drive roller bearing
installing .. 474
removing .. 473
replacing .. 473
idler roller bearing
replacing .. 477
header draper
inspecting draper roller bearing 494
replacing drive roller bearing 499
idler roller bearings
replacing .. 496
knifehead bearings
installing .. 440
removing .. 439
belts
knife drive belts .. 462
non-timed ... 462
single knife
removing .. 462
untimed
installing .. 464
removing .. 462
tensioning .. 464
bolts
definition .. 19
break-in inspections ... 388
break-in periods .. 40

C
cams
adjusting reel cam ... 113
reel cam settings ... 111
Case IH combines
attaching combine to header 332
auger configurations ... 307, 310
detaching combine from header 337
center-links ... 19
definition .. 19
centering the reel
double reel ... 507
CGVW
definition .. 19
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>chains</td>
<td></td>
</tr>
<tr>
<td>auger drive chain</td>
<td></td>
</tr>
<tr>
<td>adjusting chain tension</td>
<td>423</td>
</tr>
<tr>
<td>checking auger drive chain tension</td>
<td>421</td>
</tr>
<tr>
<td>installing</td>
<td>426</td>
</tr>
<tr>
<td>lubricating</td>
<td>402</td>
</tr>
<tr>
<td>removing</td>
<td>424</td>
</tr>
<tr>
<td>gearbox drive chain</td>
<td></td>
</tr>
<tr>
<td>adjusting chain tension</td>
<td>418</td>
</tr>
<tr>
<td>reel drive chain</td>
<td></td>
</tr>
<tr>
<td>adjusting chain tension</td>
<td>528</td>
</tr>
<tr>
<td>loosening</td>
<td>528</td>
</tr>
<tr>
<td>replacing on double reel drive</td>
<td>535</td>
</tr>
<tr>
<td>replacing on single reel drive</td>
<td>537</td>
</tr>
<tr>
<td>tightening</td>
<td>528</td>
</tr>
<tr>
<td>Challenger combines</td>
<td></td>
</tr>
<tr>
<td>attaching header to combine</td>
<td>340</td>
</tr>
<tr>
<td>auger configurations</td>
<td>307, 310</td>
</tr>
<tr>
<td>detaching from header</td>
<td>345</td>
</tr>
<tr>
<td>replacing reel speed sensors</td>
<td>538</td>
</tr>
<tr>
<td>CLAAS combines</td>
<td></td>
</tr>
<tr>
<td>attaching combine to header</td>
<td>355</td>
</tr>
<tr>
<td>auger configurations</td>
<td>307, 310</td>
</tr>
<tr>
<td>detaching from header</td>
<td>360</td>
</tr>
<tr>
<td>reel speed sensors</td>
<td></td>
</tr>
<tr>
<td>replacing on CLAAS 400</td>
<td>540</td>
</tr>
<tr>
<td>replacing on CLAAS 500/700</td>
<td>541</td>
</tr>
<tr>
<td>combines</td>
<td></td>
</tr>
<tr>
<td>attaching header to combine</td>
<td>340</td>
</tr>
<tr>
<td>AGCO</td>
<td>340</td>
</tr>
<tr>
<td>Case IH</td>
<td>332</td>
</tr>
<tr>
<td>Challenger</td>
<td>340</td>
</tr>
<tr>
<td>CLAAS</td>
<td>355</td>
</tr>
<tr>
<td>Gleaner</td>
<td>340</td>
</tr>
<tr>
<td>John Deere</td>
<td>348</td>
</tr>
<tr>
<td>Massey Ferguson</td>
<td>340</td>
</tr>
<tr>
<td>New Holland</td>
<td>363</td>
</tr>
<tr>
<td>New Holland CR/CX</td>
<td>363</td>
</tr>
<tr>
<td>attaching/detaching float module</td>
<td>372</td>
</tr>
<tr>
<td>attaching/detaching header</td>
<td>307</td>
</tr>
<tr>
<td>detaching from header</td>
<td></td>
</tr>
<tr>
<td>Case IH</td>
<td>337</td>
</tr>
<tr>
<td>Challenger</td>
<td>345</td>
</tr>
<tr>
<td>CLAAS</td>
<td>360</td>
</tr>
<tr>
<td>Gleaner</td>
<td>345</td>
</tr>
<tr>
<td>John Deere</td>
<td>352</td>
</tr>
<tr>
<td>Massey Ferguson</td>
<td>345</td>
</tr>
<tr>
<td>New Holland CR/CX</td>
<td>367</td>
</tr>
<tr>
<td>transporting header</td>
<td>290</td>
</tr>
<tr>
<td>on combine</td>
<td>290</td>
</tr>
<tr>
<td>towing the header</td>
<td>290–291</td>
</tr>
<tr>
<td>attaching to towing vehicle</td>
<td>291</td>
</tr>
<tr>
<td>component identification</td>
<td>25</td>
</tr>
<tr>
<td>FD1 FlexDraper®</td>
<td>25</td>
</tr>
<tr>
<td>FM100 float module</td>
<td>26</td>
</tr>
<tr>
<td>conversion chart</td>
<td>586</td>
</tr>
<tr>
<td>CR feeder deflectors</td>
<td>371</td>
</tr>
<tr>
<td>crop delivery</td>
<td></td>
</tr>
<tr>
<td>options</td>
<td>555</td>
</tr>
<tr>
<td>crop divider rods</td>
<td>119</td>
</tr>
<tr>
<td>installing</td>
<td>120</td>
</tr>
<tr>
<td>removing</td>
<td>120</td>
</tr>
<tr>
<td>crop dividers</td>
<td>115</td>
</tr>
<tr>
<td>installing on header with latch option</td>
<td>116</td>
</tr>
<tr>
<td>installing on header without latch option</td>
<td>118</td>
</tr>
<tr>
<td>removing from header with latch option</td>
<td>115</td>
</tr>
<tr>
<td>removing from header without latch option</td>
<td>116</td>
</tr>
<tr>
<td>cutterbars</td>
<td></td>
</tr>
<tr>
<td>options</td>
<td>549</td>
</tr>
<tr>
<td>extended center filler</td>
<td>550</td>
</tr>
<tr>
<td>knifehead shield</td>
<td>549</td>
</tr>
<tr>
<td>wearplates</td>
<td>549</td>
</tr>
<tr>
<td>unplugging</td>
<td>288</td>
</tr>
<tr>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>off the ground</td>
<td>58</td>
</tr>
<tr>
<td>adjusting stabilizer wheels</td>
<td>60</td>
</tr>
<tr>
<td>adjusting stabilizer/slow speed transport wheels</td>
<td>59</td>
</tr>
<tr>
<td>on the ground</td>
<td>62</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1X series headers</td>
<td>19</td>
</tr>
<tr>
<td>definition</td>
<td></td>
</tr>
<tr>
<td>D1XL series headers</td>
<td>19</td>
</tr>
<tr>
<td>definition</td>
<td></td>
</tr>
<tr>
<td>daily start-up checks</td>
<td>39</td>
</tr>
<tr>
<td>DDD</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>19</td>
</tr>
<tr>
<td>definition of terms</td>
<td>19</td>
</tr>
<tr>
<td>divider latch kits</td>
<td>552</td>
</tr>
<tr>
<td>divider rods</td>
<td>119</td>
</tr>
<tr>
<td>installing</td>
<td>120</td>
</tr>
<tr>
<td>removing</td>
<td>120</td>
</tr>
<tr>
<td>DK</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>19</td>
</tr>
<tr>
<td>DKD</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>19</td>
</tr>
<tr>
<td>double reels</td>
<td></td>
</tr>
<tr>
<td>centering the reel</td>
<td>507</td>
</tr>
<tr>
<td>DR</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>19</td>
</tr>
<tr>
<td>draper decks</td>
<td></td>
</tr>
<tr>
<td>adjusting deck height</td>
<td>492</td>
</tr>
<tr>
<td>drive rollers</td>
<td>497</td>
</tr>
<tr>
<td>idler rollers</td>
<td>494</td>
</tr>
<tr>
<td>installing</td>
<td>497</td>
</tr>
</tbody>
</table>
draper deflectors
- narrow .. 556
- wide ... 557

draper drive systems
- adjusting draper tension 488

header draper
- adjusting draper speed 92
- adjusting draper tracking 490
- maintaining draper rollers 494

draper roller bearings
- inspecting ... 494

drapers
- adjusting draper tension 488
- draper tracking ... 490

draper decks
- drive rollers ... 497
- idler rollers .. 494

draper rollers
- maintaining ... 494

float module .. 466
- adjusting draper tension 468
- replacing feed draper 466

idler rollers
- draper deck idler roller
 - installing ... 497

side draper decks
- drive rollers
 - installing ... 500
 - removing ... 497
- idler rollers
 - removing ... 494

side drapers
- installing ... 486
- removing ... 485

speed .. 91

drive roller bearings
- feed draper drive roller
 - installing ... 474
 - removing ... 473
 - replacing ... 473
 - replacing drive roller bearing 499

drive rollers
- feed draper drive roller
 - installing ... 469
 - removing ... 469

drivelines
- adjusting tension on gearbox drive chain 418

drive roller bearings
- feed draper drive roller
 - installing ... 474
 - replacing ... 473
 - replacing drive roller bearing 499

drive rollers
- feed draper drive roller
 - installing ... 469
 - removing ... 469

drivelines
- adjusting tension on gearbox drive chain 418

INDEX

header drive ... 412

E

electrical system
- maintaining electrical system 411
- replacing light bulbs 411

sensors
- ahhc sensors ... 125
- reel height sensor
 - replacing ... 98
- reel speed sensor
 - replacing on AGCO 538
 - replacing on CLAAS 400 540
 - replacing on CLAAS 500/700 541
 - replacing on John Deere 540

endshields ... 33
- checking and adjusting 35
- closing .. 34
- installing ... 37
- opening .. 33
- removing ... 36

F

FD1 series headers
- definition ... 19

feed auger configurations 307

feed deck pan
- lowering feed deck pan 479
- raising feed deck pan 481

feed deflectors ... 371

float module ... 482
- installing on New Holland CR combines 483

feed drapers ... 466
- adjusting draper tension 468
- adjusting speed .. 93

drive roller bearing
- installing ... 474
- removing ... 473
- replacing ... 473

drive rollers ... 469
- installing feed draper drive roller 472
- removing feed draper drive roller 469
- idler roller .. 475
- installing ... 476
- removing ... 475

idler roller bearing
- replacing ... 477

FFFT
- definition ... 19

finger tight
INDEX

definition ... 19
fingers
auger fingers .. 428
adjusting auger finger timing 435
checking auger finger timing 434
installing auger finger timing 431
removing auger finger timing 429
plastic reel fingers
installing .. 510
removing .. 509
steel reel fingers
installing .. 508
removing .. 507
flex modes
operating in flex mode 70
flying .. 331, 428
float .. 64
header float
checking and adjusting 64
header float locks ... 69
wing float locks
unlocking .. 70–71
float module .. 545
float modules
attaching float module to header 377
attaching/detaching 372
auger drive
adjusting auger drive chain tension 423
augers .. 419
auger fingers .. 428
adjusting auger finger timing 435
checking auger finger timing 434
installing auger finger timing 431
removing auger finger timing 429
auger to pan clearance 419
optional FM100 feed auger flighting 555
detaching from combine and header 372
feed auger configurations 307
feed deck pan
lowering .. 479
raising .. 481
feed deflectors ... 371, 482
replacing feed draper 483
feed draper .. 466
adjusting draper tension 468
drive roller .. 469
installing feed draper drive roller 472
removing feed draper drive roller 469
drive roller bearing
installing .. 474
removing .. 473
replacing .. 473
idler roller .. 475
installing .. 476

FM100 dual AHHC sensor 555
FM100 feed auger flighting 555
FM100 float modules
component identification 26

G

gearboxes
adjusting drive chain tension 418
header drive
adding oil .. 405
changing oil .. 405
checking oil level .. 404
lubricating .. 404
Gleaner combines
attaching header to combine 340
auger configurations 307, 310
detaching combine from header 345
replacing reel speed sensors 538

glossary .. 19
greasing
every 100 hours .. 393
every 250 hours .. 396
every 50 hours .. 391
every 500 hours .. 397
greasing procedure ... 399
maintenance schedule/records 385
ground speeds ... 90
GSL
definition ... 19
guards .. 441
See also hold-downs
knife guards .. 441
adjusting knife guards 441
replacing pointed guards 443
replacing stub guards 446
stub guard conversion kit 550

GVW
definition ... 19
H

hard joint
 definition .. 19

HDS
 definition .. 19

header angles
 adjustment range .. 81

header draper decks
 installing idler rollers .. 497
 replacing drive roller bearing 499

header drapers, See drapers
 adjusting draper speed 92

idler roller bearings
 replacing .. 496
 inspecting draper roller bearing 494

header drives
 ... 412

driveline guards
 installing .. 416
 removing .. 414
 gearbox drive chain ... 418
 installing driveline ... 413
 removing driveline .. 412

header safety props .. 30

headers
 attaching float module ... 377
 attachments .. 43
 checking and adjusting ... 64
 controls ... 42
 detaching from combine and float module 372
 float ... 64
 float locks .. 69

header angle
 adjusting from combine .. 83
 leveling ... 286
 operating variables ... 58
 optimizing for straight combining canola 54
 options ... 552
 recommended settings ... 43
 setup ... 43
 storing the header ... 306
 towing the header ... 291
 transporting header ..
 on combine ... 290
 towing the header ... 290–291
 attaching to towing vehicle 291
 unloading and assembly .. 587

hex keys
 definition .. 19

hold-downs
 adjusting hold-downs with pointed guards 448
 adjusting hold-downs with stub guards 451
 checking pointed guard hold-downs 447
 pointed guard
 adjusting hold-downs
 at double-knife center pointed guard 449
 stub guard
 checking hold-downs .. 450

hoses and lines
 hydraulic .. 390
 hp
 definition .. 19

hydraulics
 adding reservoir oil ... 408
 changing oil filter ... 410
 changing reservoir oil .. 409
 fittings
 flare-type .. 580
 O-ring boss (ORB) adjustable 581
 O-ring boss (ORB) non-adjustable 583
 O-ring face seal (ORFS) .. 584
 hydraulic safety ... 6
 reservoir .. 407
 checking oil level in reservoir 407

I

idler roller bearings
 feed draper idler roller
 replacing idler roller bearing 477
 header draper idler roller
 replacing idler roller bearing 496

idler rollers
 draper deck idler roller
 installing .. 497
 feed draper idler roller
 installing .. 475
 removing .. 475

inspections
 break-in inspections .. 388
 maintenance schedule/records 385

introduction .. v

ISC
 definition .. 19

J

JIC
 definition .. 19

John Deere combines
 attaching combine to header 348
 auger configurations ... 307, 310
 detaching combine from header 352
 replacing reel speed sensors 540
INDEX

K

knife
 definition .. 19
knife drive belts, See belts
knife drive boxes
 changing oil .. 461
 checking box ... 454
 checking mounting bolts 455
 installing box ... 459
 installing pulley 458
 removing box .. 456
 removing pulley .. 458
knife drive system 454
knife drives
 hold-downs
 adjusting hold-downs with pointed guards 448
 adjusting hold-downs with stub guards 451
 knife speed
 checking knife speed 95
 knife speed values 94
knife guards ... 441
 See also hold-downs
 adjusting guards 441
 checking guards 441
 replacing pointed guards 443
 replacing stub guards 446
knifehead bearings
 installing ... 440
 removing .. 439
knifehead shields ... 452, 549
 installing ... 453
knives .. 437
 hold-downs
 checking pointed guard hold-downs 447
 pointed guard
 adjusting hold-downs 449
 stub guard
 checking hold-downs 450
 installing knife .. 440
knife sections
 replacing .. 437
 removing knife .. 438
spare knife location .. 441
troubleshooting ... 564

lubrication and servicing 390
auger drive chains .. 402
greasing procedure ... 399
header drive gearbox
 changing oil ... 405
 checking oil level 404
 lubricating gearbox 404
reel drive chain
 double reel .. 400

M

maintenance and servicing 383
electrical ... 411
lubrication ... 390
maintenance specifications 384
preparing for servicing 383
preseason servicing ... 388
requirements .. 385
safety .. 5
schedule ... 385
service intervals .. 390
storage ... 306
maintenance requirements
 servicing
 break-in inspections 388
 end of season servicing 389
 maintenance schedule/records 385
Massey Ferguson combines
 attaching header to combine 340
 auger configurations 307, 310
 detaching combine from header 345
 replacing reel speed sensors 538
MDS
 definition .. 19
metric bolts – torque specifications 577
model numbers
 records ... ix
motors
 reel drive motors ... 534
 installing ... 534
 removing .. 534
multi-crop rapid reel conversion kits 108, 546

N

N-DETENT
 definition .. 19
n/a
 definition .. 19
New Holland combines
 10 V adapter (MD #B6421) 126
 attaching combine to header 363
auger configurations.................................307, 310
New Holland CR/CX combines
 attaching combine to header363
 detaching combine from header367
New Holland feeder deflector371
NPT
definition ...19
nut
definition ...19

O

oils
 changing knife drive box oil461
header drive gearbox
 adding oil ...405
operating modes
 flex mode ..70
 rigid mode ...71
operating variables
 headers ...58
operations ...29
operator responsibilities29
optimizing headers
 straight combining canola54
options ..545
 augers
 auger dent repair kit558
 crop delivery555
 auger dent repair kit558
 draper deflector (narrow)556
 draper deflector (wide) 557
 FM100 dual AHHC sensor kit555
 FM100 feed auger flighting555
 stripper bars557
 upper cross auger (UCA)558
 European combine upper cross auger559
cutterbars ...549
cutterbar wearplates549
extended center filler550
knifehead shield549
rock retarder kit550
roto-shear completion package551
stub guard conversion kit550
vertical knife plumbing kit551
draper
 in-cab draper speed control (ICDSC) kit......556
float module ...545
float modules
 hillside extension kit545
 header ...552
 backsheat extension kit 554
 center skid shoes554
divider latch kits552
double vertical knife hose kits551
rice divider rods559
vertical knife kits551
wheels
 secondary stabilizer wheel553
 stabilizer wheels552
 stabilizer wheels and slow speed transport
 package ...553
knifehead shields452
installing ...453
PR15 pick-up reels
 reel endshield kit547
tine tube reel conversion kits547
reel arms
 reel arm extension kit546
reel drive sprockets89
reels ..546
 lodged crop reel finger kits547
 multi-crop rapid reel conversion kit546
 reel arm extension kit546
 reel endshield kit547
tine tube reinforcing kit548
rice divider rods121
transport systems542
ORB
definition ...19
ORFS
definition ...19
owner responsibilities29

P

pick-up reels, See PR15 pick-up reels
PR15 pick-up reels502
 adjusting reel frown506
 centering the reel
 double reel507
 fore-aft position
 adjusting ...100
 repositioning cylinders
 double reel101, 104
 with multi-crop rapid reel option kit108
 frown ...506
 options ...546
 recommended setting56
 reel cam
 adjusting reel cam113
 settings and guidelines111
 reel clearance502
 adjusting ...505
 measuring ...502
 reel drive motors534
INDEX

reel drives
 adjusting chain tension..528
 covers..526
 installing ..527
 removing ...526
 double reel U-joint..532
 installing ..533
 removing ..532
 drive sprockets ...530
 installing ..531
 optional for special conditions ..528
 removing ..530
 installing motor ..531
 loosening chain ...528
 removing motor ...534
 replacing chain – double reel ...535
 replacing chain – single reel ...537
 tightening chain ..528
 reel endshields ..523
 replacing endshield supports ...525
 replacing endshields ..523
 reel fingers ..507
 installing plastic fingers ..510
 installing steel fingers ...508
 removing plastic fingers ..509
 removing steel fingers ...507
 reel height ..50
 reel height sensor ..96
 replacing sensor ..98
 reel safety props ...31
 disengaging ...32
 engaging ..31
 reel speed ...59
 reel system ..111
 reel tine pitch ..111
 replacing reel speed sensors ..538
 AGCO combines ..538
 CLAAS 400 ..540
 CLAAS 500/700 ...541
 John Deere combines ..540
 tine tube bushings ...511
 installing on 5-, 6- or 9-bat reels ...516
 removing from 5-, 6-, or 9-bat reels511
preseason servicing ..388
product overview ...19

reel clearance
 adjusting ..505
 measuring ..502

reel drive chains
 loosening ..528
 replacing on double reel drive ..535
 replacing on single reel drive ..537
 tightening ..528

reel drive motors ..534
 installing ..534
 removing ..534

reel drives
 double reel U-joint ...532
 installing ..533
 removing ..532
 reel endshields ..523
 kit ..547
 replacing endshield supports ..525
 replacing endshields ..523
 reel fingers ..507
 plastic
 installing ..510
 removing ..509
 steel
 installing ..508
 removing ..507
 reel fore-aft positions ..59
 adjusting ..100
 reel frown...500
 adjusting ..506
 reel safety props ...31
 disengaging ...32
 engaging ..31
 reel speeds ...89
 reel system ..111
 recommended reel settings ..56
 reels
 centering the reel ..
 double reel ...507

references
 unloading and assembly ..587

revisions
 list of revisions ..71
 rice divider rods ...121
 rice divider rods (option) ...559
 rigid modes
 operating in rigid mode ...71

rock retarder kits ..550
RoHS
 definition ..19
roto-shear
 definition ..19
plumbing kit ..551
rpm
 definition ..19
Recommended Fluids and Lubricants

Ensure your machine operates at top efficiency by using clean fluids and lubricants only.

- Use clean containers to handle all fluids and lubricants.
- Store fluids and lubricants in an area protected from dust, moisture, and other contaminants.

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>SAE multi-purpose</td>
<td>High temperature extreme pressure (EP) performance grease with 1% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
<td>—</td>
</tr>
<tr>
<td>Grease</td>
<td>SAE multi-purpose</td>
<td>High temperature extreme pressure (EP) performance grease with 10% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>Driveline slip-joints</td>
<td>—</td>
</tr>
<tr>
<td>Gear Lubricant</td>
<td>SAE 85W-140</td>
<td>API service class GL-5</td>
<td>Knife drive box</td>
<td>2.2 liters (2.3 quarts)</td>
</tr>
<tr>
<td>Gear Lubricant</td>
<td>SAE 85W-140</td>
<td>API service class GL-5</td>
<td>Main drive gearbox</td>
<td>2.5 liters (2.6 quarts)</td>
</tr>
<tr>
<td>Hydraulic Oil</td>
<td>Single grade trans-hydraulic oil. Recommended brands: • Petro-Canada Duratran • John Deere Hy-Gard J20C • Case Hy-Tran Ultraction • AGCO Power Fluid 821 XL</td>
<td>Lubricant trans / hydraulic oil</td>
<td>Header drive systems reservoir</td>
<td>75 liters (20 US gallons)</td>
</tr>
</tbody>
</table>
MacDon Industries Ltd.
680 Moray Street
Winnipeg, Manitoba
Canada R3J 3S3
t. (204) 885-5590 f. (204) 832-7749

MacDon, Inc.
10708 N. Pomona Avenue
Kansas City, Missouri
United States 64153-1924
t. (816) 891-7313 f. (816) 891-7323

MacDon Australia Pty. Ltd.
A.C.N. 079 393 721
P.O. Box 103 Somerton, Victoria, Australia
Australia 3061
t.+61 3 8301 1911 f.+61 3 8301 1912

MacDon Brasil Agribusiness Ltda.
Rua Grã Nicco, 113, sala 202. B. 02
Mossunguê, Curitiba, Paraná
CEP 81200-200 Brasil
t. +55 (41) 2101-1713 f. +55 (41) 2101-1699

LLC MacDon Russia Ltd.
123317 Moscow, Russia
10 Presnenskaya nab, Block C
Floor 5, Office No. 534, Regus Business Centre
t. +7 495 775 6971 f. +7 495 967 7600

MacDon Europe GmbH
Hagenauer Strasse 59
65203 Wiesbaden
Germany

CUSTOMERS
MacDon.com

DEALERS
Portal.MacDon.com

Trademarks of products are the marks of their respective manufacturers and/or distributors.

Printed in Canada