D1 Series and FM100 Draper Header and Float Module for Combines

Operator’s Manual
214825 Revision A
Original Instruction

The harvesting specialists.
Published: January 2019
Declaration of Conformity

MacDon Industries Ltd.
680 Moray Street,
Winnipeg, Manitoba, Canada
R3J 3B3

[1] EC Declaration of Conformity

[2] Combine Draper Header

[3] MacDon D1 Series

[4] As per Shipping Document

[5] November 21, 2018

[6] Christoph Martens

Product Integrity

EN

We, [1],

[Declaration of Conformity]

MacDon Industries Ltd.
680 Moray Street,
Winnipeg, Manitoba, Canada
R3J 3B3

[2] Combine Draper Header

[3] MacDon D1 Series

[4] As per Shipping Document

[5] November 21, 2018

[6] Christoph Martens

Product Integrity

We, [1],

hereby declare that the product:

Machine Type [2]

Name & Model [3]

Serial Number(s) [4]

fulfils all the relevant provisions of the Directive 2006/42/EC.

Harmonized standards used, as referred to in Article 3(2):

EN ISO 4244-1:2013
EN ISO 4244-7:2009

Product category: [5]

Type of product: [5]

Name & model: [6]

Identification number(s): [7]

Applies the following harmonized standards, as referred to in the Annex I of Directive 2006/42/EC:

EN ISO 4244-1:2013
EN ISO 4244-7:2009

Mandatory test procedures: [8]

Identifies a post-sale osysoy issue and provides a procedure to resolve it: [9]

Name and address of the person authorized to compile the technical file:

Benedikt von Reddholz
General Manager, MacDon Europe GmbH
Ingenieur Straße 50
63503 Wiesbaden, Germany
benredhholz@macdon.com

The Harvesting Specialists

214825 i Revision A
EC Declaration of Conformity

[Details of declaration content]

Benedict von Reisdorf
General Manager, Macdon Europe GmbH
Hagenauer Straße 39
65229 Wiesbaden (Germany)
benreisdorf@macdon.com

Mils,
[Details of manufacturer details]

Benedict von Reisdorf
[Details of company details]
EC Declaration of Conformity

MacDon Industries Ltd.
680 Moray Street
Winnipeg, Manitoba, Canada
R3J 3B3

[2] Float Module
[3] MacDon FM100

[4] As per Shipping Document
[5] May 3, 2018
[6] Christoph Martens
Product Integrity

EN

[1] We, [1], declare (that the product):
Machine Type [1]
Name & Model [1]
Serial Number(s) [1]

fulfill all the relevant provisions of the Directive 2006/42/EC.
Harmonized standards used, as referred to in Article 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Place and date of declaration [5]:
Identity and signature of the person empowered to draw up the declaration [4]:
Name and address of the person authorized to compile the technical file:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenaer Straße 59
65030 Wiesbaden [Germany]
benreden@macdon.com

[2] Wir [1], erklären hiermit, dass das Produkt:
Maschinentyp [1]
Name & Modell [1]
Seriennummer(n) [1]

alle relevanten Vorschriften der Richtlinie 2006/42/EC erfüllt.
Harmonisierte Standards wurden, wie in folgender Artikel angegeben, verwendet [7(2)]:
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Ort und Datum der Erklärung [5]:
Name und Unterschrift der Personen, die dazu befugt ist, die Erklärung auszustellen [6]:
Name und Anschrift der Person, die dazu befugt ist, die technischen Unterlagen zu erstellen:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenaer Straße 59
65030 Wiesbaden
benreden@macdon.com

DE

[1] Нам, [1], декларируем, че следващият продукт:
Вид машини [1]
Наменение и модел [1]
Серийни номери [1]

съответства на всички изисквания на Директива 2006/42/EC.
Съобразени стандарти са, както са указани в следната статия (в Directive 2006/42/EC):
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Место и дата на декларацията [5]:
Идентификация и подпис на лица, които могат да изготвят декларацията [6]:
Име и адреса на лицето, което е отговорно за предоставяне на техническите файлове:

Бенедикт фон Реден
Управляващ директор, MacDon Европа ГмбH
Hagenaer Straße 59
65030 Висбаден [Германия]
benreden@macdon.com

CZ

[1] My, [1], prohlášuji, že následující produkt:
Typ zařízení [1]
Název a model [1]
Sériové číslo(n) [1]

vyhovuje všem relevantním pravidlům směrnice 2006/42/EC.
Harmonizované standardy jsou, jak je uvedeno v článku 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Místo a datum prohlášení [5]:
Identifikace a podpis osoby oprávněné k vyplnění prohlášení [6]:
Název a adresa osoby oprávněné k vyplnění technického seznamu:

Benedikt von Reden
generální ředitel, MacDon Europe GmbH
Hagenaer Straße 59
65030 Wiesbaden [Německo]
bvreden@macdon.com

ES

[1] Nosotros [1], declaramos que el producto:
Tipo de máquina [1]
Nombre y modelo [1]
Número(s) de serie [1]

cumple con todas las disposiciones pertinentes de la Directiva 2006/42/EC.
Los estándares armonizados se encuentran, como se indica en el artículo 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Lugar y fecha de la declaración [5]:
Identidad y firma de la persona facultada para dar la declaración [6]:
Nombre y dirección de la persona autorizada para redactar el expediente técnico:

Benedikt von Reden
Gerente general, MacDon Europe GmbH
Hagenaer Straße 59
65030 Wiesbaden [Alemania]
bvreden@macdon.com

IT

[1] Da, [1], dichiariamo che il prodotto:
Tipo di macchina [1]
Nome e modello [1]
Numero di serie [1]

rispetta tutte le disposizioni previste dalla Direttiva 2006/42/EC.
I relativi standard armonizzati sono quelli indicati nel paragrafo 7(2):
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Luogo e data della dichiarazione [5]:
Identificazione e firma della persona autorizzata a redigere la dichiarazione [6]:
Nome e indirizzo della persona autorizzata a redigere il dossier tecnico:

Benedikt von Reden
General Manager, MacDon Europe GmbH
Hagenaer Straße 59
65030 Wiesbaden

FR

[1] Nous, [1], déclarons que le produit:
Type de machine [1]
Nom et modèle [1]
Numéro(s) de série [1]

respecte toutes les dispositions pertinentes de la directive 2006/42/EC.
Les standards harmonisés sont les suivants (en référence à l’article 7(2)):
EN ISO 4254-1:2013
EN ISO 4254-2:2009

Lieu et date de la déclaration [5]:
Identification et signature de la personne ayant le pouvoir de rediger cette déclaration [6]:
Nom et adresse de la personne autorisée à constituer le dossier technique:

Benedikt von Reden
Directeur général, MacDon Europe GmbH
Hagenaer Straße 59
65030 Wiesbaden [Allemagne]
bvreden@macdon.com

The Harvesting Specialists

214825

iii

Revision A
Introduction

This instructional manual contains information on the D1 Series Draper Header and the FM100 Float Module. It must be used in conjunction with your combine operator’s manual. The FM100 Float Module is used to attach a D1 Series Draper Header to a combine.

The D1 Series Draper Header is specially designed as a straight cut header and is equipped to work well in all straight cut conditions—whether cutting on or above the ground.

Carefully read all the material provided before attempting to use the machine.

Use this manual as your first source of information about the machine. If you follow the instructions provided, your header will work well for many years. Contact your Dealer if you need assistance, information, or additional copies of this manual.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

The following conventions are used in this document:

- Right and left are determined from the operator’s position. The front of the header faces the crop; the back of the header attaches to the float module and combine.
- Unless otherwise noted, use the standard torque values provided in Chapter 8.1 Torque Specifications, page 621.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

The Table of Contents and Index will guide you to specific areas of this manual. Study the Table of Contents to familiarize yourself with how the information is organized.

NOTE:

Keep your MacDon publications up-to-date. The most current version can be downloaded from our Dealer-only site (https://portal.macdon.com) (login required).
Keep this manual handy for frequent reference and to pass on to new Operators or Owners. A manual storage case (A) is located inside the header left endshield.

Call your MacDon Dealer if you need assistance, information, or additional copies of this manual.

NOTE:
Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).

This document is available in English, French, Portuguese, and Russian.
List of Revisions

<table>
<thead>
<tr>
<th>Summary of Change</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added explanation of IMPORTANT and NOTE signal words.</td>
<td>1.2 Signal Words, page 2</td>
</tr>
<tr>
<td>Added new illustration for FM100 decals MD #252996 and MD #184372.</td>
<td>1.7 Safety Decal Locations, page 8</td>
</tr>
<tr>
<td>Added new illustration for decal MD #252996.</td>
<td>1.8 Understanding Safety Signs, page 16</td>
</tr>
<tr>
<td>Updated illustration to better show hinge arm inside endshield.</td>
<td>Removing Endshields, page 38</td>
</tr>
<tr>
<td>Updated illustration to better show hinge arm inside endshield.</td>
<td>Installing Endshields, page 39</td>
</tr>
<tr>
<td>Added torque values for hardware.</td>
<td>Checking and Adjusting Endshields, page 39</td>
</tr>
<tr>
<td>Added content for sensor arm/pointer configurations.</td>
<td>Checking and Adjusting Reel Height Sensor, page 118</td>
</tr>
<tr>
<td>Updated procedure steps and illustrations.</td>
<td>Adjusting Voltage Limits – One-Sensor System, page 162</td>
</tr>
<tr>
<td>Updated procedure steps and illustrations.</td>
<td>Adjusting Voltage Limits – Two-Sensor System, page 163</td>
</tr>
<tr>
<td>New topic.</td>
<td>Replacing Float Indicator Cable, page 167</td>
</tr>
<tr>
<td>Note added.</td>
<td>Setting up the Header on the Combine Display – Case IH 5130/6130/7130; 5140/6140/7140, page 174</td>
</tr>
<tr>
<td>Updated procedure, added illustrations.</td>
<td>Calibrating Auto Header Height Control – Case IH 5130/6130/7130, 5140/6140/7140, page 179</td>
</tr>
<tr>
<td>Note added.</td>
<td>Calibrating the Auto Header Height Control – CLAAS 600 and 700 Series, page 216</td>
</tr>
<tr>
<td>New topic.</td>
<td>Calibrating Reel Height Sensor – CLAAS 600 and 700 Series, page 222</td>
</tr>
<tr>
<td>New topic.</td>
<td>Adjusting Auto Reel Height – CLAAS 600 and 700 Series, page 225</td>
</tr>
<tr>
<td>Notes added.</td>
<td>Calibrating the Auto Header Height Control – John Deere 60 Series, page 254</td>
</tr>
<tr>
<td>Note added.</td>
<td>Calibrating the Auto Header Height Control – John Deere 70 Series, page 263</td>
</tr>
<tr>
<td>Updated procedure steps, illustrations, notes.</td>
<td>Calibrating the Auto Header Height Control – John Deere S and T Series, page 270</td>
</tr>
<tr>
<td>Updated illustration.</td>
<td>Setting up Header – John Deere S7 Series, page 286</td>
</tr>
<tr>
<td>Updated illustrations.</td>
<td>Setting Preset Cutting Height – New Holland CR/CX Series, page 309</td>
</tr>
<tr>
<td>Updated float lock illustration.</td>
<td>4.2.1 Attaching Header to Case IH Combine, page 350</td>
</tr>
<tr>
<td>Summary of Change</td>
<td>Location</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Updated float lock illustration.</td>
<td>4.4.1 Attaching Header to John Deere Combine, page 366</td>
</tr>
<tr>
<td>Updated float lock illustration.</td>
<td>4.5.1 Attaching Header to CLAAS Combine, page 373</td>
</tr>
<tr>
<td>Updated float lock illustration.</td>
<td>4.6.1 Attaching Header to New Holland CR/CX Combine, page 381</td>
</tr>
<tr>
<td>Updated illustration for double-knife header.</td>
<td>Greasing Procedure, page 417</td>
</tr>
<tr>
<td>Added final step in procedure.</td>
<td>5.7.1 Adjusting Auger to Pan Clearance, page 436</td>
</tr>
<tr>
<td>New topic.</td>
<td>Replacing Broken Finger Holder, page 453</td>
</tr>
<tr>
<td>New topic.</td>
<td>Removing Broken Finger Holder, page 453</td>
</tr>
<tr>
<td>New topic.</td>
<td>Installing Split Finger Holder, page 454</td>
</tr>
<tr>
<td>New topic.</td>
<td>Checking Auger Finger Timing, page 457</td>
</tr>
<tr>
<td>New topic.</td>
<td>Adjusting Auger Finger Timing, page 457</td>
</tr>
<tr>
<td>Updated illustrations, edited organization and steps for clarity.</td>
<td>5.10.2 Checking and Adjusting Feed Draper Tension, page 501</td>
</tr>
<tr>
<td>Updated procedure steps.</td>
<td>Replacing Feed Draper Idler Roller Bearing, page 509</td>
</tr>
<tr>
<td>New topic.</td>
<td>5.11.4 Replacing Feed Deflectors on Gleaner Combines, page 518</td>
</tr>
<tr>
<td>Updated procedure.</td>
<td>Measuring Reel Clearance, page 544</td>
</tr>
<tr>
<td>Updated procedure and illustrations.</td>
<td>Centering Double Reel, page 548</td>
</tr>
<tr>
<td>Updated illustration.</td>
<td>Centering Single Reel, page 549</td>
</tr>
<tr>
<td>Updated bundle numbers.</td>
<td>6.2.2 Reel Arm Extension Kit – European-Configured Headers Only, page 594</td>
</tr>
<tr>
<td>New topic.</td>
<td>6.2.3 Reel Arm Extension Kit – North American-Configured Headers Only, page 595</td>
</tr>
<tr>
<td>Updated bundle numbers.</td>
<td>6.2.5 PR15 Tine Tube Reel Conversion Kit, page 596</td>
</tr>
<tr>
<td>Updated bundle numbers.</td>
<td>6.3.1 Cutterbar Wearplate, page 598</td>
</tr>
<tr>
<td>Updated ordering information.</td>
<td>6.3.2 Knife Cutout Cover, page 598</td>
</tr>
<tr>
<td>Updated bundle numbers.</td>
<td>6.3.6 Vertical Knife Mount Kits, page 600</td>
</tr>
<tr>
<td>Updated kit lists.</td>
<td>6.3.6 Vertical Knife Mount Kits, page 600</td>
</tr>
<tr>
<td>New option.</td>
<td>6.3.7 Vertical Knife Plumbing Kits, page 600</td>
</tr>
<tr>
<td>Added illustration.</td>
<td>6.4.2 Stabilizer Wheels, page 601</td>
</tr>
<tr>
<td>New option.</td>
<td>6.4.5 Stubble Light Kit, page 602</td>
</tr>
<tr>
<td>New option.</td>
<td>6.4.7 Center Skid Shoes Kit, page 603</td>
</tr>
<tr>
<td>New option.</td>
<td>6.4.8 Steel Skid Shoes, page 604</td>
</tr>
<tr>
<td>Summary of Change</td>
<td>Location</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Updated bundle numbers.</td>
<td>6.5.3 In-Cab Draper Speed Control Kit, page 606</td>
</tr>
<tr>
<td>New option.</td>
<td>6.5.5 EasyGuard Kit, page 607</td>
</tr>
<tr>
<td>New topic added.</td>
<td>6.5.11 Full Interface Filler Kit, page 610</td>
</tr>
<tr>
<td>Updated hydraulic oil capacity.</td>
<td>Inside the manual back cover.</td>
</tr>
</tbody>
</table>
Model and Serial Number

Record the model number, serial number, and model year of the header, combine float module, and transport / stabilizer wheel option (if installed) in the spaces provided.

NOTE:
Right and left designations are determined from the operator’s position, facing forward.

D1 Draper Header

Header Model: ____________________________
Serial Number: ____________________________
Year: ____________________________

The serial number plate (A) is located on the upper corner on the left endsheet.

FM100 Float Module for Combine

Serial Number: ____________________________
Year: ____________________________

The serial number plate (A) is located on the top left side of the float module.
Slow Speed Transport / Stabilizer Wheel Option

Serial Number: ____________________________
Year: ____________________________

The serial number plate (A) is located on the right axle assembly.
TABLE OF CONTENTS

Declaration of Conformity... i
Introduction .. v
List of Revisions.. vii
Model and Serial Number ... x

Chapter 1: Safety .. 1
 1.1 Safety Alert Symbols ... 1
 1.2 Signal Words ... 2
 1.3 General Safety .. 3
 1.4 Maintenance Safety ... 5
 1.5 Hydraulic Safety ... 6
 1.6 Safety Signs .. 7
 1.6.1 Installing Safety Decals... 7
 1.7 Safety Decal Locations .. 8
 1.8 Understanding Safety Signs ... 16

Chapter 2: Product Overview .. 23
 2.1 Definitions .. 23
 2.2 Specifications... 25
 2.3 Component Identification .. 29
 2.3.1 D1 Series Draper Header for Combines .. 29
 2.3.2 FM100 Float Module .. 30

Chapter 3: Operation ... 33
 3.1 Owner/Operator Responsibilities .. 33
 3.2 Operational Safety .. 34
 3.2.1 Header Safety Props ... 34
 3.2.2 Reel Safety Props ... 35
 Engaging Reel Safety Props .. 35
 Disengaging Reel Safety Props ... 36
 3.2.3 Endshields .. 37
 Opening Endshields .. 37
 Closing Endshields ... 38
 Removing Endshields ... 38
 Installing Endshields .. 39
 Checking and Adjusting Endshields .. 39
 3.2.4 Daily Start-Up Check ... 41
 3.3 Break-in Period .. 42
 3.4 Shutting down the Combine .. 43
 3.5 Cab Controls ... 44
 3.6 Header Setup ... 45
 3.6.1 Header Attachments .. 45
 3.6.2 Header Settings .. 45
 3.6.3 Optimizing Header for Straight Combining Canola ... 56
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking and Adjusting Feed Auger Springs</td>
<td>57</td>
</tr>
<tr>
<td>3.6.4 Reel Settings</td>
<td>58</td>
</tr>
<tr>
<td>3.7 Header Operating Variables</td>
<td>60</td>
</tr>
<tr>
<td>3.7.1 FM100 Feed Auger Configurations</td>
<td>61</td>
</tr>
<tr>
<td>Converting from Ultra Narrow Configuration or Narrow Configuration to Medium Configuration</td>
<td>65</td>
</tr>
<tr>
<td>Converting from Wide Configuration to Medium Configuration</td>
<td>68</td>
</tr>
<tr>
<td>Converting from Medium Configuration or Wide Configuration to Narrow Configuration</td>
<td>70</td>
</tr>
<tr>
<td>Converting from Ultra Narrow Configuration to Narrow Configuration</td>
<td>72</td>
</tr>
<tr>
<td>Converting from Medium Configuration to Wide Configuration</td>
<td>73</td>
</tr>
<tr>
<td>Converting from Ultra Narrow or Narrow Configuration to Wide Configuration</td>
<td>75</td>
</tr>
<tr>
<td>Optional Modification to Wide Configuration</td>
<td>77</td>
</tr>
<tr>
<td>Converting from Medium Configuration or Wide Configuration to Ultra Narrow Configuration</td>
<td>78</td>
</tr>
<tr>
<td>Setting Auger Position</td>
<td>83</td>
</tr>
<tr>
<td>3.7.2 Cutting Height</td>
<td>86</td>
</tr>
<tr>
<td>Cutting off the Ground</td>
<td>86</td>
</tr>
<tr>
<td>Cutting on the Ground</td>
<td>91</td>
</tr>
<tr>
<td>3.7.3 Header Float</td>
<td>94</td>
</tr>
<tr>
<td>Checking and Adjusting Header Float</td>
<td>95</td>
</tr>
<tr>
<td>Locking/Unlocking Header Float</td>
<td>101</td>
</tr>
<tr>
<td>3.7.4 Header Angle</td>
<td>102</td>
</tr>
<tr>
<td>Adjusting Header Angle from Combine</td>
<td>104</td>
</tr>
<tr>
<td>3.7.5 Reel Speed</td>
<td>111</td>
</tr>
<tr>
<td>Optional Reel Drive Sprockets</td>
<td>111</td>
</tr>
<tr>
<td>3.7.6 Ground Speed</td>
<td>112</td>
</tr>
<tr>
<td>3.7.7 Draper Speed</td>
<td>113</td>
</tr>
<tr>
<td>Adjusting Header Draper Speed</td>
<td>113</td>
</tr>
<tr>
<td>Feed Draper Speed</td>
<td>114</td>
</tr>
<tr>
<td>3.7.8 Knife Speed Information</td>
<td>115</td>
</tr>
<tr>
<td>Checking Knife Speed</td>
<td>116</td>
</tr>
<tr>
<td>3.7.9 Reel Height</td>
<td>117</td>
</tr>
<tr>
<td>Checking and Adjusting Reel Height Sensor</td>
<td>118</td>
</tr>
<tr>
<td>Replacing Reel Height Sensor</td>
<td>121</td>
</tr>
<tr>
<td>3.7.10 Reel Fore-Aft Position</td>
<td>123</td>
</tr>
<tr>
<td>Adjusting Reel Fore-Aft Position</td>
<td>124</td>
</tr>
<tr>
<td>Repositioning Fore-Aft Cylinders on Single Reel</td>
<td>125</td>
</tr>
<tr>
<td>Repositioning Fore-Aft Cylinders on Double Reel</td>
<td>127</td>
</tr>
<tr>
<td>Repositioning Fore-Aft Cylinders with Multi-Crop Rapid Reel Conversion Option</td>
<td>130</td>
</tr>
<tr>
<td>Repositioning Fore-Aft Cylinders on European-Configured Headers</td>
<td>133</td>
</tr>
<tr>
<td>3.7.11 Reel Tine Pitch</td>
<td>138</td>
</tr>
<tr>
<td>Reel Cam Settings</td>
<td>139</td>
</tr>
<tr>
<td>Adjusting Reel Cam</td>
<td>142</td>
</tr>
<tr>
<td>3.7.12 Crop Dividers</td>
<td>143</td>
</tr>
<tr>
<td>Removing Crop Dividers with Latch Option from Header</td>
<td>143</td>
</tr>
<tr>
<td>Removing Crop Dividers without Latch Option from Header</td>
<td>144</td>
</tr>
<tr>
<td>Installing Crop Dividers with Latch Option onto Header</td>
<td>145</td>
</tr>
<tr>
<td>Installing Crop Dividers without Latch Option onto Header</td>
<td>146</td>
</tr>
<tr>
<td>3.7.13 Crop Divider Rods</td>
<td>147</td>
</tr>
<tr>
<td>Removing Crop Divider Rods</td>
<td>148</td>
</tr>
<tr>
<td>Installing Crop Divider Rods</td>
<td>149</td>
</tr>
<tr>
<td>Rice Divider Rods</td>
<td>149</td>
</tr>
<tr>
<td>3.7.14 Setting Auger Position</td>
<td>150</td>
</tr>
</tbody>
</table>
3.8 Auto Header Height Control (AHHC) .. 152

3.8.1 Sensor Operation .. 154

3.8.2 Sensor Output Voltage Range – Combine Requirements .. 154

10 Volt Adapter (MD #B6421) – New Holland Combines Only .. 155
Manually Checking Voltage Range – One-Sensor System ... 156
Manually Checking Voltage Range – Two-Sensor System .. 158
Adjusting Voltage Limits – One-Sensor System .. 162
Adjusting Voltage Limits – Two-Sensor System ... 163
Replacing the Auto Header Height Control Sensor – One-Sensor System ... 166
Replacing Float Indicator Cable .. 167

3.8.3 Case IH 5088/6088/7088 Combines ... 171
Calibrating the Auto Header Height Control – Case IH 5088/6088/7088 ... 171
Setting the Sensitivity of the Auto Header Height – Case IH 5088/6088/7088 .. 172

3.8.4 Case IH 5130/6130/7130 and 5140/6140/7140 Mid-Range Combines ... 174
Setting up the Header on the Combine Display – Case IH 5130/6130/7130; 5140/6140/7140) .. 174
Checking Voltage Range from Combine Cab – Case IH 5130/6130/7130; 5140/6140/7140 ... 176
Calibrating Auto Header Height Control – Case IH 5130/6130/7130, 5140/6140/7140 ... 179
Setting Preset Cutting Height – Case 5130/6130/7130, 5140/6140/7140 ... 180

3.8.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230 and 7240/8240/9240 Combines ... 183
Checking Voltage Range from the Combine Cab – Case IH 8010 .. 183
Setting Header Controls – Case IH 8010 ... 186
Checking Voltage Range from the Combine Cab – Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240 .. 187
Calibrating the Auto Header Height Control – Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240 .. 190
Calibrating the Auto Header Height Control – Case IH Combines with Version 28.00 or Higher Software) .. 193
Checking Reel Height Sensor Voltages – Case IH ... 197
Setting Preset Cutting Height – Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240 198

3.8.6 Challenger and Massey Ferguson 6 and 7 Series Combines ... 200
Checking Voltage Range from the Combine Cab – Challenger and Massey Ferguson .. 200
Engaging the Auto Header Height Control – Challenger and Massey Ferguson ... 202
Calibrating the Auto Header Height Control – Challenger and Massey Ferguson .. 203
Adjusting the Header Height – Challenger and Massey Ferguson ... 205
Adjusting the Header Raise/Lower Rate – Challenger and Massey Ferguson .. 206
Setting the Sensitivity of the Auto Header Height Control – Challenger and Massey Ferguson 207

3.8.7 CLAAS 500 Series Combines .. 208
Calibrating the Auto Header Height Control – CLAAS 500 Series ... 208
Setting Cutting Height – CLAAS 500 Series .. 210
Setting the Sensitivity of the Auto Header Height Control – CLAAS 500 Series .. 212
Adjusting Auto Reel Speed – CLAAS 500 Series .. 214

3.8.8 CLAAS 600 and 700 Series Combines .. 216
Calibrating the Auto Header Height Control – CLAAS 600 and 700 Series ... 216
Setting Cutting Height – CLAAS 600 and 700 Series ... 219
Setting the Sensitivity of the Auto Header Height Control – CLAAS 600 and 700 Series .. 219
Adjusting Auto Reel Speed – CLAAS 600 and 700 Series ... 221
Calibrating Reel Height Sensor – CLAAS 600 and 700 Series .. 222
Adjusting Auto Reel Height – CLAAS 600 and 700 Series ... 225

3.8.9 Gleaner R65/R66/R75/R76 and S Series Combines .. 226
Checking Voltage Range from the Combine Cab – Gleaner R65/R66/R75/R76 and Pre-2016 S Series 226
Engaging the Auto Header Height Control – Gleaner R65/R66/R75/R76 and Pre-2016 S Series 228
Calibrating the Auto Header Height Control – Gleaner R65/R66/R75/R76 and Pre-2016 S Series ... 230
Turning off the Accumulator – Gleaner R65/R66/R75/R76 and Pre-2016 S Series ... 232
Adjusting the Header Raise/Lower Rate – Gleaner R65/R66/R75/R76 and Pre-2016 S Series 232
Adjusting Ground Pressure – Gleaner R65/R66/R75/R76 and Pre-2016 S Series 233
Adjusting the Sensitivity of the Auto Header Height Control – Gleaner R65/R66/R75/R76 and Pre-2016 S Series ... 234
Troubleshooting Alarms and Diagnostic Faults – Gleaner R65/R66/R75/R76 and Pre-2016 S Series ... 235

3.8.10 Gleaner S9 Series Combines .. 237
Setting up the Header – Gleaner S9 Series .. 237
Setting Minimum Reel Speed and Calibrating Reel – Gleaner S9 Series .. 242
Setting up Automatic Header Controls – Gleaner S9 Series .. 244
Calibrating the Header – Gleaner S9 Series .. 246
Operating the Header – Gleaner S9 Series .. 250
Reviewing Header In-Field Settings .. 251

3.8.11 John Deere 60 Series Combines .. 252
Checking Voltage Range from the Combine Cab – John Deere 60 Series .. 252
Calibrating the Auto Header Height Control – John Deere 60 Series .. 254
Turning the Accumulator Off – John Deere 60 Series .. 256
Setting the Sensing Grain Header Height to 50 – John Deere 60 Series .. 257
Setting the Sensitivity of the Auto Header Height Control – John Deere 60 Series .. 258
Adjusting the Threshold for the Drop Rate Valve – John Deere 60 Series .. 259

3.8.12 John Deere 70 Series Combines .. 260
Checking Voltage Range from the Combine Cab – John Deere 70 Series .. 260
Calibrating Feeder House Speed – John Deere 70 Series .. 263
Calibrating the Auto Header Height Control – John Deere 70 Series .. 263
Setting the Sensitivity of the Auto Header Height Control – John Deere 70 Series .. 265
Adjusting the Manual Header Raise/Lower Rate – John Deere 70 Series .. 266

3.8.13 John Deere S and T Series Combines .. 267
Checking Voltage Range from the Combine Cab – John Deere S and T Series .. 267
Calibrating the Auto Header Height Control – John Deere S and T Series .. 270
Setting the Sensitivity of the Auto Header Height Control – John Deere S and T Series .. 273
Adjusting the Manual Header Raise/Lower Rate – John Deere S and T Series .. 274
Setting Preset Cutting Height – John Deere S and T Series .. 275
Calibrating Feeder House Fore-Aft Tilt Range – John Deere S and T Series .. 277
Checking Reel Height Sensor Voltages – John Deere S and T Series .. 280
Calibrating Reel Height Sensor – John Deere S and T Series .. 283

3.8.14 John Deere S7 Series Combines .. 286
Setting up Header – John Deere S7 Series .. 286
Checking Voltage Range from the Combine Cab – John Deere S7 Series .. 290
Calibrating Feeder House – John Deere S7 Series .. 293
Calibrating Header – John Deere S7 Series .. 296

3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year .. 299
Checking Voltage Range from the Combine Cab – New Holland CR/CX Series .. 299
Setting up Auto Header Height Control – New Holland CR/CX Series .. 302
Calibrating the Auto Header Height Control – New Holland CR/CX Series .. 303
Adjusting Header Raise Rate – New Holland CR/CX Series .. 306
Setting the Header Lower Rate – New Holland CR/CX Series .. 307
Setting the Sensitivity of the Auto Header Height Control – New Holland CR/CX Series .. 308
Setting Preset Cutting Height – New Holland CR/CX Series .. 309

3.8.16 New Holland Combines – CR Series, Model Year 2015 and Later .. 311
Checking Voltage Range from the Combine Cab – New Holland CR Series .. 311
Setting up Auto Header Height Control – New Holland CR Series .. 314
Chapter 4: Header Attachment/Detachment .. 349

4.1 FM100 Setup .. 349
4.1.1 Using Auger Flighting ... 349
4.1.2 Using Stripper Bars... 349
4.2 Case IH Combines .. 350
4.2.1 Attaching Header to Case IH Combine .. 350
4.2.2 Detaching Header from Case IH Combine ... 355
4.3 AGCO (Challenger, Gleaner, and Massey Ferguson) Combines .. 358
4.3.1 Attaching Header to a Challenger, Gleaner, or Massey Ferguson Combine 358
4.3.2 Detaching Header from a Challenger, Gleaner, or Massey Ferguson Combine 362
4.4 John Deere Combines .. 366
4.4.1 Attaching Header to John Deere Combine .. 366
4.4.2 Detaching Header from John Deere Combine .. 370
4.5 CLAAS Combines ... 373
4.5.1 Attaching Header to CLAAS Combine ... 373
4.5.2 Detaching Header from CLAAS Combine .. 378
4.6 New Holland Combines ... 381
4.6.1 Attaching Header to New Holland CR/CX Combine ... 381
Chapter 5: Maintenance and Servicing

5.1 Preparing Machine for Servicing ... 401
5.2 Maintenance Specifications .. 402
 5.2.1 Installing a Sealed Bearing ... 402
5.3 Maintenance Requirements ... 403
 5.3.1 Maintenance Schedule/Record .. 403
 5.3.2 Break-In Inspection ... 406
 5.3.3 Preseason Servicing ... 406
 5.3.4 End-of-Season Service .. 407
 5.3.5 Checking Hydraulic Hoses and Lines .. 408
 5.3.6 Lubrication and Servicing ... 409
 Service Intervals ... 409
 Greasing Procedure ... 417
 Lubricating Reel Drive Chain – Double Reel ... 419
 Lubricating Auger Drive Chain ... 421
 Lubricating Header Drive Gearbox ... 422
5.4 Hydraulics ... 424
 5.4.1 Checking Oil Level in Hydraulic Reservoir .. 424
 5.4.2 Adding Oil to Hydraulic Reservoir ... 425
 5.4.3 Changing Oil in Hydraulic Reservoir ... 426
 5.4.4 Changing Oil Filter ... 427
5.5 Electrical System .. 428
 5.5.1 Replacing Light Bulbs ... 428
5.6 Header Drive .. 429
 5.6.1 Removing Driveline .. 429
 5.6.2 Installing Driveline ... 430
 5.6.3 Removing Driveline Guard ... 431
 5.6.4 Installing Driveline Guard ... 433
 5.6.5 Adjusting Gearbox Drive Chain Tension ... 435
5.7 Auger .. 436
 5.7.1 Adjusting Auger to Pan Clearance ... 436
 5.7.2 Checking Auger Drive Chain Tension ... 439
 5.7.3 Adjusting Auger Drive Chain Tension ... 441
 5.7.4 Removing Auger Drive Chain .. 442
 5.7.5 Installing Auger Drive Chain ... 445
 5.7.6 Auger Fingers ... 448
 Removing Feed Auger Fingers .. 448
 Installing Feed Auger Fingers ... 450
 Replacing Broken Finger Holder .. 453
TABLE OF CONTENTS

Replacing Feed Auger Finger Guides ... 456
Checking Auger Finger Timing ... 457
Adjusting Auger Finger Timing ... 457
Using Auger Flighting .. 458

5.8 Knife .. 459
5.8.1 Replacing Knife Section .. 460
5.8.2 Removing Knife .. 461
5.8.3 Removing Knifehead Bearing .. 462
5.8.4 Installing Knifehead Bearing .. 463
5.8.5 Installing Knife .. 463
5.8.6 Spare Knife .. 464
5.8.7 Knife Guards .. 465
 Adjusting Knife Guards ... 465
 Replacing Pointed Guards .. 466
 Replacing Stub Guards ... 467
 Checking Knife Hold-Downs ... 469
5.8.8 Knifehead Shield ... 471
 Installing Knifehead Shield ... 471

5.9 Knife Drive System ... 472
5.9.1 Knife Drive Box ... 472
 Checking Knife Drive Box .. 472
 Checking Mounting Bolts ... 473
 Removing Knife Drive Box .. 474
 Removing Knife Drive Box Pulley .. 476
 Installing Knife Drive Box Pulley .. 477
 Installing Knife Drive Box .. 478
 Changing Oil in Knife Drive Box .. 481
5.9.2 Knife Drive Belts ... 482
 Non-Timed Knife Drive Belts ... 482
 Timed Double-Knife Drive Belts ... 486

5.10 Feed Draper ... 498
5.10.1 Replacing Feed Draper ... 498
5.10.2 Checking and Adjusting Feed Draper Tension 501
5.10.3 Feed Draper Drive Roller .. 502
 Removing Feed Draper Drive Roller .. 502
 Installing Feed Draper Drive Roller ... 504
 Replacing Feed Draper Drive Roller Bearing 505
5.10.4 Feed Draper Idler Roller ... 508
 Removing Feed Draper Idler Roller ... 508
 Replacing Feed Draper Idler Roller Bearing 509
 Installing Feed Draper Idler Roller .. 512
5.10.5 Lowering FM100 Feed Deck Pan .. 513
5.10.6 Raising FM100 Feed Deck Pan .. 515

5.11 FM100 Stripper Bars and Feed Deflectors 516
5.11.1 Removing Stripper Bars ... 516
5.11.2 Installing Stripper Bars ... 517
5.11.3 Replacing Feed Deflectors on New Holland CR Combines 517
5.11.4 Replacing Feed Deflectors on Gleaner Combines 518
5.12 Header Side Drapers .. 523
 5.12.1 Removing Side Drapers .. 523
 5.12.2 Installing Side Drapers .. 524
 5.12.3 Adjusting Draper Tension .. 526
 5.12.4 Adjusting Draper Tracking .. 528
 5.12.5 Adjusting Deck Height .. 530
 5.12.6 Draper Roller Maintenance .. 532
 Inspecting Draper Roller Bearing .. 532
 Draper Deck Idler Roller .. 533
 Draper Deck Drive Roller .. 536
 5.12.7 Draper Deflectors .. 541
 Removing Narrow Draper Deflectors .. 541
 Installing Narrow Draper Deflectors ... 542

5.13 Reel .. 543
 5.13.1 Reel Clearance to Cutterbar .. 543
 Measuring Reel Clearance .. 544
 Adjusting Reel Clearance .. 546
 5.13.2 Reel Frown ... 547
 Adjusting Reel Frown ... 547
 5.13.3 Centering the Reel .. 548
 Centering Double Reel ... 548
 Centering Single Reel ... 549
 5.13.4 Reel Fingers ... 550
 Removing Steel Fingers .. 550
 Installing Steel Fingers .. 551
 Removing Plastic Fingers .. 552
 Installing Plastic Fingers .. 553
 5.13.5 Tine Tube Bushings ... 554
 Removing Bushings from Reels ... 554
 Installing Bushings onto Reels .. 560
 5.13.6 Reel Endshields ... 567
 Replacing Reel Endshields .. 567
 Replacing Reel Endshield Supports ... 569

5.14 Reel System .. 570
 5.14.1 Reel Drive Cover .. 570
 Removing Reel Drive Cover .. 570
 Installing Reel Drive Cover ... 571
 5.14.2 Reel Drive Chain Tension .. 573
 Loosening Reel Drive Chain ... 573
 Tightening Reel Drive Chain ... 573
 5.14.3 Reel Drive Sprocket .. 575
 Removing Reel Drive Sprocket .. 575
 Installing Reel Drive Sprocket .. 576
 5.14.4 Double-Reel Drive U-Joint ... 577
 Removing Double-Reel Drive U-Joint ... 577
 Installing Double-Reel U-Joint .. 578
 5.14.5 Reel Drive Motor ... 579
 Removing Reel Drive Motor .. 579
 Installing Reel Drive Motor ... 580
5.15 Transport System (Optional) ... 589
 5.15.1 Checking Wheel Bolt Torque ... 589
 5.15.2 Checking Axle Bolt Torque .. 590
 5.15.3 Checking Tire Pressure .. 591

Chapter 6: Options and Attachments ... 593
 6.1 FM100 Float Module ... 593
 6.1.1 Hillside Extension Kit .. 593
 6.2 Reel ... 594
 6.2.1 Multi-Crop Rapid Reel Conversion Kit ... 594
 6.2.2 Reel Arm Extension Kit – European-Configured Headers Only .. 594
 6.2.3 Reel Arm Extension Kit – North American-Configured Headers Only ... 595
 6.2.4 Lodged Crop Reel Finger Kit .. 595
 6.2.5 PR15 Tine Tube Reel Conversion Kit ... 596
 6.2.6 Reel Endshield Kit .. 596
 6.2.7 Tine Tube Reinforcing Kit .. 597
 6.3 Cutterbar .. 598
 6.3.1 Cutterbar Wearplate .. 598
 6.3.2 Knife Cutout Cover ... 598
 6.3.3 Extended Center Filler .. 599
 6.3.4 Rock Retarder ... 599
 6.3.5 Stub Guard Conversion Kit ... 599
 6.3.6 Vertical Knife Mount Kits .. 600
 6.3.7 Vertical Knife Plumbing Kits .. 600
 6.4 Header .. 601
 6.4.1 Divider Quick Latch Kit ... 601
 6.4.2 Stabilizer Wheels .. 601
 6.4.3 Secondary Stabilizer Wheel ... 602
 6.4.4 Stabilizer Wheels and Slow Speed Transport Package .. 602
 6.4.5 Stubble Light Kit .. 602
 6.4.6 Backsheet Extension Kit ... 603
 6.4.7 Center Skid Shoes Kit .. 603
 6.4.8 Steel Skid Shoes .. 604
 6.5 Crop Delivery ... 605
 6.5.1 FM100 Dual Auto Header Height Control Sensor Kit ... 605
 6.5.2 FM100 Feed Auger Flighting .. 605
 6.5.3 In-Cab Draper Speed Control Kit ... 606
Chapter 1: Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- ATTENTION!
- BECOME ALERT!
- YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

- Accidents disable and kill
- Accidents cost
- Accidents can be avoided

![Safety Symbol](image)
1.2 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. Two signal words, IMPORTANT and NOTE, identify non-safety related information. Signal words are selected using the following guidelines:

⚠️ DANGER
Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ CAUTION
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

IMPORTANT:
Indicates a situation that, if not avoided, could result in a malfunction or damage to the machine.

NOTE:
Provides additional information or advice.
1.3 General Safety

⚠️ CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do **NOT** take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip-resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask

- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. **NEVER** ignore warning signs of fatigue.
• Wear close-fitting clothing and cover long hair. NEVER wear dangling items such as scarves or bracelets.

• Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.

• Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

• Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.

• Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.

• To avoid bodily injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

• Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

• Keep work area well lit.

• Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.

• NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

• When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit
 - Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
 - Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
 - Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
 - Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
 - Install transport lock or place safety stands under frame before working under machine.
 - If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lubricant fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high-pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If original part on which a safety sign was installed is replaced, be sure the repair part displays the current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.6.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.
1.7 Safety Decal Locations

Figure 1.15: Upper Cross Auger

A - MD #174682

Figure 1.16: Slow Speed Transport

A - MD #220799
Figure 1.17: Slow Speed Transport Tow-Bar

Figure 1.18: Vertical Knife
Figure 1.19: Endsheets, Reel Arms, and Backsheet

A - MD #174632
B - MD #131393
C - MD #184422
D - MD #131392 (Double Reel Only)
E - MD #131391 (Two Places)
F - MD #166466 (Three Places)
SAFETY

Figure 1.21: 6.1 m (20 ft.) Header Backtube

A - MD #184372
B - MD #166466
C - MD #131391
Figure 1.22: 7.6 m (25 ft.) Header Backtube

SAFETY

A - MD #184372 B - MD #166466 C - MD #131391
SAFETY

Figure 1.23: 9.1 m, 10.7 m, 12.2 m, and 13.7 m (30 ft., 35 ft., 40 ft., and 45 ft.) Header Backtube

A - MD #184372 (Except 12.2 m [40 ft.] Split Frame)
D - MD #131392 (9.1 m and 10.7 m [30 ft. and 35 ft.]
Double Reel Only)
B - MD #166466
E - MD #184372 (12.2 m [30 ft.] Split Frame)
C - MD #131391

A - MD #184372 (Except 12.2 m [40 ft.] Split Frame)
D - MD #131392 (9.1 m and 10.7 m [30 ft. and 35 ft.]
Double Reel Only)
Figure 1.24: FM100 Float Module

A - MD #252996

B - MD #184372
1.8 Understanding Safety Signs

MD #113482

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do **NOT** allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #131391

Crushing hazard

DANGER

- Rest header on ground or engage safety props before going under unit.
MD #131392
Crushing hazard

WARNING

- To avoid injury from fall of raised reel; fully raise reel, stop the engine, remove the key, and engage safety prop on each reel support arm before working on or under reel.

MD #131393
Reel hazard

WARNING

- To avoid injury from fall of raised reel; fully raise reel, stop the engine, remove the key, and engage safety prop on each reel support arm before working on or under reel.

MD #166466
High-pressure oil hazard

WARNING

- Do not go near leaks.
- High-pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

MD #174436
High-pressure oil hazard

WARNING

- Do not go near leaks.
- High-pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

MD #174632
Reel entanglement hazard

CAUTION

- To avoid injury from entanglement with rotating reel, stand clear of header while machine is running.
MD #184372

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #184422

Chain drive hand and arm entanglement hazard

WARNING

- Do not open or remove safety shields while engine is running.
- To avoid injury, stop the engine and remove the key before opening shield.
MD #220797
Tipping hazard in transport mode

WARNING
- Read the operator’s manual for more information on potential tipping or rollover of header while transporting.

MD #220798
Loss of control hazard in transport

CAUTION
- Do not tow the header with a dented or otherwise damaged tow pole (the circle with the red X shows a dent in the pole).
- Consult the operator’s manual for more information.

MD #220799
Transport/roading hazard

WARNING
- Ensure tow-bar lock mechanism is locked.
MD #252996
Hot oil spray hazard

WARNING
- Hydraulic oil is under pressure and may be hot.
- Never remove fill cap when machine is hot. Always allow machine to cool down before removing fill cap.

MD #279085
Auger entanglement hazard

WARNING
- To avoid injury from rotating auger, stand clear of auger while machine is running.
Chapter 2: Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHHC</td>
<td>Automatic Header Height Control</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>D1 Series header</td>
<td>MacDon D120, D125, D130, D135, D140, and D145 combine draper header from D1 model number series</td>
</tr>
<tr>
<td>DDD</td>
<td>Double-drum drive</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DKD</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>DR</td>
<td>Double reel</td>
</tr>
<tr>
<td>Export header</td>
<td>Header configuration typical outside North America</td>
</tr>
<tr>
<td>FFFT</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>FM100</td>
<td>Float Module used with a D1 or FD1 Series header for combining</td>
</tr>
<tr>
<td>GSL</td>
<td>Ground speed lever</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts crop and feeds it into an attached combine</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>HDS</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>MDS</td>
<td>Mechanical deck shift</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>SDD</td>
<td>Single-draper drive</td>
</tr>
<tr>
<td>SK</td>
<td>Single knife</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>SR</td>
<td>Single reel</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Timed knife drive</td>
<td>Synchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>Truck</td>
<td>A four-wheel highway/road vehicle weighing no less than 3400 kg (7500 lb.)</td>
</tr>
<tr>
<td>UCA</td>
<td>Upper cross auger</td>
</tr>
<tr>
<td>Untimed knife drive</td>
<td>Unsynchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor or two hydraulic motors</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism</td>
</tr>
</tbody>
</table>
2.2 Specifications

The following symbol and letters are used in Table 2.1, page 25 and Table 2.2, page 27:

D1 | FM100 | Attachments
S: standard / Oₐ: optional (factory installed) / O₉: optional (dealer installed) / —: not available

Table 2.1 Header Specifications

<table>
<thead>
<tr>
<th>Cutterbar</th>
<th>Effective cutting width (distance between crop divider points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 m (20 ft.) header</td>
<td>6096 mm (240 in.) S</td>
</tr>
<tr>
<td>7.6 m (25 ft.) header</td>
<td>7620 mm (300 in.) S</td>
</tr>
<tr>
<td>9.1 m (30 ft.) header</td>
<td>9144 mm (360 in.) S</td>
</tr>
<tr>
<td>10.7 m (35 ft.) header</td>
<td>10,668 mm (420 in.) S</td>
</tr>
<tr>
<td>12.2 m (40 ft.) header</td>
<td>12,192 mm (480 in.) S</td>
</tr>
<tr>
<td>13.7 m (45 ft.) header</td>
<td>13,716 mm (540 in.) S</td>
</tr>
</tbody>
</table>

Cutterbar lift range Varies with combine model

<table>
<thead>
<tr>
<th>Knife</th>
<th>Single-knife drive (all sizes): One hydraulic motor with V-belt to one heavy duty MD knife drive box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oₐ</td>
</tr>
<tr>
<td>Double-knife timed drive 6.1–10.7 m (20–35 ft.): One hydraulic motor with two cogged belts to two heavy duty MD knife drive boxes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oₐ</td>
</tr>
<tr>
<td>Double-knife untimed drive 12.2–13.7 m (40 and 45 ft.): Two hydraulic motors with V-belts to two heavy duty MD knife drive boxes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oₐ</td>
</tr>
</tbody>
</table>

Knife stroke 76 mm (3 in.) S

<table>
<thead>
<tr>
<th>Knife speed¹</th>
<th>7.6 m (25 ft.) header</th>
<th>1200–1450 (strokes/min.) S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-knife speed</td>
<td>9.1 m (30 ft.) header</td>
<td>1200–1400 (strokes/min.) S</td>
</tr>
<tr>
<td>Single-knife speed</td>
<td>10.7 m (35 ft.) header</td>
<td>1100–1300 (strokes/min.) S</td>
</tr>
<tr>
<td>Single-knife speed</td>
<td>12.2 m (40 ft.) header</td>
<td>1050–1200 (strokes/min.) S</td>
</tr>
</tbody>
</table>

Double-knife speed 6.1 m and 7.6 m (20 ft. and 25 ft.) headers 1400–1700 (strokes/min.) S

Double-knife speed 9.1 m and 10.7 m (30 ft. and 35 ft.) headers 1200–1500 (strokes/min.) S

Double-knife speed 12.2 m and 13.7 m (40 ft. and 45 ft.) headers 1100–1400 (strokes/min.) S

1. Under normal cutting conditions, set knife speed at the knife drive pulley between 600 and 640 rpm (1200 and 1280 spm). If set to low side of chart, you could experience knife stalling.
Table 2.1 Header Specifications (continued)

<table>
<thead>
<tr>
<th>Knife Sections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-serrated, solid, bolted (9 serrations per inch)</td>
<td>OF</td>
</tr>
<tr>
<td>Over-serrated, solid, bolted (14 serrations per inch)</td>
<td>OF</td>
</tr>
<tr>
<td>Knife overlap at center (double-knife headers)</td>
<td>3 mm (1/8 in.) S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guards and Hold-Downs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guard: pointed, forged, double heat treated (DHT)</td>
<td>OF</td>
</tr>
<tr>
<td>Hold-down: Sheet metal, adjustment bolt</td>
<td></td>
</tr>
<tr>
<td>Guard: pointed, forged, case hardened (CH)</td>
<td>OF</td>
</tr>
<tr>
<td>Hold-down: Sheet metal, adjustment bolt</td>
<td></td>
</tr>
<tr>
<td>Guard: stub, forged bottom, forged top, adjustment plate</td>
<td>OF</td>
</tr>
<tr>
<td>Guard: stub, forged bottom, sheet metal top, adjustment bolt</td>
<td>OF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guard Angle (Cutterbar on Ground)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Center-link retracted 6.1 m and 7.5 m (20 ft. and 25 ft.) headers</td>
<td>7.0 degrees S</td>
</tr>
<tr>
<td>Center-link retracted 9.1–13.7 m (30–45 ft.) headers</td>
<td>2.0 degrees S</td>
</tr>
<tr>
<td>Center-link extended 6.1 m and 7.5 m (20 ft. and 25 ft.) headers</td>
<td>12.4 degrees S</td>
</tr>
<tr>
<td>Center-link extended 9.1–13.7 m (30–45 ft.) headers</td>
<td>7.4 degrees S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Draper (Conveyor) and Decks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper width</td>
<td>1057 mm (41 19/32 in.) S</td>
</tr>
<tr>
<td>Draper drive</td>
<td>Hydraulic S</td>
</tr>
<tr>
<td>Draper speed (FM100 Float Module controlled)</td>
<td>193 m/min. (0–635 fpm) S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PR15 Pick-Up Reel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of tine tubes</td>
<td>5, 6, or 9 —</td>
</tr>
<tr>
<td>Center tube diameter: All reel sizes except 10.7 m (35 ft.) single span</td>
<td>203 mm (8 in.) —</td>
</tr>
<tr>
<td>10.7 m (35 ft.) single span</td>
<td>254 mm (10 in.) —</td>
</tr>
<tr>
<td>Finger tip radius Factory assembled</td>
<td>800 mm (31 1/2 in.) —</td>
</tr>
<tr>
<td>Finger tip radius Adjustment range</td>
<td>766–800 mm (30 3/16 – 31 1/2 in.) —</td>
</tr>
<tr>
<td>Effective reel diameter (via cam profile)</td>
<td>1650 mm (65 in.) —</td>
</tr>
<tr>
<td>Finger length</td>
<td>290 mm (11 in.) —</td>
</tr>
<tr>
<td>Finger spacing (staggered on alternate bats)</td>
<td>150 mm (6 in.) —</td>
</tr>
<tr>
<td>Reel drive</td>
<td>Hydraulic S</td>
</tr>
<tr>
<td>Reel speed (adjustable from cab, varies with combine model)</td>
<td>0–67 rpm S</td>
</tr>
</tbody>
</table>
Table 2.1 Header Specifications (continued)

| Frame and Structure | Cut width + 1384 mm (5.1 in.) | S
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Header width</td>
<td>Field mode</td>
<td>(A) long dividers removed</td>
</tr>
<tr>
<td>Header width</td>
<td>Transport mode: reel fore-aft fully retracted, shortest center-link</td>
<td>(A) long dividers removed</td>
</tr>
<tr>
<td>Header width</td>
<td>Transport mode: reel fore-aft fully retracted, shortest center-link</td>
<td>(B) long dividers installed</td>
</tr>
</tbody>
</table>

Figure 2.1: Header Width

Table 2.2 Header Attachments

| FM100 Float Module | |
|---------------------|-----------------|------|
| Feed draper | Width | 2.000 m (78 11/16 in.) | S
| Feed draper | Speed | 107–122 m/min (350–400 fpm) | S
| Feed auger | Width | 1.660 m (65 5/16 in.) | S
| Feed auger | Outside diameter | 559 mm (22 in.) | S
| Feed auger | Tube diameter | 356 mm (14 in.) | S
| Feed auger | Speed (varies with combine model) | 190 rpm | S
| Oil reservoir capacity | | 75 liters (20 US gallons) | S
| Oil type | | DURATRAN™ | — |
Table 2.2 Header Attachments (continued)

<table>
<thead>
<tr>
<th>Driveline overall length²</th>
<th>Case, New Holland</th>
<th>Maximum (extended)</th>
<th>1.230 m (48 7/16 in.)</th>
<th>O_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driveline overall length²</td>
<td>Case, New Holland</td>
<td>Minimum (compressed)</td>
<td>603 mm (23 3/4 in.)</td>
<td>O_F</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>Challenger, Gleaner, John Deere, CLAAS, Massey Ferguson</td>
<td>Maximum (extended)</td>
<td>1.262 m (49 11/16 in.)</td>
<td>O_F</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>Challenger, Gleaner, John Deere, CLAAS, Massey Ferguson</td>
<td>Minimum (compressed)</td>
<td>916 mm (36 1/16 in.)</td>
<td>O_F</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>John Deere 9650/9660</td>
<td>Maximum (extended)</td>
<td>775 mm (30 1/2 in.)</td>
<td>O_F</td>
</tr>
<tr>
<td>Driveline overall length²</td>
<td>John Deere 9650/9660</td>
<td>Minimum (compressed)</td>
<td>880 mm (34 5/8 in.)</td>
<td>O_F</td>
</tr>
</tbody>
</table>

Upper Cross Auger

<table>
<thead>
<tr>
<th>O_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>305 mm (12 in.)</td>
</tr>
<tr>
<td>152 mm (6 in.)</td>
</tr>
</tbody>
</table>

Stabilizer Wheel / Slow Speed Transport

<table>
<thead>
<tr>
<th>O_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 cm (15 in.)</td>
</tr>
<tr>
<td>P205/75 R-15</td>
</tr>
</tbody>
</table>

Table 2.3 Header Weight

<table>
<thead>
<tr>
<th>Estimated weight range for base header without performance options or float module (variances are due to different package configurations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 m (20 ft.) header</td>
</tr>
<tr>
<td>7.6 m (25 ft.) header</td>
</tr>
<tr>
<td>9.1 m (30 ft.) header</td>
</tr>
<tr>
<td>10.7 m (35 ft.) header</td>
</tr>
<tr>
<td>12.2 m (40 ft.) header</td>
</tr>
<tr>
<td>12.2 m (40 ft.) header Export frame</td>
</tr>
<tr>
<td>13.7 m (45 ft.) header</td>
</tr>
<tr>
<td>13.7 m (45 ft.) header Export frame</td>
</tr>
</tbody>
</table>

2. Subtract 265 mm (10 7/16 in.) for length between yoke pins.
2.3 Component Identification

2.3.1 D1 Series Draper Header for Combines

Figure 2.2: D1 Series Draper Header – Double Reel Shown

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pick-Up Reel</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>FM100 Float Module</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Transport Light</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Reel Fingers</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Reel Endshields</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B - Reel Drive and Cam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E - Hydraulic Connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H - Endshield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L - Divider Cone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - Knife Drive Box (Behind Endshield)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C - Center-Link</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F - Reel Fore-Aft Cylinder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J - Reel Lift Cylinder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M - Divider Rod</td>
<td></td>
</tr>
</tbody>
</table>
2.3.2 FM100 Float Module

Figure 2.3: Header Side of FM100 Float Module

A - Feed Auger B - Header Float Springs C - Center-Link
D - Hydraulic Reservoir E - Gearbox F - Header Support Arms
G - Feed Draper H - Hydraulic Filter
Figure 2.4: Combine Side of FM100 Float Module

A - Float Module Gearbox
B - Hydraulic Compartment Cover
C - Reservoir Oil Level Sight Glass
D - Center-Link
E - Header Height Control Indicator
F - Torque Wrench
G - Drain Tube (x2)
H - Float Lock Handle (x2)
J - Auto Header Height Control (AHHC) Sensor
Chapter 3: Operation

3.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the header. Contact your MacDon Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety decals on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do NOT modify the machine. Unauthorized modifications may impair the function and/or safety of the machine and may reduce the length of service you receive from your machine.
- The safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
3.2 Operational Safety

⚠️ **CAUTION**

Adhere to the following safety precautions:

- Follow all safety and operational instructions provided in your operator’s manuals. If you do not have a combine manual, get one from your Dealer and read it thoroughly.
- Never attempt to start the engine or operate the machine except from the operator’s seat.
- Check the operation of all controls in a safe, clear area before starting work.
- Do NOT allow riders on the combine.

⚠️ **CAUTION**

- Never start or move the machine until you are sure all bystanders have cleared the area.
- Avoid travelling over loose fill, rocks, ditches, or holes.
- Drive slowly through gates and doorways.
- When working on inclines, travel uphill or downhill whenever possible. Be sure to keep transmission in gear when travelling downhill.
- Never attempt to get on or off a moving machine.
- Do NOT leave operator’s station while the engine is running.
- To avoid bodily injury or death from unexpected startup of a machine, always stop the engine and remove the key before adjusting or removing plugged material from the machine.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure. Refer to 3.4 Shutting down the Combine, page 43.
- Operate only in daylight or good artificial light.

3.2.1 Header Safety Props

The header safety props located on the header lift cylinders prevent the lift cylinders from unexpectedly retracting and lowering the header. Refer to your combine operator’s manual for instructions.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.
3.2.2 Reel Safety Props

The reel safety props (located on the reel support arms) prevent the reel from unexpectedly lowering.

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

To prevent damage to the reel support arms, do **NOT** transport the header with the reel safety props engaged.

Engaging Reel Safety Props

1. Raise reel to maximum height.
2. Move reel safety props (A) to engaged position.

 NOTE:
 Keep pivot bolt (B) sufficiently tight so prop remains in stored position when not in use, but can be engaged using hand force.

3. Repeat on right reel arm.

4. Use handle (A) to move lock rod to inboard position (B), which engages pin (C) under prop.

5. Lower reel until safety props contact the outer arm cylinder mounts and the center arm pins.

![Figure 3.3: Engaged Reel Safety Prop – Left Side](image1)

![Figure 3.4: Reel Safety Prop – Center Arm](image2)
Disengaging Reel Safety Props

1. Raise the reel to its maximum height.
2. Move reel safety props (A) back inside the reel arms. Repeat at the opposite end of the reel.
3. Use handle (B) on double-reel headers to move lock rod (A) to the outboard position.
3.2.3 Endshields

A hinged, polyethylene endshield is fitted on each end of the header.

Opening Endshields

1. Push release lever (A) located on the backside of the endshield to unlock the shield.
2. Pull endshield open using handle depression (B).

3. Pull endshield at handle depression (A). Endshield is retained by a hinge tab (B) and will open in direction (C).

4. If additional clearance is required, pull the endshield free of hinge tab (A) and swing shield toward the rear of the header.
5. Engage safety latch (B) on hinge arm to secure the shield in fully open position.
Closing Endshields

1. Disengage lock (B) to allow endshield to move.
2. Insert front of endshield behind hinge tab (A) and into divider cone.
3. Swing endshield in direction (A) into closed position. Engage lock with a firm push.
4. Check that endshield is locked.

Removing Endshields

1. Fully open the endshield. For instructions, refer to *Opening Endshields, page 37*.
2. Engage lock (A) to prevent endshield movement.
3. Remove self-tapping screw (B).
4. Slide endshield upwards and remove from hinge arm (C).
5. Place endshield away from work area.
Installing Endshields

1. Guide endshield onto hinge arm (C) and slowly slide it downwards.

 NOTE:
 Ensure hinge arm (C) is installed in the outboard hole on the hinge bracket, as shown in illustration at right.

2. Install self-tapping screw (B).

3. Disengage lock (A) to allow endshield movement.

4. Close endshield. Refer to *Closing Endshields, page 38*.

 NOTE:
 Endshields may expand or contract when subjected to large temperature changes. Top pin and lower latch bracket positions can be adjusted to compensate for dimensional changes. Refer to *Checking and Adjusting Endshields, page 39*.

Checking and Adjusting Endshields

Endshields are subject to expansion or contraction caused by large temperature variations. The position of the top pin and lower latch can be adjusted to compensate for dimensional changes.

Checking the endshield:

1. Check gap (X) between front end of the shields and the header frame and compare to the values in Table 3.1, page 39.

Table 3.1 Endshield Gap at Various Temperatures

<table>
<thead>
<tr>
<th>Temperature in °C (°F)</th>
<th>Gap (X) mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (45)</td>
<td>13–18 (1/2–23/32)</td>
</tr>
<tr>
<td>18 (65)</td>
<td>10–15 (3/8–19/32)</td>
</tr>
<tr>
<td>29 (85)</td>
<td>7–12 (9/32–15/32)</td>
</tr>
<tr>
<td>41 (105)</td>
<td>4–9 (5/32–11/32)</td>
</tr>
</tbody>
</table>
Adjusting the endshield gap:

1. Loosen the four bolts (A) on support tube bracket (B).

2. Loosen the three bolts (A) on latch assembly (B).

3. Adjust latch assembly (B) to achieve the desired gap between the front end of the shield and the header frame. Refer to Table 3.1, page 39 for the recommended endshield gap at various temperatures.

4. Tighten the three bolts (A) on the latch assembly to 20 lbf-ft (27 Nm).

5. Tighten the four bolts (A) on support tube bracket (B) to 23 lbf-ft (31 Nm).

6. Close endshield.
3.2.4 Daily Start-Up Check

CAUTION

- Clear the area of other persons, pets, etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.
- Wear close-fitting clothing and protective shoes with slip-resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that could be necessary through the day. Do NOT take chances. You may need a hard hat, protective glasses or goggles, heavy gloves, a respirator or filter mask, or wet weather gear.
- Protect against noise. Wear a suitable hearing protective device such as ear muffs or ear plugs to protect against objectionable or uncomfortably loud noises.

Complete the following tasks each day before start-up:

1. Check the machine for leaks and any parts that are missing, broken, or not working correctly.

 NOTE:
 Use proper procedure when searching for pressurized fluid leaks. Refer to 5.3.5 Checking Hydraulic Hoses and Lines, page 408.

2. Clean all lights and reflective surfaces on the machine.

3. Perform all daily maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 403.
3.3 Break-in Period

⚠️ CAUTION

Before investigating an unusual sound or attempting to correct a problem, shut off engine and remove key.

NOTE:

Until you become familiar with the sound and feel of your new header, be extra alert and attentive.

After attaching the header to the combine for the first time, follow these steps:

1. Operate the machine with the reels, drapers, and knives running slowly for five minutes. Watch and listen FROM THE OPERATOR’S SEAT for binding or interfering parts.

 NOTE:
 Reels and side drapers will not operate until oil flow fills the lines.

2. Refer to 5.3.2 Break-In Inspection, page 406 and perform all specified tasks.
3.4 Shutting down the Combine

Before leaving the operator’s seat for any reason, shut down the combine by following these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Park on level ground whenever possible.
2. Lower the header fully.
3. Place all controls in NEUTRAL or PARK.
4. Disengage the header drive.
5. Lower and fully retract the reel.
6. Stop the engine and remove the key from the ignition.
7. Wait for all movement to stop.
3.5 Cab Controls

⚠️ CAUTION

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

Refer to your combine operator’s manual for identification of the following in-cab controls:

- Header engage/disengage control
- Header height
- Header angle
- Ground speed
- Reel speed
- Reel height
- Reel fore-aft position
3.6 Header Setup

3.6.1 Header Attachments

Several optional attachments that can improve your header's performance are available. Optional attachments can be ordered and installed by your MacDon Dealer. Refer to 6 Options and Attachments, page 593 for descriptions of available items.

3.6.2 Header Settings

The following tables provide a guideline for setting up the D1 Draper Header; however, the suggested settings can be changed to suit various crops and conditions not covered in the tables.

Refer also to 3.6.4 Reel Settings, page 58.

For FM100 auger configurations, refer to 3.7.1 FM100 Feed Auger Configurations, page 61.
Table 3.2 Recommended D1 Series / FM100 Draper Header Settings for Cereals

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102 (<4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>3</sup></td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>4</sup></th>
<th>Header Angle<sup>5, 6</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>7</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>8</td>
<td>B – C</td>
<td>3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>7</td>
<td>B – C</td>
<td>3 or 4</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

Stubble Height 102–203 (4–8)

Stabilizer Wheels As required

Skid Shoe Position Down for lodged crop conditions, middle or down for other crop conditions

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>4</sup></th>
<th>Header Angle<sup>5, 6</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>7</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>8</td>
<td>B – C</td>
<td>4</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>7</td>
<td>D</td>
<td>3 or 4</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

3. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
4. Setting on FM100 draper control.
5. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
6. Cutting height is controlled with a combination of skid shoes and header angle.
7. Percentage above ground speed.
<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>203+ (8+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Crop Condition</td>
<td>Divider Rods</td>
</tr>
<tr>
<td>Light</td>
<td>Off</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
</tr>
</tbody>
</table>
Table 3.3 Recommended D1 Series / FM100 Draper Header Settings for Lentils

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>On ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels<sup>8</sup></td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting<sup>9</sup></th>
<th>Header Angle<sup>10, 11</sup></th>
<th>Reel Cam</th>
<th>Reel Speed %<sup>12</sup></th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

8. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
9. Setting on FM100 draper control.
10. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
11. Cutting height is controlled with a combination of skid shoes and header angle.
12. Percentage above ground speed.
<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>On ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels(^{13})</td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

| Crop Condition | Divider Rods | Draper Speed Setting\(^{14}\) | Header Angle\(^{15, 16}\) | Reel Cam | Reel Speed \(^{17}\) | Reel Position | Upper Cross Auger |
|----------------|--------------|------------------|------------------|---------|-----------------|--------------|----------------|-----------------|
| Light | On | 7 | B – C | 2 | 5–10 | 6 or 7 | Recommended |
| Normal | On | 7 | B – C | 2 | 10 | 6 or 7 | Recommended |
| Heavy | On | 7 | B – C | 2 | 10 | 4 or 5 | Recommended |
| Lodged | On | 7 | D | 2 | 5–10 | 4 or 5 | Recommended |

13. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
14. Setting on FM100 draper control.
15. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
16. Cutting height is controlled with a combination of skid shoes and header angle.
17. Percentage above ground speed.
Table 3.5 Recommended D1 Series / FM100 Draper Header Settings for Canola

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102–203 (4–8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Down for light or heavy crop conditions, middle or down for normal or lodged crop conditions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting</th>
<th>Header Angle</th>
<th>Reel Cam</th>
<th>Reel Speed</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>1</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>1</td>
<td>10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>203+ (8+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting</th>
<th>Header Angle</th>
<th>Reel Cam</th>
<th>Reel Speed</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>1 or 2</td>
<td>10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2 or 3</td>
<td>5–10</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

18. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
19. Setting on FM100 draper control.
20. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
21. Cutting height is controlled with a combination of skid shoes and header angle.
22. Percentage above ground speed.
Table 3.6 Recommended D1 Series / FM100 Draper Header Settings for California Rice

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>102 (<4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
<tr>
<td>Crop Condition</td>
<td>Divider Rods</td>
</tr>
<tr>
<td>Light</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Normal</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Heavy</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Lodged</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Stubble Height</td>
<td>102–203 (4–8)</td>
</tr>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Middle or down</td>
</tr>
<tr>
<td>Crop Condition</td>
<td>Divider Rods</td>
</tr>
<tr>
<td>Light</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Normal</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Heavy</td>
<td>Rice divider rod</td>
</tr>
<tr>
<td>Lodged</td>
<td>Rice divider rod</td>
</tr>
</tbody>
</table>

23. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
24. The rice divider rod is available. Rice divider rod not required on both ends of header.
25. Setting on FM100 draper control.
26. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
27. Cutting height is controlled with a combination of skid shoes and header angle.
28. Percentage above ground speed.
Table 3.6 Recommended D1 Series / FM100 Draper Header Settings for California Rice (continued)

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>203+ (8+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels²³</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods²⁴</th>
<th>Draper Speed Setting²⁵</th>
<th>Header Angle²⁶, ²⁷</th>
<th>Reel Cam</th>
<th>Reel Speed %²⁸</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Rice divider rod</td>
<td>4</td>
<td>A</td>
<td>3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Rice divider rod</td>
<td>4</td>
<td>B – C</td>
<td>3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Rice divider rod</td>
<td>4</td>
<td>D</td>
<td>4</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>
Table 3.7 Recommended D1 Series / FM100 Draper Header Settings for Delta Rice

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>51–152 (2–6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Middle or down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting 30</th>
<th>Header Angle $^{31, 32}$</th>
<th>Reel Cam</th>
<th>Reel Speed % 33</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>6</td>
<td>D</td>
<td>2 or 3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>6</td>
<td>D</td>
<td>3 or 4</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>152+ (6+)</th>
</tr>
</thead>
</table>

| **Stabilizer Wheels** | As required |
| **Skid Shoe Position** | Not applicable |

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting 30</th>
<th>Header Angle $^{31, 32}$</th>
<th>Reel Cam</th>
<th>Reel Speed % 33</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>6</td>
<td>A</td>
<td>2 or 3</td>
<td>10–15</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Off</td>
<td>6</td>
<td>B – C</td>
<td>2 or 3</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>6</td>
<td>D</td>
<td>3 or 4</td>
<td>5–10</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

29. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
30. Setting on FM100 draper control.
31. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
32. Cutting height is controlled with a combination of skid shoes and header angle.
33. Percentage above ground speed.
<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>On ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>Storage</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Up or middle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting</th>
<th>Header Angle</th>
<th>Reel Cam</th>
<th>Reel Speed %</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

34. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
35. Setting on FM100 draper control.
36. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
37. Cutting height is controlled with a combination of skid shoes and header angle.
38. Percentage above ground speed.
Table 3.9 Recommended D1 Series / FM100 Draper Header Settings for Flax

<table>
<thead>
<tr>
<th>Stubble Height</th>
<th>51–153 (2–6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Wheels</td>
<td>As required</td>
</tr>
<tr>
<td>Skid Shoe Position</td>
<td>Down for lodged crop conditions, middle or down for other crop conditions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Draper Speed Setting</th>
<th>Header Angle</th>
<th>Reel Cam</th>
<th>Reel Speed %</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8</td>
<td>B – C</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>7</td>
<td>A</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>7</td>
<td>B – C</td>
<td>2</td>
<td>10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>7</td>
<td>D</td>
<td>2</td>
<td>5–10</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

39. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
40. Setting on FM100 draper control.
41. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height.
42. Cutting height is controlled with a combination of skid shoes and header angle.
43. Percentage above ground speed.
3.6.3 Optimizing Header for Straight Combining Canola

Ripe canola can be straight combined, but most varieties are very susceptible to shelling and subsequent seed loss. This section provides recommended attachments, settings, and adjustments to optimize D1 Series Draper Headers for straight combining canola.

Recommended attachments

The optimization includes the following modifications to the header:

- Installing a full-length upper cross auger
- Installing vertical knives
- Installing short center reel braces

NOTE:

Each kit includes installation instructions and the necessary hardware. Refer to 6 Options and Attachments, page 593.

Recommended settings

Optimizing the header requires adjustments to the following settings:

- Moving the reel fore-aft cylinders to the alternative aft location. Refer to Repositioning Fore-Aft Cylinders on Double Reel, page 127 or Repositioning Fore-Aft Cylinders on Single Reel, page 125.
- Adjusting reel height so that fingers just engage the crop. Refer to 3.7.9 Reel Height, page 117.
- Setting reel cam to position 1. Refer to Adjusting Reel Cam, page 142.
- Setting reel speed equal to ground speed and increase as required. Refer to 3.7.5 Reel Speed, page 111.
- Set the side draper speed to position nine on FM100 control valve. Refer to 3.7.7 Draper Speed, page 113.
- Set auger to floating position. Refer to 3.7.14 Setting Auger Position, page 150.
- Loosen auger spring tension. Refer to Checking and Adjusting Feed Auger Springs, page 57.
Checking and Adjusting Feed Auger Springs

The feed auger has an adjustable spring tensioning system that allows the auger to float on top of the crop instead of crushing and damaging it. The factory-set tension is adequate for most crop conditions.

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the header to its full height.
2. Shut down the engine, and remove the key from the ignition.
3. Engage the header lift cylinder safety props.
4. Check the thread length protruding past nut (A). Length should be 22–26 mm (7/8–1 in.).

If adjustment is required, follow these steps:

1. Loosen upper jam nut (A) on the spring tensioner.
2. Turn lower nut (B) until thread (C) protrudes 22–26 mm (7/8–1 in.).
3. Tighten jam nut (A).
4. Repeat Steps 1, *page 57* to 3, *page 57* on opposite side.
3.6.4 Reel Settings

Table 3.10 D1 Series Recommended Reel Settings

<table>
<thead>
<tr>
<th>Cam Setting Number (Finger Speed Gain)</th>
<th>Reel Position Number</th>
<th>Reel Finger Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0)</td>
<td>6 or 7</td>
<td>![Image 1]</td>
</tr>
<tr>
<td>2 (20%)</td>
<td>3 or 4</td>
<td>![Image 2]</td>
</tr>
</tbody>
</table>
Table 3.10 D1 Series Recommended Reel Settings (continued)

<table>
<thead>
<tr>
<th>Cam Setting Number (Finger Speed Gain)</th>
<th>Reel Position Number</th>
<th>Reel Finger Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (30%)</td>
<td>6 or 7</td>
<td></td>
</tr>
<tr>
<td>4 (35%)</td>
<td>2 or 3</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

- Adjust the reel forward to get closer to the ground while tilting the header back. Fingers/tines will dig into the ground at extreme reel-forward positions, so adjust skid shoes or header angle to compensate. Adjust the reel rearward to position the reel farther away from the ground when tilting the header forward.
- Header tilt can be increased to position the reel closer to the ground, or decreased to position the reel farther from the ground, while keeping material flowing onto drapers.
- To leave the maximum amount of stubble in lodged crop, raise the header and increase the header tilt to keep the reel close to the ground. Position the reel fully forward.
- The reel may have to be moved back to prevent lumps or plugging on the cutterbar in thinner crops.
- Minimum crop carrying capacity (minimum area of exposed draper between the reel and the header backsheet) occurs with the reel in the farthest aft position.
- Maximum crop carrying capacity (maximum area of exposed draper between the reel and the header backsheet) occurs with the reel in the farthest forward position.
- Due to the nature of the cam action, the tip speed of the fingers/tines at the cutterbar becomes higher than that of the reel speed at higher cam settings. Refer to Table 3.10, page 58.
3.7 Header Operating Variables

Satisfactory function of the header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and increases productivity. As well, proper adjustments and timely maintenance will increase the length of service you receive from your machine.

The variables listed in Table 3.11, page 60 and detailed on the following pages will affect the performance of your header.

You will quickly become adept at adjusting the machine to achieve the results you desire. Most of the adjustments have been preset at the factory, but the settings can be changed to suit crop conditions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting height</td>
<td>Cutting off the Ground, page 86; Cutting on the Ground, page 91</td>
</tr>
<tr>
<td>Header float</td>
<td>3.7.3 Header Float, page 94</td>
</tr>
<tr>
<td>Header angle</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Reel speed</td>
<td>3.7.5 Reel Speed, page 111</td>
</tr>
<tr>
<td>Ground speed</td>
<td>3.7.6 Ground Speed, page 112</td>
</tr>
<tr>
<td>Reel height</td>
<td>3.7.9 Reel Height, page 117</td>
</tr>
<tr>
<td>Reel fore-aft position</td>
<td>3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td>Reel tine pitch</td>
<td>3.7.11 Reel Tine Pitch, page 138</td>
</tr>
<tr>
<td>Crop divider rods</td>
<td>3.7.12 Crop Dividers, page 143</td>
</tr>
<tr>
<td>Feed auger configurations</td>
<td>3.7.1 FM100 Feed Auger Configurations, page 61</td>
</tr>
</tbody>
</table>
3.7.1 FM100 Feed Auger Configurations

The FM100 feed auger can be configured to suit various crop conditions; there are four configurations available.

Narrow configuration is a standard configuration for the following combines:

- Gleaner R6/75, R6/76, S6/77, S6/7/88, S96/7/8
- New Holland CR 920/940/960, 9020/40/60/65, 6090/7090, 8060/8070/8080

Figure 3.21: Narrow Configuration – Rear View

A - 514 mm (20 1/4 in.)

B - 356 mm (14 in.)

NOTE:
Dimensions are the same for both ends of the auger. They should be within 15 mm (9/16 in.) of the numbers given.

To convert to Narrow configuration from Medium or Wide configuration, refer to Converting from Medium Configuration or Wide Configuration to Narrow Configuration, page 70.

To convert to Narrow configuration from Ultra Narrow configuration, refer to Converting from Ultra Narrow Configuration to Narrow Configuration, page 72.
Medium configuration is a standard configuration for the following combines:

- John Deere 95/96/97/9860, 95/96/97/9870, S65/66/67/68/690, T670
- Massey Ferguson 96/97/9895, 9520/40/60, 9545/65, 9380
- New Holland CR 970/980, 9070/9080, 8090/9090, X.90, X.80
- New Holland CX 8X0, 80X0, 8.X0, 8080/8090 Elevation
- Versatile RT490

Figure 3.22: Medium Configuration – Rear View
A - 410 mm (16 1/8 in.)
B - 260 mm (10 1/4 in.)

NOTE:
Dimensions are the same for both ends of the auger. They should be within 15 mm (9/16 in.) of the numbers given.

To convert to Medium configuration from Narrow or Ultra Narrow configuration, refer to Converting from Ultra Narrow Configuration or Narrow Configuration to Medium Configuration, page 65.

To convert to Medium configuration from Wide configuration, refer to Converting from Wide Configuration to Medium Configuration, page 68.
Wide configuration is an optional configuration for the following combines:

- Challenger 670B/680B, 540C/560C, 540E/560E
- CLAAS 590R/595R, 660/670, 760/770/780
- John Deere T670
- Massey Ferguson 9895, 9540, 9560, 9545, 9565, 9380
- New Holland CX 8X0, 80X0, 8.X0

NOTE:
This configuration may increase combine capacity on wide feeder house combines in certain crop conditions.

NOTE:
In some conditions, feeding may be further improved by removing all bolt-on flighting. Refer to *Optional Modification to Wide Configuration, page 77.*

Figure 3.23: Wide Configuration – Rear View

A - 257 mm (10 1/8 in.)

B - 257 mm (10 1/8 in.)

NOTE:
Dimensions are the same for both ends of the auger. They should be within 15 mm (9/16 in.) of the numbers given.

To convert to Wide configuration from Medium configuration, refer to *Converting from Medium Configuration to Wide Configuration, page 73.*

To convert to Wide configuration from Narrow or Ultra Narrow configuration, refer to *Converting from Ultra Narrow or Narrow Configuration to Wide Configuration, page 75.*
Ultra Narrow configuration is an optional configuration that may improve feeding performance on combines with narrow feeder houses. It may also be helpful when harvesting rice.

Figure 3.24: Ultra Narrow Configuration – Rear View
A - 760 mm (29 15/16 in.) B - 602 mm (23 11/16 in.)

NOTE:
Dimensions are the same for both ends of the auger. They should be within 15 mm (9/16 in.) of the numbers given.

To convert to Ultra Narrow configuration from Medium or Wide configuration, refer to Converting from Medium Configuration or Wide Configuration to Ultra Narrow Configuration, page 78.

To convert to Ultra Narrow configuration from Narrow configuration, refer to Converting from Narrow Configuration to Ultra Narrow Configuration, page 83.
Converting from Ultra Narrow Configuration or Narrow Configuration to Medium Configuration

Two kits of MD #287031 are required to convert to this configuration.

Ultra Narrow, Narrow, and Medium auger configurations are shown at right. When converting from Ultra Narrow configuration or Narrow configuration to Medium configuration, you will need to replace existing flightings (A) with flightings (B).

1. To improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

 NOTE:
 Some parts have been removed from the illustrations for clarity.

2. Remove bolts (A) and access cover (B) from right end of auger. Retain for later reassembly.

 NOTE:
 If necessary, remove multiple access covers for better access.

3. Remove hardware (C) and bolt-on flighting (D) from the right side of the auger. Repeat for all the remaining hardware and bolt-on flighting. Discard flighting, but retain hardware to attach new flighting.

4. Repeat Steps 2, page 65 and 3, page 65 at the left side of the feed auger.

44. MD #287031 contains wear-resistant flightings, and is available only through MacDon Parts.
5. Remove flighting slot plug (B), M6 bolt (A), and tee nut from inside the feed auger. Repeat at the left side of the feed auger. Retain plug and hardware for reinstallation.

6. Install two bolt-on flightings (A) on the right side of the auger as shown, and secure each flighting with six carriage head bolts and nuts at locations (B).

IMPORTANT:
Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

NOTE:
Flightings are NOT included in this kit. Order flighting kits (MD #287031) separately.

7. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf-ft).

8. Install two bolt-on flightings (A) on the left side of the auger as shown, and secure each flighting with six carriage head bolts and nuts retained from Step 3, page 65 at locations (B).

IMPORTANT:
Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

NOTE:
Flightings are NOT included in this kit. Order flighting kits MD #287031 separately.

9. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf-ft).
10. Use the access hole (A) to position the flighting slot plug (B) from inside the feed auger (as shown) and secure with a 20 mm long M6 hex head bolt (C) and tee nut. Use flighting and hardware retained from Step 5, page 66. Repeat for the remaining locations used to mount the flighting in Step 3, page 65 and Step 4, page 65.

11. Install additional auger fingers. A total of 22 auger fingers is recommended for this configuration. Refer to Installing Feed Auger Fingers, page 450.
Converting from Wide Configuration to Medium Configuration

One kit of MD #287031\(^{45}\) is required to convert to this configuration.

Wide and Medium auger configurations are shown at right. When converting from Wide configuration to Medium configuration, you will need to install new flightings (A).

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

1. Improve access and ease installation by removing float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

2. Remove bolts (A) and remove access cover (B) from the right side of the auger. Retain for later reassembly.

 NOTE:
 If necessary, remove multiple access covers for ease of access.

3. Remove and discard two flighting slot plugs (C) from the right side of the auger.

45. MD #287031 contains wear-resistant flightings, and is available only through MacDon Parts.
4. Install bolt-on flighting (A) on the right side of the auger as shown, and secure with six carriage head bolts and six nuts at locations (B).

IMPORTANT:
Bolt heads must be installed on inside of auger to prevent damage to internal components.

5. Torque all nuts and bolts to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).

6. Repeat Step 2, page 68 and Step 3, page 68 at the left side of auger.

7. Install bolt-on flighting (A) on the left side as shown, and secure with six carriage head bolts and six nuts at locations (B).

IMPORTANT:
Bolt heads must be installed on inside of auger to prevent damage to internal components.

8. Torque all nuts and bolts (B) to 47 Nm (35 lbf·ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf·ft).

9. Remove extra auger fingers. A total of 22 fingers are recommended for this configuration. Refer to *Removing Feed Auger Fingers, page 448.*
Converting from Medium Configuration or Wide Configuration to Narrow Configuration

Two of either MD #287032 or B6400 are required to convert to this configuration. Extra hardware is included in these kits. Be sure to use the correct hardware in the correct location to prevent damage and to maximize performance.

Medium, Wide, and Narrow auger configurations are shown at right. When converting from Medium or Wide configuration to Narrow configuration, you will need to replace the existing flightings (A) with flightings (B).

NOTE:
The flighting should fit tight against the auger tube; however, gaps are not uncommon. Crop material may collect in this gap, but generally this will not affect performance. If desired, use silicone sealant to fill these gaps.

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

1. To improve access and ease installation, remove float module from combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.
2. Remove bolts (A) and access cover (B) from the right side of the auger. Retain for reassembly.
3. Remove hardware (C) and bolt-on flighting (D) from the auger.
4. Remove and discard the flighting slot plug (E) located close to the end of the flighting (D).
5. Converting from Medium configuration: Repeat above steps for the other flighting on the right side.

Figure 3.35: Auger Configurations – Rear View
1 - Medium Configuration 2 - Wide Configuration 3 - Narrow Configuration

Figure 3.36: Wide Configuration – Right Side

MD #287032 is available only through MacDon Parts. B6400 is available only through Whole Goods. Both kits contain wear-resistant flightings.
6. **Converting from Wide configuration:** Remove bolts (A), access cover (B), and two flighting slot plugs (C) from the right side of the auger.

7. Repeat Steps 2, page 70 to 6, page 71 at the left side of the feed auger.

8. Install two bolt-on flightings (A) on the right side as shown, and secure each flighting with six carriage head bolts (MD #136178) and nuts (MD #135799) at locations (B).

 IMPORTANT:
 Bolt heads must be installed on inside of auger to prevent damage to internal components.

9. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf-ft).

10. Install flighting slot plug (MD #213084) at location (C) from inside the auger and secure with an M6 hex head bolt (MD #252703) and tee nut (MD #197263). Repeat for the other flighting mounting locations.

11. Install two bolt-on flightings (A) on the left side as shown, and secure each flighting with six carriage head bolts (MD #136178) and nuts (MD #135799) at locations (B).

 IMPORTANT:
 Bolt heads must be installed on inside of auger to prevent damage to internal components.

12. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then torque them to 58–64 Nm (43–47 lbf-ft).

13. Install flighting slot plug (C) (MD #213084) from inside the auger and secure with an M6 hex head bolt (MD #252703) and tee nut (MD #197263). Repeat for the other flighting mounting location used to mount the previous flighting in Step 3, page 70.

14. Remove extra auger fingers. A total of 18 fingers is recommended for this configuration. Refer to *Removing Feed Auger Fingers, page 448.*
Converting from Ultra Narrow Configuration to Narrow Configuration

The Ultra Narrow and Narrow auger configurations are shown at right. Existing flightings (A) are removed from the auger when converting to the Narrow configuration.

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

1. Improve access and ease installation by removing the float module from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

2. Remove bolts (A) and access cover (B). Retain for reassembly.

3. Remove hardware from locations (C), and remove bolt-on flighting (D) from feed auger.

4. Repeat procedure for the remaining three inboard flightings.

5. Install additional auger fingers. A total of 18 fingers is recommended for this configuration. Refer to Installing Feed Auger Fingers, page 450 for instructions.
Converting from Medium Configuration to Wide Configuration

The Medium and Wide auger configurations are shown at right. When converting from Medium configuration to Wide configuration, you will need to remove existing flightings (A) from auger and add auger fingers.

Four flighting plugs (MD #213084), M6 hex head bolts (MD #252703), and M6 tee nuts (MD #197263) are needed to cover exposed flighting mounting holes after the flightings are removed. These parts can be ordered from a MacDon Dealer.

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

1. Improve access and ease installation by removing the float module from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

 NOTE:
Some parts have been removed from the illustrations for clarity.

2. Remove bolts (A) and access cover (B). Retain for reassembly.

3. Remove hardware from locations (C), and remove bolt-on flighting (D) from the feed auger.
4. Install flighting slot plug (A) (MD #213084) in the flighting slot from inside the auger. Secure with M6 hex head bolts (B) (MD #252703) and tee nuts (MD #197263).

5. Repeat above steps at the left side of the auger.

6. Install additional fingers. A total of 30 fingers are recommended for this configuration. Refer to Installing Feed Auger Fingers, page 450.

Figure 3.44: Right Side of Wide Configuration
Converting from Ultra Narrow or Narrow Configuration to Wide Configuration

One kit of MD #287031\(^{47}\) is required to convert to this configuration. Two flighting plugs (MD #213084), two M6 hex head bolts (MD #252703), and two M6 tee nuts (MD #197263) are recommended to close the flighting mounting locations. These parts can be ordered from a MacDon Dealer.

The Narrow, Ultra Narrow, and Wide auger configurations are shown at right. When converting from Narrow or Ultra Narrow configuration to Wide configuration, you will need to replace existing flightings (A).

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

NOTE:
Some parts have been removed from the illustrations for clarity.

1. Improve access and ease installation by removing the float module from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.
2. Remove bolts (A) and access cover (B) from the right side of the auger. Retain for later reassembly.
3. Remove hardware (C) and bolt-on flighting (D) from the right side of the auger. Discard flighting, but retain hardware to attach the new flighting.
4. Repeat Step 2, page 75 and Step 3, page 75 for the remaining bolt-on flighting(s).
5. Remove flighting slot plug, bolt, and tee nut (E). Retain for later reinstallation.

NOTE:
Only two flighting slot plugs (E) should be removed—one from each outboard side of the auger.

\(^{47}\) MD #287031 contains wear-resistant flightings, and is available only through MacDon Parts.
6. Install new bolt-on flighting (A) using six carriage head bolts and nuts (B) on the right side of the auger.

IMPORTANT:
Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

NOTE:
Flightings are **NOT** included in this kit. Order flighting kit MD #287031 separately.

7. Reinstall flighting slot plug (C) previously removed in Step 5, page 75.

8. Install the new bolt-on flighting (A) on the left side of the auger using six carriage head bolts and nuts (B).

IMPORTANT:
Flighting bolt heads must be installed on inside of auger to prevent damage to internal components.

NOTE:
Flightings are **NOT** included in this kit. Order flighting kit MD #287031 separately.

9. Reinstall flighting slot plug (C) previously removed in Step 5, page 75.

10. Install the remaining flighting slot plugs (MD #213084) using the M6 hex head bolts (MD #252703) and tee nuts (MD #197263) in locations previously used to mount flighting in Step 3, page 75 and Step 4, page 75.

11. Install additional auger fingers. There should be a total of 30 fingers in this configuration. Auger fingers and all required parts are included in kit. Refer to *Installing Feed Auger Fingers, page 450.*
Optional Modification to Wide Configuration

In some conditions, feeding may be further improved by removing all bolt-on flightings (A). Four flighting plugs (MD #213084), M6 bolts (MD #252703), and M6 tee nuts (MD #197263) are recommended to cover the flighting mounting holes. These parts can be ordered from a MacDon Dealer.

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

NOTE:
Some parts have been removed from the illustrations for clarity.

1. Improve access and ease installation by removing the float module from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.
2. Remove two bolts and access cover (A).
3. Remove hardware (B), and bolt-on flighting (C).
4. Install flighting slot plugs (MD #213084) in the flighting mounting locations (D) and secure with M6 bolts (MD #252703) and tee nuts (MD #197263).
5. Repeat all steps at the left side of the auger.
6. Install additional auger fingers. A total of 30 fingers are recommended for this configuration. Refer to Installing Feed Auger Fingers, page 450.
Converting from Medium Configuration or Wide Configuration to Ultra Narrow Configuration

Four kits of either MD #287032 or B6400 and some hole-drilling are required to convert to Ultra Narrow configuration. Extra hardware is included in these kits. Be sure to use the correct hardware in the correct location to prevent damage and to maximize performance.

Medium, Wide, and Ultra Narrow auger configurations are shown at right. When converting to Ultra Narrow configuration, existing flightings (A) are removed and new flightings (B) are installed.

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

1. Improve access and ease installation by removing the float module from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

2. Remove bolts (A) and access cover (B) from the right side of the auger. Retain for reassembly.

3. Remove hardware (C) and bolt-on flighting (D) from the auger.

4. Remove flighting slot plug (E) located close to the end of flighting (D).

5. **Converting from Medium configuration:** Repeat the previous steps for the other bolt-on flighting on the same side.

48. MD #287032 is available only through MacDon Parts. B6400 is available only through Whole Goods.
6. **Converting from Wide configuration:** Remove bolts (A), access cover (B), and two flighting slot plugs (C) from the right side of the auger.

7. Repeat Steps 2, page 78 to 6, page 79 at the left side of the auger.

8. Position two bolt-on flightings (A) on the right side, as shown. Temporarily secure flightings with two carriage head bolts and nuts at each location (B).

9. Position another bolt-on flighting (A) outboard of the temporarily installed bolt-on flighting (B). Mark hole locations (C) of the bolt-on flighting onto the temporarily installed bolt-on flighting (B).

10. Remove temporarily installed bolt-on flighting (B) from the auger and drill two 11 mm (7/16 in.) holes at the marked locations.

11. Install the bolt-on flighting (B) with newly drilled holes using six carriage head bolts and nuts.

IMPORTANT:
Carriage bolt heads must be installed on inside of auger to prevent damage to internal components.

12. Repeat Step 9, page 79 to Step 11, page 79 to the remaining bolt-on flighting on the right side of the auger.
13. Position two bolt-on flightings (A) on the left side, as shown. Temporarily secure flightings with two carriage head bolts and nuts at each location (B).

14. Position another bolt-on flighting (A) outboard of the temporarily installed flighting (B). Mark hole locations (C) of the bolt-on flighting onto the temporarily installed bolt-on flighting.

15. Remove temporarily installed bolt-on flighting (B) from the auger and drill two 11 mm (7/16 in.) holes at the marked locations.

16. Install the bolt-on flighting (B) with newly drilled holes using six carriage head bolts and nuts.

IMPORTANT:
Carriage bolt heads must be installed on inside of auger to prevent damage to internal components.

17. Repeat Steps 14, page 80 to 16, page 80 to the remaining bolt-on flighting on the left side of the auger.

18. Place bolt-on flighting (A) outboard of the other flighting (B) on the left side of the auger, as shown.

19. Temporarily secure bolt-on flighting (A) with two button head bolts and nuts at location (C).
20. Stretch flighting (A) to fit auger tube as shown. Use slotted holes on flighting to get the best fit around the auger tube.

21. With flighting in the desired position, mark hole locations (A) on auger tube.

22. Remove the flighting (B) from auger, and drill 11 mm (7/16 in.) holes at the marked locations (A) on auger tube.

23. Remove nearest access cover(s). Retain for reinstallation.

24. Install the bolt-on flighting (B) using two button head bolts and nuts at location (C), and four flange head bolts and nuts at locations (A).

IMPORTANT:
Ensure bolt heads at location (C) are on the inboard (crop side) and nuts are on the outboard side of the flighting.

25. Repeat Steps 18, page 80 to 24, page 81 for the remaining flighting on the left side of the auger.

26. Place bolt-on flighting (A) outboard of the other flighting (B) on the right side of the auger as shown.

27. Temporarily secure bolt-on flighting (A) with two button head bolts and nuts at location (C).

28. Repeat Step 20, page 81 to Step 24, page 81 for both pieces of flighting on the right side of the auger.

29. Install flighting slot plugs (MD #213084) in the flighting mounting locations and secure with M6 bolts and tee nuts.

30. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then retorque them to 58–64 Nm (43–47 lbf-ft).

NOTE:
The flighting should fit tightly against the auger tube; however, gaps are not uncommon. Crop material may collect in these gaps, but this should not affect performance. If desired, use silicone sealant to fill these gaps.
31. Add or remove auger fingers to optimize feeding for your combine and crop conditions. Refer to *Installing Feed Auger Fingers, page 450* or *Removing Feed Auger Fingers, page 448*.

32. If not adding or removing auger fingers, reinstall all access covers and secure with bolts. Coat bolts with medium-strength threadlocker (Loctite® 243 or equivalent) and torque to 8.5 Nm (75 lbf-in).
Converting from Narrow Configuration to Ultra Narrow Configuration

Two kits of either MD #287032 or B640049 and some hole-drilling are required to convert to this configuration. Extra hardware is included in these kits. Be sure to use the correct hardware at the correct location to prevent damage and to maximize performance.

NOTE:
Additional holes on the auger are needed before these flightings (A) can be installed.

NOTE:
All illustrations show the feed auger separated from the float module for clarity. The procedure can be performed with the feed auger installed in the float module.

NOTE:
Some parts have been removed from the illustrations for clarity.

1. Improve access and ease installation by removing the float module from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.
2. Place new bolt-on flighting (A) outboard of the existing flighting (B) on the left side of the auger, as shown.
3. Mark hole locations (C) of the new bolt-on flighting (A) onto existing bolt-on flighting (B).
4. Remove nearest access cover to existing bolt-on flighting (B). Retain hardware for reassembly.
5. Remove existing bolt-on flighting (B) from the auger. Retain hardware for reassembly.
6. Drill two 11 mm (7/16 in.) holes at the marked locations of existing bolt-on flighting (B).
7. Reinstall existing bolt-on flighting (B) on the auger.

NOTE:
Ensure carriage bolt heads are on the inside of the auger to prevent damage to internal components.

49. MD #287032 is available only through MacDon Parts. B6400 is available only through Whole Goods.
8. Place new bolt-on flighting (A) outboard of the existing flighting (B) of the left side of the auger, as shown.

9. Secure with two button head bolts (MD #135723) and nuts (MD #135799) at location (C).

IMPORTANT:
Ensure bolt heads are on the inboard (crop side) and nuts are on the outboard side of the flighting.

10. Stretch flighting (A) to fit auger tube as shown. Use slotted holes on flighting to get the best fit around the auger tube.

11. With flighting in desired position, mark hole locations (A) and drill 11 mm (7/16 in.) holes in auger tube.

12. Remove nearest access cover(s). Retain for reinstallation.

13. Secure bolt-on flighting on the newly drilled holes (A) using four flange head bolts and nuts.

14. Repeat Step 2, page 83 to Step 13, page 84 for the other flighting on the left side of the auger.
15. Place flighting (A) outboard of existing flighting (B) on the right side of the auger, as shown.

16. Repeat Step 3, page 83 to Step 13, page 84 for both flightings on the right side of the auger.

17. Install flighting slot plugs (MD #213084) in the flighting mounting locations and secure with M6 bolts (MD #252703) and tee nuts (MD #197263).

18. Torque all nuts and bolts to 47 Nm (35 lbf-ft) to eliminate deflection on flighting, then torque nuts and bolts again to 58–64 Nm (43–47 lbf-ft).

NOTE:
The flighting should fit tightly against the auger tube; however, gaps are not uncommon. Crop material may collect in these gaps, but this should not affect performance. If desired, use silicone sealant to fill these gaps.

19. Add or remove auger fingers as necessary to optimize feeding for your combine and crop conditions. Refer to *Installing Feed Auger Fingers, page 450* or *Removing Feed Auger Fingers, page 448*.

20. If not adding or removing auger fingers, reinstall all access covers and secure with bolts. Coat bolts with medium-strength threadlocker (Loctite® 243 or equivalent) and torque to 8.5 Nm (75 lbf-in).
3.7.2 Cutting Height

The header design allows you to cut the crop above the ground in relation to the desired stubble height or to cut the crop at ground level with the header on the ground. Cutting height will vary depending on a range of factors including crop type, crop conditions, etc.

Cutting off the Ground

The header’s design allows operators to cut crop above the ground in relation to desired stubble height. The cutting height will vary depending on factors including crop type, crop conditions, etc.

The stabilizer wheel system is designed to minimize bouncing at the header ends and may be used to float the header to achieve an even cutting height when cutting above ground level in cereal grains. The system produces even stubble height and greatly reduces operator fatigue.

Cutting height is controlled using a combination of the combine header height control and a stabilizer wheel system (or stabilizer / slow speed transport wheel system).

The stabilizer wheel system (or stabilizer / slow speed transport wheel system) is available only for 9.1 m (30 ft.), 10.7 m (35 ft.), 12.2 m (40 ft.), and 13.7 m (45 ft.) headers.

If stabilizer wheels are installed, refer to Adjusting Stabilizer Wheels, page 89 to change the wheel position.

If stabilizer / slow speed transport wheels are installed, refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 87 to change the wheel position.
Adjusting Stabilizer / Slow Speed Transport Wheels

A properly adjusted header will achieve a balance between the amount of header weight carried by the float and the amount carried by the stabilizer / slow speed transport wheels.

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the header so the stabilizer wheels are off the ground. Shut down engine and remove the key.
2. Check that the float is working properly. Refer to *Checking and Adjusting Header Float, page 95*.
3. Remove hairpin (A) from the latch on the right wheel assembly.
4. Disengage latch (B), lift the wheel out of the hook, and place on the ground as shown. (This reduces weight of assembly and makes adjusting the wheel position easier.)
5. Lift the left wheel slightly to support the weight, then pull handle (C) upwards to release the lock.
6. Lift the left wheel to the desired height and engage the support channel into the slot (D) in the upper support.
7. Push down on handle (C) to lock.
8. Lift the right wheel back into the field position and ensure latch (B) is engaged.
9. Secure the latch with hairpin (A).
10. Support the wheel weight by lifting slightly with one hand, and pull up on handle (A) to release the lock.
11. Lift the wheels to the desired height, and engage the support channel into slot (B) in the upper support.
12. Push down on handle (A) to lock.

Figure 3.68: Right Wheel

Figure 3.69: Left Wheel
13. Lower the header to the desired cutting height using the combine controls and check the load indicator (A).

14. Adjust the header angle to the desired working angle with the machine’s header angle controls. If header angle is not critical, set it to mid-position.

IMPORTANT:
Continuous operation with excessive spring compression (i.e., load indicator reading greater than 4 or a compressed length [A] less than 295 mm [11 5/8 in.]) can result in damage to the suspension system.

15. Use the combine’s auto header height control (AHHC) to automatically maintain cutting height. Refer to 3.8 Auto Header Height Control (AHHC), page 152 and your combine operator’s manual for details.

NOTE:
The height sensor on the FM100 Float Module must be connected to the combine header control module in the cab.

NOTE:
Header angle adjustments or AHHC ground pressure control may be used to adjust the cutting height while moving.
Adjusting Stabilizer Wheels

A properly adjusted header will achieve a balance between the amount of header weight carried by the float and the amount carried by the stabilizer wheels.

Refer to 3.6.2 Header Settings, page 45 for recommended use in specific crops and crop conditions.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the header until the stabilizer wheels are off the ground. Shut down engine and remove the key.

2. Check that the float is working properly. Refer to 3.7.3 Header Float, page 94.

3. Support the wheel weight by lifting slightly with one hand on support (B), and pull up on handle (A) to release the lock.

4. Lift the wheel using support (B), and engage the support channel into center slot (C) in the upper support.

5. Push down on handle (A) to lock.

6. Lower the header to the desired cutting height using the combine controls and check load indicator (A).

Figure 3.72: Stabilizer Wheel

Figure 3.73: Load Indicator
7. Adjust the header angle to the desired working angle with the machine’s header angle controls. If header angle is not critical, set it to mid-position.

IMPORTANT:
Continuous operation with excessive spring compression (i.e., load indicator reading greater than 4 or a compressed length [A] less than 295 mm [11 5/8 in.]) can result in damage to the suspension system.

8. Use the combine’s Auto Header Height Control (AHHC) to automatically maintain cutting height. Refer to 3.8 Auto Header Height Control (AHHC), page 152 and your combine operator’s manual for details.

NOTE:
The height sensor on the FM100 Float Module must be connected to the combine height control system in the cab.

NOTE:
Header angle adjustments or AHHC ground pressure control may be used to adjust the cutting height while moving.
Cutting on the Ground

Header design allows you to cut crop at ground level with the header on the ground. Cutting height will vary depending on what kind of crop, crop conditions, etc.

Cutting on the ground is performed with the header fully lowered and the cutterbar on the ground. The orientation of the knife and knife guards relative to the ground (header angle) is controlled by the skid shoes and the center-link—it is NOT controlled by the header lift cylinders. The skid shoes and center-link allow you to adjust to field conditions and maximize the amount of material cut while reducing damage to the knife caused by stones and debris.

The header float system floats the header over the surface to compensate for ridges, trenches, and other variations in ground contour to prevent the cutterbar from pushing into the ground or leaving uncut crop.

Refer to the following for additional information:

- Adjusting Inner Skid Shoes, page 92
- Adjusting Outer Skid Shoes, page 93
- 3.7.4 Header Angle, page 102
- 3.7.3 Header Float, page 94
Adjusting Inner Skid Shoes

DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise header to full height, engage safety props.
2. Shut off the engine, and remove key.
3. Raise the stabilizer wheels or slow speed transport wheels fully (if installed). Refer to the following:
 - Adjusting Stabilizer Wheels, page 89
 - Adjusting Stabilizer / Slow Speed Transport Wheels, page 87
4. Remove lynch pin (A) from each skid shoe.
5. Hold shoe (B) and remove pin (C) by disengaging from the frame and pulling away from the shoe.
6. Raise or lower skid shoe (B) to achieve the desired position using the holes in support (D) as a guide.
7. Install pin (C), engage in frame, and secure with lynch pin (A).
8. Check that all skid shoes are adjusted to the same position.

9. Adjust the header angle to the desired working position using the machine’s header angle controls. If the header angle is not critical, set it to the mid-position.
10. Check the header float. Refer to 3.7.3 Header Float, page 94.

Figure 3.75: Inner Skid Shoe
Adjusting Outer Skid Shoes

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise the header to its full height, engage the safety props.
2. Shut off the engine, and remove the key from the ignition.
3. Raise the stabilizer wheels or slow speed transport wheels fully (if installed). Refer to the following:
 - Adjusting Stabilizer Wheels, page 89
 - Adjusting Stabilizer / Slow Speed Transport Wheels, page 87
4. Remove lynch pin (A) from each skid shoe (B).
5. Hold skid shoe (B) and remove pin (C) by disengaging from the frame and pulling away from the shoe.
6. Raise or lower skid shoe (B) to achieve the desired position using the holes in support (D) as a guide.
7. Reinstall pin (C), engage in the frame, and secure with lynch pin (A).
8. Check that all skid shoes are adjusted to the same position.
9. Check the header float. Refer to 3.7.3 Header Float, page 94.

Figure 3.76: Outer Skid Shoe
3.7.3 Header Float

The header float system reduces the ground pressure at the cutterbar allowing the header to more easily follow the ground and quickly respond to sudden ground contour changes or obstacles.

Header float is indicated on the float indicator (A). Values 0 to 4 represent the force of the cutterbar on the ground with 0 being the minimum and 4 being the maximum.

The maximum force is determined by the tension on the float module’s adjustable float springs. Float can be changed to suit field and crop conditions and is dependent on what options have been installed on the header. Refer to Checking and Adjusting Header Float, page 95.

The D1 Series draper header for combines performs best with minimum ground pressure under normal conditions. Readjust the float if adding optional attachments to the header that affect header weight.

1. Set the float for cutting on the ground as follows:
 a. Ensure the header float locks are disengaged. Refer to Locking/Unlocking Header Float, page 101.
 b. Lower feeder house using the combine header controls until the float indicator (A) reaches the desired float value (cutterbar ground force). Set the float indicator initially to float value 2 and adjust as necessary.

2. Set the float for cutting off the ground as follows:
 a. Set up the stabilizer wheels. Refer to Cutting off the Ground, page 86.
 b. Note the float value on the float indicator and maintain this value during operation (disregard minor fluctuations on the indicator).
Checking and Adjusting Header Float

The header is equipped with a suspension system that floats the header over the ground to compensate for ridges, trenches, and other variations in ground contour. If the header float is not set properly, it may cause the cutterbar to push into the ground or leave uncut crop. This procedure describes how to check header float and adjust to the factory-recommended settings.

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Use the following guidelines when adjusting float:

- Turn each adjustment bolt pair equally. Refer to Step 12, page 98, and repeat torque wrench reading procedure on both sides of header.
- Set the header float as light as possible without causing excessive bouncing to prevent knife component breakage, soil scooping, and soil build-up at the cutterbar in wet conditions.
- To avoid excessive bouncing and leaving a ragged cut, use a slower ground speed with a light float setting, if necessary.
- When cutting off the ground, use the stabilizer wheels in conjunction with header float to minimize bouncing at the header ends and to control cut height. Refer to Adjusting Stabilizer Wheels, page 89.

NOTE:

If adequate header float cannot be achieved using all of the available adjustments, an optional heavy-duty spring is available. See your MacDon Dealer or refer to the parts catalog for ordering information.

To check and adjust header float, follow these steps:

1. Park the combine on a level surface.
2. Level the header and float module. If the header and float module are not level, perform the following checks before adjusting the float:

 IMPORTANT:

 Do **NOT** use the float module springs to level the header.

 - Check that the combine feeder house is level. Refer to your combine operator’s manual for instructions.
 - Check that the top of the float module is level with the combine axle.
 - Ensure the combine tires are inflated equally.

3. Adjust header so that the cutterbar is 150–254 mm (6–10 in.) off the ground.

4. Extend the header angle hydraulic cylinder to between B and C on indicator (A).
5. Adjust the reel fore-aft position to between 5 and 6 on the position indicator decal (A) located on the reel right arm.

6. Lower the reel fully.

7. Shut down the engine, and remove the key from the ignition.

8. Disengage both header float locks by pulling float lock handle (A) away from the float module and pushing the float lock handle down and into position (B) (UNLOCK).
9. Place stabilizer wheels and slow speed transport wheels (if equipped) in storage position as follows:
 a. Support the wheel weight by lifting slightly with one hand, and pull up on handle (A) to release the lock.
 b. Lift the wheels to the desired height, and engage the support channel into the slot (B) in the upper support.
 c. Push down on the handle (A) to lock.

10. Remove the supplied torque wrench (A) from its storage position at the right side of the float module frame. Pull in the direction shown to disengage the wrench from the hook.
11. Place torque wrench (A) onto float lock (B). Note the position of the wrench for checking left or right side.

12. Push down on wrench to rotate bell crank (C) forward.

Figure 3.84: Float Module – Left Side

Figure 3.85: Float Module – Right Side
13. Push down on the wrench until indicator (A) reaches a maximum reading and then begins to decrease. Note the maximum reading. Repeat at opposite side.

14. Use the following table as a guide for float settings:
 - If reading on the wrench is high, the header is heavy
 - If reading on the wrench is low, the header is light

Table 3.12 Float Settings

<table>
<thead>
<tr>
<th>Header Size</th>
<th>Indicator Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cutting on the Ground</td>
</tr>
<tr>
<td>6.1 m, 7.6 m, 9.1 m,</td>
<td>1 1/2 to 2</td>
</tr>
<tr>
<td>10.7 m (20 ft., 25 ft., 30 ft., and 35 ft.)</td>
<td></td>
</tr>
<tr>
<td>12.2 m and 13.7 m</td>
<td>2 to 2 1/2</td>
</tr>
<tr>
<td>(40 ft. and 45 ft.)</td>
<td></td>
</tr>
</tbody>
</table>
15. Before adjusting float spring adjustment bolts (A), rotate spring locks (B) by loosening bolts (C).

16. To increase float (decrease header weight), turn both adjustment bolts (A) on the left side clockwise. Repeat adjustment at opposite side.

To decrease float (increase header weight), turn left side adjustment bolts (A) counterclockwise. Repeat at opposite side.

NOTE:
Turn each bolt pair equally.

17. Adjust the float so the wrench readings are equal on both sides of the header.

18. Lock adjustment bolts (A) with spring locks (B). Ensure bolt heads (A) are engaged in the spring lock cutouts. Tighten bolts (C) to secure spring locks in place.
Locking/Unlocking Header Float

Two header float locks—one on each side of the float module—lock and unlock the header float system.

IMPORTANT:
The float locks must be engaged when the header is being transported with the float module attached so there is no relative movement between the float module and the header. The float locks also must be locked when detaching from the combine to enable the feeder house to release the float module.

To **disengage (unlock) float locks**, pull the float lock handle (A) into position (B) (**UNLOCK**). In this position, the header is unlocked, and can float with respect to the float module.

To **engage (lock) float locks**, push the float lock handle (A) into position (C) (**LOCK**). In this position, the header cannot move with respect to the float module.

![Figure 3.88: Float Lock (in Locked Position)](image)
3.7.4 Header Angle

Header angle is adjustable to accommodate different crop conditions and/or soil types and can be adjusted using the center-link between the combine and the header. Some combines have an adjustable feeder house, which provides the operator an alternate method for controlling header angle.

Refer to Adjusting Header Angle from Combine, page 104 for combine-specific adjustment details.

Header angle (A) is the angle between the header and the ground.

The header angle controls the distance (B) between the cutterbar knife and the ground and is a critical component for effective cutting crop at ground level.

Adjusting the header angle pivots the header at the point of skid shoe/ground contact (C).

Guard angle (D) is the angle between the upper surface of the cutterbar guards and the ground.

1. Set the header angle according to the type and condition of crop and soil as follows:

a. Use shallower settings (A) (position A on the indicator) for normal cutting conditions and wet soil to reduce soil buildup at the cutterbar. Shallow angle settings also minimize damage to the knife in stony fields.

b. Use steeper settings (D) (position D on the indicator) for lodged crops and crops that are close to the ground such as soybeans.
The shallowest angle (A) (center-link fully retracted) produces the highest stubble when cutting on the ground.

The steepest angle (D) (center-link fully extended) produces the lowest stubble when cutting on the ground.

Choose an angle that maximizes performance for your crop and field conditions. Refer to the table below for a summary of adjustment ranges.

Table 3.13 D1 Series Header Angle

<table>
<thead>
<tr>
<th>Header Size</th>
<th>Guard Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 and 7.6 m (20 and 25 ft.)</td>
<td>7.0–12.4°</td>
</tr>
<tr>
<td>9.1–13.7 m (30–45 ft.)</td>
<td>2.0–7.4°</td>
</tr>
</tbody>
</table>

Refer to **3.6.2 Header Settings, page 45** for recommended header/guard angle settings for your particular crop conditions.
Adjusting Header Angle from Combine

The header/guard angle is adjusted from the combine cab with a switch on the operator’s control handle and an indicator on the center-link or on the monitor in the cab. The header/guard angle is determined by the length of the center-link between the combine float module and the header, or by tilting the feeder house on selected combines.

Case combines:

Case combines use control handle switches to adjust the center-link to change header angle.

1. Press and hold SHIFT button (A) on backside of control handle and press switch (B) to tilt header forward or press switch (C) to tilt the header back.

![Figure 3.92: Case Controls](image)

![Figure 3.93: Case Controls](image)
New Holland combines:

New Holland combines use control handle switches to adjust the center-link to change header angle.

1. Press and hold SHIFT button (A) on backside of control handle and press switch (B) to tilt header forward (steeper angle) or switch (C) to tilt header back (shallower angle).

Figure 3.94: NH CR/CX Controls

Figure 3.95: NH CR/CX Controls
AGCO combines:

AGCO combines use a combination of the reel fore-aft switches on the control handle and a dealer-installed auxiliary rocker switch, which toggles between reel fore-aft and header tilt functionality. The location of the rocker switch varies with combine model.

1. **Gleaner A only**: Open armrest cover (A) (Gleaner A only) to expose row of switches, and press dealer-installed rocker switch (B) to HEADER TILT position.

NOTE:

Gleaner A shown. Other Challenger and Massey Ferguson combine models have rocker switch on the console (not shown).

![Figure 3.96: Gleaner A Console](image)
2. Press button (A) on control handle to tilt header forward (steeper angle) or button (B) to tilt header back (shallower angle).
CLAAS combines:

CLAAS (with factory-installed fore-aft / header tilt switch): Newer CLAAS combines use a combination of the reel fore-aft switches on the control handle and a factory-installed auxiliary rocker switch which toggles between reel fore-aft and header tilt functionality.

1. Press HOTKEY switch (A) on operator’s console to deck plate position (the header icon [B] with the arrows pointing to each other).

2. Press and hold switch (A) on rear of control handle.

3. Press switch (C) to tilt header forward (steeper angle) or switch (B) to tilt header back (shallower angle).
John Deere combines:

John Deere S700: S700 Series combines use a feeder house deckplate tilting system for header fore-aft adjustment, instead of using the MacDon center-link for header tilt.

1. Press switch (A) to tilt header forward (steeper angle) or switch (B) to tilt header back (shallower angle).

![Figure 3.103: John Deere 700 Control](image)

John Deere (except S700 Series): John Deere combines use a combination of the reel fore-aft switches on the control handle and a dealer-installed auxiliary rocker switch which toggles between reel fore-aft and header tilt functionality.

1. Press reel fore-aft / header tilt switch (A) on console into HEADER TILT position.

![Figure 3.104: John Deere Consoles](image)
2. Press switch (A) to tilt header forward (steeper angle) or switch (B) to tilt header back (shallower angle).

Versatile combines:

Versatile combines use a combination of the reel fore-aft switches on the control handle and a factory-installed auxiliary rocker switch on the combine control console which toggles between reel fore-aft and header tilt functionality.

1. Press ON switch (A) on console to place controls in HEADER TILT mode.
2. Press button (B) on control handle to tilt header forward (steeper angle) or button (C) to tilt header back (shallower angle).
3.7.5 Reel Speed

Reel speed is one of the factors that determines how crop is moved from the cutterbar onto the drapers. The reel performs best when it appears to be driven by the ground. It should move the cut crop evenly through the cutterbar and onto the drapers without bunching and with minimal disturbance.

In standing crop, reel speed should be slightly higher than, or equal to, ground speed.

In flattened crop or crop that is leaning away from the cutterbar, the reel speed needs to be higher than the ground speed. To achieve this, either increase the reel speed or decrease the ground speed.

Excessive shattering of grain heads or crop loss over the header backtube may indicate that the reel speed is too high. Excessive reel speed also increases reel component wear and overloads the reel drive.

Slower reel speeds can be used with nine-bat reels, which is advantageous in shatter-prone crops.

NOTE:
Nine-bat reels are available on 6.1 m and 7.6 m (20 ft. and 25 ft.) headers from the factory. A conversion kit to change from a six-bat reel to a nine-bat reel is available for these headers.

For recommended reel speeds in specific crops and conditions, refer to 3.6.2 Header Settings, page 45.

The reel speed is adjustable using the controls in the combine cab. Refer to your combine operator’s manual for adjustment details.

Optional Reel Drive Sprockets

Optional reel drive sprockets for use in special crop conditions are available as an alternative to the factory-installed sprocket.

The header is factory-equipped with a 19-tooth reel drive sprocket, which is suitable for most crops. Other sprockets are available that provide more torque to the reel in heavy cutting conditions or allow for higher reel speeds in light crops when operating at increased ground speeds. Refer to Table 3.14, page 111, and contact your MacDon Dealer for ordering information.

Table 3.14 Optional Reel Drive Sprockets

<table>
<thead>
<tr>
<th>Machine Hydraulics</th>
<th>Combine</th>
<th>Application</th>
<th>Optional Drive Sprocket</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.79–14.48 MPa (2000–2100 psi)</td>
<td>Gleaner Transverse Rotary</td>
<td>Combining down rice</td>
<td>10 tooth</td>
</tr>
<tr>
<td>17.24 MPa (2500 psi)</td>
<td>CLAAS 500, 700 Series, Challenger Axial Rotary</td>
<td>Combining down rice</td>
<td>12 tooth</td>
</tr>
<tr>
<td>20.68 MPa (3000 psi)</td>
<td>NH CR, CX, Case IH 7010, 8010, 7120, 8120, 88 Series</td>
<td>Combining down rice</td>
<td>14 tooth</td>
</tr>
<tr>
<td>Low flow (under 42 L/min [11 gpm])</td>
<td>—</td>
<td>Combining light crops above 16 km/h (10 mph)</td>
<td>21 tooth</td>
</tr>
</tbody>
</table>

For installation details, refer to 5.14.3 Reel Drive Sprocket, page 575.
3.7.6 Ground Speed

Operating at the proper ground speed will result in cleanly cut crop and evenly distributed crop material into the combine.

Reduce ground speed in difficult cutting conditions to reduce loads on cutting components and drives.

Use lower ground speeds in very light crops (e.g., short soybeans) to allow the reel to pull in short plants. Start at 4.8–5.8 km/h (3.0–3.5 mph) and adjust as required.

Higher ground speeds may require heavier float settings to prevent excessive bouncing that causes uneven cutting and possible damage to the cutting components. If ground speed is increased, draper and reel speeds should generally be increased to handle the extra material.

Figure 3.107, page 112 illustrates the relationship between ground speed and area cut for the various sized headers.

Figure 3.107: Ground Speed versus Acres

Example: A 13.7 m (45 ft.) header operating at a ground speed of 9.7 km/h (6 mph) would produce a cut area of approximately 13.4 hectares (33 acres) in one hour.
3.7.7 Draper Speed

Operating with the correct draper speed is an important factor for achieving good flow of cut crop away from the cutterbar.

The side drapers and feed draper operate independently of each other; therefore, the speeds are controlled differently. The side draper speed is adjusted with a manually adjustable control valve that is mounted on the float module. The float module feed draper speed is fixed to the combine feeder house speed and cannot be independently adjusted.

Adjust the draper speed to achieve efficient crop feeding onto the float module feed draper. Refer to Adjusting Header Draper Speed, page 113.

Adjusting Header Draper Speed

The side drapers carry the cut crop to the float module feed draper, which then feeds it into the combine. The speed is adjustable to suit a variety of crops and crop conditions.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

The side drapers (A) are driven by hydraulic motors and a pump that is powered by the combine feeder house drive through a gearbox on the float module. Side draper speed is adjustable with the flow control valve on the float module, which regulates the flow to the draper hydraulic motors. Draper speed is also adjustable with an optional control in the cab.

Refer to the following steps to adjust the draper speed:

1. Lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Pull the bottom of compartment cover (A) away from the float module to open.
4. Locate side draper speed control (A). The speed control has settings from 0–9 on the barrel to indicate the draper speed. The flow control valve is factory-set to 6, which should be sufficient for normal crop feeding.

5. Shut down the engine, and remove the key from the ignition.

6. Rotate the flow control valve dial to adjust.

7. Refer to one of the following for recommended draper speed settings:
 - 3.6.2 Header Settings, page 45
 - 3.6.3 Optimizing Header for Straight Combining Canola, page 56

NOTE:
Parts removed from the illustration at right to show the control valve clearly.

8. If the optional in-cab side draper speed control kit is installed, rotate knob (A) to the desired speed setting. Set the knob to 6 for normal crop delivery. Switch (B) activates the header tilt or reel fore-aft controls. Refer to Adjusting Header Angle from Combine, page 104.

Feed Draper Speed

The feed draper moves the cut crop from the side drapers into the float module feed auger.

The float module feed draper (A) is driven by a hydraulic motor and a pump that is powered by the combine feeder house drive through a gearbox on the float module.

The feed draper speed is determined by the combine feeder house speed and cannot be independently adjusted.

3.7.8 Knife Speed Information

The header knife drive is powered by the FM100 hydraulic pump, which is driven by the combine feeder house. There is no separate adjustment to control the knife speed.

IMPORTANT:
For variable speed feeder houses, the rpm values shown at right represent the MINIMUM feeder house speeds.

<table>
<thead>
<tr>
<th>Table 3.15 Feeder House Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combine</td>
</tr>
<tr>
<td>Case IH</td>
</tr>
<tr>
<td>Challenger</td>
</tr>
<tr>
<td>CLAAS50</td>
</tr>
<tr>
<td>Gleaner</td>
</tr>
<tr>
<td>John Deere</td>
</tr>
<tr>
<td>Massey Ferguson</td>
</tr>
<tr>
<td>New Holland</td>
</tr>
</tbody>
</table>

IMPORTANT:
Ensure the knife speed is within the range of rpm values in Table 3.16, page 116. Refer to Checking Knife Speed, page 116.

IMPORTANT:
Under normal cutting conditions, knife speed taken at the knife drive pulley should be set between 600–640 rpm (1200–1280 spm). If set to low side of the range, you could experience knife stalling.

<table>
<thead>
<tr>
<th>Table 3.16 D1 Series Header Knife Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header Size m (ft.)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7.6 m (25 ft.)</td>
</tr>
<tr>
<td>9.1 m (30 ft.)</td>
</tr>
<tr>
<td>10.7 m (35 ft.)</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
</tr>
</tbody>
</table>

50. The rear shaft speed on CLAAS combines is 420 rpm (speed shown on cab display monitor also will be 420). The output shaft speed is actually 750 rpm.
51. Only available on headers configured for windrowers.
Checking Knife Speed

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Stop the engine, and remove the key from the ignition.
2. Open the left endshield. For instructions, refer to Opening Endshields, page 37.

⚠️ WARNING
Check to be sure all bystanders have cleared the area.

3. Start the engine, engage the header drive, and run the combine at operating rpm.
4. Run float module and header for 10 minutes to warm up oil to 38°C (100°F).

5. Measure the rpm of the knife drive box pulley (A) with a hand-held tachometer.
6. Shut down the engine, and remove the key from the ignition.
7. Compare pulley rpm measurement with the rpm values in the knife speed chart. Refer to 3.7.8 Knife Speed Information, page 115.
8. Contact your MacDon Dealer if the pulley rpm measurement exceeds the specified rpm range for your header.
3.7.9 Reel Height

The reel operating position depends on the type of crop and cutting conditions. Set the reel height and fore-aft position to carry material past the knife and onto the drapers with minimal damage to the crop. Refer to 3.7.10 Reel Fore-Aft Position, page 123.

The reel height is controlled manually or with button presets on the ground speed lever (GSL) in the combine cab. Refer to your combine operator’s manual for instructions on controlling reel height or setting up auto reel height presets. Where applicable, this manual contains instructions for presetting reel height on selected combines. Refer to 3.8 Auto Header Height Control (AHHC), page 152.

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Reel Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lodged rice</td>
<td>Lowered (also change reel speed and/or cam setting)</td>
</tr>
<tr>
<td>Bushy or heavy standing (all)</td>
<td>Raised</td>
</tr>
</tbody>
</table>

The following conditions might result if the reel is set too low:

- Crop loss over the header backtube
- Crop disturbance on the drapers caused by the reel fingers
- Crop being pushed down by the tine tubes

The following conditions might result if the reel is set too high:

- Cutterbar plugging
- Crop lodging and being left uncut
- Grain stalks dropping ahead of cutterbar

Refer to 3.6.2 Header Settings, page 45 for recommended reel heights for specific crops and crop conditions.

IMPORTANT:

Maintain adequate clearance to prevent fingers contacting the knife or the ground. Refer to 5.13.1 Reel Clearance to Cutterbar, page 543.
Checking and Adjusting Reel Height Sensor

The output voltage range of the auto reel height sensor can be checked from inside the combine or manually at the sensor. For in-cab instructions, refer to the combine operator’s manual.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

IMPORTANT:

Ensure minimum reel height is properly set before adjusting reel height sensor. For instructions, refer to 5.13.1 Reel Clearance to Cutterbar, page 543.

Figure 3.115: Sensor Arm/Pointer Configurations

![Sensor Arm/Pointer Configurations](image)

- **A** - Case/New Holland Configuration
- **B** - John Deere/CLAAS Configuration
- **C** - Sensor Arm (Shown Semitransparent)
- **D** - Sensor Pointer (Shown Under Sensor Arm)

NOTE:

Sensor arm made semitransparent to show sensor pointer behind it.

NOTE:

The arrow indicates that the pointed end of the sensor arm in configuration **A** is pointed toward the back of the header.

The arrow indicates that the pointed end of the sensor arm in configuration **B** is pointed toward the front of the header.

1. Check that sensor arm (C) and pointer (D) are configured properly for your machine. Refer to Figure 3.115, page 118.
IMPORTANT:

To measure the output voltage of the reel height sensor, the combine engine needs to be running and supplying power to the sensor. Always engage the combine parking brake and stay away from the reel.

Table 3.18 Reel Height Sensor Voltage Limits

<table>
<thead>
<tr>
<th>Combine Type</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Voltage</td>
</tr>
<tr>
<td>Case/New Holland</td>
<td>0.5–0.9 V</td>
</tr>
<tr>
<td>CLAAS</td>
<td>4.1–4.5 V</td>
</tr>
<tr>
<td>John Deere</td>
<td>4.1–4.5 V</td>
</tr>
</tbody>
</table>

NOTE:

For CLAAS combines: To avoid a collision of the reel with the cab, the machine is equipped with an automatic reel height limitation. Some CLAAS combines have an automatic shutoff feature that engages when the automatic reel height limitation is reached. When raising the header by more than 80 percent, the reel is automatically lowered. The automatic lowering of the reel can be manually overridden, and a warning will appear on the CEBIS terminal.

To check the voltage range manually, follow these steps:

1. Engage the combine parking brake.
2. Start the engine and fully lower the reel.
3. Use the combine display or a voltmeter (if measuring the sensor manually) to measure voltage range Y. Refer to Table 3.18, page 119 for range requirements.
4. If using a voltmeter, measure the voltage between the ground (Pin 2 wire) and the signal (Pin 3 wire) at the reel height sensor (B).
5. Stop the engine and remove key.
6. Adjust length of threaded rod (A) to modify voltage range Y.
7. Repeat checking and adjusting until voltage range Y is within the range specified.

![Figure 3.116: Reel Height Sensor – Right Reel Arm with Reel Down](image)
8. Start the engine, and fully raise the reel.
9. Use the combine display or a voltmeter (if measuring the sensor manually) to measure voltage range X. Refer to Table 3.18, page 119 for range requirements.
10. If using a voltmeter, measure the voltage between the ground (Pin 2 wire) and the signal (Pin 3 wire) at the reel height sensor (A).
11. Stop the engine and remove the key.
12. Loosen two M5 hex nuts (B) and rotate sensor (A) to achieve voltage range X.
13. Repeat checking and adjusting until voltage range X is within the range specified.
14. Start the engine and fully lower the reel.
15. Recheck voltage range Y and ensure it is still within the range specified. Adjust if required.
Replacing Reel Height Sensor

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Start engine and lower reel fully.
2. Stop engine and remove key.
3. Disconnect sensor from harness.
4. Remove two hex head bolts (A) from sensor arm (B). Retain hardware for reinstallation.

5. Remove two nyloc nuts and bolts (A) from reel height sensor and remove sensor (B).
6. Install new sensor (B) in sensor bracket and attach using retained bolts (A) and nyloc nuts. Torque bolts (A) to 2–3 Nm (17–27 lbf·in.).

7. Connect sensor arm (B) using retain hex head bolts (A). Torque head bolts (A) to 4 Nm (35 lbf·in.).
8. Connect the sensor to the harness.
9. Check that the sensor arm and the threaded rod are parallel. If not, loosen two center lock flange nuts (A), and adjust sensor mounting bracket (B) until the threaded rod (C) is parallel with the sensor arm (D). Tighten center lock flange nuts.

10. Check the sensor voltage range. Refer to Checking and Adjusting Reel Height Sensor, page 118.
3.7.10 Reel Fore-Aft Position

Reel fore-aft position is a critical factor for achieving the best results in adverse conditions. The factory-set reel position suits normal conditions, but the fore-aft position can be adjusted as required using the controls inside the cab.

The reel on non-European-configured headers can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the header’s reel arms to accommodate certain crop conditions.

- For single-reel headers, refer to *Repositioning Fore-Aft Cylinders on Single Reel, page 125*.
- For double-reel headers, refer to *Repositioning Fore-Aft Cylinders on Double Reel, page 127*.

The reel on European-configured headers can be moved approximately 67 mm (2.6 in.) farther aft by repositioning the fore-aft cylinders on the header’s reel arms to accommodate certain crop conditions. Refer to *Repositioning Fore-Aft Cylinders on European-Configured Headers, page 133*.

If the combine is equipped with the Multi-Crop Rapid Reel Conversion option, refer to *Repositioning Fore-Aft Cylinders with Multi-Crop Rapid Reel Conversion Option, page 130*.

NOTE:
The Multi-Crop Rapid Reel Conversion option is not available for European-configured headers.

Decal (A) is attached to the right reel support arm for identifying reel position. The aft edge of the cam disc (B) is the reel fore-aft position marker.

For straight standing crop, center the reel over the cutterbar (4–5 on decal).

For crops that are down, tangled, or leaning, it may be necessary to move the reel ahead of the cutterbar (lower number on decal).

NOTE:
If experiencing difficulty picking up flattened crop, adjust to a steeper header angle. Refer to *3.7.4 Header Angle, page 102* for adjustment instructions. Adjust reel position only if header angle adjustments are not satisfactory.

For recommended reel positions in specific crops and crop conditions, refer to *3.6.2 Header Settings, page 45*.

NOTE:
In crops that are difficult to pick up such as rice, or severely lodged crops that require full forward positioning of the reel, set the reel tine pitch to provide proper placement of the crop onto the drapers. Refer to *3.7.11 Reel Tine Pitch, page 138* for adjustment details.
Adjusting Reel Fore-Aft Position

1. Select FORE-AFT mode on the selector switch in the cab.
2. Operate the hydraulics to move the reel to the desired position while using the decal (A) as a reference.
3. Check the reel clearance to cutterbar after making changes to the cam setting. Refer to the following for measurement and adjustment procedures:
 - 5.13.1 Reel Clearance to Cutterbar, page 543
 - 5.13.2 Reel Frown, page 547

IMPORTANT:
Operating with the reel too far forward can result in the fingers contacting the ground. When operating with the reel in this position, lower the skid shoes or adjust the header tilt as required to prevent damaging the fingers.
Repositioning Fore-Aft Cylinders on Single Reel

The reel can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the reel arms. This may be desirable when straight-combining canola.

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Reposition the right reel arm cylinder as follows:

NOTE:
Reel components not shown in illustration for improved clarity.

1. Position reel fully aft with support arms horizontal.
2. Stop the engine and remove the key from the ignition.
3. Remove the four nuts and bolts (A) securing the cylinder bracket (B) to the reel arm (C). Retain hardware.

4. Push/pull the reel until bracket (B) lines up with the aft set of holes in the reel arm (C).
5. Reinstall the four nuts and bolts (A) and secure the cylinder bracket (B) to the reel arm at the new position.
Reposition the left reel arm cylinder as follows:

NOTE:
Reel components not shown in illustration for improved clarity.

1. Remove pin (A) securing cylinder (B) to bracket/light assembly (C).
2. Remove nuts and bolts (D) securing bracket/light assembly (C) to the reel arm, and remove the bracket/light assembly.
3. If necessary, remove the cable tie securing the harness to the bracket/light assembly (C) or reel arm.
4. Swivel the light to the working position as shown.

5. Reposition the bracket/light assembly (C) on the reel arm as shown, and secure with four nuts and bolts (D). Tighten hardware.
6. Push the reel back and attach cylinder (B) to the bracket/light assembly (C) with pin (A). Secure pin with cotter pin.
7. Secure the light harness to the bracket/light assembly (C) using a cable tie.
8. Check the reel clearance to the backsheet, upper cross auger (if installed), and reel braces.
9. Adjust the reel tine pitch if necessary. Refer to 3.7.11 Reel Tine Pitch, page 138.
Repositioning Fore-Aft Cylinders on Double Reel

The reel can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the reel arms. This may be desirable when straight-combining canola.

NOTE:
Short Brace Kit for Center Reel Arm (MD #B5605) must be installed before repositioning fore-aft cylinders.

If the Multi-Crop Rapid Reel Conversion option is installed, refer to Repositioning Fore-Aft Cylinders with Multi-Crop Rapid Reel Conversion Option, page 130.

NOTE:
The Multi-Crop Rapid Reel Conversion option is not available for European-configured headers.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Reposition the center reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustration for improved clarity.

1. Position reel fully aft with support arms horizontal.
2. Stop engine and remove key.
3. Remove four nuts and bolts (A) securing cylinder bracket (B) to reel arm (C). Retain hardware.
4. Push/pull reel until bracket (B) lines up with the aft set of holes in reel arm (C).
5. Reinstall four nuts and bolts (A) to secure bracket (B) to reel arm at new position.
Reposition the right reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

1. Remove four bolts (A) securing cylinder bracket (B) to the reel arm (C).

2. Push reel back until bracket (B) lines up with the aft set of holes in the reel arm (C).

3. Reinstall the four bolts (A) to secure bracket to reel arm at new position.
Reposition the left reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

1. Remove pin (A) securing cylinder (B) to bracket/light assembly (C).
2. Remove four nuts and bolts (D) securing bracket/light assembly (C) to reel arm and remove bracket/light assembly. Retain hardware.
3. Remove cable tie (not shown) securing harness to bracket/light assembly (C) or to reel arm (if necessary).
4. Swivel light to working position as shown.

5. Reposition bracket/light assembly (C) onto reel arm as shown, and secure using four nuts and bolts (D). Tighten hardware.
6. Push reel back and reinstall cylinder (B) onto bracket/light assembly (C) using pin (A). Secure pin with cotter pin.
7. Secure light harness to bracket/light assembly (C) or to reel arm using plastic cable tie (not shown).
8. Check reel clearance to backsheet, upper cross auger (if installed), and reel braces.
Repositioning Fore-Aft Cylinders with Multi-Crop Rapid Reel Conversion Option

The reel can be moved approximately 227 mm (9 in.) farther aft by repositioning the fore-aft cylinders on the reel arms. The Multi-Crop Rapid Reel Conversion option is applicable to double-reel headers only.

NOTE:
Short Brace Kit for Center Reel Arm MD (MD #B5605) must be installed before repositioning fore-aft cylinders.

NOTE:
Multi-Crop Rapid Reel Conversion option is not available for European-configured headers.

DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Reposition the left reel arm cylinder as follows:

NOTE:
Some reel components not shown in illustrations for improved clarity.

1. Position reel fully aft with support arms horizontal.
2. Stop the engine and remove the key from the ignition.
3. Remove ring (A) and clevis pin (B) from inboard side of bracket (C). Retain ring and clevis pin.
4. Push the reel back until the cylinder barrel (D) lines up with reel position 2 hole on bracket.
5. Reinstall clevis pin (B) at the new position and secure with ring (A).

Figure 3.134: Left Reel Arm in Forward Position

Figure 3.135: Left Reel Arm in Aft Position
Reposition the center reel arm cylinder as follows:

NOTE:
Some reel components not shown in illustrations for improved clarity.

1. Remove ring (A), clevis pin (B), and washers (C) from bracket (D). Retain ring, clevis pin, and washers.

2. Push the reel back until the end of the cylinder (E) lines up with reel position 2 hole on bracket (D). Position washers (C) on both sides of the cylinder end inside the bracket.

3. Reinstall clevis pin (B) at the new position and secure with ring (A).
Reposition the right reel arm cylinder as follows:

NOTE:
Some reel components not shown in illustrations for improved clarity.

1. Remove ring (A), clevis pin (B), and washers (C) from bracket (D). Retain ring, clevis pin, and washers.

2. Push the reel back until end of cylinder (E) lines up with reel position 2 hole on bracket (D).

 NOTE:
 Washers inside center arm support bracket not shown in illustration at right.

3. Reinstall clevis pin (B) at the new position and secure with ring (A).

Figure 3.138: Right Reel Arm in Forward Position

Figure 3.139: Right Reel Arm in Aft Position
Repositioning Fore-Aft Cylinders on European-Configured Headers

The reel can be moved approximately 67 mm (2.6 in.) farther aft from factory setting by repositioning the fore-aft cylinders on the reel arms. This may be desirable when straight-combining canola.

For instructions for repositioning the fore-aft cylinders on a non-European-configured header, refer to Repositioning Fore-Aft Cylinders on Double Reel, page 127.

Reposition center reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

NOTE:
Reels on European-configured headers are at their most forward setting when cylinders are set in position 2 on the fore-aft arm brackets. Reels on these headers are in their most aft position when cylinders are set in position 1 on the fore-aft arm brackets.

1. Remove the securing ring (A), pin (B), and washers inside the center arm fore-aft support bracket (C). Retain washers, pin, and ring.

 NOTE:
 Washers inside center arm support bracket not shown in illustration at right.

2. Push the reel back until the end of the cylinder (A) lines up with the aft setting holes (B) (position 1) in the fore-aft support bracket (C). Position washers (D) on both sides of the cylinder end (A) inside the support bracket (C).
3. Insert pin (A) and secure cylinder (B) and washers in the center arm support bracket (C). Secure pin (A) with ring (D).

NOTE:
Washers inside center arm support bracket not shown in illustration at right.

Reposition right reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

NOTE:
Reels on European-configured headers are at their most forward setting when cylinders are set in position 2 on the fore/aft arm brackets. Reels on these headers are in their most aft position when cylinders are set in position 1 on the fore-aft arm brackets.

1. Remove ring (A), pin (B), and washers (D) securing the reel arm cylinder (C) to the interior of the right fore-aft arm bracket. Retain washers, ring, and pin.
2. Push the reel back until the end of the cylinder (A) lines up with the aft setting holes (B) in the support bracket (C). Position washers (D) on both sides of the cylinder end (A) inside the support bracket (C).

3. Insert pin (A) into the aft setting holes, and through the cylinder end (C) and washers (D). Secure the pin with ring (B).
Reposition left reel arm cylinder as follows:

NOTE:
Some reel components are not shown in illustrations for improved clarity.

NOTE:
Reels on European-configured headers are at their most forward setting when cylinders are set in position 2 on the support brackets. Reels on these headers are in their most aft position when cylinders are set in position 1 on the support brackets.

1. Remove ring (A) and pin (B) inside the left fore-aft support bracket (D) securing the cylinder (C). Retain pin and ring.

2. Push reel back toward the header until the end of the cylinder (A) lines up with the aft setting holes (B) (position 1) in the support bracket (C).
3. Insert clevis pin (A) into the aft setting holes in the support bracket (B) and through the end of the cylinder (C). Secure pin with ring (D).

4. Check the reel clearance to the backsheet, upper cross auger (if installed), and reel braces.

5. Adjust the reel tine pitch if necessary. Refer to 3.7.11 Reel Tine Pitch, page 138.
3.7.11 Reel Tine Pitch

IMPORTANT:
The following describes the conceptual and operational guidelines of the pick-up reel. Please read carefully before operating the machine.

The pick-up reel is designed to pick up flattened and severely lodged crops. Because the cam setting is mainly used to determine how the crop gets delivered onto the drapers, it is not always necessary to increase the tine pitch (select a higher cam setting) to pick up lodged crops.

The positioning of the fingers relative to the ground (tine pitch) is not significantly affected by the cam setting. For example, with the cam position range at 33°, the corresponding finger pitch range is only 5° at the lowest point of the reel’s rotation.

For the best results, use the minimum cam setting that delivers the crop past the rear edge of the cutterbar and onto the drapers. Refer to 3.6.2 Header Settings, page 45.
Reel Cam Settings

The following outlines the function of each cam setting and provides set-up guidelines for various crop conditions.

The setting numbers are visible above the slots on the cam disc. Refer to Adjusting Reel Cam, page 142.

Cam Position 1, Reel Position 6 or 7 delivers the most even crop flow onto the drapers without fluffing or disturbing the material.

- This setting will release crop close to the cutterbar and works best if the cutterbar is on the ground.
- Some crops will not be delivered past the cutterbar when the cutterbar is raised off the ground and the reel is pushed forward; therefore, set the initial reel speed approximately equal to the ground speed.

Cam Position 2, Reel Position 3 or 4 is the recommended starting position for most crops and conditions.

- If the crop is stalling on the cutterbar when the reel is in the forward position, increase the cam setting to push the crop past the rear edge of the cutterbar.
- If the crop is getting fluffed or if there is a disruption to the flow across the drapers, decrease the cam setting.
- This setting generates a fingertip speed that is approximately 20% faster than the reel speed.
Cam Position 3, Reel Position 6 or 7 is mainly used to leave long stubble.
- This position allows the reel to reach forward and lift the crop across the knife and onto the drapers.
- This setting generates a fingertip speed that is approximately 30% faster than the reel speed.

Cam Position 4, Reel Position 2 or 3 is used with the reel fully forward to leave the maximum amount of stubble in lodged crops.
- This position allows the reel to reach forward and lift the crop across the knife and onto the drapers.
- This setting generates a fingertip speed that is approximately 35% faster than the reel speed.
Cam Position 4, Header Angle at Maximum, and Reel Fully Forward provides the maximum amount of reel reach below the cutterbar to pick up lodged crops.

- Leaves a significant amount of stubble when cutting height is set to approximately 203 mm (8 in.). In damp materials such as rice, it is possible to double the ground speed because of the reduction of cut material.
- This setting generates a fingertip speed that is approximately 35% faster than the reel speed.

IMPORTANT:
The reel to cutterbar clearance should always be checked following adjustments to reel tine pitch and reel fore-aft positions (refer to 5.13.1 Reel Clearance to Cutterbar, page 543). Refer to 3.6.2 Header Settings, page 45 for recommended reel tine pitch in specific crops and crop conditions.

NOTE:
Higher cam settings with the reel fore-aft position set between 4–5 sharply decrease the draper capacity because the reel disrupts the crop flow across the drapers and the fingers engage the crop that is moving on the drapers. High cam settings are recommended only with the reel at, or close to, full forward settings.
Adjusting Reel Cam

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Turn the latch pin (A) counterclockwise using a 3/4 in. wrench to release the cam disc.

2. Use the wrench on bolt (B) to rotate the cam disc and align the latch pin (A) with the desired cam disc hole position (C) (1 to 4).

 NOTE:
 Bolt (B) is positioned through the cam disc (transparent view shown in illustration for improved clarity).

3. Turn the latch pin (A) clockwise to engage and lock the cam disc.

4. Repeat the above procedure for the opposite reel.

 IMPORTANT:
 Ensure the cam is secured into position before operating the machine.

Figure 3.154: Cam Disc Positions
3.7.12 Crop Dividers

Crop dividers are used to help divide the crop when harvesting. They are removable to allow installation of vertical knives and to decrease transport width.

Removing Crop Dividers with Latch Option from Header

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 37.
5. Lift safety lever (A).
6. Hold onto crop divider (B), push lever (C) to open latch, and lower crop divider.

7. Lift crop divider off endsheet and store as follows:
 a. Insert pin (A) on crop divider into hole in endsheet at location shown.
 b. Lift crop divider and position lugs (B) on crop divider into bracket on endsheet. Ensure lugs engage bracket.
8. Close or install endshields. Refer to 3.2.3 Endshields, page 37.
Removing Crop Dividers without Latch Option from Header

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 37.
5. Remove bolt (A), lock washer, and flat washer.
6. Lower crop divider (B) and then lift to remove from endsheet.
7. Close or install endshields. Refer to 3.2.3 Endshields, page 37.

Figure 3.157: Crop Divider
Installing Crop Dividers with Latch Option onto Header

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 37.
5. Remove crop divider from storage location by lifting crop divider to disengage lugs (A) at lower end and then lowering it slightly to disengage pin (B) from endsheet.

6. Position crop divider as shown by inserting lugs (A) into holes in endsheet.
7. Lift forward end of crop divider until pin (B) at top of crop divider engages and closes latch (C).
8. Push safety lever (D) downwards to lock pin into latch (C).

Figure 3.158: Stored Crop Divider

Figure 3.159: Crop Divider
9. Pull the tip of the crop divider to ensure there is no lateral movement. If necessary, adjust bolts (A) to tighten crop divider and eliminate lateral movement.

10. Close or install endshields. Refer to 3.2.3 Endshields, page 37.

Installing Crop Dividers without Latch Option onto Header

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your combine operator’s manual for instructions.
2. Stop engine and remove key.
3. Engage safety props. Refer to your combine operator’s manual for instructions.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 37.
5. Remove crop divider from storage location by lifting crop divider to disengage lugs (A) at lower end and then lowering it slightly to disengage pin (B) from endsheet.

Figure 3.160: Crop Divider

Figure 3.161: Stored Crop Divider
6. Position crop divider as shown by inserting lugs (A) into holes in endsheet.

7. Lift forward end of crop divider and install bolt (A) and special stepped washer (B) (step towards divider). Tighten bolt.

8. Pull the tip of the crop divider to ensure there is no lateral movement. If necessary, adjust bolts (C) to tighten crop divider and eliminate lateral movement.

9. Close or install endshields. Refer to 3.2.3 Endshields, page 37.

3.7.13 Crop Divider Rods

Crop divider rods are used in conjunction with crop dividers. The removable crop divider rods are most useful when crop is bushy or down. In standing crops, using only crop dividers is recommended.

<table>
<thead>
<tr>
<th>Table 3.19 Crop Divider Rods Recommended Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Divider Rods</td>
</tr>
<tr>
<td>Alfalfa</td>
</tr>
<tr>
<td>Canola</td>
</tr>
<tr>
<td>Flax</td>
</tr>
<tr>
<td>Grass seed</td>
</tr>
<tr>
<td>Lentils</td>
</tr>
</tbody>
</table>
Removing Crop Divider Rods

1. Loosen bolt (A) and remove crop divider rod (B) from both sides of header.

2. Store both crop divider rods (A) inboard on the right side endsheet.
Installing Crop Divider Rods

1. Remove crop divider rods (A) from storage location on inboard of right side endsheet.

2. Position crop divider rod (B) on tip of crop divider as shown and tighten bolt (A).

3. Repeat procedure at opposite end of header.

Rice Divider Rods

Optional rice divider rods provide improved performance in tall and tangled rice crops. The installation and removal procedures for these rods are the same as the installation and removal procedures for standard crop divider rods. Refer to 6.5.10 Rice Divider Rods, page 609.
3.7.14 Setting Auger Position

The auger position has two settings—floating and fixed. The factory setting is the floating position, and is recommended for most crop conditions.

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

The auger float adjustment arms (A) are located at the bottom left and bottom right of the float module.

![Auger Float Adjustment Arms](image)

If bolt (A) is next to the floating symbol (B), the auger is in the floating position. If bolt (A) is next to the fixed symbol (C), the auger is in the fixed position.

⚠️ **CAUTION**

Make sure left and right brackets are set to the same position; the two bolts (A) must be in the same location to prevent damage to the machine during operation.

![Auger Float Positions](image)
To set the auger position, follow these steps:

1. Extend center-link to the steepest header angle.
2. Raise header to full height, and engage safety props.
3. Shut down the engine, and remove the key from the ignition.
4. Using a 21 mm wrench, loosen bolt (A) until the bolt head is clear of bracket (B).

5. Using the same wrench, move arm (B) forward until bolt (A) is in the slot on bracket next to the fixed symbol (C). The arm can also be moved using a breaker bar in the square hole (D).

 NOTE:
 If changing the auger position from fixed to floating, move arm in opposite direction.

6. Tighten bolt (A) to 122 Nm (90 lbf·ft).

 IMPORTANT:
 Bolt (A) must be properly seated in recess on bracket before tightening bolt. If arm (B) can be moved after tightening bolt, then bolt (A) is not seated properly.

7. Repeat on opposite side.

 IMPORTANT:
 Bolt (A) on each side of the float module must be in the same position to prevent damage to the machine during operation.
3.8 Auto Header Height Control (AHHC)

MacDon’s auto header height control (AHHC) feature works in conjunction with the AHHC option available on certain combine models.

A sensor is installed in the float indicator box (A) on the FM100 Float Module. This sensor sends a signal to the combine allowing it to maintain a consistent cutting height and an optimum float as the header follows ground contours. A two-sensor system is also available as an optional kit. Refer to 6.5.1, page 605.

Figure 3.173: FM100 Float Module

FM100 Float Modules are factory-equipped for AHHC; however, before using the AHHC feature, you must do the following:

1. Ensure that the AHHC sensor’s output voltage range is appropriate for the combine.
 For more information, refer to 3.8.2 Sensor Output Voltage Range – Combine Requirements, page 154.

2. Prepare the combine to use the AHHC feature (applies only to some combine models—refer to the following instructions for your combine).

3. Calibrate the AHHC system so that the combine can correctly interpret data from the height sensor on the float module (refer to the following instructions for your combine).

NOTE:
Once calibration is complete, you are ready to use the AHHC feature in the field. Individual combine settings can improve AHHC performance (refer to your combine instruction manual).

OPERATION
Refer to the following instructions for your specific combine model:

- **3.8.3 Case IH 5088/6088/7088 Combines, page 171**
- **3.8.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230 and 7240/8240/9240 Combines, page 183**
- **3.8.6 Challenger and Massey Ferguson 6 and 7 Series Combines, page 200**
- **3.8.7 CLAAS 500 Series Combines, page 208**
- **3.8.8 CLAAS 600 and 700 Series Combines, page 216**
- **3.8.9 Gleaner R65/R66/R75/R76 and S Series Combines, page 226**
- **3.8.10 Gleaner S9 Series Combines, page 237**
- **3.8.11 John Deere 60 Series Combines, page 252**
- **3.8.12 John Deere 70 Series Combines, page 260**
- **3.8.13 John Deere S and T Series Combines, page 267**
- **3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299**
- **3.8.16 New Holland Combines – CR Series, Model Year 2015 and Later, page 311**
3.8.1 Sensor Operation

The position sensors supplied with the auto header height control (AHHC) system are hall-effect sensors containing sealed connectors. Normal operating signal voltages for the sensors fall between 10% (0.5 VDC) and 90% (4.5 VDC). An increase in sensor voltage correlates to an increase in header height.

Sensor errors result in a 0 V signal, indicating a faulty sensor or incorrect supply voltage.

3.8.2 Sensor Output Voltage Range – Combine Requirements

The auto header height control (AHHC) sensor output must be within a specific voltage range for each combine, or the AHHC feature will not work properly.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Range (Difference between High and Low Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenger, Gleaner A, Massey Ferguson</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Case IH 5088/6088/7088, 5130/6130/7130, 7010/8010, 7120/8120/9120, 7230/8230/9230, and 7240/8240/9240</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Case IH 2588/2577</td>
<td>2.8 V</td>
<td>7.2 V</td>
<td>4.0 V</td>
</tr>
<tr>
<td>Gleaner R and S Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>John Deere 60, 70, S, and T Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>CLAAS 500/600/700 Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>New Holland CR/CX - 5 V system</td>
<td>0.7 V</td>
<td>4.3 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>New Holland CR/CX - 10 V system</td>
<td>2.8 V</td>
<td>7.2 V</td>
<td>4.1–4.4 V</td>
</tr>
</tbody>
</table>

NOTE:
Some combine models do not support checking sensor output voltage from the cab (early Case 23/2588 series, CLAAS 500/600/700 Series). For these models, check output voltage manually. Refer to Manually Checking Voltage Range – One-Sensor System, page 156 or Manually Checking Voltage Range – Two-Sensor System, page 158.
10 Volt Adapter (MD #B6421) – New Holland Combines Only

New Holland combines with a 10 V system require the 10 V adapter (A) (MD #B6421) for proper calibration of the auto header height control (AHHC) feature.

If a 10 V New Holland combine does not have the adapter installed, the AHHC output will always read 0 V, regardless of sensor position.

NOTE:
10 V adapter is not available for the optional two sensor system.

Use a voltmeter to measure the voltage between Pin 1 (power) and Pin 2 (ground) wires at the AHHC sensor (A). This will determine whether the combine has a 5 V system or a 10 V system.

NOTE:
The combine key must be in the ON position, but the engine does not need to be running.

The three possible voltage readings are as follows:

- 0 V – combine key is in OFF position, or there is a faulty harness/bad connection
- 5 V – standard combine reading
- 10 V – 10 V combine reading; adapter (MD #B6421) is required
Manually Checking Voltage Range – One-Sensor System

The one-sensor system is standard for the FM100 Float Module. If equipped with the optional two-sensor system, refer to *Manually Checking Voltage Range – Two-Sensor System, page 158*.

The output voltage range of the auto header height control (AHHC) sensors in some combines can be checked from the cab. For instructions, refer to your combine operator’s manual or the AHHC instructions later in this document.

To manually check the sensor’s output voltage range, follow these steps:

1. Extend guard angle fully; the header angle indicator should be at D.
2. Position the header 150 mm (6 in.) above the ground, and unlock the float.
3. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is **NOT** on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to **3.9 Leveling the Header**, page 326 for instructions.

4. Locate linkage assembly (A). Verify that dimension (B) is set to 55 mm (2.17 in.). If it is not, adjust linkage (A).
5. Adjust cable take-up bracket (B) (if necessary) until the float indicator pointer (A) is on 0.

6. Use a voltmeter (A) to measure the voltage between the ground (Pin 2) and signal (Pin 3) wires at the AHHC sensor in the float indicator box. Ensure it is at the high voltage limit for the combine. Refer to Table 3.20, page 154.

NOTE:
The wiring harness connector must be attached to the sensor. Do NOT disconnect it.

7. Fully lower the combine feeder house, and float the header up off the down stops (float indicator should be at 4, and the float module should be fully separated from the header).

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

8. Use a voltmeter (A) to measure the voltage between the ground and signal wires at the AHHC sensor in the float indicator box. It should be at the low voltage limit for the combine. Refer to Table 3.20, page 154.

NOTE:
The wiring harness connector must be attached to the sensor. Do NOT disconnect it.

9. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to *Adjusting Voltage Limits – One-Sensor System, page 162.*
Manually Checking Voltage Range – Two-Sensor System

FM100 Float Modules equipped with the optional two-sensor system have a left and right sensor located on the back frame of the float module.

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Figure 3.181: Sensor Orientation

1. Before adjusting the sensors, verify the sensor arms are properly installed on the sensors.
 - Left Sensor (A): The **point** on the arm of the sensor should face **away** from the header. The point on the float sensor arm (C) should be installed in the same direction, facing away from the header.
 - Right Sensor (B): The **point** on the arm of the sensor should face **away** from the header. The point on the float sensor arm (D) should be installed in the same direction, facing away from the header.
To manually check the sensor’s output voltage range, follow these steps:

2. Extend guard angle fully; the header angle indicator should be at D.

3. Position the header 150 mm (6 in.) above the ground, and unlock the float.

4. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

5. Locate linkage assembly (A). Verify that dimension (B) is set to 55 mm (2.17 in.). If it is not, adjust linkage (A).
6. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on the float indicator is on 0.

7. Use a voltmeter to measure the voltage between the ground (Pin 2) and signal (Pin 3) wires of AHHC sensor (A) at the back of the float module side frame. Ensure it is at the high voltage limit for the combine. Refer to Table 3.20, page 154.

 NOTE:
 The wiring harness connector must be attached to the sensor. Do **NOT** disconnect it.

8. Repeat at the opposite side.

9. Fully lower the combine feeder house, and float the header up off the down stops (float indicator [A] should be at 4, and the float module should be fully separated from the header).

 NOTE:
 You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.
10. Using a voltmeter, measure the voltage between the ground (Pin 2) and signal (Pin 3) wires of AHHC sensor (A) at the back of the side frame. Ensure it is at the low voltage limit for the combine. Refer to Table 3.20, page 154.

NOTE:
The wiring harness connector must be attached to the sensor. Do **NOT** disconnect it.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to *Adjusting Voltage Limits – Two-Sensor System*, page 163.

12. Repeat at the opposite side.
Adjusting Voltage Limits – One-Sensor System

Follow this procedure if you have checked the voltage range (either manually or from the cab) and found that the sensor voltage is not within the low and high limits, or that the range between the low and high limits is insufficient.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Follow these steps to adjust the high voltage limit:
 a. Extend guard angle fully; the header angle indicator should be at D.
 b. Position header 152–254 mm (6–10 in.) above the ground; the float indicator should be at 0.
 c. Check the high voltage limit using the combine display or a voltmeter. Refer to Table 3.20, page 154.
 d. Loosen sensor-mounting nuts (A).
 e. Slide sensor support (B) to the right to increase high voltage limit or to the left to decrease it.
 f. Tighten sensor-mounting nuts (A).

2. Follow these steps to adjust the low voltage limit:
 a. Extend guard angle fully; the header angle indicator should be at D.
 b. Fully lower header on the ground; the float indicator should be at 4.
 c. Check the low voltage limit using the combine display or voltmeter. Refer to Table 3.20, page 154.
 d. Loosen sensor-mounting nuts (A).
 e. Rotate sensor (B) clockwise to increase low voltage limit or counterclockwise to decrease it.
 f. Tighten sensor-mounting nuts (A).

3. After making adjustments, recheck both the upper and lower voltage limits to make sure they are within the required range according to Table 3.20, page 154.
Adjusting Voltage Limits – Two-Sensor System

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Figure 3.190: Sensor Orientation

1. Before adjusting the sensors, verify the sensor arms are properly installed on the sensors.
 - Left Sensor (A): The **point** on the arm of the sensor should face **away** from the header. The point on the float sensor arm (C) should be installed in the same direction, facing away from the header.
 - Right Sensor (B): The **point** on the arm of the sensor should face **away** from the header. The point on the float sensor arm (D) should be installed in the same direction, facing away from the header.
Follow these steps to adjust the left sensor voltage:

2. Extend guard angle fully; the header angle indicator should be at D.
3. Position header 150–254 mm (6–10 in.) above the ground; the float indicator should be at 0.
4. Loosen sensor-mounting nuts (A).
5. Check that the left sensor is at the correct high voltage limit.
6. Rotate sensor (B) counterclockwise to lower the voltage. Rotate sensor clockwise to raise the voltage.
7. Tighten sensor-mounting nuts (A).

![Figure 3.191: Optional Two-Sensor Kit – Left Sensor](image)
Follow these steps to adjust the right sensor voltage:

8. Extend guard angle fully; the header angle indicator should be at D.

9. Position header 150–254 mm (6–10 in.) above the ground; the float indicator should be at 0.

10. Loosen sensor mounting nuts (A).

11. Rotate sensor (B) clockwise to lower the voltage. Rotate sensor counterclockwise to raise the voltage.

12. Check that the right sensor is at the correct high voltage limit.

13. Tighten sensor mounting nuts (A).

14. Fully lower the header; float indicator (A) should be at 4.

15. Check that both sensors are at the correct low voltage limit.
Replacing the Auto Header Height Control Sensor – One-Sensor System

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Disconnect wiring harness (A) from existing sensor (B).
2. Remove the two screws (C) that secure sensor (B) to sensor arm (D).
3. Swing sensor arm (A) upwards to gain access to the two bolts (B) securing sensor (C) to bracket (D).
4. Remove the two bolts and nuts (B) that secure sensor (C) to bracket (D).
5. Pull sensor (C) away from bracket (D).

IMPORTANT:

To avoid damaging the new sensor, install sensor as follows:

6. Position the new sensor (A) on bracket (B).
7. Secure with two bolts (C) and nuts (D).
8. Attach sensor arm (A) to sensor (B) and secure with two screws (C).

9. Reconnect the wiring harness to plug (B) on the sensor.

10. Check the voltage range of the new sensor, and adjust if necessary. Refer to:
 - *Manually Checking Voltage Range – One-Sensor System, page 156*
 - *Adjusting Voltage Limits – One-Sensor System, page 162*

Replacing Float Indicator Cable

If the float indicator cable is damaged, replace it following these instructions. You will need to order one float indicator cable (MD #187658) from your MacDon Dealer.

NOTE:

Some parts have been removed for illustration purposes.

1. On the left front side of the float module, remove nut, washer, and bolt (A) securing the cable eye on the end of float indicator cable (B) to the float lever. Retain hardware for reinstallation.

2. Loosen jam nuts (C) on float indicator cable (B), and then disconnect the cable from cable stop support (D).

3. Repeat steps on right front side of the float module.
4. Loosen jam nuts (A) securing float indicator cable (B) to both sides of the float indicator bottom support, and then disconnect the cable from the support.

5. Float indicator cable (B) is routed around three pulleys (C) in the float indicator box. Remove the cable and discard.

NOTE:
Pulleys are hidden by other parts in the illustration. Their approximate location is identified.

6. Examine the new float indicator cable (MD #187658). You will see that it is divided into sections. The longer covered section (A) should be installed on the left side of the float module, the middle uncovered section (B) should be installed in the float indicator box, and the shorter covered section (C) should be installed on the right side of the float module. Installation instructions are provided in the following steps.

Figure 3.200: Float Indicator Cable

- **A - Longer Covered Cable Section**
 1788–1800 mm (70 3/8–70 7/8 in.)

- **B - Uncovered Middle Cable Section**

- **C - Shorter Covered Cable Section**
 1352–1364 mm (53 1/4–53 11/16 in.)
7. With the longer end of the new float indicator cable on the left, loop the middle section of the cable (the section in between the innermost boot seals and jam nuts) (A) around the three pulleys in the float indicator box as shown at right.

![Figure 3.201: Cable Routing around Pulleys](image1)

8. Secure the left side of the new float indicator cable (A) to the left side of the float indicator bottom support as follows:
 a. On float indicator cable (A), jam nuts and boot seals are positioned in four locations. Select the second location from the left.
 b. Remove boot seal (B), and slide cable (A) through the slot on the left side of the float indicator bottom support (C).
 c. Insert the threaded end of cable housing (D) into the hole in support (C), and then thread boot seal (B) onto the housing.
 d. Tighten jam nuts (E).

![Figure 3.202: Float Indicator Cable Secured to Left Side of the Float Indicator Bottom Support – Right Side is Opposite](image2)

9. Route the left end of the new float indicator cable (A) through hose holder (B), behind gussets (C) at the top of the inboard float spring, through hole (D) into the float module hydraulic/electrical enclosure, and then back through hole (E) in the bottom of the float module hydraulic/electrical enclosure to the front side of the float module.

![Figure 3.203: Cable Routing on Left Side of Float Module](image3)
10. Slide new float indicator cable (B) through the slot in the cable stop support (D), and secure in place with the cable boot seal and jam nuts (C).

11. Secure the cable eye on the end of float indicator cable (B) to the float lever with the nut, washer, and bolt (A) retained from Step 1, page 167. The washer goes between the cable eye and the bolt.

12. Torque nut to 8.6 Nm (76 lbf·in.).

13. Route the right end of the new float indicator cable (A) along top angle (B), behind gussets (C) at the top of the inboard float spring, and then down the side of the float module frame.

14. Slide new float indicator cable (A) through the slot in the cable stop support (D), and secure in place with the cable boot and jam nuts (E).

15. Secure the cable eye on the end of float indicator cable (A) to the float lever with the nut, washer, and bolt retained from Step 1, page 167. The washer goes between the cable eye and the bolt head. Refer to previous illustration.

16. Torque nut to 8.6 Nm (76 lbf·in.).

NOTE:
The cable eye must remain free to turn on the bolt.
17. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

3.8.3 Case IH 5088/6088/7088 Combines

Calibrating the Auto Header Height Control – Case IH 5088/6088/7088

For best performance of the auto header height control (AHHC) system, perform ground calibration with center-link set to D. When calibration is complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.

2. Set the float. Refer to 3.7.3 Header Float, page 94. Position fore-aft in mid span.

3. Start the combine engine, but do NOT engage separator or feeder house.

4. Locate HEADER CONTROL switch (A) on the right console, and set to HT (this is AHHC mode).
5. Press HEADER LOWER switch (A) on the control handle until the float module and header are fully lowered. You may need to hold the switch for several seconds.

6. Press HEADER RAISE switch (A) on the control handle. The header should stop at about the halfway point. Continue holding the HEADER RAISE switch, and the header will rise until the feeder house reaches its upper limit. The AHHC system is now calibrated.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Setting the Sensitivity of the Auto Header Height – Case IH 5088/6088/7088

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.
1. Use HEADER SETTINGS key (A) to display the HEADER SENSITIVITY CHANGE page as shown in Figure 3.211, page 173.

2. Use the UP key (B) or DOWN key (C) to adjust the highlighted item. The height sensitivity setting range is 0 (least sensitive) to 250 (most sensitive) in increments of 10.

 NOTE:
 Adjustments take effect immediately. Use the CANCEL key to return to the original settings.

3. Use HEADER SETTINGS key (A) to highlight the next changeable item.

4. Use ENTER key (D) to save changes and return to the monitor screen. If there are no changes, the screen will return to the monitor screen after 5 seconds.
3.8.4 Case IH 5130/6130/7130 and 5140/6140/7140 Mid-Range Combines

Setting up the Header on the Combine Display – Case IH 5130/6130/7130; 5140/6140/7140

1. On the main page of the combine display, select TOOLBOX (A).

2. Select HEAD 1 tab (A). The HEADER SETUP page displays.

 NOTE:
 To locate the HEAD 1 tab, you may need to scroll to the right using side arrows (C).

3. From the CUTTING TYPE menu (B), select PLATFORM.

5. From the HEADER PRESSURE FLOAT menu (B), select NOT INSTALLED.

6. If you are operating a D1 Series Draper Header, from the DRAPER GRAIN HEADER STYLE menu (C), select RIGID 2000 SERIES.
7. Locate the HHC HEIGHT SENSITIVITY field (A), and set as follows:
 - **If using a two-sensor system**: Set HHC HEIGHT SENSITIVITY to 250.
 - **If using a single-sensor system**: Set HHC HEIGHT SENSITIVITY to 180.

 NOTE:
 If hunting occurs during operation, decrease this setting by 20 points at a time until hunting no longer occurs.

8. Set HHC TILT SENSITIVITY (B) to 150. Increase or decrease as desired.

9. From the REEL DRIVE TYPE menu (A), select:
 - 4 if you are using a standard 19-tooth drive sprocket.
 - 5 if you are using an optional high-torque 14-tooth drive sprocket.
 - 6 if you are using an optional high-torque 10-tooth drive sprocket.

10. From the REEL HEIGHT SENSOR menu (A), select YES.
11. Locate AUTOTILT field (A).
 - **If using a two-sensor system:** Select YES in the AUTOTILT field.
 - **If using a single-sensor system:** Select NO in the AUTOTILT field.

![Figure 3.218: Case IH Combine Display](image)

Checking Voltage Range from Combine Cab – Case IH 5130/6130/7130; 5140/6140/7140

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

![Figure 3.219: Float Lock](image)

CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the auto header height control (AHHC) system. If the header is not on down stops, refer to **3.9 Leveling the Header, page 326** for instructions.
3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

4. Ensure header float is unlocked.

5. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

7. From the GROUP menu, select HEADER (B).
8. From the PARAMETER menu, select LEFT HEIGHT/TILT SENSOR (A).

9. The SETTINGS page updates to display the voltage in the VALUE/STATUS field (A). Lower the feeder house fully, and then raise it 305 mm (12 in.) off the ground to view the full range of voltage readings.

10. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits – One-Sensor System, page 162.
Calibrating Auto Header Height Control – Case IH 5130/6130/7130, 5140/6140/7140

For best performance of the auto header height control (AHHC), perform these procedures with center-link set to D. When setup and calibration are complete, adjust center-link back to desired header angle. Refer to 3.7.4 Header Angle, page 102.

NOTE:
This procedure applies to combines with a software version below 28.00. For instructions on calibrating the AHHC for combines with software version 28.00 or above, refer to Calibrating the Auto Header Height Control – Case IH Combines with Version 28.00 or Higher Software), page 193.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Ensure all header and float module electrical and hydraulic connections are made.
3. Start the combine engine, but do NOT engage separator or feeder house.
4. Locate HEADER CONTROL switch (A) on the right console, and set to HT (this is AHHC mode).
5. Hold the DOWN button for 10 seconds, or until the combine feeder house has been lowered all the way down (the feeder house will stop moving).
6. Push the RAISE button and hold it until the feeder house travels all the way up. It will stop 61 cm (2 ft.) above ground for 5 seconds, then it will resume lift. This is an indication that calibration is successful.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Figure 3.225: Right Console
To set preset cutting height, follow these steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

NOTE:
Indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 5, page 157. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Engage separator and header.
2. Manually raise or lower header to desired cutting height.
3. Press 1 on button (A). A yellow light next to the button will illuminate.
 NOTE:
 When setting presets, always set header position before setting reel position. If header and reel are set at the same time, the reel setting will not be saved.
4. Manually raise or lower reel to desired position.
5. Press 1 on button (A). A yellow light next to the button will illuminate.
6. Manually raise or lower header to a second desired cutting height.

7. Press 2 on button (A). A yellow light next to the button will illuminate.

8. Manually raise or lower reel to desired position.

9. Press 2 on button (A). A yellow light next to the button will illuminate.

Up and down arrows should now appear in the MANUAL HEIGHT box (A) on the RUN 1 page on the combine display. This indicates that the auto header height control (AHHC) is functioning.

10. To enable the presets, activate AHHC button (A) to place the header on the ground. To enable the first present, tap the button once. To enable the second preset, tap the button twice.

To lift the header to maximum working height, hold the SHIFT button on the back of the control handle while tapping AHHC button (A).
11. The maximum working height can be adjusted on the HEADER SETUP page on the combine display. Enter the desired height in the MAXIMUM WORKING HEIGHT field (A).

12. If you need to change the position of one of the presets, you can fine-tune this setting with button (A) on the combine console.
3.8.5 Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230 and 7240/8240/9240 Combines

Checking Voltage Range from the Combine Cab – Case IH 8010

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.
4. Ensure header float is unlocked.

5. Select DIAG (A) on the Universal display MAIN screen. The DIAG screen displays.

7. Select HDR HEIGHT/TILT (A). The SENSOR screen displays.
8. Select LEFT SEN (A). The exact voltage is displayed. Raise and lower the header to see the full range of voltage readings.

9. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits – One-Sensor System, page 162.
Setting Header Controls – Case IH 8010

The following procedure applies to Case IH 8010 combines without a shift button on the control handle.

The REEL FORE-AFT switches (A) also control header fore-aft tilt if header is equipped with the fore-aft tilt option. The switches can be configured to allow the Operator to swap between reel fore-aft and header fore-aft tilt.

To set the header controls, follow these steps:

1. To swap between reel fore-aft controls and header fore-aft tilt controls, go to the LAYOUT tab, select FORE/AFT CONTROL (A) from the legend, and place it on one of the operator-configurable screens (HARV1, HARV2, HARV3) or ADJUST under the RUN menu.

 NOTE:
 H F/A (B) is displayed on the status bar on the right of the screen when HEADER is selected with the FORE/AFT CONTROL.

2. If HEADER is selected with the FORE/AFT CONTROL, press the reel aft button on the control handle to tilt the header rearward, or press the reel fore button on the control handle to tilt the header forward.
Checking Voltage Range from the Combine Cab – Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the auto header height control (AHHC) system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

Figure 3.242: Float Lock

Figure 3.243: Float Indicator Box
4. Ensure header float is unlocked.
5. Select DIAGNOSTICS (A) on the MAIN page. The DIAGNOSTICS page opens.
6. Select SETTINGS. The SETTINGS page opens.

7. Select the GROUP arrow (A). The GROUP dialog box opens.

9. Select LEFT HEADER HEIGHT SEN (A), and then select the GRAPH button (B). The exact voltage is displayed at top of page. Raise and lower the header to see the full range of voltage readings.

10. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits – One-Sensor System, page 162.

Figure 3.247: Case IH Combine Display
Calibrating the Auto Header Height Control – Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.4 Header Angle, page 102.

NOTE:
This procedure applies to combines with a software version below 28.00. For instructions on calibrating the AHHC for combines with software version 28.00 or above, refer to Calibrating the Auto Header Height Control – Case IH Combines with Version 28.00 or Higher Software), page 193.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Ensure all header and float module electrical and hydraulic connections are made.
3. Select TOOLBOX (A) on the MAIN page.

4. Select HEADER tab (A).

 NOTE:
 To locate the HEADER tab, you may need to scroll to the right using side arrows (C).

5. Set appropriate HEADER STYLE (B).

Figure 3.248: Case IH Combine Display

Figure 3.249: Case IH Combine Display
6. Set AUTO REEL SPEED SLOPE.

7. Set HEADER PRESSURE FLOAT to NO if equipped, and ensure REEL DRIVE is HYDRAULIC.

8. Install REEL FORE-BACK (if applicable).

9. Locate the HHC HEIGHT SENSITIVITY field (A), and set as follows:
 - If using a two-sensor system: Set HHC HEIGHT SENSITIVITY to 250.
 - If using a single-sensor system: Set HHC HEIGHT SENSITIVITY to 180.

 NOTE:
 If hunting occurs during operation, decrease this setting by 20 points at a time until hunting no longer occurs.

10. Set the HHC TILT SENSITIVITY (B) to 150. Increase or decrease as desired.
11. Install FORE/AFT CONTROL and HDR FORE/AFT TILT (if applicable).

12. Press HEAD2 at bottom of page.

13. Ensure HEADER TYPE is DRAPER.

 NOTE:
 If recognition resistor is plugged in to header harness, you will not be able to change this.

14. Set cutting type to PLATFORM.

15. Set appropriate HEADER WIDTH and HEADER USAGE.

16. From the REEL HEIGHT SENSOR menu, select YES (A).
17. Locate the AUTOTILT field (A).

 - **If using a two-sensor system**: Select YES in the AUTOTILT field.

 - **If using a single-sensor system**: Select NO in the AUTOTILT field.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

Calibrating the Auto Header Height Control – Case IH Combines with Version 28.00 or Higher Software

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure header center-link is set to D.
2. Raise header on down stops and unlock float.
3. Select TOOLBOX (A) on the MAIN page.

Figure 3.256: Case IH Combine Display

Figure 3.257: Case IH Combine Display
4. Select the HEAD 1 tab (A).

NOTE:
To locate the HEAD 1 tab, you may need to scroll to the right using side arrows (B).

5. Locate the HEADER SUB TYPE field.

7. Select the HEAD 2 tab (A).
8. In the HEADER SENSORS field (B), select ENABLE.
9. In the HEADER PRESSURE FLOAT field (C), select NO.
10. In the HEIGHT/TILT RESPONSE field (D), select FAST.
11. In the AUTO HEIGHT OVERRIDE field (E), select YES.
12. Press the down arrow (F) to go to the next page.
13. Locate the HHC HEIGHT SENSITIVITY field (A), and set as follows:
 - **If using a single-sensor system:** Set HHC HEIGHT SENSITIVITY to 180.
 - **If using a two-sensor system:** Set HHC HEIGHT SENSITIVITY to 250.

NOTE:
If hunting occurs during operation, decrease this setting by 20 points at a time until hunting no longer occurs.

14. Set HHC TILT SENSITIVITY (B) to 150. Increase or decrease as desired.

15. From the REEL HEIGHT SENSOR menu, select YES (A).

16. Locate AUTOTILT field (A).
 - **If using a two-sensor system:** Select YES in the AUTOTILT field.
 - **If using a single-sensor system:** Select NO in the AUTOTILT field.
NOTE:
Icons (A) and (B) appear on the monitor only after engaging the separator and header, and then pressing HEADER RESUME button on the control panel.

17. Ensure AUTO HEIGHT icon (A) appears on the monitor and is displayed as shown at location (B). When the header is set for cutting on the ground, this verifies that the combine is correctly using the potentiometer on the header to sense ground pressure.

NOTE:
AUTO HEIGHT field (B) may appear on any of the RUN tabs and not necessarily on the RUN 1 tab.

18. Select CALIBRATION on the combine display, and press the right arrow navigation key to enter the information box.

19. Select HEADER (A), and press ENTER. The CALIBRATION dialog box opens.

NOTE:
You can use the up and down navigation keys to move between options.

20. Follow the calibration steps in the order in which they appear in the dialog box. As you proceed through the calibration process, the display will automatically update to show the next step.

NOTE:
Pressing the ESC key during any of the steps or letting the system sit idle for more than 3 minutes will cause the calibration procedure to stop.

NOTE:
Refer to your combine operator’s manual for an explanation of any error codes.

21. When all steps have been completed, CALIBRATION SUCCESSFUL message is displayed on the page. Exit the CALIBRATION menu by pressing the ENTER or ESC key.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Checking Reel Height Sensor Voltages – Case IH

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

2. Select SETTINGS tab (A). The SETTINGS page opens.

3. From the GROUP menu, select HEADER (B).

4. From the PARAMETER menu, select REEL VERTICAL POSITION (C).

5. Select GRAPH tab (A). The REEL VERTICAL POSITION graph displays.

6. Lower the reel to view the high voltage (B). The voltage should be 4.1–4.5 V.

7. Raise the reel to view the low voltage (C). The voltage should be 0.5–0.9 V.

8. If either voltage is out of range, refer to Checking and Adjusting Reel Height Sensor, page 118.
Setting Preset Cutting Height – Case IH 7010/8010, 7120/8120/9120, 7230/8230/9230, 7240/8240/9240

To set the preset cutting height, follow these steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
Indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 5, page 157. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Engage separator and header.
2. Manually raise or lower header to a desired cutting height.
3. Press SET #1 switch (A). The light (C) beside switch (A) will illuminate.
 NOTE:
 Use switch (E) for fine adjustments.
 NOTE:
 When setting presets, always set header position before setting reel position. If header and reel are set at the same time, the reel setting will not save.
4. Manually raise or lower reel to desired position.
5. Press SET #1 switch (A). The light (C) beside switch (A) will illuminate.
6. Manually raise or lower header to a second desired cutting height.
7. Press SET #2 switch (B). The light (D) beside switch (B) will illuminate.
8. Manually raise or lower reel to a second desired position.
9. Press SET #2 switch (B). The light (D) beside switch (B) will illuminate.
10. To swap between set points, press HEADER RESUME (A).

11. To raise header at headlands, press and hold SHIFT button (B) at the back of the control handle and press HEADER RESUME switch (C). To lower header, press HEADER RESUME switch (C) once to return to header preset height.

NOTE:
Pressing HEADER RAISE/LOWER switches (C) and (D) disengages AUTO HEIGHT mode. Press HEADER RESUME (A) to re-engage.

Figure 3.272: Case Combine Controls
3.8.6 Challenger and Massey Ferguson 6 and 7 Series Combines

Checking Voltage Range from the Combine Cab – Challenger and Massey Ferguson

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation, causing a malfunction of the auto header height control (AHHC) system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

3. Adjust cable take-up bracket (B) (if necessary) until the float indicator pointer (A) is on 0.
4. Go to the FIELD page on the combine monitor, and then press the diagnostics icon. The MISCELLANEOUS page displays.

5. Press VMM DIAGNOSTIC button (A). The VMM DIAGNOSTIC page displays.

6. Go to the ANALOG IN tab (A), and then select VMM MODULE 3 by pressing the text box below the four tabs. The voltage from the AHHC sensor is now displayed on page as HEADER HEIGHT RIGHT POT and HEADER HEIGHT LEFT POT. The readings may be slightly different.

7. Fully lower the combine feeder house (float module should be fully separated from the header).

 NOTE:
 You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

8. Read voltage.

9. Raise header so cutterbar is 150 mm (6 in.) off the ground.

10. Read voltage.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to *Adjusting Voltage Limits – One-Sensor System*, page 162 or *Adjusting Voltage Limits – Two-Sensor System*, page 163.
Engaging the Auto Header Height Control – Challenger and Massey Ferguson

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The following system components are required in order for the auto header height control (AHHC) to work:

- Main module (PCB board) and header driver module (PCB board) mounted in card box in fuse panel module (FP)
- Multi-function control handle operator inputs
- Operator inputs mounted in the control console module (CC) panel

NOTE:
In addition to the above components, the electrohydraulic header lift control valve is an integral part of the system.

Engage the AHHC as follows:

1. Scroll through the header control options on the combine display using the header control switch until the AHHC icon (A) is displayed in the first message box. The AHHC will adjust the header height in relation to the ground according to the height setting and sensitivity setting.

Figure 3.278: Challenger Combine Display
Calibrating the Auto Header Height Control – Challenger and Massey Ferguson

NOTE:
For best performance of the auto header height control (AHHC) system, perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If the header float is set too light, it can prevent AHHC calibration. You may need to set the float heavier for the calibration procedure so the header doesn’t separate from the float module.

1. Ensure center-link is set to D.

5. Read the warning message, and then press the green check mark button.

6. Follow the on-screen prompts to complete calibration.

 NOTE:
 The calibration procedure can be canceled at any time by pressing the cancel button in the bottom right corner of the screen. While the header calibration is running, the calibration can also be canceled by using the UP, DOWN, TILT RIGHT, or TILT LEFT buttons on the control handle.

 NOTE:
 If the combine does not have HEADER TILT installed or if it is inoperable, you may receive warnings during calibration. Press the green check mark if these warnings appear. This will not affect the AHHC calibration.

 NOTE:
 If the float was set heavier to complete the AHHC calibration procedure, adjust to the recommended operating float after the calibration is complete.
Adjusting the Header Height – Challenger and Massey Ferguson

Once the auto header height control (AHHC) is activated, press and release the HEADER LOWER button on the control handle. The AHHC will automatically lower the header to the selected height setting.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

You can adjust the selected AHHC height using HEIGHT ADJUSTMENT knob (A) on the control console. Turning the knob clockwise increases the selected height, and turning the knob counterclockwise decreases the selected height.

Figure 3.284: Height Adjustment Knob on the Combine Control Console
Adjusting the Header Raise/Lower Rate – Challenger and Massey Ferguson

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press Header icon (A) on the FIELD screen. The HEADER screen displays.

3. Go to the TABLE SETTINGS tab.

4. Press up arrow on MAX UP PWM to increase percentage number and increase raise speed. Press down arrow on MAX UP PWM to decrease percentage number and decrease raise speed.

5. Press up arrow on MAX DOWN PWM to increase percentage number and increase lower speed. Press down arrow on MAX DOWN PWM to decrease percentage number and decrease lower speed.
Setting the Sensitivity of the Auto Header Height Control – Challenger and Massey Ferguson

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press the HEADER icon on the FIELD screen. The HEADER screen appears.
2. Press the HEADER CONTROL button (A). The HEADER CONTROL screen appears. You can adjust sensitivity on this screen using the up and down arrows.
3. Adjust the sensitivity to the maximum setting.
4. Activate the AHHC, and press the HEADER LOWER button on the control handle.
5. Decrease the sensitivity until the feeder house remains steady and does not bounce up and down.

NOTE:
This is the maximum sensitivity and is only an initial setting. The final setting must be made in the field, as the system reaction will vary with changing surfaces and operating conditions.

NOTE:
If maximum sensitivity is not needed, a less sensitive setting will reduce the frequency of header height corrections and component wear. Partially opening the accumulator valve will cushion the action of the header lift cylinders and reduce header hunting.
3.8.7 CLAAS 500 Series Combines

Calibrating the Auto Header Height Control – CLAAS 500 Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.

2. Use the < key (A) or > key (B) to select AUTO HEADER, and press the OK key (C). The E5 screen displays whether the automatic header height is on or off.

3. Use the – key (A) or the + key (B) to turn the AHHC on, and press the OK key (C).

4. Engage the threshing mechanism and the header.
5. Use the < or > key to select CUTT. HEIGHT LIMITS, and press the combine controls OK key.

6. Follow the procedure displayed on the screen to program the upper and lower limits of the header into the CEBIS.

7. Use the < or > key to select SENSITIVITY CAC, and press the combine controls OK key.

 NOTE:
 Setting the sensitivity of the AHHC system affects the reaction speed of the AHHC on the header.

8. Use the – key or the + key to change the setting of the reaction speed, and press the combine controls OK key.

9. Use line (A) or value (B) to determine the sensitivity setting.

 NOTE:
 The setting can be adjusted from 0–100%. When sensitivity is adjusted to 0%, the signals from the sensing bands have no effect on the automatic cutting height adjustment. When sensitivity is adjusted to 100%, the signals from the sensing bands have maximum effect on the automatic cutting height adjustment. The recommended starting point is 50%.

 NOTE:
 If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting Cutting Height – CLAAS 500 Series

Cutting heights can be programmed into the preset cutting height and auto contour systems. Use the preset cutting height system for cutting heights above 150 mm (6 in.), and use the auto contour system for cutting heights below 150 mm (6 in.).

Setting Preset Cutting Height – CLAAS 500 Series

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Start the engine.
2. Activate the machine enable switch.
3. Engage the threshing mechanism.
4. Engage the header.
5. Briefly press button (A) in order to activate the auto contour system, or briefly press button (B) in order to activate the preset cutting height system.

NOTE:
Button (A) is used only with auto header height control (AHHC) function. Button (B) is used only with the return to cut function.

6. Use the < key (C) or > key (D) to select the CUTTING HEIGHT screen, and press the OK key (E).
7. Use the – key (A) or the + key (B) to set the desired cutting height. An arrow indicates the selected cutting height on the scale.
8. Briefly press button (A) or button (B) in order to select the set point.

9. Repeat Step 7, page 210 for the set point.

Setting Cutting Height Manually – CLAAS 500 Series

CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use button (A) to raise the header or button (B) to lower the header to the desired cutting height.

2. Press and hold button (C) for 3 seconds to store the cutting height into the CEBIS (an alarm will sound when the new setting has been stored).

3. Program a second set point, if desired, by using button (A) to raise the header or button (B) to lower the header to the desired cutting height, and briefly press button (C) to store the second set point into the CEBIS (an alarm will sound when the new setting has been stored).

NOTE:
For above-the-ground cutting, repeat Step 1, page 211, and use button (D) instead of button (C) while repeating Step 2, page 211.
Setting the Sensitivity of the Auto Header Height Control – CLAAS 500 Series

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
The upper and lower limits of the header must be programmed into the CEBIS before adjusting the sensitivity of the AHHC system. The setting can be adjusted from 0–100%. When sensitivity is adjusted to 0%, the signals from the sensing bands have no effect on the automatic cutting height adjustment. When sensitivity is adjusted to 100%, the signals from the sensing bands have maximum effect on the automatic cutting height adjustment. The recommended starting point is 50%.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use the < key (C) or the > key (D) to select SENSITIVITY CAC, and press the OK key (E).
2. Use the – key (A) or the + (B) key to change the reaction speed setting, and press the OK key (E).
3. Use line (A) or value (B) to determine the sensitivity setting.
Figure 3.301: Flow Chart for Setting the Sensitivity of the Float Optimizer
Adjusting Auto Reel Speed – CLAAS 500 Series

The preset reel speed can be set when the automatic header functions are activated.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use the < or > key to select REEL WINDOW. Window E15 will display the current advance or retard speed of the reel in relation to the ground speed.

2. Press the OK key (C) to open the REEL SPEED window.

3. Use the – key (A) or the + key (B) to set the reel speed in relation to the current ground speed. Window E15 will display the selected reel speed.

4. Manually adjust the reel speed by rotating the rotary switch to the reel position (A), and then use the – or + key to set the reel speed.
5. Press and hold button (A) or button (B) for 3 seconds to store the setting into the CEBIS (an alarm will sound when the new setting has been stored).

NOTE:
Whenever button (A) or button (B) is pressed for 3 seconds, the current positions for reel speed and cutting height are stored.

6. Use the < or > key to select the REEL WINDOW. Window E15 will display the current advance or retard speed of the reel in relation to the ground speed.
7. Press the OK key (E), and use the < key (C) or the > key (D) to select the REEL FORE AND AFT window.

8. Use the – key (A) or the + key (B) to set the reel fore-aft position.

 NOTE:
 Control handle button (A) or button (B) (as shown in Figure 3.309, page 216) can also be used to set the reel fore-aft position.

9. Press and hold button (A) or button (B) for 3 seconds to store the setting into the CEBIS (an alarm will sound when the new setting has been stored).

 NOTE:
 Whenever button (A) or button (B) is pressed for 3 seconds, the current positions for reel speed and cutting height are stored.

3.8.8 CLAAS 600 and 700 Series Combines

Calibrating the Auto Header Height Control – CLAAS 600 and 700 Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent AHHC calibration. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Ensure that the header float is unlocked.
3. Use control knob (A) to highlight the AUTO CONTOUR icon (B) and press control knob (A) to select it.

4. Use control knob (A) to highlight the icon that resembles a header with up and down arrows (not shown), and press control knob (A) to select it. The highlighted header icon (B) will be displayed on the screen.

5. Use control knob (A) to highlight the icon that resembles a header with up and down arrows (B), and press control knob (A) to select it.
6. Use control knob (A) to highlight the icon that resembles a screwdriver (B).

7. Engage the combine separator and feeder house.

8. Press control knob (A) and a progress bar will appear.

9. Fully raise the feeder house. The progress bar (A) will advance to 25%.

10. Fully lower the feeder house. The progress bar (A) will advance to 50%.

11. Fully raise the feeder house. The progress bar (A) will advance to 75%.

12. Fully lower the feeder house. The progress bar (A) will advance to 100%.

13. Ensure the progress bar (A) displays 100%. The calibration procedure is now complete.

NOTE:
If the voltage is not within the range of 0.5–4.5 V at any time throughout the calibration process, the monitor will indicate learning procedure not concluded.

NOTE:
If float was set heavier to complete ground calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting Cutting Height – CLAAS 600 and 700 Series

CAUTION

Check to be sure all bystanders have cleared the area.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Lower the header to desired cutting height or ground pressure setting. The float indicator box should be set to 1.5.

2. Hold the left side of the header raise and lower switch (A) until you hear a ping.

NOTE:

You can set two different cutting heights.

Setting the Sensitivity of the Auto Header Height Control – CLAAS 600 and 700 Series

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use control knob (A) to highlight the HEADER/REEL icon (B), and press control knob (A) to select it. The HEADER/REEL dialog box opens.

2. Select HEADER icon.

4. Select SENSITIVITY CAC (B) from the list.

5. Select the SENSITIVITY CAC icon (A).

 NOTE:
 To set the sensitivity, you will have to change the CUTTING HEIGHT ADJUSTMENT (B) from the 0 default. The settings from 1–50 provide a faster response, whereas the settings from -1 to -50 provide a slower response. For best results, make adjustments in increments of five.

6. Increase the CUTTING HEIGHT ADJUSTMENT setting if the reaction time between the header and the float module is too slow while cutting on the ground, and decrease the CUTTING HEIGHT ADJUSTMENT setting if the reaction time between the header and the float module is too fast.

7. Increase the sensitivity if the header is lowered too slowly, and decrease the sensitivity if the header hits the ground too hard or is lowered too quickly.
Adjusting Auto Reel Speed – CLAAS 600 and 700 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Use control knob (A) to highlight the HEADER/REEL icon (B), and press control knob (A) to select it. The HEADER/REEL dialog box opens.

2. Use control knob (A) to select REEL SPEED (B), and adjust the reel speed (if you are NOT using Auto Reel Speed). A graph displays in the dialog box.

3. Select ACTUAL VALUE (A) from the AUTO REEL SPEED dialog box (if you are using Auto Reel Speed). The ACTUAL VALUE dialog box indicates the auto reel speed.
4. Use control knob (A) to raise or lower the reel speed.

NOTE:
This option is only available at full throttle.

Calibrating Reel Height Sensor – CLAAS 600 and 700 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To calibrate reel height, follow these steps:

1. Place header off the ground 15–25 cm (6–10 in.).
2. Use control knob (A) to highlight the FRONT ATTACHMENT icon (B) and press control knob (A) to select it.
3. Use control knob (A) to highlight the REEL icon (B), and press control knob (A) to select it.

4. Highlight the REEL HEIGHT icon (A), and press control knob to select it.

5. Select LEARNING END STOPS (B) from the list.

6. Use control knob (A) to highlight the screwdriver icon (B).
7. Press control knob and a progress bar chart (A) will appear.
8. Follow the prompts on the screen to raise the reel.
9. Follow the prompts on the screen to lower the reel.

10. Ensure the progress bar chart displays 100% (A). The calibration procedure is now complete.
Adjusting Auto Reel Height – CLAAS 600 and 700 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To adjust the auto reel height, follow these steps:

1. Use HOTKEY rotary dial (A) to select REEL icon (B).

2. Use control knob (A) to select AUTO REEL HEIGHT icon (B) at the top of the page.

 NOTE:
 The AUTO REEL HEIGHT icon (C) at the center of the page should be highlighted black. If it is not black, either the end stops have not been set or the AHHC is not active. For instructions, refer to *Calibrating Reel Height Sensor – CLAAS 600 and 700 Series, page 222*.

3. Adjust the auto reel height position for the current AHHC position using outer scroll knob (A). To lower the preset reel position, turn the scroll knob counterclockwise; to raise the preset reel position, turn the scroll knob clockwise. The display will update the current setting (B).

 NOTE:
 If the AUTO REEL HEIGHT icon in the center of the page is not black, an AHHC position is not currently active.
3.8.9 Gleaner R65/R66/R75/R76 and S Series Combines

Checking Voltage Range from the Combine Cab – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

3. Ensure pointer (A) on the float indicator box is on 0. If necessary, adjust the cable take-up bracket (B) until pointer is on 0.
4. Ensure header float is unlocked.

5. Press and hold button (A) on the heads-up display for 3 seconds to enter diagnostic mode.

6. Scroll down using button (B) until LEFT is displayed on the LCD screen.

7. Press the OK button (C). The number indicated on the LCD screen is the voltage reading from the sensor of the AHHC. Raise and lower the header to see the full range of voltage readings.
Engaging the Auto Header Height Control – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The following system components are required in order for the auto header height control (AHHC) to work:

- Main module and header driver module mounted in card box in fuse panel (FP) module.
- Multi-function control handle operator inputs.
- Operator inputs mounted in the control console (CC) module panel.

NOTE:
In addition to the above components, the electrohydraulic header lift control valve is an integral part of the system.

Figure 3.336: Combine Auto Header Height Controls

1. Press AUTO MODE button (A) until AHHC LED light (B) begins flashing. If the RTC light is flashing, press AUTO MODE button (A) again until it switches to AHHC.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.
2. Briefly press button (A) on the control handle. The AHHC light should change from flashing to solid. The header also should drop toward the ground. The AHHC is now engaged and can be adjusted for height and sensitivity.

3. Use controls to adjust height and sensitivity to changing ground conditions such as shallow gullies and field drainage trenches.
Calibrating the Auto Header Height Control – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

Calibration should be done on flat, level ground without the header clutches engaged. Header height and header tilt must not be in auto or standby modes. The engine rpm must be above 2000 rpm. The header tilt option on 2004 and earlier model combines does not work with MacDon headers. This system will have to be removed and disabled in order to calibrate the auto header height control (AHHC). Refer to combine manual for instructions.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

Figure 3.338: Combine Auto Header Height Controls

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.4 Header Angle, page 102.

1. Ensure center-link is set to D.
2. Press AUTO MODE button (A) until the AHHC light (B) is illuminated.
3. Press and hold CAL1 button (C) until you see the following lights flash: raise header (D), lower header (E), tilt auto mode (F), and AHHC (B).
4. Fully lower the header, and continue to hold the HEADER LOWER button for 5–8 seconds to ensure float module has separated from header.
5. Press CAL2 button (G) until lower header light (E) stops flashing, and release it when the raise header light (D) begins flashing.

6. Raise header to its maximum height (ensure the header is resting on the down-stop pads).

7. Press CAL2 button (G) until the raise header light (D) turns off.

 NOTE:
 The following steps are applicable only to 2005 and newer combines with the Smartrac feeder house.

8. Wait for the HEADER TILT LEFT light (not shown) to start flashing, and then tilt header to the maximum left position.

9. Press CAL2 button (G) until the HEADER TILT LEFT light (not shown) stops flashing, and release button when the HEADER TILT RIGHT light (not shown) begins flashing.

10. Tilt the header to the maximum right position.

11. Press CAL2 button (G) until all of the following lights flash: raise header (D), lower header (E), height auto mode (A), right header and left header (not shown), and tilt auto mode (F).

12. Center the header.

13. Press CAL1 button (C) to exit calibration and save all values to the memory. All lights should stop flashing.

 NOTE:
 If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Turning off the Accumulator – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

The accumulator will affect the combine’s reaction time and greatly inhibit the auto header height control’s performance.

Refer to the combine operator’s manual for proper procedure when turning accumulator off and on. For best performance, turn the feeder house accumulator off.

NOTE:
The accumulator is located in front of the front left axle beam.

Adjusting the Header Raise/Lower Rate – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The auto header height control (AHHC) system’s stability is affected by hydraulic flow rates. Ensure that the header raise (A) and header lower (B) adjustable restrictors in the hydraulic manifold are adjusted so that it takes approximately 6 seconds to raise the header from ground level to maximum height (hydraulic cylinders fully extended), and approximately 6 seconds to lower the header from maximum height to ground level.

If there is too much header movement (for example, hunting) when the header is on the ground, adjust the lower rate to a slower rate of drop: 7 or 8 seconds.

NOTE:
Make this adjustment with the hydraulic system at normal operating temperature (54.4°C [130°F]) and the engine running at full throttle.
Adjusting Ground Pressure – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
Indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 5, page 157. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Ensure the header is in auto header height control (AHHC) mode. This is indicated by the AUTO MODE LED light (A) displaying a continuous, solid light.

2. The header will lower to the height (ground pressure) corresponding to the position selected with the height control knob (B). Turn the knob counterclockwise for minimum ground pressure, and clockwise for maximum ground pressure.
OPERATION

Adjusting the Sensitivity of the Auto Header Height Control – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

Figure 3.343: Auto Header Height Control Console

The SENSITIVITY ADJUSTMENT dial (A) controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house.

When the SENSITIVITY ADJUSTMENT dial (A) is set to maximum (turned completely clockwise), only small changes in ground height are needed to cause the feeder house to raise or lower. In this position, the cutterbar moves up and down approximately 19 mm (3/4 in.) before the control module signals the hydraulic control valve to raise or lower the header frame.

When the SENSITIVITY ADJUSTMENT dial (A) is set to minimum (turned completely counterclockwise), large changes in ground height are needed to cause the feeder house to raise or lower. In this position, the cutterbar moves up and down approximately 51 mm (2 in.) before the control module signals the hydraulic control valve to raise or lower the header frame.

The HEADER SENSE LINE input also changes the range of the sensitivity. When connected to a draper, the counterclockwise position (least sensitive) allows for approximately 102 mm (4 in.) of vertical travel before correction is made.
Troubleshooting Alarms and Diagnostic Faults – Gleaner R65/R66/R75/R76 and Pre-2016 S Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

Display type:
Displayed on tachometer (A) as XX or XXX.

![Figure 3.344: Tachometer](image)

Figure 3.345: Combine Heads-Up Display

NOTE:
Displayed on LCD (A) as XX in. or XXX cm.
OPERATION

Alarm conditions:

If an error message is received from the fuse panel, an audible alarm sounds. The alarm buzzer sounds five times every 10 seconds. The LCD on the electronic instrument panel (EIP) indicates the header system in error as HDR CTRL followed by HGT ERR for height, and HDR CTRL followed by TILT ERR for tilt. The header height LED flashes yellow two times every second.

When an alarm condition occurs, a green LED flashes on and off (green, yellow, or red depending on the input). In addition, a message is displayed on the LCD to identify the nature of the alarm. For example, HYD TEMP, OPEN, SHRT will be flashed alternately.

Diagnostic fault failures:

Refer to Figure 3.345, page 235.

Pressing the header height switch (B) for a minimum of 5 seconds will put the EIP in header diagnostic mode. The LCD (shown on previous screen) will display the message HDR DIAG when the EIP has entered header diagnostic mode.

In this mode, after 3 seconds, header fault parameter labels are displayed on the EIP LCD. All the information displayed is read-only.

The OK (C) and CLEAR (D) buttons allow you to scroll through the list of parameters. If there are no active fault codes, the EIP LCD will display NO CODE.

When a parameter is displayed, its label is displayed for 3 seconds, after which its value is automatically displayed.

Pressing the OK button (C) while the value is displayed will advance to the next parameter and display its label.

When a parameter label is displayed and the OK button (C) is pressed before 3 seconds, the parameter’s value will be displayed.

Pressing AREA (E) will cycle through the options. When LEFT is displayed on the LCD, press the OK button (C), and the auto header height control (AHHC) voltage will be shown on the display.

Press the DIST button (F) to cycle back through the table.

Press the CLEAR button (D) to exit header diagnostics and return to normal mode.

Refer to 3.8.1 Sensor Operation, page 154.
3.8.10 Gleaner S9 Series Combines

Setting up the Header – Gleaner S9 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The AGCO Tyton terminal (A) is used to set up and manage a MacDon draper header on a Gleaner S9 combine. Use the touch screen display to select the desired item on the screen.

1. On the top right quadrant of the home screen, touch COMBINE icon (A). The COMBINE MAIN MENU opens.

Figure 3.346: Gleaner S9
A - Tyton Terminal B - Control Handle
C - Throttle D - Header Control Cluster

Figure 3.347: Combine Icon on Home Page
2. On the COMBINE MAIN MENU, touch HEADER SETTINGS (A). The HEADER SETTINGS page opens.

Figure 3.348: Header Settings in Combine Main Menu
3. Touch HEADER CONFIGURATION field (A). A dialog box showing predefined headers opens.
 - If your MacDon header is already set up, it appears on the header list. Touch the MacDon header title (B) to highlight the selection in blue, and then touch the green check mark (E) to continue.
 - If only the default header (D) is shown, touch the ABC button (C), and use the on-screen keyboard to enter the MacDon header information. When complete, select one of the following options to return to the HEADER SETTINGS page:
 - The green check mark (E) saves the settings
 - The garbage can icon (F) deletes the highlighted header from the list
 - The red X (G) cancels the change(s)
4. To specify the type of header installed on the machine, touch the HEADER TYPE field (A).

5. A list of predefined header types appears.
 - For MacDon D1 Series Draper and FD1 Series FlexDraper® headers, touch POWER FLOW (A)
 - Touch the green check mark (B) to save the selection and continue

6. Make sure that the HEADER HAS REEL ATTACHED check box (A) is checked.
7. Touch the REEL DIAMETER field (A) and a numeric keypad displays. Enter 40 for a MacDon reel.

8. Touch the REEL PPR (Pulses Per Revolution) field (B) and enter 30 as the value for your MacDon header.

NOTE:

PPR is determined by the number of teeth on the reel speed sprocket.

9. Touch the green check mark (B) at the bottom of the numeric keypad (A) when complete, or the red X to cancel.

10. When complete, touch the green check mark (A) at the bottom of the HEADER SETTINGS page.
Setting Minimum Reel Speed and Calibrating Reel – Gleaner S9 Series

CAUTION

Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. From the COMBINE MAIN MENU, touch REEL SETTINGS (A) to open the REEL SETTINGS page.

2. To set minimum reel speed, touch the SPEED MINIMUM FIELD (B). The on-screen keyboard displays. Enter the desired value. Touch the green check mark to accept the new value, or the red X to cancel. The reel speed is shown in mph and rpm.

 NOTE:
 At the bottom of the REEL SETTINGS page, the reel diameter and reel pulses per revolution (PPR) are displayed. These values have already been set in the HEADER SETTINGS page.

3. Reel speed is calibrated on the REEL SETTINGS page by touching the CALIBRATE button (A) in the top right of the page.
The CALIBRATION WIZARD opens and displays a hazard warning.

4. Make sure to meet all the conditions listed in the CALIBRATION WIZARD warning. Press the green check mark (A) to accept and start reel calibration. Pressing the red X (B) will cancel the calibration procedure.

5. A message appears in the CALIBRATION WIZARD stating that reel calibration has started. The reel will begin turning slowly and increase to high speed. A progress bar is provided. If necessary, touch the red X to cancel. Otherwise, wait for the message that reel calibration has completed successfully. Touch the green check mark to save the calibrated settings.
Setting up Automatic Header Controls – Gleaner S9 Series

Automatic header functions are configured on the HEADER SETTINGS page.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. **Automatic Control Functions:** There are toggle (OFF/ON) switches on the HEADER SETTINGS page for the automatic control functions. For MacDon headers, ensure the following two functions are enabled as shown:
 - RTC (return to cut) (A)
 - AHHC (automatic header height control) (B)

 All other switches are disabled (not highlighted).

2. The **Sensitivity** setting (C) controls how responsive a control (RTC or AHHC) is to a given change in sensor feedback. The setting fields are located directly below the toggle switches. To enter a new sensitivity setting, touch the setting field below the specific toggle switch, and enter the new value in the on-screen keyboard.
 - Increase sensitivity if the combine does not change the feeder position quickly enough when in Auto Mode.
 - Decrease sensitivity if the combine hunts for a position in Auto Mode.

 NOTE:
 Recommended sensitivity starting points for MacDon headers are:
 - 50 for RTC (A)
 - 60 for AHHC (B)

3. **Header Speed:** The HEADER CONTROL SPEED area (A) on the HEADER SETTINGS page is used to adjust the following speeds:
 - Tilt left and right is the lateral tilt of the combine faceplate
 - Header up and down (slow and fast speeds) is a two-stage button with slow speed on the first detent and fast on the second

 NOTE:
 Recommended header control speed starting points
 - Slow: 45 up / 40 down
 - Fast: 100 up / 100 down
4. **Header Offsets (A):** Offset distances are important for yield mapping. There are two adjustable dimensions on the HEADER SETTINGS page:

- **Header Lateral Offset:** the distance between the centerline of the header and the centerline of the machine. This should be set at 0 for a MacDon header.
- **Feeder House to Cutter:** the distance from the machine interface to the cutterbar. This should be set at 68 for a MacDon header.

![Header Offset Settings](image)

Figure 3.363: Header Offset Settings

Figure 3.364: MacDon Header Settings Inputs
Calibrating the Header – Gleaner S9 Series

The auto header control functions are configured on the HEADER SETTINGS page.

⚠️ CAUTION

Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. On the COMBINE MAIN MENU, touch HEADER SETTINGS (A).

2. Touch CALIBRATE (A) at the bottom right of the page. The HEADER CALIBRATION page displays.
The right side of the page shows the Header Calibration information (A). Results are shown for a variety of sensors (B):

- Left and right header sensor (voltage) (values will be the same with MacDon headers)
- Header height sensor (mA)
- Tilt position sensor (mA)

The following valid modes are shown with check marks (C) below the sensor values (B):

- Return to cut
- Automatic header height control

⚠️ CAUTION

Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.

3. On the control handle, touch the HEADER DOWN button (A). Sensor values start changing on the HEADER CALIBRATION page as the header lowers.

NOTE:
The header needs to be lowered all the way, and then raised off the ground. The range should be between 0.5 and 4.5 V. If the value is not in that range, the sensor needs to be adjusted. Refer to Adjusting Voltage Limits – One-Sensor System, page 162 or Adjusting Voltage Limits – Two-Sensor System, page 163.

4. When the sensor values are stable, touch the CALIBRATE icon (A).
5. The hazard warning for HEADER CALIBRATION appears. Make sure that all conditions are met.

6. Touch the green check mark at the bottom of the page to start the CALIBRATION WIZARD.

A progress bar is provided and the calibration can be stopped at any time by touching the red X. The header moves automatically and erratically during this process.
7. When the calibration is complete, a message displays, and summary information (A) is shown. Green check marks confirm the functions have been calibrated (B). Touch the bottom green check mark (C) to save.

NOTE:
Touch the CALIBRATION icon (A) on the COMBINE MAIN MENU page to display the CALIBRATION MENU where you can choose from a variety of calibrations including header and reel calibration.

Figure 3.372: Completed Calibration Page

Figure 3.373: Direct Calibration Menu
Operating the Header – Gleaner S9 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The following controls are used to operate the auto header height control (AHHC) functions:

- Tyton terminal (A)
- Control handle (B)
- Throttle (C)
- Header control cluster (D)

Use the combine operator’s manual to familiarize yourself with the controls.

1. With the header running, set lateral tilt switch (A) to MANUAL.
2. Engage the AHHC by pressing the switch (B) upward to the I position.
3. Press the AHHC control switch (A) on the control handle to engage the AHHC. The header moves to the current setpoint position.
4. Use the HEADER HEIGHT SETPOINT control dial (A) as necessary to fine-tune the position.

Reviewing Header In-Field Settings

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. To view header group settings, touch HEADER icon (A) on the right side of the home page.

2. The following information is displayed:
 - CURRENT POSITION of the header (B).
 - SETPOINT cut-off position (C) (indicated by red line)
 - HEADER symbol (D) – touch to adjust the setpoint cut-off position using the scroll wheel on the right side of the Tyton terminal.
 - CUT HEIGHT for the AHHC (E) – fine-tune with the header height setpoint control dial on the header control cluster.
 - HEADER WORKING WIDTH (F)
 - HEADER PITCH (G)

3. Touching a field opens the on-screen keyboard so that values can be adjusted. Enter the new value and touch the green check mark when complete.

NOTE:
The scroll wheel (A) is located on the right side of the Tyton terminal.
NOTE:
HEADER HEIGHT SETPOINT control dial (A) is on the header control cluster.

3.8.11 John Deere 60 Series Combines

Checking Voltage Range from the Combine Cab – John Deere 60 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.
3. Adjust cable take-up bracket (B) (if necessary) until the float indicator pointer (A) is on 0.

4. Press DIAGNOSTIC button (D) on the monitor—DIA appears on the monitor.

5. Press UP button (A) until EO1 appears on the monitor—this is the header adjustments.

6. Press ENTER button (C).

7. Press the UP (A) or DOWN button (B) until 24 is displayed on the top portion of the monitor—this is the voltage reading for the sensor.

8. Ensure header float is unlocked.

9. Start the combine, and fully lower feeder house to the ground.

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.
10. Check the sensor reading on the monitor. The reading should be above 0.5 V.

11. Raise the header so it is just off the ground. The reading on the monitor should read below 4.5 V.

12. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, refer to Adjusting Voltage Limits – One-Sensor System, page 162.

Calibrating the Auto Header Height Control – John Deere 60 Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Rest header on down stops, and unlock float.
3. Start the combine.
4. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
5. Press the CAL button (B). DIA-CAL appears on the monitor.

Figure 3.384: John Deere Combine Display
6. Press the UP or DOWN buttons until HDR appears on the monitor.
7. Press the ENTER button. HDR H-DN appears on the monitor.
8. Fully lower feeder house to the ground.

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

9. Press the CAL button (A) to save the calibration of the header. HDR H-UP appears on the monitor.
10. Raise the header 3 feet off the ground and press the CAL button (A). EOC appears on the monitor.
11. Press the ENTER button (B) to save the calibration of the header. Your AHHC is now calibrated.

NOTE:
If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to *Checking Voltage Range from the Combine Cab – John Deere 60 Series, page 252.*

NOTE:
After the calibration is complete, adjust combine operation settings to ensure proper field operation.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Turning the Accumulator Off – John Deere 60 Series

The accumulator is a hydraulic device that cushions the shock of hydraulic fluid when installing a heavy header onto the combine.

NOTE:
The accumulator should not be used when operating the combine with a D1 and FM100 attached.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
2. Press the UP button (B) until EO1 appears on the monitor, and press ENTER (D). This is the header adjustment.
3. Press the UP (B) or DOWN (C) button until 132 is displayed on the top portion of the monitor. This is the reading for the accumulator.
4. Press ENTER (D) to select 132 as the accumulator reading (this will allow you to change the display to a three-digit number so it has a 0 in it, for example, x0x).
5. Press the UP (B) or DOWN (C) button until the desired number is displayed, and press the CAL button (E).
6. Press ENTER (D) to save the changes. The accumulator is now deactivated.

Setting the Sensing Grain Header Height to 50 – John Deere 60 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To set the sensing grain header height, follow these steps:

1. Press DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
2. Press the UP button (B) until EO1 appears on the monitor, and press ENTER (D). This is the header adjustment.
3. Press the UP (B) or DOWN (C) button until 128 is displayed on the top portion of the monitor. This is the reading for the sensor.
4. Press ENTER (D) to select 128 as the sensor reading (this will allow you to change the display to a three-digit number so it has a 50 in it).
5. Press the UP (B) or DOWN (C) button until the desired number is displayed, and press the CAL button (E).
6. Press ENTER (D) to save the changes. The height is now set.

NOTE:
Do **NOT** use the active header float function (A) in combination with the MacDon auto header height control (AHHC)—the two systems will counteract one another. The header symbol (B) on the display should **NOT** have a wavy line under it and should appear exactly as shown on the Active Header Control Display in Figure 3.389, page 257.
Setting the Sensitivity of the Auto Header Height Control – John Deere 60 Series

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press the DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.
2. Press the UP button (B) until EO1 appears on the monitor, and press ENTER (D). This is the header adjustment.
3. Press the UP (B) or DOWN (C) button until 112 is displayed on the monitor. This is your sensitivity setting.

 NOTE:
 The lower the reading, the higher the sensitivity. Ideal operating range is typically between 50 and 80.

4. Press ENTER (D) to select 112 as the sensitivity setting (this will allow you to change the first digit of the number sequence).
5. Press UP (B) or DOWN (C) until the desired number is displayed, then press the CAL button (E). This will bring you to the second digit. Repeat this procedure until the desired setting is achieved.
6. Press ENTER (D) to save changes.

 NOTE:
 The numbers shown on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.
Adjusting the Threshold for the Drop Rate Valve – John Deere 60 Series

This procedure explains how to adjust the point at which the restrictor valve opens allowing full flow to the lift cylinders.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
The numbers shown on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.

1. Press DIAGNOSTIC button (A) on the monitor. DIA appears on the monitor.

2. Press the UP button (B) until EO1 appears on the monitor and press ENTER (C). This is the header adjustment.

3. Press the UP (B) or DOWN button until 114 is displayed on the top portion of the monitor. This is the setting that adjusts when the fast drop rate starts with respect to the dead band.

NOTE:
The default setting is 100. Ideal operating range is typically between 60 and 85.

4. Press ENTER (C) to select 114 as the fast drop rate (this will allow you to change the first digit of the number sequence).

5. Press UP (A) or DOWN (B) until the desired number is displayed, then press the CAL button (C). This will bring you to the second digit. Repeat this procedure until the desired setting is achieved.

6. Press ENTER (D) to save changes.
3.8.12 John Deere 70 Series Combines

Checking Voltage Range from the Combine Cab – John Deere 70 Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

 Figure 3.393: Float Lock

3. Adjust cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.

 Figure 3.394: Float Indicator Box
4. Press the HOME PAGE button (A) on the main screen of the monitor.

5. Ensure the three icons (A) shown in the illustration at right appear on the monitor.

6. Use scroll knob (A) to highlight the middle icon (the green i) and press the check mark button (B) to select it. This will bring up the Message Center.
7. Use the scroll knob to highlight DIAGNOSTIC ADDRESSES (A) from the right column and select it by pressing the check mark button.

8. Use the scroll knob to highlight the drop-down box (B) and press the check mark button to select it.

9. Use the scroll knob to highlight LC 1.001 VEHICLE (A) and press the check mark button to select it.

10. Use the scroll knob to highlight the down arrow (A) and press the check mark button to scroll through the list until 029 DATA (B) is displayed and voltage reading (C) appears on the monitor.
11. Ensure header float is unlocked.

12. Start the combine and fully lower feeder house to the ground.

NOTE:
You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

13. Check the sensor reading on the monitor.

14. Raise the header so it is just off the ground and recheck the sensor reading.

15. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, refer to *Adjusting Voltage Limits – One-Sensor System, page 162.*

Calibrating Feeder House Speed – John Deere 70 Series
The feeder house speed must be calibrated before you calibrate the auto header height control (AHHC) system. Refer to the combine operator’s manual for instructions.

Calibrating the Auto Header Height Control – John Deere 70 Series
For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to **D**. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to *3.7.4 Header Angle, page 102.*

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**
Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to **D**.

2. Rest header on down stops and unlock float.

3. Start the combine.

4. Press the button located fourth from the left along the top of the monitor (A) to select the icon that resembles an open book with a wrench on it (B).

5. Press the top button (A) a second time to enter diagnostics and calibration mode.

Figure 3.401: John Deere Combine Display
6. Select HEADER in box (A) by scrolling down to the box using the scroll knob, and then pressing the check mark button (knob and button are shown in Figure 3.403, page 264).

7. Scroll down to the lower right icon that resembles an arrow in a diamond (B) and press the check mark button to select it.

8. Follow the steps listed on the monitor to perform the calibration.

NOTE:
If an error code appears on screen, the sensor is not in the correct working range. Refer to *Checking Voltage Range from the Combine Cab – John Deere S and T Series, page 267* to check and adjust the range.

NOTE:
If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting the Sensitivity of the Auto Header Height Control – John Deere 70 Series

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press button (A) twice and the current sensitivity setting will appear on the monitor (the lower the reading, the lower the sensitivity).

2. Use scroll knob (B) to adjust the sensitivity setting. The adjustment will be saved automatically.

NOTE:
If the screen remains idle for a short period of time, it will automatically return to the previous screen. Pressing the check mark button (C) also will return the monitor to the previous screen.

NOTE:
The numbers shown on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.
Adjusting the Manual Header Raise/Lower Rate – John Deere 70 Series

The weight of the header will dictate the rate at which the header can be raised or lowered during operation.

To manually adjust the header raise/lower rate, do the following steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press button (A) and the current raise/lower rate setting will appear on the monitor (the lower the reading, the slower the rate).

2. Use scroll knob (B) to adjust the rate. The adjustment will be saved automatically.

NOTE:
If the screen remains idle for a short period of time, it will automatically return to the previous screen. Pressing the check mark button (C) will also return the monitor to the previous screen.

NOTE:
The numbers shown on the displays in these illustrations are for reference purposes only; they are not intended to represent the specific settings for your equipment.

Figure 3.406: John Deere Combine Control Console

Figure 3.407: John Deere Combine Display
3.8.13 John Deere S and T Series Combines

Checking Voltage Range from the Combine Cab – John Deere S and T Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

3. Adjust cable take-up bracket (B) (if necessary) until the pointer (A) on the float indicator is on 0.
4. Press CALIBRATION icon (A) on the main screen of the monitor. The CALIBRATION screen appears.

5. Press DIAGNOSTIC READINGS icon (A) on the CALIBRATION screen. The DIAGNOSTIC READINGS screen appears. This screen provides access to calibrations, header options, and diagnostic information.

6. Select AHHC RESUME (A) and a list of calibration options appears.
7. Select the AHHC SENSING option.

8. Press icon (A) displayed on screen. The AHHC SENSING menu appears and five screens of information are displayed.

9. Press icon (A) until it reads Page 5 near the top of the screen and the following sensor readings appear:
 - LEFT HEADER HEIGHT
 - CENTER HEADER HEIGHT
 - RIGHT HEADER HEIGHT
 A reading is displayed for both left and right sensors. On the MacDon header, there may be one sensor located in the float indicator box (standard) or two sensors located at the back of the float module side frame (optional).

10. Ensure header float is unlocked.

11. Start the combine and fully lower feeder house to the ground.

 NOTE:
 You may need to hold the HEADER DOWN switch for a few seconds to ensure the feeder house is fully lowered.

12. Check the sensor reading on the monitor.

13. If the sensor voltage is not within the low and high limits or if the range between the low and high limits is insufficient, refer to *Adjusting Voltage Limits – One-Sensor System, page 162.*
Calibrating the Auto Header Height Control – John Deere S and T Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. Refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Press the DIAGNOSTIC icon (A) on the main screen of the monitor. The CALIBRATION screen appears.

4. Select THRESHING CLEARANCE (A) and a list of calibration options appears.
5. Select FEEDER HOUSE SPEED (A) from the list of calibration options.

NOTE:
Feeder house speed calibration must be done before header calibration.

7. Press icon (A) and instructions will appear on screen to guide you through the remaining calibration steps.
8. Select HEADER (A) from the list of calibration options.

10. Press icon (A) and instructions will appear on screen to guide you through the remaining calibration steps.

 NOTE:
 If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to *Checking Voltage Range from the Combine Cab – John Deere S and T Series, page 267.*

 NOTE:
 If float was set heavier to complete the AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Setting the Sensitivity of the Auto Header Height Control – John Deere S and T Series

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press button (A) twice and the current sensitivity setting will appear on the monitor.

2. Press the - or + icons (A) to adjust rates.

 NOTE:
 The numbers shown on the combine display in this illustration are for reference purposes only; they are not intended to represent the specific settings for your equipment.

Figure 3.423: John Deere Combine Command Center

Figure 3.424: John Deere Combine Display
Adjusting the Manual Header Raise/Lower Rate – John Deere S and T Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
Indicator (A) should be at position 0 (B) with the header 152 mm (6 in.) off the ground. If not, the float sensor output voltage should be checked; refer to Step 5, page 157. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Press button (A) and the current sensitivity setting will appear on the monitor.

2. Press the – or + icons (A) to adjust rates.

NOTE:
The numbers shown on the combine display in this illustration are for reference purposes only; they are not intended to represent the specific settings for your equipment.
Setting Preset Cutting Height – John Deere S and T Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
Indicator (A) should be at position 0 (B) with the header (152 mm [6 in.]) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 5, page 157. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Press the COMBINE – HEADER SETUP icon (A) on the main screen. The COMBINE – HEADER SETUP screen appears. This screen is used to set various header settings such as reel speed, header width, and height of feeder house for acre counter engagement.

3. Select AUTO HEIGHT SENSING (A), RETURN TO CUT (B), and REEL POSITION (C) icons.

NOTE:
If REEL POSITION icon (C) cannot be selected (no check mark), the reel height sensor requires calibration. Refer to *Calibrating Reel Height Sensor – John Deere S and T Series, page 283.*

4. Engage the header.
5. Move the header to the desired position and use knob (A) to fine tune the position.
6. Move the reel to the desired position.

7. Press and hold preset switch 2 (B) until 1 reel height icon flashes on monitor.
8. Repeat previous three steps for preset switch 3 (C).
9. Select an appropriate ground pressure setting. Use preset button 2 (B) on the control handle for a low ground pressure setting in muddy or soft soil conditions, and preset 3 (C) for a high ground pressure setting in firm soil conditions and a higher ground speed.

NOTE:
Preset button 1 (A) is reserved for header lift on the headland and is not used for cutting on ground.
NOTE:
When the AHHC is engaged, the AHHC icon (A) appears on the monitor and the number indicating which button was pressed (B) is displayed on the screen.

Figure 3.434: Combine Display

Calibrating Feeder House Fore-Aft Tilt Range – John Deere S and T Series
For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.4 Header Angle, page 102.

This procedure applies only to model year 2015 and later John Deere S and T Series combines.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

The feeder house fore/aft tilt is controlled by buttons (C) and (D) at the back of the control handle.

Figure 3.435: John Deere Control Handle
NOTE:
The feeder house fore/aft tilt controls can be changed to work with buttons E and F by pressing the control handle icon (A) and then selecting FEEDER HOUSE FORE/AFT TILT from the drop-down menu (B).

To calibrate the feeder house fore-aft tilt range, follow these steps:

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. Press DIAGNOSTIC icon (A) on the main screen of the monitor. The CALIBRATION screen displays.
4. Select the CALIBRATIONS drop-down menu (A) to view the list of calibration options.
5. Press arrow (A) to cycle up through the calibration options and select FEEDER HOUSE FORE/AFT TILT RANGE.

7. Follow the instructions that appear on the screen. As you proceed through the calibration process, the display will automatically update to show the next step.

NOTE:
If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to Checking Voltage Range from the Combine Cab – John Deere S and T Series, page 267.
Checking Reel Height Sensor Voltages – John Deere S and T Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Press CALIBRATION icon (A) on the main screen of the monitor. The CALIBRATION screen appears.

2. Press DIAGNOSTIC READINGS icon (A) on the CALIBRATION screen. The DIAGNOSTIC READINGS screen appears. This screen provides access to calibrations, header options, and diagnostic information.

3. Select drop-down menu (A) to view the list of calibration options.
4. Scroll down and select REEL RESUME (A).

6. Press NEXT PAGE icon (A) to cycle to page 3.

7. Lower the reel to view the low voltage (B). The voltage should be 0.5–0.9 V.
8. Raise the reel to view the high voltage (A). The voltage should be 4.1–4.5 V.

9. If either voltage is not within the correct range, refer to *Checking and Adjusting Reel Height Sensor, page 118.*

![Figure 3.448: John Deere Combine Display](image)
Calibrating Reel Height Sensor – John Deere S and T Series

This procedure applies only to model year 2015 and later John Deere S and T Series combines.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

To calibrate reel height, follow these steps:

1. Place header off the ground 15–25 cm (6–10 in.).
2. Press DIAGNOSTIC icon (A) on the main screen of the monitor. The CALIBRATION screen displays.
3. Select CALIBRATIONS drop-down menu (A) to view the list of calibration options.
4. Scroll through the list of options and select REEL POSITION.
5. Press ENTER icon (B).
6. Follow the instructions that appear on the screen. As you proceed through the calibration process, the display will automatically update to show the next step. This calibration requires you to use the reel raise (A) and reel lower (B) switches on the control handle.

![Figure 3.451: John Deere Control Handle](image)

7. Press and hold REEL LOWER switch until reel is fully lowered. Continue holding REEL LOWER switch until prompted by the display.

![Figure 3.452: John Deere Combine Display](image)

8. Press and hold REEL RAISE switch until reel is fully raised. Continue holding REEL RAISE switch until prompted by the display.

![Figure 3.453: John Deere Combine Display](image)
9. When all steps have been completed, CALIBRATION COMPLETE message is displayed on the screen. Exit the CALIBRATION menu by pressing the ENTER icon (A).

NOTE:
If an error code appears during calibration, the sensor is out of voltage range and will require adjustment. Refer to *Checking Reel Height Sensor Voltages – John Deere S and T Series*, page 280.

![Figure 3.454: John Deere Combine Display](image)
3.8.14 John Deere S7 Series Combines

Setting up Header – John Deere S7 Series

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Press header button (A) on the panel below the display. The HEADER page opens.

2. Select HEADER TYPE field (A). The HEADER DETAILS window opens.

3. Verify correct header width is displayed under WIDTH.
4. To change header width, select field (A). The WIDTH window opens.
5. Use the on-screen keypad to enter the correct header width, and then press OK.

6. Press window close button (A) in top right corner of the window to return to the HEADER page.

7. The raise/lower speed (A), tilt speed (B), height sensitivity (C), and tilt sensitivity (D) can all be adjusted from this page. Select the option you would like to adjust. This example shows the raise/lower speed adjustment.
8. Use the + and – buttons (A) to adjust the setting.

9. Press window close button in top right corner of the window to return to the HEADER page.

10. Select the AUTO CONTROL icons (A). The AUTO HEADER CONTROLS page opens.

11. If the header has not been calibrated yet, an error icon will appear on the HEIGHT SENSING button (A). Select button (A) to view error message.
12. Read error message and then press OK.

13. Proceed to *Checking Voltage Range from the Combine Cab – John Deere S7 Series, page 290.*
Checking Voltage Range from the Combine Cab – John Deere S7 Series

The auto header height sensor output must be within a specific range, or the feature will not work properly.

Table 3.21 Voltage Range

<table>
<thead>
<tr>
<th>Combine</th>
<th>Low Voltage Limit</th>
<th>High Voltage Limit</th>
<th>Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere S7 Series</td>
<td>0.5 V</td>
<td>4.5 V</td>
<td>3.0 V</td>
</tr>
</tbody>
</table>

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

⚠️ **CAUTION**

Check to be sure all bystanders have cleared the area.

1. Position header 150 mm (6 in.) above ground, and unlock the float module float.
2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If header is not on down stops during next two steps, voltage may go out of range during operation causing a malfunction of auto header height control (AHHC) system.
3. Adjust cable take-up bracket (B) (if necessary) until pointer (A) on float indicator is on 0.

4. On the HARVESTING page, select MENU icon (A) in the bottom right corner of the screen.

6. Select DIAGNOSTICS CENTER icon (B). The DIAGNOSTICS CENTER page opens.
7. Select AHC - SENSING (A). The AHC - SENSING\n DIAGNOSTICS page displays.

8. Select SENSOR tab (A) to view sensor voltages. The center
 header height sensor voltage (B) must be between 0.5 and
 4.5 V, with at least 3 V of variation between 0 and 4 on the
 float indicator box.

 NOTE:
 If the optional Auto Lateral Tilt AHHC kit is installed, the left
 and right header height sensors must also be in the same
 0.5–4.5 V range.

9. If sensor voltage adjustment is required, refer to *Adjusting
 Voltage Limits – One-Sensor System, page 162.*
Calibrating Feeder House – John Deere S7 Series

Feeder house calibration must be done before header calibration.

For best performance of auto header height control (AHHC), perform these procedures with center-link set to D. When setup and calibration are complete, adjust center-link back to desired header angle. For instructions, refer to Adjusting Header Angle from Combine, page 104.

NOTE: Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. On the HARVESTING page, select MENU icon (A) in the bottom right corner of screen. The MENU opens.

4. Select the MACHINE SETTINGS tab (A).
5. Select CALIBRATIONS & PROCEDURES icon (B). The CALIBRATIONS & PROCEDURES page displays.
7. Select FEEDER HOUSE RAISE SPEED CALIBRATION (B). The FH RAISE SPEED CALIBRATION page displays.

8. Select CALIBRATE (A) at the bottom of the page. A calibration overview displays.

9. Read the calibration overview, and then press START.
10. Follow the instructions on the screen. As you proceed through the calibration process, the display will automatically update to show next step.

11. When calibration is complete, select SAVE to confirm calibration.
Calibrating Header – John Deere S7 Series

Feeder house calibration must be done before header calibration. If feeder house has not yet been calibrated, refer to Calibrating Feeder House – John Deere S7 Series, page 293.

For best performance of auto header height control (AHHC), perform these procedures with header at steepest angle. When setup and calibration are complete, adjust center-link back to desired header angle.

NOTE:
Changes may have been made to combine controls or display since this document was published. Refer to combine operator’s manual for updates.

1. Ensure center-link is set to D.
2. Rest header on down stops and unlock float.
3. On the HARVESTING page, select the MENU icon (A) in the bottom right corner of screen. The MENU opens.
 - Figure 3.478: John Deere S7 Display – Harvesting Page

4. Select MACHINE SETTINGS tab (A).
5. Select CALIBRATIONS & PROCEDURES icon (B). The CALIBRATIONS & PROCEDURES page displays.
 - Figure 3.479: John Deere S7 Display – Machine Settings

7. Select HEADER CALIBRATION (B). The HEADER CALIBRATION page displays.

8. Select CALIBRATE (A) at bottom of page. The calibration overview window opens.

9. Press button (A) on console to set engine to high idle.
10. Select START on calibration overview page.

11. Follow instructions that appear on combine display. As you proceed through calibration process, display will automatically update to show next step.

NOTE:
If an error code appears during calibration, sensor is out of voltage range and will require adjustment. Refer to Adjusting Voltage Limits – One-Sensor System, page 162.

12. When calibration is complete, select SAVE to confirm calibration.
3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year

This section applies only to pre-2015 CR/CX models. For New Holland CR models 6.80, 6.90, 7.90, 8.90, 9.90, and 10.90, refer to 3.8.16 New Holland Combines – CR Series, Model Year 2015 and Later, page 311.

Checking Voltage Range from the Combine Cab – New Holland CR/CX Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

NOTE:
If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the AHHC system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.

Figure 3.485: Float Lock
3. Adjust cable take-up bracket (B) (if necessary) until the float indicator pointer (A) is on 0.

4. Ensure header float is unlocked.

5. Select DIAGNOSTICS (A) on the main screen. The DIAGNOSTICS screen displays.

6. Select SETTINGS. The SETTINGS screen displays.

7. Select the GROUP drop-down arrow (A). The GROUP dialog box displays.

9. Select LEFT HEADER HEIGHT SEN (A), and then select GRAPH button (B). The exact voltage is displayed at the top of the screen.

10. Raise and lower the header to see the full range of voltage readings.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits – One-Sensor System, page 162.
Setting up Auto Header Height Control – New Holland CR/CX Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

1. Select HEADER LATERAL FLOAT on the combine display, and press ENTER.

2. Use the up and down navigation keys to move between options, and select INSTALLED.

3. Select HEADER AUTOFLOAT, and press ENTER.

4. Use the up and down navigation keys to move between options, and select INSTALLED.
Calibrating the Auto Header Height Control – New Holland CR/CX Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to 3.7.4 Header Angle, page 102.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

Check the following conditions before starting the header calibration procedure:

- The header is attached to the combine.
- The combine is on level ground, with the header level to the ground.
- The header is on down stops, and the center-link is set to D.
- The engine is running.
- The combine is not moving.
- No faults have been received from the Header Height Controller (HHC) module.
- Header/feeder is disengaged.
- Lateral float buttons are NOT pressed.
- ESC key is NOT pressed.
To calibrate the AHHC, follow these steps:

1. Select CALIBRATION on the combine display, and press the RIGHT ARROW navigation key to enter the information box.

2. Select HEADER (A), and press ENTER. The CALIBRATION dialog box opens.

 NOTE:
 You can use the up and down navigation keys to move between options.

3. Follow the calibration steps in the order in which they appear in the dialog box. As you proceed through the calibration process, the display will automatically update to show the next step.

 NOTE:
 Pressing the ESC key during any of the steps or letting the system sit idle for more than 3 minutes will cause the calibration procedure to stop.

 NOTE:
 Refer to your combine operator’s manual for an explanation of any error codes.

4. When all steps have been completed, CALIBRATION SUCCESSFUL message is displayed on the screen. Exit the CALIBRATION menu by pressing the ENTER or ESC key.

 NOTE:
 If float was set heavier to complete AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.

5. If the unit does not function properly, conduct the maximum stubble height calibration.
Calibrating Maximum Stubble Height

This procedure describes how to calibrate the area counter to stop or start counting at the correct height. Program the header to a height that will never be reached while cutting. The area counter will stop counting when the header is above the programmed height, and will begin counting when the header is below the programmed height.

Select the height of the header that corresponds to the description above.

IMPORTANT:

- If the value is set too low, area may NOT be counted since the header is sometimes raised above this threshold although the combine is still cutting.
- If the value is set too high, the area counter will keep counting even when the header is raised (but below this threshold) and the combine is no longer cutting crop.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Select the MAXIMUM STUBBLE HEIGHT calibration dialog box. As you proceed through the calibration process, the display will automatically update to show the next step.

2. Move header to the correct position using the header up or down control switch on the multifunction handle.

3. Press ENTER to continue. As you proceed through the calibration process, the display will automatically update to show the next step.

4. Press ENTER or ESC to close the calibration screen. The calibration is now complete.
Adjusting Header Raise Rate – New Holland CR/CX Series

If necessary, the header raise rate (the first speed on the HEADER HEIGHT rocker switch of the multifunctional handle) can be adjusted.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

1. Select HEADER RAISE RATE on the combine display.
2. Use the + or – buttons to change the setting.
3. Press ENTER to save the new setting.

NOTE:
The raise rate can be changed from 32–236 in steps of 34. The factory setting is 100.

Figure 3.497: New Holland Combine Display
Setting the Header Lower Rate – New Holland CR/CX Series

If necessary, the header lower rate (the automatic header height control button or second speed on the header height rocker switch of the multi-function handle) can be adjusted.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

1. Select HEADER LOWER RATE on the combine display.
2. Use the + or – buttons to change the setting to 50.
3. Press ENTER to save the new setting.

NOTE:
The lower rate can be changed from 2–247 in steps of 7. It is factory-set to 100.

Figure 3.498: New Holland Combine Display
Setting the Sensitivity of the Auto Header Height Control – New Holland CR/CX Series

The sensitivity adjustment controls the distance the cutterbar must travel up or down before the auto header height control (AHHC) reacts and raises or lowers the feeder house. When the sensitivity is set to maximum, only small changes in ground height are needed to cause the feeder house to raise or lower. When the sensitivity is set to minimum, large changes in the ground height are needed to cause the feeder house to raise or lower.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

1. Engage threshing and feeder house.
2. Select HEIGHT SENSITIVITY on the combine display screen.
3. Use the + or – buttons to change the setting to 200.
4. Press ENTER to save the new setting.

NOTE:
The sensitivity can be changed from 10–250 in steps of 10. It is factory-set to 100.

Figure 3.499: New Holland Combine Display
Setting Preset Cutting Height – New Holland CR/CX Series

To set the preset cutting height, follow these steps:

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:

NOTE:
Indicator (A) should be at position 0 (B) with the header (152 mm [6 in.]) off the ground. If not, the float sensor output voltage should be checked. Refer to Step 5, page 157. When the header is on the ground, the indicator should be at position 1 (C) for low ground pressure, and at position 4 (D) for high ground pressure. Crop and soil conditions determine the amount of float to use. The ideal setting is as light as possible without header bouncing or missing crop. Operating with heavy settings prematurely wears the cutterbar wearplates.

1. Engage the threshing mechanism and the feeder with switches (A) and (B).
2. Set HEADER MEMORY rocker switch (D) in STUBBLE HEIGHT/AUTOFLOAT mode position (A) or (B).
3. Lower the header to the desired cutting height using the HEADER HEIGHT and HEADER LATERAL FLOAT momentary switch (C).
4. Lightly press AUTOMATIC HEADER HEIGHT CONTROL button (E) for a minimum of 2 seconds to store the height position. A beep will confirm the setting.

NOTE:
It is possible to store two different header height values by using HEADER MEMORY rocker switch (D) in STUBBLE HEIGHT/AUTOFLOAT mode position (A) or (B).
5. To change one of the memorized header height set points while the combine is in use, use the HEADER HEIGHT AND HEADER LATERAL FLOAT rocker switch (A) (slow up/down) to raise or lower header to the desired value. Lightly press the AUTOMATIC HEADER HEIGHT CONTROL button (B) for a minimum of 2 seconds to store the new height position. A beep will confirm setting.

NOTE:
Fully pressing AUTOMATIC HEADER HEIGHT CONTROL button (B) will disengage float mode.

NOTE:
It is not necessary to press rocker switch (C) again after changing header height set point.

Figure 3.502: New Holland Combine Controls
3.8.16 New Holland Combines – CR Series, Model Year 2015 and Later

This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299.

Checking Voltage Range from the Combine Cab – New Holland CR Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

1. Position the header 150 mm (6 in.) above the ground, and unlock the float.

2. Check that float lock linkage is on down stops (washer [A] cannot be moved) at both locations.

 NOTE:
 If the header is not on down stops during the next two steps, the voltage may go out of range during operation causing a malfunction of the auto header height control (AHHC) system. If the header is not on down stops, refer to 3.9 Leveling the Header, page 326 for instructions.
3. Adjust cable take-up bracket (B) (if necessary) until the float indicator pointer (A) is on 0.
4. Ensure header float is unlocked.

5. Select DIAGNOSTICS (A) on the main screen. The DIAGNOSTICS screen displays.

7. Select HEADER HEIGHT/TILT (A) from the GROUP dropdown menu.

8. Select HEADER HEIGHT SENS. L (B) from the PARAMETER drop-down menu.

9. Select GRAPH (A). The exact voltage (B) is displayed at the top of the screen.

10. Raise and lower the header to see the full range of voltage readings.

11. If the sensor voltage is not within the low and high limits, or if the range between the low and high limits is insufficient, adjust the voltage limits. Refer to Adjusting Voltage Limits – One-Sensor System, page 162.
Setting up Auto Header Height Control – New Holland CR Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299.

1. Ensure center-link is set to D.
2. Select TOOLBOX (A) on the main screen. The TOOLBOX screen displays.
3. Simultaneously press both the UNLOAD (A) and RESUME (B) buttons on the control handle.

NOTE:
Software in some New Holland combines may not allow you to change the header from FLEX to PLATFORM or the header type from DEFAULT to 80/90 at the main menu. This is now a dealer setting, and requires you to access the DEALER SETTING screen by pressing and holding both the UNLOAD and RESUME buttons on the control handle for approximately 10 seconds. The DEALER SETTING screen should appear and will allow you to change the header and header type settings.
4. Select HEAD 1 (A). The HEADER SETUP 1 screen displays.

5. Select the CUTTING TYPE drop-down arrow (B) and change the CUTTING TYPE to PLATFORM (C).

6. Select the HEADER SUB TYPE drop-down arrow (A). The HEADER SUB TYPE dialog box displays.

7. Set HEADER SUB TYPE to 80/90 (A) for a New Holland combine.

9. Select the AUTO FLOAT drop-down arrow and set AUTO FLOAT to INSTALLED (A).

10. Select the AUTO HEADER LIFT drop-down arrow and set AUTO HEADER LIFT to INSTALLED (B).

NOTE:
With AUTO HEADER LIFT installed and AHHC engaged, the header will lift up automatically when you pull back on the control handle.

11. Set the values for MANUAL HHC RAISE RATE (C) and MANUAL HHC LOWER RATE (D) for best performance according to ground conditions.

12. Set the values for HHC HEIGHT SENSITIVITY (A) and HHC TILT SENSITIVITY (B) for best performance according to ground conditions.
13. From the REEL HEIGHT SENSOR menu (A), select YES.

![Figure 3.517: New Holland Combine Display](image)

Calibrating the Auto Header Height Control – New Holland CR Series

For best performance of the auto header height control (AHHC), perform these procedures with the center-link set to D. When setup and calibration are complete, adjust the center-link back to desired header angle. For instructions, refer to **3.7.4 Header Angle, page 102**.

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to **3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299**.

CAUTION
Check to be sure all bystanders have cleared the area.

NOTE:
If header float is set too light, it can prevent calibration of AHHC. You may need to set the float heavier for calibration procedure so header doesn’t separate from the float module.

Check the following conditions before starting the header calibration procedure:

- The header is attached to the combine.
- The combine is on level ground, with the header level to the ground.
- The header is on down stops, and the center-link is set to D.
- The engine is running.
- The combine is not moving.
- No faults have been received from the header height controller (HHC) module.
- Header/feeder is disengaged.
- Lateral float buttons are NOT pressed.
- ESC key is NOT pressed.
To calibrate the AHHC, follow these steps:

1. Select CALIBRATIONS (A) on the main screen. The CALIBRATION screen displays.

2. Select the CALIBRATION drop-down arrow (A).

3. Select HEADER (A) from the list of calibration options.
4. Follow the calibration steps in the order in which they appear on the screen. As you proceed through the calibration process, the display will automatically update to show the next step.

NOTE:
Pressing the ESC key during any of the steps or letting the system sit idle for more than 3 minutes will cause the calibration procedure to stop.

NOTE:
Refer to your combine operator’s manual for an explanation of any error codes.

5. When all steps have been completed, CALIBRATION COMPLETED message is displayed on the screen.

NOTE:
If float was set heavier to complete AHHC calibration procedure, adjust to recommended operating float after the calibration is complete.
Checking Reel Height Sensor Voltages – New Holland CR Series

NOTE:
Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. On the main page of the combine display, select DIAGNOSTICS (A). The DIAGNOSTICS page opens.

![Figure 3.523: New Holland Combine Display](image)

2. Select SETTINGS tab (A). The SETTINGS page opens.
3. From the GROUP menu (B), select HEADER.
4. From the PARAMETER menu (C), select REEL VERTICAL POSITION.

![Figure 3.524: New Holland Combine Display](image)

5. Select GRAPH tab (A). The REEL VERTICAL POSITION graph displays.
6. Lower the reel to view the high voltage (B). The voltage should be 4.1–4.5 V.
7. Raise the reel to view the low voltage (C). The voltage should be 0.5–0.9 V.
8. If either voltage is out of range, refer to Checking and Adjusting Reel Height Sensor, page 118.

![Figure 3.525: New Holland Combine Display](image)
Setting Preset Cutting Height – New Holland CR Series

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299.

The console has two buttons used for auto height presets. The toggle switch that was present on previous models is now configured as shown at right. MacDon headers only require the first two buttons (A) and (B). The third button (C) is not configured.

⚠️ CAUTION
Check to be sure all bystanders have cleared the area.

To set preset cutting height, follow these steps:

1. Engage separator and header.
2. Select preset button 1 (A). A yellow light on the button will illuminate.
3. Raise or lower the header to desired cutting height.
4. Hold RESUME button (C) on multifunction handle to set the preset.

 NOTE:
 When setting presets, always set header position before setting reel position. If header and reel are set at the same time, the reel setting will not save.

5. Raise or lower the reel to desired position.
6. Hold RESUME button (C) on multifunction handle to set the preset.
8. Lower header to the ground.
9. Select RUN SCREENS (A) on the main screen.

10. Select the RUN tab that shows MANUAL HEIGHT.

NOTE:
The MANUAL HEIGHT field may appear on any of the RUN tabs. When an auto height preset button is pressed, the display will change to AUTO HEIGHT (A).

11. Press one of the auto height preset buttons to select a preset cutting height.
Setting Maximum Work Height – New Holland CR Series

NOTE:
This section applies only to 2015 and later CR models (6.80, 6.90, 7.90, 8.90, 9.90, and 10.90). For other pre-2015 New Holland combine models, refer to 3.8.15 New Holland Combines – CR/CX Series, Pre-2015 Model Year, page 299.

1. Select TOOLBOX (A) on the main screen. The TOOLBOX screen displays.

2. Select FEEDER (A). The FEEDER SETUP screen displays.

3. Select the MAXIMUM WORK HEIGHT field (B).

4. Set MAXIMUM WORK HEIGHT to desired value.

5. Press SET and then press ENTER.

Figure 3.531: New Holland Combine Display

Figure 3.532: New Holland Combine Display

Figure 3.533: New Holland Combine Display
Configuring Reel Fore-Aft, Header Tilt, and Header Type – New Holland CR Series

This procedure applies only to 2016 New Holland CR models 6.90, 7.90, 8.90, and 9.90.

NOTE:

Changes may have been made to the combine controls or display since this document was published. Refer to the combine operator’s manual for updates.

1. Simultaneously press the UNLOAD (A) and RESUME (B) buttons on the control handle.

2. On the HEAD 1 screen, change the CUTTING TYPE from FLEX to PLATFORM as shown at location (A).
3. On the HEAD 2 screen, change HEADER SUB TYPE from DEFAULT to 80/90 as shown at location (A).

There are now two different buttons for ON GROUND presets. The toggle switch that was present on previous models is now configured as shown at right. MacDon headers only require the first two buttons (A) and (B). The third button down (C) is not configured.
3.9 Leveling the Header

The float module is factory-set to provide the proper level for the header and should not normally require adjustment.

If the header is **NOT** level, perform the following checks prior to adjusting the leveling linkages:

- Check the combine tire pressures.
- Check that the combine feeder house is level. Refer to your combine operator’s manual for instructions.
- Check that the top of the float module is level and parallel with the feeder house.

NOTE:
The float springs are **NOT** used to level the header.

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Park the combine on level ground.

2. Set the header approximately 150 mm (6 in.) off the ground, and check that the float linkage is against the down stops. Note the high and low end of the header.

3. Shut down the engine and remove the key.

4. Check, and if necessary adjust the float. Refer to *Checking and Adjusting Header Float, page 95.*

5. Adjust the header level by making small adjustments (1/4–1/2 turn) to nut (A) on each float lock. Adjust each side equally but in opposite directions as follows:

NOTE:
Setscrew (B) does not require loosening for adjustments up to one-half turn of nut (A).

a. On low side of header, turn nut (A) **clockwise** to raise header.

b. On high side of header, turn nut (A) **counterclockwise** to lower header.

NOTE:
Adjustment of more than two turns in either direction may adversely affect header float.

Figure 3.538: Float Lock
NOTE:
Ensure a minimum clearance of 2–3 mm (1/8 in.) (A) between the frame and the back of the bell crank lever.

NOTE:
Check the float after leveling header. Refer to Checking and Adjusting Header Float, page 95.
3.10 Unplugging the Cutterbar

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION

Wear heavy gloves when working around or handling knives.

⚠️ CAUTION

Lowering rotating reel on a plugged cutterbar will damage the reel components.

To unplug cutterbar, reverse the combine feeder house. If the cutterbar is still plugged, do the following:

1. Stop the forward movement of the machine and disengage the header drives.
2. Raise the header to prevent it from filling with dirt, and engage the header drive clutch.
3. Disengage the header drive clutch and fully raise the header if plug does NOT clear.
4. Shut off the engine, remove the key from the ignition, and engage the park brake.
5. Engage the header safety props.
6. Clean off the cutterbar by hand.

NOTE:

If cutterbar plugging persists, refer to *7 Troubleshooting, page 611.*
3.11 Unplugging the FM100

1. Stop the forward movement of the machine and disengage the header drives.
2. Raise the header slightly off the ground, and raise the reel.
3. Reverse the combine feed according to the manufacturer specifications (reverse feed varies among different combine models).
4. Engage the header drive.
3.12 Upper Cross Auger

The upper cross auger (UCA) (A) improves delivery of very bulky crops across the header.

IMPORTANT:
If the UCA is installed, a case drain line must be installed on the right draper motor. See your MacDon Dealer for details.

3.12.1 Removing Upper Cross Auger Flighting

A short section of flighting can be removed from the inboard ends of the upper cross auger (UCA) to accommodate crops that are prone to wrapping or if the flighting is damaged and needs to be replaced. Follow these steps to remove flighting:

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground and fully raise reel. Stop engine, and remove key from ignition.
2. Engage reel safety props.
3. Remove bolts (A) securing clamp sets (B) to flighting.
4. Remove bolts (C) in clamp sets (B) and remove clamps from auger tube.
5. Slightly twist flighting (D) away from auger tube and remove.
3.12.2 Installing Upper Cross Auger Flighting

A short section of removable flighting can be installed at the inboard ends of the upper cross auger (UCA). This flighting can aid in feeding cut crop into the combine (especially when combining canola), but should not be installed when combining crops prone to wrapping on the auger. Follow these steps to install flighting:

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower header to ground and fully raise reel. Stop engine, and remove key from ignition.
2. Engage reel safety props.
3. Install flighting (A) onto auger tube. Twist flighting slightly to slide over auger tube.
4. Install clamp sets (B) on auger tube, and attach to flighting with 3/8 x 1 torx head machine screws (C) and smooth face lock nuts. Screw heads must face direction of rotation (X). Do NOT tighten screws (C) and lock nuts.

5. Position filler plates (A) between clamp (B) ends and install 3/8 x 1 torx head machine screws (C) and smooth face lock nuts. Screw heads must face direction of rotation (X). Do NOT tighten screws (C) and lock nuts.
6. Position end of flighting (D) against backside of existing flighting and temporarily clamp in position.
7. Tighten screws (C) and screws (E) installed in Step 4, page 331.
8. Remove temporary clamping.
3.13 Transporting the Header

⚠️ WARNING
Do NOT drive the combine with header attached on a road or highway at night, or in conditions which reduce visibility, such as fog or rain. The width of the header may not be apparent under these conditions.

3.13.1 Transporting Header on Combine

⚠️ CAUTION
- Check local laws for width regulations and lighting or marking requirements before transporting on roads.
- Follow all recommended procedures in your combine operator’s manual for transporting, towing, etc.
- Disengage header drive clutch when travelling to and from the field.
- Before driving combine on a roadway, be sure flashing amber lamps, red tail lamps, and head lamps are clean and working properly. Pivot amber lamps for best visibility by approaching traffic. Always use lamps when travelling on roads to provide adequate warning to other vehicles.
- Do NOT use field lamps on roads—they may confuse other drivers.
- Before driving on a roadway, clean slow moving vehicle signs and reflectors, adjust rear view mirrors, and clean windows.
- Lower the reel fully and raise the header unless transporting in hills.
- Maintain adequate visibility and be alert for roadside obstructions, oncoming traffic, and bridges.
- When travelling downhill, reduce speed and keep header at a minimum height to provide maximum stability if forward momentum is stopped for any reason. Raise header completely at bottom of grade to avoid contacting the ground.
- Travel at safe speeds to ensure complete machine control and stability at all times.
3.13.2 Towing

Headers with the Slow Speed Transport/Stabilizer Wheel option can be towed behind a properly configured MacDon windrower or an agricultural tractor. For instructions, refer to the combine operator’s manual.

Attaching Header to Towing Vehicle

CAUTION

Adhere to the following slow speed transport instructions to prevent loss of control leading to bodily injury and/or machine damage:

- Weight of towing vehicle must exceed header weight to ensure adequate control and braking performance.
- Do NOT tow with any highway-capable vehicle. Use only an agricultural tractor, agricultural combine, or a properly configured MacDon windrower.
- Ensure reel is fully lowered and back on support arms to increase header stability during transport. For headers with hydraulic reel fore-aft, never connect the fore-aft couplers to each other or the circuit will be complete and the reel could creep forward during transport.
- Check that all pins are properly secured in transport position at wheel supports, cutterbar support, and hitch.
- Check tire condition and pressure prior to transporting.
- Connect hitch to towing vehicle using a proper hitch pin with a spring locking pin or other suitable fastener.
- Attach hitch safety chain to towing vehicle. Adjust safety chain length to provide only enough slack to permit turning.
- Connect header seven-pole plug wiring harness to mating receptacle on towing vehicle. (The seven-pole receptacle is available from your MacDon Dealer parts department.)
- Ensure lights are functioning properly and clean the slow moving vehicle sign and other reflectors. Use flashing warning lights unless prohibited by law.

Towing the Header

CAUTION

Adhere to the following slow speed transport instructions to prevent loss of control leading to bodily injury and/or machine damage:

- Do NOT exceed 32 km/h (20 mph).
- Reduce transport speed to less than 8 km/h (5 mph) for slippery or rough conditions.
- Turn corners at only very low speeds (8 km/h [5 mph] or less) as header stability is reduced while cornering. Do NOT accelerate when making or coming out of a turn.
- Obey all highway traffic regulations in your area when transporting on public roads. Use flashing amber lights unless prohibited by law.
3.13.3 Converting from Transport to Field Position

Removing Tow-Bar

1. Block the tires to prevent the header from rolling, and unhook the header from the towing vehicle.
2. Disconnect electrical connector (A) on the tow-bar.
3. Remove pin (B) from the tow-bar, and disassemble outer section (C) from inner section (D).

4. Disconnect electrical connector (A) at the front wheel.

5. Remove clevis pin (A) and set aside for reinstallation.
6. Push latch (B) and lift tow-bar (C) from the hook. Release latch.
7. Install clevis pin (A).
Storing the Tow-Bar

The tow-bar consists of two sections, an inner half (A) and an outer half (B), to make storage and handling easier.

1. Place the inner end of the outer half of the tow-bar into the cradle (A) on the left side of the header backtube.

2. Secure clevis/pintle end of the tow-bar in support (B) on the endsheet using hitch pin (C). Secure with lynch pin.

3. Install rubber strap (D) on cradle (A).

Figure 3.547: Tow-Bar Assembly

Figure 3.548: Tow-Bar Storage – Left Side
4. Place the inner end of the inner half of the tow-bar into the cradle (A) on the right side of the header backtube.

5. Secure the tube end of the tow-bar in support (B) on the endsheet using clevis pin (C). Secure with hairpin.

6. Install rubber strap (D) on cradle (A).

7. Attach the header to the combine. Refer to the combine operator’s manual for instructions.

IMPORTANT:
Carrying the tow-bar on the header will affect the main header float. Refer to the combine operator’s manual for adjustment procedures.

8. Place the transport wheels into field position. Refer to the following:
 - *Moving Front (Left) Wheels into Field Position, page 337*
 - *Moving Rear (Right) Wheels into Field Position, page 338*
Moving Front (Left) Wheels into Field Position

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise the header fully and engage the header safety props.

2. Swivel the front wheel assembly (A) so the wheels are aligned with the lower frame.

3. Remove pin (B) and pull the wheel assembly towards the rear of the header. Store the pin in hole (C) at the top of the leg.

4. Pull handle (D) upwards to release and lower the linkage into the vertical support.

5. Align lift hook (A) with lug B) and lift the wheel assembly to engage the pin in the lift hook. Ensure latch (C) is engaged.

6. Install clevis pin (D) and secure to the center of the axle with hairpin.
7. Lift the wheel assembly to the desired height and slide linkage (A) into the appropriate slot in the vertical support.
8. Push down on handle (B) to lock.

Moving Rear (Right) Wheels into Field Position
1. Pull pin (A) on the left rear wheel. Swivel the wheel clockwise and lock with pin.
2. Remove pin (A) and store at location (B).
3. Pull handle (C) upwards to release.
4. Lift the wheel to the desired height, and engage the support channel into slot (D) in the vertical support.
5. Push down on handle (C) to lock.
6. Pull pin (A) on brace (B) on the right wheel in front of the cutterbar. Disengage the brace from the cutterbar, and lower the brace against axle (C).

7. Remove pin (D), lower support (E) onto axle, and reinsert pin into support.

8. Swing axle (C) clockwise towards the rear of the header.

9. Pull pin (A) on right axle, swivel the wheel counterclockwise to position shown, and lock with pin (A).

10. Remove hairpin (B) from latch (C).

11. Lift the wheel, lift latch (C), and engage lug (D) onto the left axle. Ensure the latch closes.

12. Secure the latch with hairpin (B), ensuring the open end of the pin faces the rear of the combine.

IMPORTANT:
Check that the wheels are locked and that the handle is in the locked position.

NOTE:
The hairpin can become dislodged by crop if installed with the open end facing the cutterbar.
13. Complete the conversion by ensuring left side wheels (A) and right side wheels (B) are in the position shown.

![Figure 3.557: Field Position](image1)

3.13.4 Converting from Field to Transport Position

Moving Front (Left) Wheels into Transport Position

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ **CAUTION**

Stand clear of wheels and release linkage carefully as wheels will drop once the mechanism is released.

1. Pull handle (B) upwards to release and raise linkage (A) fully upwards into the vertical support.

2. Raise the header fully, stop the engine, and remove the key from ignition. Engage the header safety props.

![Figure 3.558: Suspension Linkage](image2)
3. Remove the hairpin and clevis pin (A).

4. Pull the latch handle (B) to release suspension linkage (C), and pull the suspension linkage away from spindle (D).

5. Lower the wheels slowly.

6. Lower handle (A) to lock.
7. Remove pin (A) from storage at the top of leg (B).
8. Move and swivel the wheels clockwise until connector (C) is turned towards the front end of the header.
9. Insert pin (A) and turn to lock.
10. Lower the header until the left wheels are just touching the ground.

Moving Rear (Right) Wheels into Transport Position

1. Remove hairpin (A) from latch (B).
2. Lift latch (B), disengage right axle (C), and lower to the ground.

⚠️ CAUTION

Stand clear of wheels and release linkage carefully as wheels will drop once the mechanism is released.

3. Pull handle (D) carefully to release the spring and lower the wheel to the ground.
4. Lift the wheel and linkage with handle (E) and position the linkage in the bottom slot.
5. Lower handle (C) to lock.
6. Remove pin (A) and install at location (B) to secure the linkage. Turn the pin to lock.

7. Pull pin (D), swivel wheel (C) counterclockwise 90°, and release the pin to lock.

8. Ensure the left wheel is in the transport position as shown.

9. Pull pin (A) and swivel right rear wheel (B) clockwise 90°.
10. Lock wheel (A) with pin (B). Move right axle (C) to the front of the header.

![Figure 3.566: Right Rear Wheel](image1)

11. Remove pin (A), raise support (B) to the position shown, and reinsert pin.

IMPORTANT:
Ensure pin (A) engages the tube on the axle.

12. Swing brace (C) into the position shown and insert the brace into slot (D) behind the cutterbar. Position the brace so that pin (E) engages the hole in bracket (F). The right wheel is now in transport position.

13. Disengage the header cylinder lift stops.

14. Detach the header’s hydraulic and electrical connections from the combine. Refer to 4 Header Attachment/Detachment, page 349.

15. Start the combine and lower the header to the ground.

![Figure 3.567: Right Rear Wheel Position](image2)
Attaching Tow-Bar

The tow-bar consists of two sections which make storage and handling easier.

1. Unhook rubber strap (D) from cradle (A) on the right side of the header.
2. Remove clevis pin (C) and detach the tube end from support (B).
3. Replace clevis pin (C).
4. Lift the inner half of the tow-bar off the header and place it near the left side of the header.

5. Unhook rubber strap (D) from cradle (A) on the left side of the header.
6. Remove hitch pin (C) from support (B), and remove the tow-bar.
7. Install rubber strap (D) on cradle (A).
8. Connect outer half (B) of the tow-bar to inner half (A).

Figure 3.570: Tow-Bar Assembly

9. Lift outer half (B) and insert it into inner half (A).

Figure 3.571: Tow-Bar Assembly

10. Secure the two halves together with L-pin (A) and then turn to lock. Secure L-pin with ring (B).

11. Connect the electrical harness to connector (C).

Figure 3.572: Tow-Bar Assembly
12. Position tow-bar (A) onto the axle, and push against latch (B) until the tow-bar pins drop into hooks (C).

13. Check that latch (B) has engaged the tow-bar.

14. Install clevis pin (D) and secure with hairpin.

15. Connect electrical harness (A) at the front wheel.
3.14 Storing the Header

Perform the following procedures at the end of each operating season:

⚠️ CAUTION

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

⚠️ CAUTION

Cover cutterbar and knife guards to prevent injury from accidental contact.

1. Clean the header thoroughly.

2. Store the machine in a dry, protected place if possible. If storing outside, always cover with a waterproof canvas or other protective material.

 NOTE:
 - If storing the machine outside, remove the drapers and store them in a dark, dry place. If not removing the drapers, store the header with the cutterbar lowered so water and snow will not accumulate on the drapers. The weight of water and snow accumulation puts excessive stress on the drapers and header.

3. Lower the header onto blocks to keep the cutterbar off the ground.

4. Lower the reel completely. If stored outside, tie the reel to the frame to prevent rotation caused by the wind.

5. Repaint all worn or chipped painted surfaces to prevent rust.

6. Loosen the drive belts.

7. Lubricate the header thoroughly leaving excess grease on the fittings to keep moisture out of the bearings.

8. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.

9. Check for worn components and repair as necessary.

10. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at the beginning of next season.

11. Replace or tighten any missing or loose hardware. Refer to 8.1 Torque Specifications, page 621.
Chapter 4: Header Attachment/Detachment

This chapter includes instructions for setting up, attaching, and detaching the header.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IH 7010, 8010, 7120, 8120, 9120, 5130, 6130, 7130, 7230, 8230, 9230</td>
<td>4.2 Case IH Combines, page 350</td>
</tr>
<tr>
<td>John Deere 60, 70, S, and T Series</td>
<td>4.4 John Deere Combines, page 366</td>
</tr>
<tr>
<td>CLAAS 500, 700 (R Series)</td>
<td>4.5 CLAAS Combines, page 373</td>
</tr>
<tr>
<td>New Holland CR, CX</td>
<td>4.6 New Holland Combines, page 381</td>
</tr>
</tbody>
</table>

NOTE:
Ensure the applicable functions (e.g., Automatic Header Height Control [AHHC], draper header option, hydraulic center-link option, hydraulic reel drive) are enabled on the combine and the combine computer. Failure to do so may result in improper header operation.

4.1 FM100 Setup

The following sections outline the recommended float module setup guidelines for your specific combine model and crop type; however, the recommendations cannot cover all conditions.

If feeding problems develop with the float module, refer to 7 Troubleshooting, page 611.

4.1.1 Using Auger Flighting

The auger flighting on the FM100 can be configured for specific combines and crop conditions. Refer to 3.7.1 FM100 Feed Auger Configurations, page 61 for combine/crop specific configurations.

4.1.2 Using Stripper Bars

Stripper bar kits may have been supplied with your header to improve feeding in certain crops such as rice. They are NOT recommended in cereal crops.

For servicing information, refer to 5.11 FM100 Stripper Bars and Feed Deflectors, page 516.
4.2 Case IH Combines

4.2.1 Attaching Header to Case IH Combine

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. On the combine, ensure lock handle (A) is positioned so the hooks (B) can engage the float module.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the header until feeder house saddle (A) is directly under the float module top cross member (B).

3. Raise the feeder house slightly to lift the header, ensuring the feeder saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.

5. On the left side of the feeder house, lift lever (A) on the float module and push handle (B) on the combine to engage locks (C) on both sides of the feeder house.

6. Push down on the lever (A) so the slot in the lever engages the handle and locks the handle in place.

7. If lock (C) does not fully engage the pin on the float module, loosen bolts (D) and adjust lock. Retighten bolts.
8. Open the cover on receptacle (A) located on the left side of the float module.

9. Press lock button (B) and pull the handle (C) to the fully-open position.

10. Clean the receptacle mating surfaces.

11. Remove the hydraulic quick coupler (A) from the combine, and clean the mating surfaces.

12. Position the coupler onto coupler receptacle (A) and push handle (B) (not shown) to engage the multicoupler pins into the receptacle.

13. Push handle (B) to the closed position until the lock button (C) snaps out.
14. Remove the cover from electrical receptacle (A). Ensure the receptacle is clean and has no signs of damage.

15. Remove electrical connector (A) from the storage cup on the combine and route it to the float module receptacle.

16. Align the lugs on connector (A) with the slots in the receptacle (B), push the connector onto the receptacle, and turn the collar on the connector to lock it in place.
17. Detach safety chain (C) from support bracket (B).

18. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from support bracket.

19. Pull back the collar (A) on the end of the driveline, and push the driveline onto the combine output shaft (B) until the collar locks.
20. Disengage the float locks by pulling each float lock handle (A) away from the float module and setting it in unlocked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

Figure 4.12: Float Lock Handle
4.2.2 Detaching Header from Case IH Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

IMPORTANT:

If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult.

Refer to *Adjusting Stabilizer / Slow Speed Transport Wheels, page 87.*

IMPORTANT:

If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult.

Refer to *Adjusting Stabilizer Wheels, page 89.*

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

NOTE:

Illustration at right shows the right side of the header. Float lock on left side of header opposite.

4. Push back the collar (A) on the end of the driveline and pull the driveline out of the combine output shaft (B) until the collar disengages.
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Attach safety chain (E) to support bracket (B).

7. Remove the electrical connector (A) and replace the cover (B).

8. Push in the lock button (C) and pull the handle (D) to release the multicoupler (E).

9. Position the multicoupler (A) onto the storage plate (B) on the combine.

10. Place the electrical connector (C) in the storage cup (D).
11. Push the handle (A) on the float module receptacle to the closed position until the lock button (B) snaps out. Close the cover.

12. Lift the lever (A) and pull and lower the handle (B) to disengage the feeder house/float module lock (C).

13. Lower the feeder house until it disengages the float module support.

14. Back the combine away slowly from the float module.
4.3 AGCO (Challenger, Gleaner, and Massey Ferguson) Combines

4.3.1 Attaching Header to a Challenger, Gleaner, or Massey Ferguson Combine

WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Use the lock handle (B) to retract the lugs (A) at the base of the feeder house.

CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly approach the header until the feeder house is directly under the float module top cross member (A) and the alignment pins (C) (refer to Figure 4.22, page 359) on the feeder house are aligned with the holes (B) in the float module frame.
NOTE:
Your combine feeder house may not be exactly as shown.

3. Raise the feeder house slightly to lift the header, ensuring the feeder house saddle (A) is properly engaged in the float module frame.
4. Stop the engine and remove the key from the ignition.

5. Use the lock handle (B) to engage lugs (A) with the float module.

CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

6. Start the engine and lower the header.
7. Stop the engine and remove the key from the ignition.
NOTE:
The FM100 Float Module is equipped with a multicoupler that connects to the combine. If your combine is equipped with individual connectors, a multicoupler kit (single-point connector) must be installed. Refer to Table 4.1, page 360 for a list of kits and installation instructions that are available through your combine Dealer.

Table 4.1 Multicoupler Kits

<table>
<thead>
<tr>
<th>Combine</th>
<th>Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenger</td>
<td>71530662</td>
</tr>
<tr>
<td>Gleaner R/S Series</td>
<td>71414706</td>
</tr>
<tr>
<td>Massey Ferguson</td>
<td>71411594</td>
</tr>
</tbody>
</table>

8. Disengage the float locks by pulling each float lock handle (A) away from the float module and setting it in the unlocked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

9. Raise the handle (A) to release the multicoupler (B) from the float module.
10. Push the handle (A) on the combine to the fully-open position.

11. Clean the mating surfaces of the multicoupler (B) and receptacle if necessary.

12. Position the multicoupler (A) onto the combine receptacle, and pull the handle (B) to fully engage the multicoupler into the receptacle.

13. Connect the reel fore-aft/header tilt selector harness (C) to the combine harness (D).

14. Detach safety chain (C) from support bracket (B).

15. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from support bracket.
16. Pull back the collar (A) on the end of the driveline, and push the driveline onto the combine output shaft (B) until the collar locks.

Figure 4.30: Driveline

4.3.2 Detaching Header from a Challenger, Gleaner, or Massey Ferguson Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

IMPORTANT:
If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer / Slow Speed Transport Wheels, page 87.*

IMPORTANT:
If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer Wheels, page 89.*

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

Figure 4.31: Float Lock Handle (Right Side Shown in Detail, Left Side Opposite)
4. Disconnect the driveline (A) from the combine output shaft (B).

5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Disconnect the harness at the connector (A).

7. Move the handle (B) on the combine multicoupler to the full open position to release the multicoupler (C) from the combine.
8. Raise the handle (A) on the float module, and place the multicoupler (B) on the float module receptacle.

9. Lower the handle (A) to lock the multicoupler (B).

10. Use the lock handle (B) to retract the lugs (A) at the base of the feeder house.

Figure 4.35: Float Module Multicoupler

Figure 4.36: Challenger and Massey Ferguson

Figure 4.37: Gleaner R and S Series
11. Lower the feeder house until the saddle (A) disengages and clears the float module support (B).

12. Back the combine away slowly from the float module.

Figure 4.38: Float Module on Combine
4.4 John Deere Combines

The D1 Series Draper Header is compatible with John Deere 60, 70, S, and T Series combines.

4.4.1 Attaching Header to John Deere Combine

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Push handle (A) on the combine multicoupler receptacle towards the feeder house to retract pins (B) at the bottom corners of the feeder house. Clean the receptacle.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the header until feeder house saddle (C) is directly under float module top cross member (D).

3. Raise the feeder house slightly to lift the header ensuring the feeder house saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.

5. Pull handle (A) on the float module to release multicoupler (B) from the storage position. Remove the multicoupler, and push the handle back into the float module to store.

Figure 4.39: Combine and Float Module

Figure 4.40: Multicoupler Storage
6. Position multicoupler (A) onto the receptacle, and pull handle (B) to engage the lugs on the multicoupler into the handle.

7. Pull handle (B) to a horizontal position and ensure multicoupler (A) is fully engaged into the receptacle.

8. Ensure that both feeder house pins (A) are fully engaged into the float module brackets.

NOTE:
If pins (A) do not fully engage the float module brackets, loosen bolts (B) and adjust the bracket as required.

9. Tighten bolts (B).

10. Slide latch (A) to lock the handle (B) in position and secure with lynch pin (C).

11. If the float module is equipped with the reel fore-aft/header tilt selector, connect harness (D) to combine connector (E).
12. Detach safety chain (C) from support bracket (B).

13. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from the support bracket.

14. Pull back the collar (A) on the end of the driveline, and push the driveline onto the combine output shaft (B) until the collar locks.
15. Disengage the float locks by pulling each float lock handle (A) away from the float module, and setting it in unlocked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

Figure 4.46: Float Lock Handle
4.4.2 Detaching Header from John Deere Combine

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

IMPORTANT:

If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer / Slow Speed Transport Wheels, page 87*.

IMPORTANT:

If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to *Adjusting Stabilizer Wheels, page 89*.

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

NOTE:

Illustration at right shows the right side of the header. Float lock on left side of header opposite.

4. Open the shield (A) on the combine, pull back the collar on the driveline (B), and pull the driveline off the combine output shaft.
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Lift the handle (A) on the float module.

7. Disconnect the harness (A) from the combine connector.

8. Remove the lynch pin (B) and slide the lock (C) to release the handle (D).

9. Lift the handle (D) to full vertical position to release the multicoupler (E) from the combine.
10. Position the multicoupler (A) on the float module receptacle and lower the handle (B) to lock the multicoupler.

11. Push the handle (A) on the combine towards the feeder house to disengage the feeder house pin (B) from the float module.

12. Lower the feeder house until the saddle (A) disengages and clears the float module support (B).

13. Back the combine away slowly from the float module.
4.5 CLAAS Combines

The D1 Series Draper Header is compatible with CLAAS 500, 600, and 700 Series combines.

4.5.1 Attaching Header to CLAAS Combine

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Move handle (A) on the float module into the raised position, and ensure pins (B) at the bottom corners of the float module are retracted.

⚠️ CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the header until feeder house saddle (A) is directly under float module top cross member (B).

3. Raise the feeder house slightly to lift the header, ensuring the feeder saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.
5. Remove locking pin (B) from float module pin (A).

6. Lower handle (A) to engage float module pins (B) into the feeder house. Reinsert locking pin (C) and secure with the hairpin.

7. Stop the engine and remove the key from the ignition.

8. Unscrew knob (A) on combine coupler (B) to release the coupler from the receptacle.

9. Clean coupler (B) and receptacle.
10. Place float module receptacle cover (A) onto the combine receptacle.

11. Clean the mating surface of coupler (A) and position onto float module receptacle (B).

12. Turn knob (C) to secure the coupler to the receptacle.
13. Detach safety chain (C) from support bracket (B).

14. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from the support bracket.

15. Attach driveline (A) to the combine output shaft.
16. Disengage both header float locks by pulling each float lock handle (A) away from the float module and setting it in the unlocked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

Figure 4.64: Float Lock Handle
4.5.2 Detaching Header from CLAAS Combine

⚠️ DANGER ⚠️

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

IMPORTANT:
If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 87.

IMPORTANT:
If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer Wheels, page 89.

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

4. Disconnect the driveline (A) from the combine.
5. Store the driveline (A) on the driveline support bracket (B) by pulling back the collar (C) on the driveline and fitting it over the support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Remove the cover (A) from the combine receptacle.

7. Position the coupler (A) onto the combine receptacle, and turn the knob (B) to secure the coupler to the receptacle.
8. Place the cover (A) on the float module receptacle.

9. Remove the locking pin (A) from the float module pin (B).

10. Raise the handle (C) to disengage the float module pins (B) from the feeder house.

11. Replace the locking pin (A) in the float module pin, and secure with the hairpin.

12. Lower the feeder house until the feeder house posts (A) disengage the float module (B).

13. Back the combine away slowly from the float module.
4.6 New Holland Combines

The D1 Series Draper Header is compatible with the following New Holland combines:

<table>
<thead>
<tr>
<th>Series</th>
<th>Combine Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>920, 940, 960, 970, 980</td>
</tr>
<tr>
<td></td>
<td>9020, 9040, 9060, 9065, 9070, 9080</td>
</tr>
<tr>
<td></td>
<td>6090, 7090, 8080, 8090, 9090</td>
</tr>
<tr>
<td></td>
<td>6.80, 6.90, 7.90, 8.90, 9.90, 10.90</td>
</tr>
<tr>
<td>CX</td>
<td>840, 860, 870, 880</td>
</tr>
<tr>
<td></td>
<td>8070, 8080, 8090</td>
</tr>
<tr>
<td></td>
<td>8080 Elevation, 8090 Elevation</td>
</tr>
</tbody>
</table>

4.6.1 Attaching Header to New Holland CR/CX Combine

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Ensure handle (A) is positioned so locks (B) can engage the float module.

CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

2. Start the engine and slowly drive the combine up to the float module until feeder house saddle (A) is directly under float module top cross member (B).

3. Raise the feeder house slightly to lift the header, ensuring the feeder saddle is properly engaged in the float module frame.

4. Stop the engine and remove the key from the ignition.
5. Lift lever (A) on the float module on the left side of the feeder house, and push handle (B) on the combine to engage locks (C) on both sides of the feeder house.

6. Push down on lever (A) so the slot in the lever engages the handle and locks the handle in place.

7. If the lock does not fully engage pin (D) on the float module when lever (A) and handle (B) are engaged, loosen bolts (E) and adjust lock (C). Retighten bolts.

8. Open the cover on receptacle (A) located on the left side of the float module.

9. Push in lock button (B) and pull handle (C) to the full open position.

10. Clean the receptacle mating surfaces.

11. Remove hydraulic quick coupler (A) from the storage plate on the combine, and clean the mating surface of the coupler.
12. Position coupler (A) onto the float module receptacle, and push handle (B) to engage the pins into the receptacle.

13. Push handle (B) to closed position until lock button (C) snaps out.

14. Remove the cover on the float module electrical receptacle.

15. Remove connector (D) from the combine.

16. Align the lugs on connector (D) with the slots in the float module receptacle, and push the connector onto the receptacle. Turn the collar on the connector to lock it in place.

17. Detach safety chain (C) from support bracket (B).

18. Pull collar (D) back to release driveline (A) from support bracket. Remove the driveline from support bracket.

19. Pull back the collar on the end of the driveline, and push the driveline onto combine output shaft (A) until the collar locks.
20. Disengage the float locks by pulling each float lock handle (A) away from the float module and setting it in unlocked position (B).

NOTE:
Illustration at right shows the right side of the header. Float lock on left side of header opposite.

Figure 4.81: Float Lock Handle
4.6.2 Detaching Header from New Holland CR/CX Combine

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Choose a level area and position the header slightly above the ground.

2. Stop the engine and remove the key from the ignition.

IMPORTANT:

If slow speed transport wheels are installed, the header may be detached in either transport or field mode. If detaching with the wheels in field mode, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 87.

IMPORTANT:

If stabilizer wheels are installed, set the wheels to the storage or uppermost working position, otherwise the header may tilt forward, making reattachment difficult. Refer to Adjusting Stabilizer Wheels, page 89.

3. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in the locked position (B).

NOTE:

Illustration at right shows the right side of the header. Float lock on left side of header opposite.

4. Disconnect driveline (A) from the combine.
5. Store driveline (A) on driveline support bracket (B) by pulling back collar (C) on the driveline and fitting it over support bracket weldment (D). Release the collar so it locks into place over the weldment.

6. Attach safety chain (E) to support bracket (B).

7. Push in lock button (B), and pull handle (C) to release multicoupler (A).

8. Push handle (A) to the closed position until lock button (B) snaps out. Close the cover.
9. Position hydraulic quick coupler (A) onto storage plate (B) on the combine.

![Figure 4.87: Combine Coupler](image)

10. Remove electrical connector (A) from the float module.

![Figure 4.88: Float Module Connections](image)

11. Connect the electrical connector to the combine at location (A).

![Figure 4.89: Combine Couplers](image)
12. Replace cover (A) on the float module receptacle.

13. Lift lever (A) and pull and lower handle (B) to disengage feeder house/float module lock (C).

14. Lower feeder house (A) until the feeder house disengages float module support (B).

15. Back the combine slowly away from the header.
4.6.3 CR Feeder Deflectors

For New Holland combines only: Short feeder deflectors have been factory-installed on the float module to improve feeding into the feeder house. Remove the feeder deflectors if necessary. Refer to 5.11.3 Replacing Feed Deflectors on New Holland CR Combines, page 517.

Long feeder kits are provided for narrow feeder house combines and can be installed to replace the short feeder deflectors.

<table>
<thead>
<tr>
<th>Feeder House Size</th>
<th>Feeder Kit Size</th>
<th>MacDon Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250–1350 mm (49–65 in.)</td>
<td>Short: 200 mm (7 7/8 in.)</td>
<td>MD #213613, 213614</td>
</tr>
<tr>
<td>1100 mm (43-1/2 in.) and below</td>
<td>Long: 325 mm (12 13/16 in.)</td>
<td>MD #213592, 213593</td>
</tr>
</tbody>
</table>
4.7 Attaching and Detaching Header to and from FM100

Attaching/detaching procedures are the same for all makes and models of combines. Headers can be attached to the float module from either field or transport configurations.

The procedures in this manual require that the float module remains attached to the combine. Attach/detach the float module only if performing the following tasks:

- Detaching the header for use on a windrower
- Changing headers
- Performing certain maintenance tasks

4.7.1 Attaching Header to FM100

D1 Series headers can be attached to the float module from either field or transport configuration.

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:

Stabilizer/slow speed transport wheels can be used to support the header. Refer to Adjusting Stabilizer / Slow Speed Transport Wheels, page 87.

1. Prop up hydraulic center-link (A) with a pin (or equivalent tool) at location (B) as shown.

![Figure 4.93: Center-Link](image-url)
2. Remove ring (A) from pin (B), and remove the pins from the header legs at the delivery opening.

3. Ensure latches (A) at the front corners of the float module are rotated towards the rear of the float module.

CAUTION

Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

4. Start the engine, and lower the combine feeder house so float module arms (A) are aligned with header legs (B).

5. Drive slowly forward while maintaining alignment between float module arms (A) and header legs (B).

6. Keep float module arms (A) just under header legs (B) to ensure the float module legs seat properly in the header linkage supports at location (C).

IMPORTANT:

Keep the hydraulic hoses clear to prevent damaging them while driving into the header.

7. Drive slowly forward until float module arms (A) contact the stops in legs (C).
8. Adjust the length of center-link (A) using the header angle hydraulics to approximately align center-link eye (B) with the hole in the header bracket.

9. Shut down the engine, and remove the key from the ignition.

10. Connect the center-link as follows:
 a. Pull pin (B) partially out of bracket (C), and remove the prop from under center-link (A).
 b. Install pin (B) through center-link bracket (C), and secure with lynch pin.

⚠️ **CAUTION**
Always connect center-link before fully raising header.

⚠️ **CAUTION**
Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

11. Start the engine and slowly raise the float module while making sure the float module legs engage the header legs.
12. Raise the header to its full height, stop the engine, and remove the key from the ignition.
13. Engage the safety props on the combine.
14. Replace pin (B) in the header legs and secure with ring (A).

15. Match the colored cable ties and connect reel hydraulics (A) at the right end of the float module.

NOTE:
If optional multicoupler is installed for reel hydraulics, raise handle on float module, and place coupler on float module receptacle. Lower handle to lock coupler.

⚠️ **CAUTION**
Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

16. Remove the lift cylinder locks, start the engine, and lower the header to the ground. Adjust the header angle to the steepest setting (longest center-link).

17. Raise the reel to its full height.

18. Shut down the engine and remove the key from the ignition.

19. Engage the reel safety props.

⚠️ **WARNING**
Keep hands clear of the area between guards and knife at all times.
20. Remove screw (A) and remove nut and bolt (B) from both sides of the opening to allow the attachment of the float module deck.

21. Rotate latch (C) forward and down to engage the transition pan tube.

22. Use a 24 mm (15/16 in.) wrench on hex bolt (C) to rotate latch downwards and slightly raise the feed deck. Install nut and bolt (B) to lock the latch position.

24. Repeat for the opposite side of the feed draper deck.

25. Install fillers (B) on transition pan support angle (C) using two bolts (A).
26. Match the colored cable ties, and connect the knife and draper drive hydraulics (A).

27. Attach electrical connector (B) as follows:
 a. Remove the cover on the receptacle. Ensure it is clean and damage free.
 b. Align the lugs on the connector with the slots in the receptacle, push the connector onto the receptacle, and turn the collar on the connector to lock it in place.
 c. Attach the cover to the mating cover on the combine wiring harness.

28. Connect the quick disconnects (if installed) as follows:
 a. Remove the covers (if installed) from the receptacles and hose ends.
 b. Check the connectors and clean if necessary.
 c. Push hose connector (A) onto mating receptacle (B) until the collar on the mating receptacle snaps into the lock position.

 NOTE:
 Ensure the hoses are clear of the driveline and adjacent structure.

 NOTE:
 It is not necessary to bleed the system by loosening fittings.

29. Check the float and confirm the header is level. Refer to the following:
 - Checking and Adjusting Header Float, page 95
 - 3.9 Leveling the Header, page 326

⚠️ CAUTION
Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

30. Start the combine and perform the following inspections:
 - Raise and lower the reel to ensure the hoses are properly connected.
 - Run the header to ensure the hoses are properly connected.

31. Check for leaks.
4.7.2 Detaching Header from FM100

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ WARNING
Keep hands clear of the area between guards and knife at all times.

⚠️ CAUTION
Wear heavy gloves when working around or handling knives.

1. Start the engine and the lower header.
2. Increase clearance under the float module feed draper by tilting the header and fully extending cylinder (B) until indicator (A) is at position D.
3. Raise the reel to its full height.
4. Stop the engine and remove key from the ignition.
5. Engage the reel safety props.
6. Engage the float locks by pulling each float lock handle (A) away from the float module and setting it in locked position (B).

7. Remove two bolts (A) and fillers (B) from transition pan support angle (C). Repeat on opposite side.
8. Remove and retain screw (A).

9. Remove the 9/16 in. nut from bolt (B).

10. Use a 24 mm (15/16 in.) wrench on hex bolt (C) to rotate latch downwards and slightly raise the feed deck to remove bolt (B).

11. Rotate latch (C) up and back to lower the float module deck and disengage the transition pan tube.

13. Repeat for the opposite side of the feed draper deck.

CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

14. Disengage the reel safety props, start the engine, lower the reel, and fully raise the header.

15. Stop the engine, remove the key from the ignition, and engage the combine safety props.

16. Remove ring (A) from pin (B), and remove the pins from the header legs at the delivery opening.

17. Place a 150 mm (6 in.) block under jack stand (A) to assist with center-link disconnection.

18. Disengage the combine safety props, start the engine, and lower the header until the jack stand rests on the block or until the stabilizer wheels are on the ground.
19. Disconnect the hydraulic center-link as follows:
 a. Remove lynch pin and clevis pin (A), and lift center-link (B) clear of the bracket.
 b. Replace clevis pin (A) and secure with lynch pin.

 NOTE:
 It may be necessary to raise or lower the feeder house to adjust the length of the center-link and relieve excess load on the center-link.

20. Disconnect knife and draper drive hydraulic hoses (A). Immediately cap the hoses to prevent oil loss.

21. Store and secure the hoses on the float module frame.

22. Disconnect electrical connector (B) by turning the collar counterclockwise and pulling on the connector to disengage.

23. Store and secure the hoses and electrical connector on the float module.

24. Disconnect the quick disconnects (if installed) as follows:
 a. Line up slot (A) in the collar with pin (B) on the connector.
 b. Push the collar towards the pin, and pull the connector to disengage.
 c. Install plugs or caps on the hose ends (if equipped).
NOTE:
If colored plastic ties are missing, replace them before disconnecting hoses.

25. Disconnect reel hydraulics (A). Immediately cap hoses to prevent oil loss.

NOTE:
If the optional multicoupler is installed for the reel hydraulics, press the button on the side, raise the handle on the float module, and remove the coupler.

26. Store and secure the hoses and electrical connector on the float module at position (A) as shown.

27. Ensure the header is on the ground or is supported by the wheels in transport mode.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

28. Start the engine and slowly back away in a straight line from header.

29. Stop the engine and remove the key from the ignition.

30. Replace pins (B) in the header legs and secure with rings (A).
Chapter 5: Maintenance and Servicing

The following instructions provide information about routine header service. Detailed maintenance and service information is available in the technical service manual that is available from your Dealer. A parts catalog is provided in the plastic manual case inside the left endshield of the header.

Log hours of operation and use the maintenance record provided (refer to 5.3.1 Maintenance Schedule/Record, page 403) to keep track of your scheduled maintenance.

5.1 Preparing Machine for Servicing

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION

To avoid personal injury, follow all the safety precautions listed before servicing header or opening drive covers.

1. Lower the header fully. If it is necessary to service the header in the raised position, always engage the safety props.
2. Stop the engine and remove the key from the ignition.
3. Engage the park brake.
4. Wait for all moving parts to stop.
5.2 Maintenance Specifications

5.2.1 Installing a Sealed Bearing

1. Clean the shaft and apply a rust-preventive coating.

2. Install flangette (A), bearing (B), second flangette (C), and then lock the collar (D).

 NOTE:
 The locking cam is only on one side of the bearing.

3. Install flangette bolts (E). Do **NOT** tighten.

4. Position the shaft correctly, and lock the lock collar with a punch. Lock the collar in the same direction the shaft rotates, and tighten the set screw in the collar.

5. Tighten flangette bolts (E).

6. Loosen the flangette bolts on the mating bearing (one turn) and then retighten. This will allow the bearing to properly line up.

![Figure 5.1: Sealed Bearing](image)
5.3 Maintenance Requirements

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine’s life. Log hours of operation, use the maintenance record, and keep copies of your maintenance records (refer to 5.3.1 Maintenance Schedule/Record, page 403).

Periodic maintenance requirements are organized according to service intervals. If a service interval specifies more than one timeframe, e.g., 100 hours or annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).

When servicing the machine, refer to the appropriate section in this Maintenance and Servicing chapter and use only specified fluids and lubricants. Refer to inside back cover for recommended fluids and lubricants.

⚠️ CAUTION
Carefully follow safety messages. Refer to 5.1 Preparing Machine for Servicing, page 401 and 1 Safety, page 1.

5.3.1 Maintenance Schedule/Record

<table>
<thead>
<tr>
<th>Action:</th>
<th>✓ – Check</th>
<th>♦ – Lubricate</th>
<th>▲ – Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour meter reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviced by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of Season</td>
<td>Refer to 5.3.2 Break-In Inspection, page 406.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 Hours or Daily (Whichever Occurs First)

✓	Hydraulic hoses and lines; refer to 5.3.5 Checking Hydraulic Hoses and Lines, page 408	NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.
✓	Knife sections, guards, and hold-downs; refer to 5.8 Knife, page 459	NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.
✓	Tire pressure; refer to 5.15.3 Checking Tire Pressure, page 591	NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions.

25 Hours

| ✓ | Hydraulic oil level at reservoir; refer to 5.4.1 Checking Oil Level in Hydraulic Reservoir, page 424 | NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions. |
| ✓ | Knifeheads; refer to Every 25 Hours, page 409 | NOTE: MacDon recommends keeping a record of daily maintenance as evidence of a properly maintained machine; however, daily maintenance records are not required to meet normal warranty conditions. |
MAINTENANCE AND SERVICING

50 Hours or Annually

- Driveline and driveline universals; refer to *Every 50 Hours, page 410*
- Upper cross auger center support and U-joint; refer to *Every 50 Hours, page 410*
- Center draper roller bearings, 3 locations; refer to *Every 50 Hours, page 410*
- Knife drive box lubricant (first 50 hours only); refer to *Changing Oil in Knife Drive Box, page 481*
- Header drive gearbox lubricant (first 50 hours only); refer to *Changing Oil in Header Drive Gearbox, page 423*

100 Hours or Annually (Whichever Occurs First)

- Auger to pan and feed draper clearance; refer to *5.7.1 Adjusting Auger to Pan Clearance, page 436*
- Draper seal; refer to *5.12.5 Adjusting Deck Height, page 530*
- Gearbox lubricant level; refer to *Checking Oil Level in Header Drive Gearbox, page 422*
- Reel drive chain tension; refer to *5.14.2 Reel Drive Chain Tension, page 573*
- Reel finger/cutterbar clearance; refer to *Adjusting Reel Clearance, page 546*
- Knife drive belt tension; refer to *5.9.2 Knife Drive Belts, page 482*
- Wheel bolt torque; refer to *5.15.1 Checking Wheel Bolt Torque, page 589*
- Knife drive box lubricant level; refer to *Checking Knife Drive Box, page 472*
- Knife drive box mounting bolts; refer to *Checking Mounting Bolts, page 473*
- Auger drive chain; refer to *Every 100 Hours, page 412*
- Float pivots; refer to *Every 100 Hours, page 412*
- Float module auger pivots; refer to *Every 100 Hours, page 412*
- Float spring tensioners; refer to *Every 100 Hours, page 412*
- Reel drive chain; refer to *Every 100 Hours, page 412*
- Upper cross auger right bearing; refer to *Every 100 Hours, page 412*
<table>
<thead>
<tr>
<th>Maintenance Frequency</th>
<th>Maintenance Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hours or Annually (Whichever Occurs First)</td>
<td>☑ Draper roller bearings; refer to 5.12.6 Draper Roller Maintenance, page 532</td>
</tr>
<tr>
<td>250 Hours or Annually (Whichever Occurs First)</td>
<td>☑ Draper seal; refer to 5.12.5 Adjusting Deck Height, page 530</td>
</tr>
<tr>
<td></td>
<td>☑ Reel drive U-joint; refer to Every 250 Hours, page 415</td>
</tr>
<tr>
<td></td>
<td>☑ Bell crank linkage; refer to 3.9 Leveling the Header, page 326</td>
</tr>
<tr>
<td></td>
<td>☑ Transport axle pivot bushings; refer to Every 250 Hours, page 415</td>
</tr>
<tr>
<td></td>
<td>☑ Hydraulic oil filter; refer to 5.4.4 Changing Oil Filter, page 427</td>
</tr>
<tr>
<td>500 Hours or Annually (Whichever Occurs First)</td>
<td>☑ Draper seal; refer to 5.12.5 Adjusting Deck Height, page 530</td>
</tr>
<tr>
<td></td>
<td>☑ Reel shaft bearings; refer to Every 500 Hours, page 416</td>
</tr>
<tr>
<td></td>
<td>☑ Stabilizer/slow speed transport wheel bearings; refer to Every 500 Hours, page 416</td>
</tr>
<tr>
<td></td>
<td>☑ Header drive gearbox chain tension; refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 441</td>
</tr>
<tr>
<td>1000 Hours or 3 Years (Whichever Occurs First)</td>
<td>☑ Knife drive box lubricant; refer to Changing Oil in Knife Drive Box, page 481</td>
</tr>
<tr>
<td></td>
<td>☑ Header drive gearbox lubricant; refer to Changing Oil in Header Drive Gearbox, page 423</td>
</tr>
<tr>
<td></td>
<td>☑ Hydraulic oil; refer to 5.4.3 Changing Oil in Hydraulic Reservoir, page 426</td>
</tr>
</tbody>
</table>
5.3.2 Break-In Inspection

Break-in inspection involves checking belts, fluids, and performing general machine inspections for loose hardware or other areas of concern. Break-in inspections ensure that all components can operate for an extended period without requiring service or replacement. The break-in period is the first 50 hours of operation after the machine’s initial start up.

<table>
<thead>
<tr>
<th>Inspection Instance</th>
<th>Item</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Minutes</td>
<td>Check hydraulic oil level in reservoir (check after first run-up and after the hydraulic hoses have filled with oil).</td>
<td>5.4.1 Checking Oil Level in Hydraulic Reservoir, page 424</td>
</tr>
<tr>
<td>5 Hours</td>
<td>Check for loose hardware and tighten to required torque.</td>
<td>8.1 Torque Specifications, page 621</td>
</tr>
</tbody>
</table>
| 5 Hours | Check knife drive belts tension (check periodically for first 50 hours). | • Checking and Tensioning, page 484
 | | • Checking and Tensioning Timed Double-Knife Drive Belts, page 490 | |
| 10 Hours | Check auger drive chain tension. | 5.7.2 Checking Auger Drive Chain Tension, page 439 |
| 10 Hours | Check knife drive box mounting bolts. | Checking Mounting Bolts, page 473 |
| 50 Hours | Change float module gearbox oil. | Changing Oil in Header Drive Gearbox, page 423 |
| 50 Hours | Change float module hydraulic oil filter. | 5.4.4 Changing Oil Filter, page 427 |
| 50 Hours | Change knife drive box lubricant. | Changing Oil in Knife Drive Box, page 481 |
| 50 Hours | Check gearbox chain tension. | 5.6.5 Adjusting Gearbox Drive Chain Tension, page 435 |
| 50 Hours | Check deck height adjustment. | 5.12.5 Adjusting Deck Height, page 530 |

5.3.3 Preseason Servicing

Perform the following procedures at the beginning of each operating season:

⚠️ CAUTION

- Review this manual to refresh your memory on the safety and operating recommendations.
- Review all the safety decals and other decals on the header and note the hazard areas.
- Be sure all the shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
- Ensure you have a first aid kit and fire extinguisher. Know where they are and how to use them.

1. Lubricate the machine completely. Refer to 5.3.6 Lubrication and Servicing, page 409.
2. Adjust the tension on the drive belts. Refer to Checking and Tensioning, page 484 or Checking and Tensioning Timed Double-Knife Drive Belts, page 490.
3. Perform all annual maintenance tasks. Refer to 5.3.1 Maintenance Schedule/Record, page 403.
5.3.4 End-of-Season Service

Perform the following procedures at the end of each operating season:

⚠️ CAUTION

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

⚠️ CAUTION

Cover cutterbar and knife guards to prevent injury from accidental contact.

1. Clean the header thoroughly.
2. Bring the machine for storage in a dry and protected place if possible. If storing outside, always cover the machine with a waterproof canvas or other protective material.

NOTE:
If storing the machine outside, remove the drapers and store them in a dark, dry place. If not removing the drapers, store the header with the cutterbar lowered so water and snow will not accumulate on the drapers. The weight of water and snow accumulation puts excessive stress on the drapers and header.

3. Lower the header onto blocks to keep the cutterbar off the ground.
4. Lower the reel completely. If stored outside, tie the reel to the frame to prevent rotation caused by the wind.
5. Repaint all worn or chipped painted surfaces to prevent rust.
6. Loosen the drive belts.
7. Lubricate the header thoroughly leaving excess grease on the fittings to keep moisture out of the bearings.
8. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.
9. Lubricate the knife. Refer to the inside back cover for recommended lubricants.
10. Check for worn components and repair as necessary.
11. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at the beginning of next season.
12. Replace or tighten any missing or loose hardware. Refer to 8.1 Torque Specifications, page 621.
5.3.5 Checking Hydraulic Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

⚠️ WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure. Keep hands and body away from pin holes and nozzles which eject fluids under high pressure.
- If any fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

- Use a piece of cardboard or paper to search for leaks.

IMPORTANT:
Keep hydraulic coupler tips and connectors clean. Allowing dust, dirt, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do NOT attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.
5.3.6 Lubrication and Servicing

CAUTION

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 5.1 Preparing Machine for Servicing, page 401.

Refer to inside back cover for recommended lubricants.

Log hours of operation and use the Maintenance Record provided to keep a record of scheduled maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 403.

Service Intervals

Every 10 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Knife: Lubricate the knife every 10 hours or daily, except in sandy conditions. In sandy conditions, lubricate it less as sand will stick to the lubricant.

Every 25 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Knifehead: Lubricate the knifehead (A) every 25 hours. Check for signs of excessive heating on the first few guards after greasing. If required, relieve the pressure by pressing the check-ball in the grease fitting.

IMPORTANT:

Overgreasing the knifehead puts pressure on the knife, causing it to rub against the guards, resulting in excessive wear from binding. Do NOT overgrease the knifehead. Apply only one to two pumps using a mechanical grease gun (do NOT use an electric grease gun). If more than six to eight pumps of the grease gun are required to fill the cavity, replace the seal in the knifehead. Refer to 5.8.3 Removing Knifehead Bearing, page 462.
Every 50 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Figure 5.6: Every 50 Hours

52. U-joint has an extended lubrication cross and bearing kit. Stop greasing when greasing becomes difficult or if U-joint stops taking grease. Overgreasing will damage U-joint. Six to eight pumps are sufficient at first grease (factory). Increase grease interval as U-joint wears and requires more than six pumps.

53. Use high temperature extreme pressure (EP2) performance grease with 1.5–5.0% max molybdenum disulphide (NLGI Grade 2) lithium base.
Figure 5.7: Every 50 Hours

A - Drive Roller Bearing
B - Idler Roller Bearing (Both Sides)
C - Driveline Slip Joint
D - Driveline Universal (Two Places)

54. Use high temperature extreme pressure (EP2) performance grease with 10% max molybdenum disulphide (NLGI Grade 2) lithium base.
Every 100 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Figure 5.8: Every 100 Hours

A - Float Pivot – Right and Left
B - Auger Drive Chain. Refer to Lubricating Auger Drive Chain, page 421
C - Driveline Guard – Two Places
D - Reel Drive Chain – One Place. Refer to Lubricating Reel Drive Chain – Double Reel, page 419
Figure 5.9: Every 100 Hours

A - Knife Drive Box (Check Oil Level [B] on Dipstick [C]: Between Lowest Edge of Hole [D] and Bottom [E] of Dipstick)
F - Upper Cross Auger Bearing (One Place)
G - Main Drive Gearbox Oil Level. Refer to *Lubricating Header Drive Gearbox, page 422*
Figure 5.10: Every 100 Hours

A - Auger Pivots
Every 250 Hours

Change oil filter (A) every 250 hours of operation. Refer to 5.4.4 Changing Oil Filter, page 427 for instructions.
Every 500 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Figure 5.13: Every 500 Hours

A - Reel Right Bearing (One Place)
B - Reel Center Bearing (One Place)
C - Wheel Bearings (Four Places)
D - Reel Left Bearing (One Place)
Greasing Procedure

Greasing points are identified on the machine by decals showing a grease gun and grease interval in hours of operation. Grease point layout decals are located on the header and on the right side of the float module.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Refer to inside back cover for recommended lubricants.

Log hours of operation and use the Maintenance Record provided to keep a record of scheduled maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 403.

1. Wipe grease fitting with a clean cloth before greasing to avoid injecting dirt and grit.

 IMPORTANT:
 Use clean, high-temperature, extreme-pressure grease only.

2. Inject grease through fitting with grease gun until grease overflows fitting (except where noted).

3. Leave excess grease on fitting to keep out dirt.

4. Replace any loose or broken fittings immediately.

5. Remove and thoroughly clean any fitting that will not take grease. Also clean lubricant passageway. Replace fitting if necessary.
MAINTENANCE AND SERVICING

Figure 5.16: Double-Knife Header Grease Point Layout Decal

Figure 5.17: Single-Knife Header Grease Point Layout Decal
Lubricating Reel Drive Chain – Double Reel

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove six bolts (A) securing upper cover (B) to the reel drive and lower cover (C).
2. Remove upper cover (B).

3. Remove three bolts (A) and remove lower cover (B) if necessary.

4. Apply a liberal amount of grease to the chain (A).
5. Position lower drive cover (B) onto the reel drive (if previously removed), and secure with three bolts (A). Torque bolts to 12–13.2 Nm (9–10 lbf·ft).

6. Position upper drive cover (B) onto the reel drive and lower cover (C), and secure with six bolts (A) Torque bolts to 12–13.2 Nm (9–10 lbf·ft).
Lubricating Auger Drive Chain

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Lubricate the auger drive chain every 100 hours. The auger drive chain can be lubricated with the float module attached to the combine, but it is easier with the float module detached.

The auger drive cover consists of an upper and lower cover, and a metal inspection panel. Only the metal inspection panel needs to be removed to grease the chain.

1. Remove four bolts (A) and the metal inspection panel (B).

2. Apply a liberal amount of grease to the chain (A), drive sprocket (B), and idler sprocket (C).

3. Rotate the auger and apply grease to more areas of the chain, if necessary.
4. Reinstall metal inspection panel (B) and secure with four bolts (A).

Lubricating Header Drive Gearbox

Checking Oil Level in Header Drive Gearbox

Check the header drive gearbox oil level every 100 hours.

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground and ensure the gearbox is in working position.
2. Shut down the engine, and remove the key from the ignition.
3. Remove the oil level plug (A) and check that the oil level is up to the bottom of the hole.
4. Reinstall the oil level plug (A).
5. Add oil if required. Refer to *Adding Oil to Header Drive Gearbox, page 423.*
MAINTENANCE AND SERVICING

Adding Oil to Header Drive Gearbox

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the cutterbar to the ground, and ensure the gearbox is in working position.
2. Shut down the engine, and remove the key from the ignition.
3. Remove filler plug (B) and oil level plug (A).
4. Add oil into filler plug (B) until it runs out of oil level plug hole (A). Refer to the inside back cover for recommended fluids and lubricants.
5. Replace oil level plug (A) and filler plug (B).

![Figure 5.27: Header Drive Gearbox](image)

Changing Oil in Header Drive Gearbox

Change the header drive gearbox oil after the first 50 hours of operation and every 1000 hours (or 3 years) thereafter.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Start engine.
2. Engage the header to warm up the oil.
3. Raise or lower the header to position oil drain plug (A) at its lowest point.
4. Shut down the engine, and remove the key from the ignition.
5. Place a suitably sized container (approximately 4 liters [1 US gal]) underneath the gearbox drain to collect the oil.
6. Remove oil drain plug (A) and filler plug (C), and allow the oil to drain.
7. Replace oil drain plug (A) and remove oil level plug (B).
8. Add oil through filler plug (C) until it runs out of oil level hole (B). Refer to this manual’s inside back cover for recommended lubricants.

NOTE:
The header drive gearbox holds approximately 2.5 liters (2.6 quarts) of oil.

9. Replace oil level plug (B) and filler plug (C).

![Figure 5.28: Header Drive Gearbox](image)
5.4 Hydraulics

The FM100 Float Module’s hydraulic system drives the float module feed draper, header drapers, and knife drives. The combine’s hydraulic system drives the reel hydraulics.

The float module frame acts as an oil reservoir. Refer to inside back cover for oil requirements.

5.4.1 Checking Oil Level in Hydraulic Reservoir

Check the hydraulic oil level in the reservoir every 25 hours.

1. Check the oil level using lower sight (A) and upper sight (B) with the cutterbar just touching the ground and with the center-link retracted.

 NOTE:
 Check the level when the oil is cold.

 NOTE:
 For extremely hilly terrain, a hillside extension kit can be installed. Refer to [6.1.1 Hillside Extension Kit, page 593](#).

2. Ensure the oil is at the appropriate level for the terrain as follows:
 - **Hilly terrain:** Maintain level so lower sight (A) is full, and upper sight (B) is up to one-half filled.
 - **Normal terrain:** Maintain level so lower sight (A) is full, and upper sight (B) is empty.

 NOTE:
 It may be necessary to slightly reduce the oil level when ambient temperatures are above 35°C (95°F) to prevent overflow at the breather when normal operating temperatures are reached.

![Figure 5.29: Oil Level Sight Glass](image)
5.4.2 Adding Oil to Hydraulic Reservoir

Follow this procedure to top up the oil in the hydraulic reservoir. To change the hydraulic oil, refer to 5.4.3 Changing Oil in Hydraulic Reservoir, page 426.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Clean any dirt or debris from the filler cap (A).
3. Loosen and remove the filler cap (A) by turning it counterclockwise.
4. Add warm oil (approximately 21°C [70°F]) and fill to the required level. Refer to this manual’s inside back cover for oil type and specification.

IMPORTANT:
Warm oil will flow through the screen better than cold oil. Do NOT remove the screen.

5. Reinstall the filler cap (A).
6. Recheck oil level. Refer to 5.4.1 Checking Oil Level in Hydraulic Reservoir, page 424.
5.4.3 Changing Oil in Hydraulic Reservoir

Change the hydraulic oil in the reservoir every 1000 hours or 3 years (whichever comes first).

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Start engine.
2. Engage the header to warm up the oil.
3. Shut down the engine, and remove the key from the ignition.
4. Place a suitably sized container (at least 40 liters [10 gallons]) under each of the two oil drain plugs (A) located at the back on each side of the frame.
5. Remove the oil drain plugs (A) with a 1 1/2 in. hex socket and allow the oil to drain.
6. Replace the oil drain plugs (A) when reservoir is empty.
7. Change the oil filter if required. Refer to 5.4.4 Changing Oil Filter, page 427.
8. Add approximately 75 liters (20 gallons) of oil to the reservoir. Refer to 5.4.2 Adding Oil to Hydraulic Reservoir, page 425.

Figure 5.31: Reservoir Drain
5.4.4 Changing Oil Filter

Change the oil filter after the first 50 hours of operation and every 250 hours thereafter.

Obtain filter (MD #202986) from your MacDon Dealer.

![Figure 5.32: FM100 Hydraulics](image)

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Clean around the mating surfaces of the filter (B) and manifold (A).

 NOTE:

 Cover opened in illustration at right to show manifold (A).

2. Place a suitably sized container (approximately 1 liter [0.26 gallons]) under the oil drain spout (C) to collect oil runoff.

3. Remove the spin-off filter (B) and clean the exposed filter port in the manifold (A).

4. Apply a thin film of clean oil to the O-ring provided with the new filter.

5. Turn the new filter into the manifold (A) until the O-ring contacts the mating surface. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:

Do NOT use a filter wrench to install the new filter. Overtightening can damage the O-ring and filter.
5.5 Electrical System

5.5.1 Replacing Light Bulbs

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Use a Phillips screwdriver to remove screws (A) from the fixture, and remove the plastic lens. Retain screws (A).

2. Replace the bulb, and reinstall the plastic lens and screws.

NOTE:

Use bulb trade #1156 for amber transport lights and #1157 for the red tail light (Slow Speed Transport option).
5.6 Header Drive

The header drive consists of a driveline from the combine to the FM100 Float Module gearbox that drives the feed auger and hydraulic pumps. The pumps provides hydraulic power to the drapers, knives, and optional equipment.

5.6.1 Removing Driveline

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:

The driveline normally remains attached to the float module and is stored on the support bracket provided when not in use.

1. Shut down the combine, and remove the key from the ignition.
2. If the float module is attached to the combine, remove the driveline from the combine by pulling the quick disconnect collar to release the driveline yoke at the combine shaft.
3. Remove two nuts (A) securing shield (B) to the gearbox.
4. Slide shield (B) over the driveline shield to expose the quick disconnect on the gearbox. Do **NOT** disconnect tether (C).
5. Pull the quick disconnect collar to release the driveline yoke, and pull the driveline off the gearbox shaft.
6. Slide shield (B) off the driveline.
7. Pull driveline collar (A) away from power take-off (PTO) support (B). Slide yoke (C) off support bracket (B), and release collar (A).
5.6.2 Installing Driveline

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

IMPORTANT:

If the combine output shaft splines match the float module input shaft splines, ensure the driveline is installed with the longer guard at the float module gearbox end.

IMPORTANT:

Ensure the driveline length corresponds with the length specifications for your specific equipment. Refer to 2.2 Specifications, page 25.

1. Position the combine end of driveline (A) onto storage support (B). Pull back collar (C) on the driveline and slide the driveline onto the support until it locks in place. Release collar (C).

2. For drivelines equipped with safety chains, attach chain (D) at the combine end to driveline storage support (B).

3. Slide shield (A) over driveline (B).

4. Position the driveline quick disconnect onto the float module gearbox shaft, pull back the collar, and slide onto the shaft until it locks in place. Release the collar.

5. Position shield (A) on the gearbox and secure with bolts (C).

6. For drivelines equipped with safety chains, attach chain (D) at the module end to chain (E) on the shield.
5.6.3 Removing Driveline Guard

The main driveline guard must remain attached to the driveline during operation, but it can be removed for maintenance purposes.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:

The driveline does NOT need to be removed from the float module in order to remove the driveline guard.

1. Shut down the combine, and remove the key from the ignition.

2. Pull the driveline collar (A) away from the power take-off (PTO) support (B). Slide the yoke (C) off the support bracket (B), and release collar (A).

3. Lift the combine end of the driveline (A) from the hook, and extend the driveline until it separates. Hold the float module end of the driveline (B) to prevent it from dropping and hitting the ground.
4. Use a slotted screwdriver to release grease fitting/lock (A).

5. Rotate the driveline guard locking ring (A) counterclockwise using a screwdriver until the lugs (B) line up with the slots in the guard.

6. Pull the guard off the driveline.
5.6.4 Installing Driveline Guard

1. Slide the guard onto the driveline, and line up the slotted lug on the locking ring (A) with the arrow (B) on the guard.

2. Push the guard onto the ring until the locking ring is visible in the slots (A).

3. Use a slotted screwdriver to rotate ring (A) clockwise and lock ring in guard.
4. Push the grease fitting (A) back into the guard.

5. Assemble the driveline.

 NOTE:
 The splines are keyed to align the universals. Align weld (A) with the missing spline (B) when assembling.

6. Position the combine end of the driveline (A) on the power take-off (PTO) storage support (B). Pull back the collar (C) on the driveline and slide driveline onto the support until the driveline yoke (D) locks onto support. Release collar (C).
5.6.5 Adjusting Gearbox Drive Chain Tension

The gearbox drive chain tension is factory-set, but tension adjustments are required after the first 50 hours, then every 500 hours or annually (whichever comes first). The gearbox drive chain, located inside the gearbox, requires no other regular maintenance.

⚠️ WARNING ⚠️

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header.
2. Shut down the engine, and remove the key from the ignition.
3. Remove two bolts and the chain adjusting cover (A). Ensure there is no gasket (B) damage.
4. Remove the retainer plate (C).
5. Tighten bolt (D) to 6.8 Nm (60 lbf-in).
6. Refer to Table 5.1, page 435 and back off (loosen) bolt (D) based on your gearbox configuration.

NOTE:
A properly tensioned chain has 10–14 mm (3/8–9/16 in.) of deflection at its midpoint.

7. Reinstall the retainer plate (C).
8. Reinstall the chain adjusting cover (A) and gasket (B). Torque hardware to 9.5 Nm (84 lbf-in).

![Figure 5.49: Chain Tensioner](image)

Table 5.1 Adjusting Bolt Tightness on Configured Gearboxes

<table>
<thead>
<tr>
<th>Gearbox Configuration</th>
<th>Gear Ratios</th>
<th>Back Off Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAAS</td>
<td>22/38 sprocket ratio, 74 pitch chain</td>
<td>1 turn</td>
</tr>
<tr>
<td>Case, New Holland, and AGCO (Challenger, Gleaner, Massey Ferguson)</td>
<td>29/38 sprocket ratio, 78 pitch chain</td>
<td>1 turn</td>
</tr>
<tr>
<td>John Deere</td>
<td>37/38 sprocket ratio, 80 pitch chain</td>
<td>2-1/2 turn</td>
</tr>
</tbody>
</table>
5.7 Auger

The FM100 Float Module auger feeds the cut crop from the draper decks into the combine feeder house.

5.7.1 Adjusting Auger to Pan Clearance

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

IMPORTANT:

Maintain an appropriate distance between the auger and the auger pan. Too little clearance may result in the fingers or flighting contacting and damaging the feed draper or pan when operating the header at certain angles. Look for evidence of contact when greasing the float module.

1. Extend the center-link to the steepest header angle, and position the header 150–254 mm (6–10 in.) off the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Ensure the float lock linkage is on the down stops (washer [A] cannot be moved) at both locations.

Figure 5.50: Float Lock
4. Before adjusting the auger to pan clearance, check the auger float position to determine how much clearance is required:

- If bolt head (A) is closest to floating symbol (B), the auger is in the floating position.

IMPORTANT:
Make sure bolts (A) are set at the same location on both ends of the header to prevent damaging the machine during operation.

- If bolt head (A) is closest to fixed symbol (B), the auger is in the fixed position.

IMPORTANT:
Make sure bolts (A) are set at the same location on both ends of the header to prevent damaging the machine during operation.
5. Loosen two nuts (B) and rotate the auger to position the flighting over the feed pan.

6. Turn bolt (A) clockwise to increase clearance (C); turn bolt (A) counterclockwise to decrease clearance (C).
 - If the feed auger is in the fixed position, set clearance to 22–26 mm (7/8–1.0 in.).
 - If the feed auger is in the floating position, set clearance to 11–15 mm (7/16–5/8 in.).

NOTE:
The clearance increases between 25–40 mm (1–1-1/2 in.) when the center-link is fully retracted.

7. Repeat Steps 5, page 438 and 6, page 438 for the opposite end of the auger.

IMPORTANT:
Adjusting one side of the auger can affect the other side. Always double-check both sides of the auger after making final adjustments.

8. Tighten nuts (B) on both ends of the feed auger. Torque the nuts to 93–99 Nm (68–73 lbf·ft).

9. Rotate the drum and double-check clearances.
5.7.2 Checking Auger Drive Chain Tension

The auger is chain-driven by the float module drive system sprocket attached to the side of the auger.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header to the ground.
2. Raise the reel and engage the reel safety props. Refer to Engaging Reel Safety Props, page 35.
3. Shut down the engine, and remove the key from the ignition.

NOTE:

Gearbox chain tension should be adjusted prior to checking and adjusting the auger drive chain tension. Refer to 5.6.5 Adjusting Gearbox Drive Chain Tension, page 435.

4. Rotate the auger (A) by hand in reverse direction, until it cannot turn anymore.
5. Mark a line (B) across the drum and cover.

![Figure 5.54: Auger Drive](image)
6. Rotate the auger (A) by hand, in forward direction, until it cannot turn anymore and mark a line (C) across the drum and cover.

7. Measure the distance between the two lines (B) and (C).
 For a new chain:
 - If the difference between (B) and (C) is 1–4 mm (0.04–0.16 in.), no adjustment is required.
 - If the difference between (B) and (C) is greater than 4 mm (0.16 in.), the auger drive chain tension needs adjusting. Refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 441.

 For a used chain:
 - If the difference between (B) and (C) is 3–8 mm (0.12–0.31 in.), no adjustment is required.
 - If the difference between (B) and (C) is greater than 8 mm (0.31 in.), the auger drive chain tension needs adjusting. Refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 441.
 - If the difference between (B) and (C) is less than 3 mm (0.12 in.), the auger drive chain needs adjusting. Refer to 5.7.3 Adjusting Auger Drive Chain Tension, page 441.
5.7.3 Adjusting Auger Drive Chain Tension

The auger is chain-driven by the float module drive system sprocket attached to the side of the auger.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Detach the header from the combine. Refer to 4 Header Attachment/Detachment, page 349.

3. Loosen jam nut (B).

4. Loosen idler nut (A) slightly to allow idler to move by hand.

5. Rotate auger in reverse to take up slack in upper strand of chain.

6. Turn adjuster thumbscrew (C) clockwise to move the idler sprocket until it is finger tight only. Then back off 1 1/2 turns.

NOTE:
Do NOT overtighten.

7. Tighten the idler nut (A) and torque to 258–271 Nm (190–200 lbf-ft).

8. Check chain tension. Refer to 5.7.2 Checking Auger Drive Chain Tension, page 439.

Figure 5.56: Left Side of Auger Drive
5.7.4 Removing Auger Drive Chain

The chain tensioner can take up slack for only a single pitch. Replace the chain when the chain has worn or stretched beyond the limits of the tensioner.

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

NOTE:
Replace chain with endless chain (MD #220317).

NOTE:
Illustrations show the left side of the auger.

1. Tilt the header fully back to maximize space between auger and feed pan.
2. Detach header from the combine. Refer to 4 Header Attachment/Detachment, page 349.
3. On the left side of the auger, remove four bolts (A) and inspection panel (B).
4. Remove bolts (C) and remove indicator/clamp (D) that holds top cover (G) and bottom cover (H) together.
5. Remove bolt and washer (J) that secure bottom cover (H).
6. Remove bolts (E) and remove cover retainer (F).
7. Rotate top cover (G) and bottom cover (H) forward to remove from auger.

Figure 5.57: Auger Drive
8. Loosen jam nut (C) and turn thumbscrew (D) counterclockwise to release the bolt holding sprocket (B) and preventing it from being raised up to release chain tension.

IMPORTANT:
Do **NOT** loosen thin nut (E) on the inboard side of the idler sprocket spindle.

9. Loosen idler sprocket nut (A), and raise sprocket (B) to the uppermost position to release the tension on the chain. Tighten nut (A) to hold sprocket in place.

10. Remove screw (F) and washer (G).

11. Remove two bolts and nuts (A).

NOTE:
A second person may be needed to lift or support the auger to completely remove the bolts.

NOTE:
The bolts on the left of the auger are longer than the bolts on the right end of the auger.

12. Place a wooden block under the drive end of auger (B) to prevent the auger from dropping and damaging the feed draper.

13. Use a pry bar (A) to slide the auger to the right.
14. Remove drive sprocket (A) and chain (B) from spline shaft.

15. Maneuver auger (A) sideways and forward so that endless chain (B) can be removed from the auger.
5.7.5 Installing Auger Drive Chain

NOTE:
Illustrations show the left side of the auger.

1. Place drive chain (B) over the sprocket on the drive side of auger (A).

2. Place drive sprocket (A) into chain (B) and align the sprocket onto the shaft.

 NOTE:
The shoulder of drive sprocket (A) should face the auger.

3. Slide the auger drum assembly toward the casting, and then reinstall two bolts and nuts (A).

4. Remove the blocks from under the auger.
5. Rotate the auger in reverse to take up the slack in the lower strand of the chain.

IMPORTANT:
Do **NOT** loosen thin nut (C) on the inboard side of the idler sprocket spindle.

6. Turn adjuster thumbscrew (D) clockwise to move idler sprocket (B) until it is **FINGER TIGHT ONLY**.

NOTE:
Do **NOT** overtighten.

7. Tighten idler nut (A) and torque to 258–271 Nm (190–200 lbf-ft).

8. Tighten jam nut (A).

9. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to threads of screw (B).

10. Install washer (C) and secure it with screw (B).
11. Position bottom cover (H) and secure with bolt and washer (J).

12. Position top cover (G). Secure top and bottom covers with clamp/indicator (D) and bolts (C).

13. Install inspection panel (B) and secure with four bolts (A). Tighten bolts (A) and torque to 2.7–4.1 Nm (24–36 lbf-in).

14. Install cover retainer (F) and secure with two bolts (E).

Figure 5.68: Auger
5.7.6 Auger Fingers

The FM100 auger uses retracting tines to feed the crop into the combine feeder house. Some conditions may require the removal or installation of fingers for optimal crop feeding. Replace any worn or damaged fingers.

IMPORTANT:
Only install hollow fingers in a FM100. The use of solid fingers will cause severe damage to the machine.

Removing Feed Auger Fingers

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel.
2. Shut down the engine, and remove the key from the ignition.
3. Engage the reel safety props.
4. Remove bolts (A) and remove the access cover (B) closest to the finger you are removing. Retain parts for reinstallation.

5. Remove hairpin (A) and pull finger (B) out of finger holder (C) from inside the auger. Remove the finger from the auger by pulling it out through plastic guide (D).

Figure 5.69: Auger Access Hole Cover

Figure 5.70: Auger Finger
6. Remove bolts (A) and tee nuts securing plastic guide (B) to the auger, and remove the guide from inside the auger.

7. Coat bolts (B) with medium-strength threadlocker (Loctite® 243 or equivalent), and then position plug (A) into the hole from inside the auger, and secure with two M6 hex head bolts (B) and tee nuts. Torque to 8.5 Nm (75 lbf-in).

8. Coat bolts (A) with medium-strength threadlocker (Loctite® 243 or equivalent) and reinstall access cover (B). Secure the access cover in place with bolts (A). Torque bolts to 8.5 Nm (75 lbf-in).
Installing Feed Auger Fingers

DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:
Not all parts needed for this procedure are included in this kit, and depending on the original configuration of the feed auger, additional parts may need to be ordered. Refer to 3.7.1 FM100 Feed Auger Configurations, page 61 to see which parts are available.

1. Raise the reel.
2. Shut down the engine, and remove the key from the ignition.
3. Engage the reel safety props.
4. Remove bolts (A) and access cover (B) closest to the finger that needs to be installed or replaced.

If you are replacing an existing auger finger, refer to Step 5, page 450, otherwise proceed to Step 7, page 451 for installation instructions for new auger fingers.

Removing an existing auger finger:
5. Remove hairpin (A), pull finger (B) out of bushing (C) from inside the auger, and remove the finger from the auger by pulling it through plastic guide (D).

If you are replacing the plastic finger guide before installing the auger finger, refer to Step 6, page 451, otherwise refer to Step 9, page 452.
6. Remove bolts (A) securing plastic finger guide (B) to the auger. Remove guide (B) from inside the auger, and proceed to Step 8, page 451.

Installing a new auger finger:

7. Remove two bolts (B), tee nuts, and plug (A).

8. Coat bolts (A) with medium-strength threadlocker (Loctite® 243 or equivalent), and then insert plastic finger guide (B) from inside the auger and secure it with bolts and tee nuts. Torque bolts to 8.5 Nm (75 lbf-in).

NOTE:
When installing additional fingers, ensure you install an equal number on each side of the auger.
9. From inside the auger, insert new auger finger (B) through plastic guide (D).

10. Insert finger (B) into finger holder (C) and secure with hairpin (A).

NOTE:
Note the orientation of hairpin (A). The round part should face the direction of auger rotation; the formed side (that is, the S-shaped side) must face the chain drive side of the auger.

11. Coat bolts (A) with medium-strength threadlocker (Loctite® 243 or equivalent), then reinstall access cover (B) and secure with bolts. Torque to 8.5 Nm (75 lbf-in).
Replacing Broken Finger Holder

To replace a broken finger holder, follow these procedures.

NOTE:
Order the Split Finger Holder kit (MD #213026) for parts to replace broken finger holders on an FM100.

Removing Broken Finger Holder

To remove the broken finger holder, follow these steps:

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the reel.
2. Stop machine and remove key from ignition.
3. Engage the reel safety props.
4. Remove bolts (A) and remove access cover (B) closest to the broken finger holder.

NOTE:
Inspect for excessively damaged or worn finger guides (C). Replace as required.

![Figure 5.81: Access Cover](image)
5. Remove the remains of the broken finger holder from the finger shaft. You may need to use a chisel and hammer, a saw, or a cutoff disc.

IMPORTANT:
Be careful not to damage the finger shaft.

NOTE:
If the auger finger in the broken holder is not bent, broken, or otherwise damaged, you can reuse it in the new finger holder.

Installing Split Finger Holder

To install a split finger holder, follow these steps:

NOTE:
Unless otherwise specified, all parts are provided in kit (MD #213026).

1. Separate the two halves of the split finger holder.
2. Press two tee nuts (A) into the top half of split finger holder (B).
3. Snap the top half of split finger holder (B) on the finger shaft in place of the removed finger holder.
4. Insert (new or retained) auger finger (A) through the empty finger guide on the outside of the auger drum and into the top half of finger holder (B). Secure in place with hairpin (C). Ensure the closed end of the hairpin points in the direction of auger-forward rotation.

5. Press the bottom half of split finger holder (B) onto top half (A), and secure it in place with two M6 hex head bolts (C).

NOTE:
Only one bolt is shown in the illustration. The other bolt is installed on the other side of the finger shaft.

6. Torque bolts (C) to 8 Nm (70 lbf-in.).
7. Make sure there are no loose parts or debris in the auger.

8. Coat bolts (A) with Loctite® 243 (or equivalent), and then replace access cover (B), using bolts (A) to secure it in place.

9. Torque bolts (A) to 8.5 Nm (75 lbf-in.).
Replacing Feed Auger Finger Guides

2. Remove the two bolts securing guide (B) to the feed auger.

3. From inside the auger, position the plastic guide (B) and secure with bolts (A).
4. Replace the finger. Refer to Installing Feed Auger Fingers, page 450.
Checking Auger Finger Timing

This procedure is for checking the setting that determines where the fingers are fully extended from the auger.

NOTE:
Left side of auger shown.

2. Shut down the engine, and remove the key from the ignition.
3. Check that indicator (C) is set to the same position at each end of the auger.

NOTE:
There are two different auger tine extension positions: A and B. Position A (A) is used for canola and position B (B) is used for grains. The factory setting for the indicator is position B (B).

CAUTION
To avoid damaging the auger beyond repair, it is extremely important that both sides are at the same setting.

4. To adjust the indicator position, refer to Adjusting Auger Finger Timing, page 457.

Adjusting Auger Finger Timing

To adjust auger finger timing, follow these steps:

NOTE:
Left side of auger shown.

2. Shut down the engine, and remove the key from the ignition.
3. Locate finger timing indicator (C) at the end of the auger. There are two auger tine extension positions: Position A (A) and position B (B).
4. Loosen nuts (D) and adjust finger timing indicator (C) to the desired position.

IMPORTANT:
The timing indicator on both ends of the auger must be set at the same position; if not, the auger will be damaged beyond repair.
NOTE:
If the finger timing indicator is pointing at position A, it indicates that at that point the auger fingers will be fully extended. This allows the crop to be engaged and released earlier before entering the feeder house. This setting is best used for canola or bushy crops.

Figure 5.91: Auger Position A

NOTE:
If the indicator is pointing at position B, it indicates that at that point the auger fingers will be fully extended. This allows the crop to be engaged and released later before entering the feeder house. This setting is best used for grains or beans.

Figure 5.92: Auger Position B

7. Tighten nuts (A) once adjustment is complete. Torque nuts to 92–138 Nm (68–102 lbf·ft).

Figure 5.93: Auger Tine Timing Indicator

Using Auger Flighting
The auger flighting on the FM100 can be configured for specific combines and crop conditions. Refer to 3.7.1 FM100 Feed Auger Configurations, page 61 for combine/crop specific configurations.
5.8 Knife

⚠️ WARNING
Keep hands clear of the area between guards and knife at all times.

⚠️ CAUTION
Wear heavy gloves when working around or handling knives.

⚠️ CAUTION
To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 401.

Figure 5.94: Cutterbar Hazard
5.8.1 Replacing Knife Section

Inspect the knife sections daily and ensure they are firmly bolted to the knife back and are not worn or damaged (worn and damaged sections leave behind uncut plants). Worn or damaged sections can be replaced without removing the knife from the cutterbar.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.

IMPORTANT:

Do **NOT** mix finely and coarsely serrated knife sections on the same knife.

2. Stroke the knife as required to center knife section (A) between guards (E).
3. Remove and retain nuts (B).
4. Remove bars (C) and lift knife section (A) off the knife bar.
5. Remove splice bar (D) if knife section is under the bar.
6. Clean dirt off the knife back, and position the new knife section onto the knife back.
7. Reposition bars (C) and/or splice bars (D), and install nuts (B).

NOTE:

If replacing screws, ensure they are fully inserted. Do **NOT** use nuts to draw screws into the knife bar.

8. Torque nuts to 9.5 Nm (7 lbf-ft).

![Figure 5.95: Cutterbar](image)
5.8.2 Removing Knife

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling the knife.

1. Shut down the engine, and remove the key from the ignition.
2. Manually stroke the knife to its outer limit.
3. Clean the area around the knifehead.
4. Remove grease fitting (B) from the pin.

NOTE:
Removing the grease fitting will make it easier to reinstall the knifehead pin later.

5. Remove bolt and nut (A).
6. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.

7. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.
8. Push the knife assembly inboard until it is clear of the output arm.
9. Seal the knifehead bearing with plastic or tape to keep out dirt and debris unless it is being replaced.
10. Wrap a chain around the knifehead and pull out the knife.
5.8.3 Removing Knifehead Bearing

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

⚠️ WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling the knife.

NOTE:

If double-knife, repeat on opposite side.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the knife. Refer to 5.8.2 Removing Knife, page 461.

NOTE:

Because the bearing is being replaced, it is not necessary to wrap the knifehead to protect the bearing.

3. Use a flat-ended tool with the same approximate diameter as pin (A). Tap seal (B), bearing (C), plug (D), and O-ring (E) from the underside of the knifehead.

NOTE:

Seal (B) can be replaced without removing the bearing. When changing the seal, check the pin and needle bearing for wear and replace if necessary.

Figure 5.97: Knifehead Bearing Assembly
5.8.4 Installing Knifehead Bearing

1. Place O-ring (E) and plug (D) into knifehead.

 IMPORTANT:
 Install the bearing with the stamped end (the end with the identification markings) facing up.

2. Use a flat-ended tool (A) with the same approximate diameter as bearing (C), and push the bearing into the knifehead until the top of the bearing is flush with the step in the knifehead.

3. Install seal (B) into the knifehead with the lip facing outwards.

 IMPORTANT:
 To prevent premature knifehead or knife drive box failure, ensure there is a tight fit between the knifehead pin and the needle bearing, and between the knifehead pin and the output arm.

4. Install the knife. Refer to 5.8.5 Installing Knife, page 463.

5.8.5 Installing Knife

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING
Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling the knife.

1. Shut down the engine, and remove the key from the ignition.

2. Slide the knife into place and align the knifehead with the output arm.

3. Install knifehead pin (A) through output arm (C) and into the knifehead.

 NOTE:
 Remove the grease fitting from the knifehead pin for easier installation of knifehead pin.

4. Position the pin so that groove (B) is 1.5 mm (1/16 in.) above the output arm (C).

5. Secure pin with 5/8 x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf-ft).
6. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

7. Slowly apply grease to the knifehead until slight downward movement of the knifehead is observed.

IMPORTANT:
Do **NOT** overgrease the knifehead. Overgreasing leads to knife misalignment causing excessive heating of guards and overloading of drive systems. If overgreasing occurs, remove the grease fitting to release pressure.

5.8.6 Spare Knife

A spare knife can be stored in the header frame tube (A) at the left end. Ensure the spare knife is secured in place.
5.8.7 Knife Guards

Perform DAILY inspections to ensure the knife guards are aligned and the knife sections are contacting the shear surfaces of the knife guards.

Adjusting Knife Guards

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

NOTE:
Use guard straightening tool (MD #140135) available from your MacDon Dealer.

1. Position tool (A) as shown, and pull up to adjust the guard tips upwards.

2. Position tool (A) as shown, and push down to adjust the guard tips downwards.

NOTE:
If material is tough to cut, install stub guards with top guard and adjuster plate. A kit is available from your MacDon Dealer. Refer to 6.3.5 Stub Guard Conversion Kit, page 599.
Replacing Pointed Guards

This procedure replacing standard and drive side guards.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Stroke the knife manually until the knife sections are spaced midway between the guards.
3. Remove two nuts (B) and bolts attaching guard (A) and hold-down clip (C) (if applicable) to the cutterbar.
4. Remove guard (A), hold-down clip (C), and the plastic wearplate (if installed).

IMPORTANT:
The first four outboard guards (B) on the drive sides of the header do not have ledger plates. Ensure proper replacement guards are installed at these locations.
5. Position new guard (A), hold-down clip (C), and the plastic wearplate (if applicable) onto the cutterbar. Secure with two nuts (B) and bolts, but do **NOT** tighten.

6. Check and adjust the clearance between the hold-down clips and the knife. Refer to *Adjusting Hold-Down Clips with Pointed Guards, page 469*.

Replacing Stub Guards

Stub guards, complete with top guides and adjuster plates, are designed to cut tough crops and are factory-installed at the outer ends of specific headers.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Stroke the knife manually until the knife sections are spaced midway between the guards.
3. Remove the two nuts (A) and bolts attaching guard (B) and top guide (C) to the cutterbar.
4. Remove guard (B), the plastic wearplate (if installed), top guide (C), and adjuster bar (D).
IMPORTANT:
The first four outboard guards (A) on the drive sides of the header do not have ledger plates. Ensure the proper replacement guards are installed at these locations.

5. Position the plastic wearplate (if applicable), replacement guard (B), adjuster bar (D), and top guide (C), and then install bolts and nuts (A). Do NOT tighten.

6. Check and adjust the clearance between the hold-down clips and the knife. Refer to Adjusting Hold-Down Clips with Stub Guards, page 470.
Checking Knife Hold-Downs

Perform daily inspections to ensure the knife hold-downs are preventing the knife sections from lifting off the guards while permitting the knife to slide without binding. Use a feeler gauge to measure the clearance between the hold-downs and knife sections, and refer to the following for adjustment procedures:

- Adjusting Hold-Down Clips with Pointed Guards, page 469
- Adjusting Hold-Down Clips with Stub Guards, page 470

NOTE:
Align guards prior to adjusting the hold-downs. Refer to Adjusting Knife Guards, page 465.

Adjusting Hold-Down Clips with Pointed Guards

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Shut down the engine, and remove the key from the ignition.

2. Use a feeler gauge to measure the clearance between the standard guard hold-down clip (A) and the knife section. Ensure the clearance is 0.1–0.6 mm (0.004–0.024 in.).

3. To lower the front of the hold-down clip and decrease clearance, turn bolt (B) clockwise; to raise the front of the hold-down clip and increase clearance, turn bolt (B) counterclockwise.

 NOTE:
 For larger adjustments, it may be necessary to loosen nuts (C), turn adjuster bolt (B), and then retighten nuts.

4. Use a feeler gauge to measure the clearance between the center guard hold-down clip (A) and the knife section. Ensure the clearance is between the following measurements:

 - At guide tip (B): 0.1–0.4 mm (0.004–0.016 in.)
 - At rear of guide (C): 0.1–1.0 mm (0.004–0.040 in.)

5. Adjust the clearance as follows:

 a. Tighten nuts (D) until finger tight.

 b. Turn the three adjuster bolts (E) clockwise to raise the front of the hold-down clip and increase clearance, or counterclockwise to lower the front of the hold-down clip and decrease clearance.

 c. When all the adjustments are complete and the specified clearances are achieved, torque nuts (D) to 88 Nm (65 lbf-ft).
WARNING

Check to be sure all bystanders have cleared the area.

6. Complete the hold-down clip adjustments, run the header at low engine speed, and listen for noise caused by insufficient clearance.

IMPORTANT:
Insufficient hold-down clip clearance will result in overheating of the knife and guards—readjust as necessary.

Adjusting Hold-Down Clips with Stub Guards

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Shut down the engine, and remove the key from the ignition.

2. Use a feeler gauge to measure the clearance between the stub guard hold-down clip (A) and the knife section. Ensure the clearance is between the following measurements:
 - **At guide tip (B):** 0.1–0.4 mm (0.004–0.016 in.)
 - **At rear of guide (C):** 0.1–1.0 mm (0.004–0.040 in.)

3. Adjust the clearance as follows:
 a. Tighten nuts (D) until they are finger tight.
 b. To lower the front of the hold-down clip and decrease clearance, turn the three adjuster bolts (E) clockwise; to raise the front of the hold-down clip and increase clearance, turn the adjuster bolts (E) counterclockwise.
 c. Torque the nuts (D) to 72 Nm (53 lbf-ft) after all the adjustments are complete and the specified clearances are achieved.

WARNING

Check to be sure all bystanders have cleared the area.

4. Complete the hold-down clip adjustments, run the header at low engine speed, and listen for noise caused by insufficient clearance.

IMPORTANT:
Insufficient hold-down clip clearance will result in overheating of the knife and guards—readjust as necessary.
5.8.8 Knifehead Shield

The knifehead shield attaches to the endsheet and reduces the knifehead opening to prevent cut crop from accumulating in the knifehead cut-out.

The shields and mounting hardware are available from your MacDon Dealer.

IMPORTANT:

Remove the shields when using the cutterbar on the ground in muddy conditions. Mud may pack into the cavity behind the shield which could result in knife drive box failure.

Installing Knifehead Shield

The knifehead shield is supplied in flattened form, but it can be bent to suit installation on pointed or stub guard cutterbars. Knifehead shields differ slightly depending on header size and guard configuration, so ensure you are using the proper knifehead shield for your header. Refer to your parts catalog for proper replacement parts.

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

CAUTION

Wear heavy gloves when working around or handling knives.

1. Raise the reel to its full height, lower the header to the ground.

2. Shut down the engine, and remove the key from the ignition.

3. Engage the reel arm locks.

4. Place the knifehead shield (A) against the endsheet as shown. Align the shield so the cutout matches the profile of the knifehead and/or hold-downs.

5. Bend the knifehead shield (A) along the slit to conform to the endsheet.

6. Align the mounting holes and secure with two 3/8 x 1/2 in. Torx® head bolts (B).

7. Tighten the bolts (B) just enough to hold the knifehead shield (A) in place while allowing it to be adjusted as close to the knifehead as possible.

8. Manually rotate the knife drive box pulley to move the knife and check for areas of contact between the knifehead and knifehead shield (A). Adjust the shield to eliminate interference with the knife if necessary.

9. Tighten the bolts (B).
5.9 Knife Drive System

5.9.1 Knife Drive Box

⚠️ CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 401.

Double-knife headers have a knife drive box (A) at each end. Knife drive boxes are belt-driven by a hydraulic motor, and convert rotational motion into the reciprocating motion of the knife.

Checking Knife Drive Box

Single-knife headers have one knife-drive box and double-knife headers have two knife-drive boxes. To access the knife drive box(es), the endshield(s) must be fully opened.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Press down on the latch in the opening (A) on the inboard side of the endsheet.

2. Pull endshield open using handle depression (B).

Figure 5.114: Left Side Knife Drive Box Shown – Right Side Similar

Figure 5.115: Endshield Latch Access
3. Swivel the endshield toward the back of the header and use the safety latch (B) to secure the endshield support tube (A) to the endsheet.

![Figure 5.116: Left Endshield Support Tube](image1)

IMPORTANT:
The knife drive box breather is shipped in position (A) (forward) to prevent oil loss during transport. The breather **MUST** be repositioned to location (B) to prevent oil loss during normal operation. Failure to do so can result in damage to the knife drive box.

4. Check position of plug (A) and breather (B) at knife drive box. Position **MUST** be as shown.

5. Remove breather (B) and check oil level. The oil level should be between the bottom edge (C) of the lower hole (D) and the bottom (E) of the breather.

NOTE:
Check oil level with top of knife drive box horizontal and with the breather (B) screwed in.

6. Reinstall breather and tighten.

Checking Mounting Bolts
Check the torque on the four knife drive box mounting bolts (A) and (B) after the first 10 hours of operation and every 100 hours thereafter.

1. Torque the side bolts (A) first, then torque the bottom bolts (B). Torque all bolts to 271 Nm (200 lbf·ft).

![Figure 5.117: Knife Drive Box](image2)

![Figure 5.118: Knife Drive Box](image3)
Removing Knife Drive Box

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

For timed double-knife headers:

NOTE:
The procedure is the same for both ends of a timed double-knife header. Images shown are for the left end—the right end is opposite.

1. Shut down the engine, and remove the key from the ignition.
2. Open the endshield. Refer to *Opening Endshields, page 37*.
3. Loosen the two nuts (A) enough to allow idler pulleys (B) to pivot.
4. Loosen the two nuts (A) on the idler bracket to relieve the belt tension.
5. Loosen nut (B) on the idler pulley and slide the idler down to loosen the belt.
6. Proceed to Step 6, page 475.

For single-knife and untimed double-knife headers:

1. Shut down the engine, and remove the key from the ignition.
2. Open the endshield. Refer to *Opening Endshields, page 37*.
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.
4. Loosen the belt tension by turning tensioning bolt (B) counterclockwise.
5. Proceed to Step 6, page 475.
6. To provide clearance between the knife drive box pulley and the endsheet, open access cover (A) on the endsheet behind the cutterbar.

7. Remove belt (A) from drive pulley (B).

8. Slip belt (A) over and behind knife drive box pulley (C). Use the notch in the pulley to assist with belt removal.

9. Manually stroke the knife to its outer limit.

10. Clean the area around the knifehead.

11. Remove grease fitting (B) from the pin.

 NOTE:
 Removing the grease fitting will make it easier to reinstall the knifehead pin later.

12. Remove bolt and nut (A).

13. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.

14. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.

15. Push the knife assembly inboard until it is clear of the output arm.

16. Seal the knifehead bearing with plastic or tape to keep out dirt and debris unless it is being replaced.
17. Remove bolt (A) that clamps knife drive arm (B) to the knife drive box output shaft.

18. Remove knife drive arm (B) from the knife drive box output shaft.

19. Remove the four knife drive box mounting bolts (C) and (D).

NOTE:
Do NOT remove bolt (E); it is factory-set to properly position the knife drive box in the correct fore-aft position.

CAUTION
The knife drive box and pulley weigh over 35 kg (65 lb.) Use care when removing or installing. Lug (L) can be used for lifting.

20. Remove the knife drive box from the header and set aside.

Removing Knife Drive Box Pulley

Before removing the knife drive box pulley, remove the knife drive box from the header. Refer to *Removing Knife Drive Box, page 474*.

1. Loosen and remove knife drive box pulley clamping bolt (A) and nut (B).

2. Using a three-jaw puller, remove knife drive box pulley (C).

Figure 5.124: Knife Drive Box

Figure 5.125: Knife Drive Box and Pulley
Installing Knife Drive Box Pulley

1. Ensure the splines and bores in the pulley and drive arm are free of paint, oil, and solvents.

2. Apply two bands (A) of medium-strength threadlocker (Loctite® 243 or equivalent) around the shaft as shown at right. Apply one band at the end of the spline and the second band in the middle.

3. Press pulley (B) onto the shaft until flush with the end of the shaft.

4. Secure the pulley with a 5/8 x 3 in. hex head bolt (A) and a distorted thread NC lock nut (B). Torque bolt to 217 Nm (160 lbf-ft).

Figure 5.126: Knife Drive Box

![Diagram of Knife Drive Box](image1)

Figure 5.127: Knife Drive Box and Pulley

![Diagram of Knife Drive Box and Pulley](image2)
Installing Knife Drive Box

NOTE:
If the pulley was removed from the knife drive box, refer to Installing Knife Drive Box Pulley, page 477. If the pulley was NOT removed, proceed to Step 1, page 478.

⚠ CAUTION
The knife drive box and pulley weigh over 35 kg (65 lb.) Use care when removing or installing. Lug (L) can be used for lifting.

1. Position the knife drive box onto the header mount and install the belt onto the pulley.

2. Secure the knife drive box to the frame using two 5/8 x 1-3/4 in. grade 8 hex head bolts (A) on the side and two 5/8 x 2-1/4 in. grade 8 hex head bolts (B) on the bottom.

3. Tighten knife drive box side bolts (A) slightly, then tighten bottom bolts (B) to ensure proper contact with the vertical and horizontal mounting surfaces. Do NOT torque the bolts at this time.

4. Apply two bands (A) of medium-strength threadlocker (Loctite® 243 or equivalent) to the output shaft as shown. Apply one band at the end of the output shaft and the second band in the middle.

5. Slide output arm (B) onto the output shaft. Rotate the pulley to ensure the splines are properly aligned and the drive arm clears the frame on the inboard stroke.
6. Position output arm (A) to the farthest outboard position.

7. Move output arm (A) up or down on the splined shaft until it is almost contacting the knifehead (B) (exact clearance [C] is set during the knifehead pin installation).

8. Torque output arm bolt (A) to 217 Nm (160 lbf·ft).

9. Slide the knife into place and align the knifehead with the output arm.

10. Install knifehead pin (A) through output arm (C) and into the knifehead.

 NOTE:
 Remove the grease fitting from the knifehead pin for easier installation of knifehead pin.

11. Position the pin so that groove (B) is 1.5 mm (1/16 in.) above the output arm (C).

12. Secure pin with 5/8 x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf·ft).
13. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

14. Slowly apply grease to the knifehead until slight downward movement of the knifehead is observed.

IMPORTANT:
Do **NOT** overgrease the knifehead. Overgreasing leads to knife misalignment causing excessive heating of guards and overloading of drive systems. If overgreasing occurs, remove the grease fitting to release pressure.

15. Tighten the knife drive box side bolts (A) first, then tighten the bottom bolts (B). Torque to 271 Nm (200 lbf·ft).

16. Move the output arm to the mid-stroke position, and ensure the knife bar doesn’t contact the front of the first guard. If the knife drive box requires adjustment, contact your MacDon Dealer.

17. Install and tension the knife drive belts.
 - For untimed headers, refer to Checking and Tensioning, page 484.
 - For timed double-knife headers, also check the knife timing, refer to Adjusting Timed Double-Knife Timing, page 492.
 - For timed headers, refer to Checking and Tensioning Timed Double-Knife Drive Belts, page 490.

18. Close the endshield. Refer to Closing Endshields, page 38.
Changing Oil in Knife Drive Box

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Change the knife drive box lubricant after the first 50 hours of operation and every 1000 hours (or 3 years) thereafter.

1. Shut down the combine, and remove the key from the ignition.
2. Raise the header and place a container large enough to hold approximately 2.2 liters (2.3 quarts) under the knife drive box to collect the oil.
3. Open the endshield. Refer to *Opening Endshields, page 37*.
4. Remove the breather/dipstick (A) and the drain plug (B).
5. Allow the oil to drain from the knife drive box and into the container placed below it.
6. Reinstall the drain plug (B).
7. Add oil to the knife drive box. Refer to inside back cover for recommended fluids and lubricants.
8. Close the endshield. Refer to *Closing Endshields, page 38*.

Figure 5.135: Knife Drive Box
5.9.2 Knife Drive Belts

Non-Timed Knife Drive Belts

The knife drive box is driven by a V-belt that is powered by a hydraulic motor on the header left endsheet. There is an identical drive system at the opposite end of 12.2 m and 13.7 m (40 ft. and 45 ft.) double-knife headers.

Removing Single- and Untimed Double-Knife Drive Belts

The is the same for both sides of a double-knife header.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Open the endshield. Refer to *Opening Endshields, page 37*.
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.
4. Loosen the belt tension by turning tensioning bolt (B) counterclockwise.

5. To provide clearance between the knife drive box pulley and the endsheet, open access cover (A) on the endsheet behind the cutterbar.
6. Remove belt (A) from drive pulley (B).
7. Slip belt (A) over and behind knife drive box pulley (C). Use the notch in the pulley to assist with belt removal.

Installing Single- and Untimed Double-Knife Drive Belts

The procedure for installing untimed double-knife drive belts is the same for both sides of the header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Route knife drive belt (A) around knife drive box pulley (C) and knife drive pulley (B). Use the notch in the pulley to assist with the belt installation.

NOTE:
Ensure the drive motor is fully forward. Do **NOT** pry the belt over the pulley.
3. Tension the knife drive belt. Refer to Checking and Tensioning, page 484.

4. Install access cover (A) and secure with bolt.

5. Close the endshield. Refer to Closing Endshields, page 38.

Checking and Tensioning

\[\text{WARNING}\]

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

\[\text{IMPORTANT:}\]

To prolong the belt and drive life, do NOT overtighten the belt.

1. Shut down the engine, and remove the key from the ignition.

2. Open the left endshield. Refer to Opening Endshields, page 37.

3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.

\[\text{NOTE:}\]

The belt guide has been removed from the illustrations for clarity.

4. Check drive belt tension. A properly tensioned drive belt (C) should deflect 24–28 mm (15/16–1-1/8 in.) when 133 N (30 lbf) of force is applied at the midspan. If the belt needs to be tensioned, turn the adjuster bolt (B) clockwise to move the drive motor until proper tension is set.
5. Ensure the clearance between belt (A) and belt guide (B) is 1 mm (1/16 in.).

6. Loosen the three bolts (C), and adjust the position of guide (B) as required.

7. Tighten the three bolts (C).

8. Close the endshield. Refer to Closing Endshields, page 38.

 NOTE:
 Readjust the tension of a new belt after a short run-in period (about 5 hours).

9. **Double-knife headers only:** Repeat procedure on the other side of the header.
Timed Double-Knife Drive Belts

Removing Timed Drive V-Belts

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Open the endshield. Refer to Opening Endshields, page 37.
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.
4. Turn adjuster bolt (B) counterclockwise to loosen and remove the two V-belts (C).

Installing Timed Drive V-Belts

NOTE:
Install new V-belts in matching pairs.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Position V-belts (C) onto the pulleys.

 NOTE:
 Ensure the drive motor is fully forward. Do NOT pry the belts over the pulley.

3. Turn adjuster bolt (B) clockwise to tighten the V-belts. A properly tensioned V-belt should deflect 4 mm (5/32 in.) when a force of 52–77 N (12–17 lbf) is applied at midspan.

 IMPORTANT:
 To prolong the life of V-belts and drives. Do NOT overtighten the V-belts.

4. Tighten the two bolts (A) on the endsheet.
5. Close the endshield. Refer to Closing Endshields, page 38.
6. Check the tension of the new V-belts after a short run-in period (about five hours).
Removing Timed Knife Drive Belt

The timed knife drive belt removal procedure is the same for both sides of the header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Open the endshield. Refer to Opening Endshields, page 37.
3. Loosen two nuts (A) on the belt idler bracket to relieve the belt tension.
4. Loosen nut (B) on the idler pulley and slide the idler downwards to loosen the belt.

NOTE:
The following two steps apply only to the left side drive.

5. Loosen two bolts (A) on the endsheet.
6. Turn adjuster bolt (B) counterclockwise to loosen, and remove two V-belts (C).

Figure 5.145: Knife Drive

Figure 5.146: Knife Drive V-Belts
MAINTENANCE AND SERVICING

7. Open access cover (A) on the endsheet behind the cutterbar to provide clearance between the knife drive box pulley and the endsheet.

8. Remove the knife drive belt.

![Figure 5.147: Access Cover](image)

Figure 5.147: Access Cover

Installing Timed Knife Drive Belt

The procedure for installing timed knife drive belts is the same for both sides of the header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.

2. Route knife drive belt (A) around pulley (B) and knife drive box pulley (C).

 NOTE:
 Ensure the drive motor is fully forward. Do **NOT** pry the belt over the pulley.

![Figure 5.148: Timed Knife Drive Belt – Left Side Shown](image)

Figure 5.148: Timed Knife Drive Belt – Left Side Shown

3. Install V-belts (C) onto the pulleys.

 NOTE:
 Ensure the drive motor is fully forward, do **NOT** pry the belts over the pulley.

4. Turn adjuster bolt (B) clockwise to tighten the V-belts. A properly tensioned V-belt should deflect 4 mm (5/32 in.) when a force of 52–77 N (12–17 lbf) is applied at the midspan.

 IMPORTANT:
 To prolong the life of V-belts and drives, do **NOT** overtighten the V-belts.

![Figure 5.149: Knife Drive V-Belts](image)

Figure 5.149: Knife Drive V-Belts
NOTE:
If the belt is out of alignment, refer to Adjusting Timed Double-Knife Belt Tracking, page 495.

5. Tighten the two bolts (A) on the endsheet.

6. Ensure the knives are timed before tightening the belt. Refer to Adjusting Timed Double-Knife Timing, page 492.

7. Slide idler pulley (A) up the slot on support bracket (B) to take up the slack in the timing belt.

NOTE:
Ensure nut (C) is as high as possible in the slot on support bracket (B).

8. Tighten nut (D) to 212–234 Nm (157–173 lbf·ft).

10. Install access cover (A) and secure with bolt.

Checking and Tensioning Timed Double-Knife Drive Belts

The procedure for tensioning timed knife drive belts is the same for both sides of the header. The illustrations show the left side.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

IMPORTANT:

To prolong belt and drive life, do NOT overtighten belt.

IMPORTANT:

Do NOT use the adjuster bolt at the drive pulley to adjust timing belt tension.

1. Shut down the engine, and remove the key from the ignition.
2. Open the endshield. Refer to Opening Endshields, page 37.
3. Check drive belt tension. A properly tensioned belt (A) should deflect 13 mm (1/2 in.) at the midpoint of the upper span when a force of 27 N (6 lbf) is applied.

4. If the belt needs to be tensioned, loosen two nuts (A) on knife drive belt idler bracket (B).
5. Position pry bar (C) under the idler bracket, and push the bracket upwards until a force of 27 N (6 lbf) deflects the belt 13 mm (1/2 in.) at the midpoint of the upper span.

IMPORTANT:

Protect the machine’s paint by placing a piece of wood (D) under pry bar (C).
6. After achieving the proper belt tension, tighten the nuts (C) to 73–80 Nm (54–59 lbf·ft).
7. Remove pry bar (A) and wood (B).
8. Readjust the tension of a new belt after a short run-in period (about five hours).

9. Ensure clearance (A) between belt (B) and guide (C) is 0.5–1.5 mm (1/32–1/16 in.).
10. Loosen bolts (D) and adjust the guide if necessary. Tighten bolts.
12. Repeat procedure for the opposite side of the header.
Adjusting Timed Double-Knife Timing

Timed double-knife drive headers (10.7 m [35 ft.] and smaller) require the knives to be properly timed to move in opposite directions.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Open both endshields. Refer to Opening Endshields, page 37.
3. Remove the right belt. Refer to Removing Timed Knife Drive Belt, page 487.
4. Rotate the left knife drive box-driven pulley clockwise until left knife (A) is at the center of inboard stroke (B) (moving towards the center of the header).

NOTE:
The center stroke is when knife sections (C) are centered between the guard points.

5. Rotate the right knife drive box pulley counterclockwise until right knife (A) is at the center of inboard stroke (B) (moving towards the center of the header).

NOTE:
The center stroke is when knife sections (C) are centered between the guard points.
6. Install right belt (A).

NOTE:
Ensure the knife drive box drive pulley and driven pulley do **NOT** rotate during belt installation.

7. Slide idler pulley (A) up by hand to remove most of the belt slack. Tighten nut (B).

8. Rotate idler pulley bracket (A) downwards, and slide the idler pulley up by hand to remove most of the belt slack. Tighten nut (B).

9. Position pry bar (A) under idler bracket (C), and push the bracket upwards until a force of 27 N (6 lbf) deflects the belt 13 mm (1/2 in.) at the midpoint of the upper span.

IMPORTANT:
Protect the paint by placing a piece of wood (B) under pry bar (A).
10. Tighten nuts (C) to 73–80 Nm (54–59 lbf·ft) after achieving the proper belt tension.

11. Ensure the timing belts are properly seated in the grooves on both driver and driven pulleys.

12. To check for correct knife timing, rotate the drive slowly by hand, and observe where the knives overlap at the center of the header.

 IMPORTANT:
 The knives must begin moving at the exact same time, and must move in opposite directions.

13. If necessary, adjust the knife timing by loosening right drive belt (B) just enough to reposition it to the next cog(s), and proceed as follows:
 a. If the right knife leads the left knife, rotate right driven pulley (A) clockwise.
 b. If the right knife lags the left knife, rotate right driven pulley (A) counterclockwise.

14. Ensure the drive pulleys do not rotate, and tension the right-side drive belts (refer to Steps 8, page 493 to 10, page 494).

 IMPORTANT:
 Do NOT use the adjuster bolt at the drive pulley to adjust the timing belt tension.

15. Recheck the timing (refer to Step 12, page 494) and readjust if necessary (refer to Step 13, page 494).

16. Close both endshields. Refer to *Closing Endshields, page 38.*
Adjusting Timed Double-Knife Belt Tracking

The procedure for adjusting the belt tracking so it is the same on both sides of timed double-knife headers.

Two people are required for this procedure—one to operate the combine and header, and the other to observe and adjust the belt tracking.

IMPORTANT:
Belts that are not tracking properly are subject to premature failure; ensure the pulleys are aligned and parallel. Follow the belt tensioning procedures in this manual to prevent misalignment.

Cogged timing belts should be centered on the knife drive box pulley and positioned at least 2 mm (3/32 in.) from either edge of the pulley when the header is running (a gap should be visible between the belt and the edge of the pulley).

NOTE:
The belt should not make continuous contact with the flanges of the drive pulley, but occasional contact is acceptable.

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open both endshields. Refer to Opening Endshields, page 37.

⚠️ CAUTION
Exercise extreme care when operating the header with the endshields open.

2. Operate the header. Observe the belt tracking on both the drive pulley and the knife drive box pulley on both sides of the header.

3. Stop the combine and remove the key from the ignition before making any adjustments.

4. If the belt is tracking towards the inboard side of the drive pulley, the likely cause is a toe-out problem (A) and (B). If the belt tends to move towards the low tension [inboard] side of the pulley, proceed to Step 7, page 496.

5. If the belt is tracking towards the outboard side of the drive pulley, the likely cause is a toe-in problem (C) and (D). If the belt tends to move towards the high tension [outboard] side of the pulley, proceed to Step 7, page 496.
6. If belt (A) is tracking to one side of the knife drive box pulley (B), the likely cause is an out-of-position idler pulley (C). Proceed to Step 9, page 497.

7. If there is a tracking problem on the drive pulley, adjust the position of the cross-shaft support tube as follows:
 a. Loosen nut (A) on support assembly (B).
 b. To correct a toe-out condition, slide support assembly (B) rearward in slot (C).
 c. To correct a toe-in condition, slide support assembly (B) forward.
 d. Tighten nut (A).
 e. Operate the header and check the belt tracking. Adjust the support assembly as required.
 f. If belt tracking problems continue, proceed to Step 9, page 497.

8. Correct a tracking problem on the knife drive box pulley by adjusting the idler position as follows:
 a. Loosen nuts (A) and (B), and move the bracket and idler until the belt is loose.
 b. Remove nut (B) securing the idler to the bracket, and remove the lock washer, idler pulley, and flat washer.
 c. Install idler pulley (C) using flat washer(s) as required to align the idler pulley with the knife drive box pulley.
 d. Install lock washer (D) and nut (B).
 e. Tension the belt. Refer to Checking and Tensioning Timed Double-Knife Drive Belts, page 490.
 f. Operate the header and check the belt tracking.
9. If further adjustment is required to correct drive pulley tracking, proceed as follows:
 a. Loosen nut (A) on the idler and nuts (B) on the idler bracket.
 b. Loosen nuts (C) at the drive pulley location.
 c. To correct toe-in problems, turn adjuster bolt (D) clockwise to enable the belt to track inboard.
 d. To correct toe-out problems, turn adjuster bolt (D) counterclockwise to enable the belt to track outboard.
 e. Tighten nuts (C) at the drive pulley location.
 f. Tension the belt. Refer to Checking and Tensioning Timed Double-Knife Drive Belts, page 490.
 g. Operate the header, check the belt tracking, and readjust the drive pulley as necessary.

Figure 5.166: Knife Drive – Left Side

Figure 5.167: Knife Drive – Right Side
5.10 Feed Draper

The feed draper is located on the FM100 Float Module and conveys cut crop to the auger.

⚠️ CAUTION
To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 401.

5.10.1 Replacing Feed Draper

Replace draper if torn, cracked, or missing slats.

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise header and reel to full height, stop the engine, and remove key from the ignition.
2. Engage reel safety props and header safety props.
3. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side of the header.

4. Unlatch the feed deck pan handle (A) from the pan handle latch supports (B) on either side of the feed deck. This will drop the door down and allow access to feed deck draper and rollers.

NOTE:
Some parts removed from illustration for clarity.
5. Remove nuts and screws (A), and remove draper connector straps (B).

6. Pull the draper from the deck.

7. Install new draper (A) over the drive roller (B). Make sure the draper guides fit into the drive roller grooves (C).

8. Pull draper along bottom of feed deck and over idler roller (D).
9. Connect the draper joint with the connector straps (B) and secure with nuts and screws (A). Ensure the screw heads face towards the rear of the deck, and tighten only until the end of the screws are flush with the nuts.

10. Adjust the draper tension. Refer to 5.10.2 Checking and Adjusting Feed Draper Tension, page 501.

11. Close the feed deck by latching the pan handle latch supports (B) on either side of the feed deck to the feed deck pan handle (A).

NOTE:
Some parts removed from illustration for clarity.
5.10.2 Checking and Adjusting Feed Draper Tension

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the header to its full height, stop the engine, and remove the key from the ignition.
2. Engage the header safety props.

Checking draper tension:

3. Ensure the draper guide (the rubber track on the underside of the draper) is properly engaged in the groove on the drive roller and the idler roller is between the guides.

NOTE:

Illustrations show the left side of the float module. The right side is opposite.

NOTE:

The default position of the spring retainer (A) (white indicator) is centered (B) in the spring box window; however, the position of the spring retainer varies with draper tracking adjustment at the factory.

4. Check the position of white indicator (A). If the feed draper tracks properly and the spring retainers on both sides of the draper are correctly positioned, then no adjustment is necessary.

5. If adjustment is necessary, proceed to Step 6, page 501.

Adjusting draper tension:

6. Adjust the draper tension by loosening jam nut (A) and turning bolt (B) clockwise to increase draper tension or turning bolt (B) counterclockwise to decrease draper tension. Draper tension can be adjusted as follows:

 - Loosened to 3 mm (1/8 in.) (C) (aft of center in indicator window [E])
 - Tightened to 6 mm (1/4 in.) (D) (forward of center in indicator window [E])

IMPORTANT:

For small tension adjustments, you may need to only adjust one side of the draper. For larger tension adjustments and to avoid uneven draper tracking, you may need to adjust both sides of the draper an equal amount.

7. Tighten jam nut (A).
5.10.3 Feed Draper Drive Roller

This roller is powered and moves the draper on the float module, conveying crop to the auger.

Removing Feed Draper Drive Roller

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the header and reel to full height, stop the engine, and remove the key from the ignition.
2. Engage reel safety props and header safety props.
3. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side of the header.
4. Remove nuts and screws (A), and remove draper connector straps (B).
5. Pull the draper from the deck.
6. Remove two bolts (B) from the drive roller cover (A).

7. Move the drive roller cover plate (A) to the left.

8. Slide drive roller (A) with bearing assembly (B) to the right until left end comes off of spline.
MAINTENANCE AND SERVICING

9. Lift left end out of the frame.

10. Slide assembly (A) to the left, guiding bearing housing (B) through frame opening (C).

11. Remove roller (A).

![Figure 5.181: Drive Roller](image)

Installing Feed Draper Drive Roller

1. Apply grease to the spline.

2. Slide drive roller cover plate (A) onto right end of roller (B).

3. Guide bearing end (C) of drive roller through frame opening (D).

![Figure 5.182: Drive Roller – Bearing End](image)

4. Slide left end of drive roller (A) onto spline of motor (B).

![Figure 5.183: Motor](image)
5. Secure the bearing and housing (A) with the drive roller cover plate on the frame using two bolts (B).

6. Install the feed deck draper. For instructions, refer to 5.10.1 Replacing Feed Draper, page 498.

7. Tension the feed draper. For instructions, refer to 5.10.2 Checking and Adjusting Feed Draper Tension, page 501.

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the header and reel to full height.

2. Stop the engine and remove the key from the ignition.

3. Engage the reel safety props and header safety props.

4. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side of the header.
5. Loosen set screw (B) on bearing lock (A).

6. Using a hammer and punch, tap bearing lock (A) in the direction opposite to the auger rotation to release the lock.

7. Remove two nuts (A).

8. Remove bearing housing (A).

NOTE:
If the bearing is seized on the shaft, it may be easier to remove the drive roller assembly. For instructions, refer to *Removing Feed Draper Drive Roller, page 502.*
Installing Feed Draper Drive Roller Bearing

1. Install drive roller bearing housing (A) onto shaft (B), and secure with two bolts and nuts (C).

2. Install bearing lock collar (A) onto the shaft.

3. Using a hammer and punch, tap the bearing lock in the direction of auger rotation to lock.

4. Tighten bearing lock set screw (B).

5. Tension the feed draper. For instructions, refer to 5.10.2 Checking and Adjusting Feed Draper Tension, page 501.
5.10.4 Feed Draper Idler Roller

This roller is non-powered and driven by the feed draper drive roller. Like the drive roller, it conveys crop across the feed draper to the auger.

Removing Feed Draper Idler Roller

1. Engage the feeder house safety props. For instructions, refer to the combine operator’s manual.

2. Loosen jam nut (A) and turn bolt (B) counterclockwise to release the draper tension. Repeat at the opposite side of the header.

3. Remove nuts and screws (A), and remove draper connector straps (B).

4. Open the draper.

5. Remove nut (D) to have better access to the other two nuts (C).

6. Remove two bolts (A) and nuts (C) from both ends of the idler roller.

7. Remove idler roller assembly (B).
Replacing Feed Draper Idler Roller Bearing

1. Remove dust cap (A).

2. Remove nut (A).

3. Use a hammer to tap bearing assembly (B) until it slides off the shaft.

NOTE:
When installing a new bearing, do **NOT** place the opposite end of the roller directly on the ground. The bearing assembly (A) protrudes past the roller tube (B), and placing the end on the ground will push the bearing farther into the tube.
4. Cut a relief (A) into a block of wood.

5. Set the end of idler roller (B) onto the block, with the protruding bearing assembly inside relief (A).

6. Secure housing (D) and remove internal retaining ring (A), bearing (B), and two seals (C).

7. Install seals (C) into housing (D).

 NOTE:
 Ensure the flat side of the seal is facing inward.

8. Install new bearing (C) by pressing on its outer race. Position bearing 14–15 mm (9/16–19/32 in.) (B) from the outside edge of the tube.

9. Fill bore (A) with 8 cc of grease.
10. Using a seal press and hammer, install new retaining ring (A) by pressing on the inner and outer races. Position the ring 3–4 mm (1/8–3/16 in.) (B) from the end of the tube.

11. Brush the shaft with oil. Carefully rotate housing (D) with seals (C), bearing (B), and retaining ring (A) onto the shaft by hand to prevent seal damage.

12. Secure the bearing assembly to the shaft with nut (A).

13. Fill the bearing cavity with grease, and install dust cap (B).

14. Check that the grease fitting is working.

15. Install the feed draper idler roller on header. For instructions, refer to *Installing Feed Draper Idler Roller*, page 512.
Installing Feed Draper Idler Roller

1. Position idler roller assembly (B) in the float module deck.

2. Install two bolts (A) and nuts (C) at both ends of the idler roller.

 NOTE:
 Do **NOT** overtighten bolts (A).

3. Install nut (A).

 IMPORTANT:
 Maintain a 2–4 mm (1/16–3/16 in.) gap (C) between the plate (B) and nut (A) to allow the idler roller to float and to move when belt is tensioned or adjusted.

4. Close the feed draper and secure with connector straps (B), screws (A), and nuts.

5. Tension the feed draper. For instructions, refer to **5.10.2 Checking and Adjusting Feed Draper Tension, page 501.**
5.10.5 Lowering FM100 Feed Deck Pan

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Start combine, raise header fully, and engage header lift cylinder locks.
2. Stop engine and remove key.
3. Rotate latches (A) to unlock handle (B).

NOTE:
Parts have been removed from illustration at right for clarity.

Figure 5.206: Feed Deck Pan – Rear View
4. Hold pan (A) and rotate handles (B) downward to release pan.

5. Lower pan (A) and check for shipping materials/debris that may have fallen under float module draper.

NOTE:
Illustration at right shows rear view of feed deck.

![Figure 5.207: Underside of Feed Deck Pan](image1)

![Figure 5.208: Feed Deck Pan](image2)
5.10.6 Raising FM100 Feed Deck Pan

1. Raise feed deck pan (A).

2. Engage lock handle (B) in feed deck pan hooks (C).

3. Rotate handles (B) upwards, bringing feed deck pan (A) into locking position.

 NOTE:
 Ensure that all three deck pan hooks (C) are secured on lock handle (B).

4. Hold feed deck pan (A) in place, and rotate latches (B) to lock handle (C).
5.11 FM100 Stripper Bars and Feed Deflectors

5.11.1 Removing Stripper Bars

1. Detach the header from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

2. Remove the four bolts and nuts (A) securing stripper bar (B) to the float module frame, and remove the stripper bar.

3. Repeat at the opposite side of the header.

![Figure 5.211: Stripper Bar]
5.11.2 Installing Stripper Bars

1. Detach the header from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.
2. Position stripper bar (B) so the notch is at the corner of the frame.
3. Secure stripper bar (B) to the float module with four bolts and nuts (A). Ensure the nuts are facing the combine.
4. Repeat at the opposite side of the header.

5.11.3 Replacing Feed Deflectors on New Holland CR Combines

1. Detach the header from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.
2. Remove the two bolts and nuts (B) securing feed deflector (A) to the float module frame, and remove the feed deflector.
3. Position the replacement feed deflector (A), and secure with bolts and nuts (B) (ensure the nuts are facing the combine). Do NOT tighten nuts.
4. Adjust deflector (A) so that distance (C) between pan and deflector is 4–6 mm (5/32–1/4 in.).

5. Tighten nuts (B).

6. Repeat for opposite deflector.

7. Attach header onto the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

8. After attaching the header to the combine, fully extend the center-link and check the gap between the deflector and pan. Maintain the 4–6 mm (5/32–1/4 in.) gap.

5.11.4 Replacing Feed Deflectors on Gleaner Combines

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Detach the header from the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

2. Loosen nuts (A) and slide panel (B) up to access the deflector adjustment bolts.

 NOTE:
 The auger was removed from the illustration for clarity.

 NOTE:
 Left deflector assembly shown. Right deflector assembly opposite.

3. Remove the two bolts and nuts (B) securing feed deflector (A) to the float module frame, and remove the feed deflector. Retain hardware.
4. Remove two bolts and nuts (A) securing feed deflector (B) to the float module frame. Retain hardware.

5. Remove two bolts and nuts (C) securing feed deflector (B) to support (D). Retain hardware.

6. Set new feed deflector (A) in place on the float module frame and secure in place using bolts and nuts (B) retained from Step 3, page 518. If hardware (B) is damaged, replace with two 25 mm short-necked carriage bolts and two flange lock nuts.

7. Attach the float module and header to the combine. For instructions, refer to 4 Header Attachment/Detachment, page 349.

8. Fully retract center-link (position A on the indicator).

9. Shut down the engine and remove the key.
10. To adjust the deflector, loosen nuts (A) and position the deflector so that distance (B) between the feed pan and the deflector is 20–22 mm (13/16–7/8 in.).

NOTE:
The auger was removed from the illustration for clarity.

11. Tighten nuts (A).

12. If there is a gap larger than 4 mm (3/16 in.) between the stainless steel deflector panel (B) (part of the deflector assembly) and the feed pan, loosen hardware (A) and adjust the stainless steel adjusting panel until it contacts the stainless steel feed pan. Tighten hardware.

NOTE:
The auger was removed from the illustration for clarity.
MAINTENANCE AND SERVICING

13. If necessary, loosen hardware (A), and then adjust the position of stripper (B) on top of the deflector. The stripper edge should extend over the front of the deflector top bend so that dimension (C) is 7.6 mm (5/16 in.).

 NOTE:
 The auger was removed from the illustration for clarity.

14. Retighten hardware (A).

15. Close access panel (B) and tighten nuts (A).
16. Using bolts and nuts (A) retained from Step 5, page 519, secure support (B) to replacement feed deflector (C).

17. Position the replacement feed deflector (C), and secure with bolts and nuts (D) retained from Step 4, page 519. Ensure the nuts are facing the combine. Do NOT tighten nuts.

18. Repeat for opposite side deflector.

5.12 Header Side Drapers

There are two header side drapers. They convey cut crop to the float module feed draper and auger. Replace the drapers if torn, cracked, or missing slats.

5.12.1 Removing Side Drapers

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel and engage the reel safety props.
2. Raise the header and engage the safety props.
3. Move the draper until the draper joint is in the work area.

 NOTE:
 The D1 Series deck can also be shifted towards the center to provide an opening at the endsheet.

4. Shut down the engine, and remove the key from the ignition.
5. Release the tension on the draper. For instructions, refer to 5.12.3 Adjusting Draper Tension, page 526.
6. Remove screws (A) and tube connectors (B) at the draper joint.
7. Pull the draper from the deck.

Figure 5.224: Draper Connector
5.12.2 Installing Side Drapers

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

1. Raise the reel and engage the reel safety props.
2. Raise the header and engage the safety props.
3. Shut down the engine, and remove the key from the ignition.

NOTE:
Check the deck height before installing the drapers. For instructions, refer to 5.12.5 Adjusting Deck Height, page 530.

4. Apply talc, baby powder, or talc/graphite lubricant mix to the underside of the draper guides and to the draper surface that forms the seal with the cutterbar.
5. Insert the draper into the deck at the outboard end under the rollers. Pull the draper into the deck while feeding it at the end.
6. Feed in the draper until it can be wrapped around the drive roller.
7. Insert the opposite end of the draper into the deck over the rollers. Pull the draper fully into the deck.
8. Loosen mounting bolts (B) on rear deck deflector (A) (this may help with draper installation).
9. Attach the ends of the draper with tube connectors (B), screws (A) (with the heads facing the center opening), and nuts.

10. Adjust the draper tension. For instructions, refer to 5.12.3 Adjusting Draper Tension, page 526.

11. Check clearance (A) between drapers (B) and cutterbar (C). Clearance should be 0–3 mm (0–1/8 in.). Refer to 5.12.5 Adjusting Deck Height, page 530 to adjust if necessary.

12. If backsheet deflector (A) requires adjustment, loosen nut (D) and move the deflector until there is a 1–7 mm (1/32–5/16 in.) gap (C) between draper (B) and the deflector.

13. Operate the drapers with the engine at idle so the talc or talc/graphite lubricant makes contact and adheres to the draper seal surfaces.
5.12.3 Adjusting Draper Tension

The drapers are tensioned at the factory and rarely need adjustment. If adjustment is required, tension the drapers just enough to prevent slipping and to keep the draper from sagging below the cutterbar.

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under machine for any reason.

1. Ensure white indicator bar (A) is at the halfway point in the window.

⚠️ WARNING
Check to be sure all bystanders have cleared the area.

2. Start the engine and fully raise the header.
3. Shut down the engine, and remove the key from the ignition.
4. Engage the header safety props.

5. Ensure the draper guide (the rubber track on the underside of the draper) is properly engaged in groove (A) on the drive roller.

Figure 5.230: Left Side Tension Adjuster Shown – Right Side Opposite

Figure 5.231: Drive Roller
6. Ensure idler roller (A) is between draper guides (B).

IMPORTANT:
Do **NOT** adjust nut (C). This nut is used for draper alignment only.

7. To loosen draper tension;
 - Turn adjuster bolt (A) counterclockwise. The white indicator bar (B) will move outboard in the direction of arrow (D) to indicate that the draper is loosening. Loosen until the white indicator bar is at the halfway point in the window.

8. To tighten draper tension;
 - Turn adjuster bolt (A) clockwise. White indicator bar (B) will move inboard in direction of arrow (E) to indicate that the draper is tightening. Tighten until the white indicator bar is at the halfway point in the window.

IMPORTANT:
To avoid premature failure of the draper, draper rollers, and/or tightener components, do **NOT** operate if the white bar is not visible.

IMPORTANT:
To prevent scooping dirt, ensure the draper is tight enough that it does not sag below the point where the cutterbar contacts the ground.
5.12.4 Adjusting Draper Tracking

The side draper tracking is adjusted by aligning the drive and idler draper rollers.

NOTE:
The left draper deck is shown in the illustrations in this procedure. The right deck is opposite.

Figure 5.234: Draper Tracking Adjustments

1. Refer to the following table to determine which roller requires adjustment and which adjustments are necessary:

Table 5.2 Draper Tracking

<table>
<thead>
<tr>
<th>Tracking</th>
<th>At Location</th>
<th>Adjustment</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td>Drive roller</td>
<td>Increase C</td>
<td>Tighten nut (C)</td>
</tr>
<tr>
<td>Forward</td>
<td>Drive roller</td>
<td>Decrease C</td>
<td>Loosen nut (C)</td>
</tr>
<tr>
<td>Backward</td>
<td>Idler roller</td>
<td>Increase D</td>
<td>Tighten nut (H)</td>
</tr>
<tr>
<td>Forward</td>
<td>Idler roller</td>
<td>Decrease D</td>
<td>Loosen nut (H)</td>
</tr>
</tbody>
</table>
2. Adjust drive roller (A) to change C (refer to Table 5.2, page 528) as follows:
 a. Loosen nuts (A) and jam nut (B).
 b. Turn adjuster nut (C).

 NOTE:
 Some parts were removed from the illustration for clarity.

3. Adjust idler roller (B) to change D (refer to Table 5.2, page 528) as follows:
 a. Loosen nut (A) and jam nut (B).
 b. Turn the adjuster nut (C).

 NOTE:
 If the draper does not track at the idler roller end after the idler roller adjustment, the drive roller is likely not square to the deck. Adjust the drive roller, and then readjust the idler roller.
5.12.5 Adjusting Deck Height

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

IMPORTANT:

New factory-installed drapers are pressure and heat checked at the factory. The gap between draper and cutterbar is set to 0–3 mm (0–1/8 in.). This is to prevent material from entering into the side drapers and stalling them. You may need to decrease the deck clearance to 1 mm (1/16 in.).

1. Shut down the engine, and remove the key from the ignition.
2. Check that clearance (A) between draper (B) and cutterbar (C) is 0–3 mm (0–1/8 in.).

3. Take measurement at deck supports (A) with the header in working position. Depending on the header size, there are between two and eight supports per deck.
4. Loosen the draper tension. For instructions, refer to 5.12.3 Adjusting Draper Tension, page 526.
5. Lift the front edge of draper (A) past cutterbar (B) to expose the deck support.

6. Measure and note the thickness of the draper belt.

7. Loosen two lock nuts (A) on deck support (B) **ONE HALF-TURN ONLY.**

NOTE:
The number of deck supports (B) is determined by the header reels: four on single-reel headers, and eight on double-reel headers.

8. Tap deck (C) with a hammer to lower the deck relative to the deck supports. Tap deck support (B) using a punch to raise the deck relative to the deck supports.

9. To create a seal, adjust deck (A) so that clearance (B) between cutterbar (C) and deck is 1 mm (1/16 in.) plus the draper thickness as measured in Step 6, page 531.

10. Tighten deck support hardware (D).

11. Recheck gap (B). Refer to Step 9, page 531.

12. Tension the draper. For instructions, refer to 5.12.3 Adjusting Draper Tension, page 526.
13. If required, adjust backsheet deflector (A) by loosening nut (D) and moving the deflector until there is a 1–7 mm (1/32–5/16 in.) gap (C) between draper (B) and the deflector.

5.12.6 Draper Roller Maintenance

The draper rollers have non-greaseable bearings; however, the external seal should be checked every 200 hours (more frequently in sandy conditions) to achieve maximum bearing life.

Inspecting Draper Roller Bearing

Using an infrared thermometer, check for bad draper roller bearings as follows:

1. Engage the header and run the drapers for approximately three minutes.

2. Check the temperature of the draper roller bearings at each of the roller arms (A), (B), and (C) on each deck. Ensure the temperature does not exceed 44°C (80°F) above the ambient temperature.

 Replace roller bearings that exceed maximum recommended temperature. Refer to
 - *Replacing Header Draper Idler Roller Bearing, page 535*
 - *Replacing Header Draper Drive Roller Bearing, page 538*
Draper Deck Idler Roller

Removing Side Draper Deck Idler Roller

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

1. If the draper connector is not visible, engage the header until the connector is accessible (preferably close to the outboard end of the deck).
2. Start the engine, raise the header, and raise the reel.
3. Shut down the engine and remove the key from the ignition.
4. Engage the reel safety props and the header safety props.
5. Loosen the draper by turning adjuster bolt (A) counterclockwise.

Figure 5.244: Tensioner
6. Remove screws (A), tube connectors (B), and nuts from the draper joint to uncouple the draper.

7. Pull the draper off the idler roller.

8. Remove bolt (A) and washer from the idler roller at the back of the header deck.

9. Remove bolt (B) and washer from the idler roller at the front of the header deck.

10. Spread roller arms (C) and (D), and remove the idler roller.
Replacing Header Draper Idler Roller Bearing

1. Remove the draper idler roller assembly. For instructions, refer to Removing Side Draper Deck Idler Roller, page 533.

2. Remove bearing assembly (A) and seal (B) from roller tube (C) as follows:
 a. Attach a slide hammer (D) to threaded shaft (E) in the bearing assembly.
 b. Tap out bearing assembly (A) and seal (B).

3. Clean the inside of roller tube (C), check the tube for signs of wear or damage, and replace if necessary.

4. Install the new bearing assembly (A) by pressing the outer race of the bearing into the tube until it is 14–15 mm (9/16–19/32 in.) (B) from the outside edge of the tube.

5. Apply grease in front of bearing assembly (A). Refer to the inside back cover of this book for grease specifications.

6. Install a new seal (C) at the roller opening, and install a flat washer (1.0 in. I.D. x 2.0 in. O.D.) on the seal.

7. Tap seal (C) into the roller opening with a suitably sized socket. Tap the washer and the bearing assembly (A) until the seal is 3–4 mm (1/8–3/16 in.) (D) from the outside edge of the tube.
Installing Header Draper Idler Roller

1. Position the stub shaft into the idler roller in the forward arm (B) on the deck.
2. Push on the roller to slightly deflect the forward arm so the stub shaft at the rear of the roller can be slipped into the rear arm (C).
3. Install bolts (A) with washers, and torque to 93 Nm (70 lbf-ft).
4. Wrap the draper over the idler roller, close the draper, and set the tension. For instructions, refer to 5.12.2 Installing Side Drapers, page 524.
5. Run the machine and verify the draper tracks correctly. Adjust the draper tracking if required. For instructions, refer to 5.12.4 Adjusting Draper Tracking, page 528.

Draper Deck Drive Roller

Removing Side Draper Drive Roller

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

1. If the draper connector is not visible, engage the header until the connector is accessible (preferably close to the outboard end of the deck).
2. Start the engine, raise the header, and raise the reel.
3. Shut down the engine, and remove the key from the ignition.
4. Loosen the draper by turning adjuster bolt (A) counterclockwise.
5. Remove tube connectors (B), screws (A), and nuts from the draper joint.

6. Pull the draper off the drive roller.

7. Align the set screws with the hole (A) in the guard. Remove the two set screws holding the motor onto the drive roller.

NOTE:
The set screws are 1/4 turn apart.

8. Remove four bolts (B) securing the motor to the drive roller arm.

NOTE:
It may be necessary to remove plastic shield (C) to gain access to the top bolt.

9. Remove bolt (A) securing the opposite end of drive roller (B) to the support arm.

10. Remove drive roller (B).
Replacing Header Draper Drive Roller Bearing

1. Remove the draper idler roller assembly. Refer to Removing Side Draper Drive Roller, page 536.

2. Remove bearing assembly (A) and seal (B) from roller tube (C) as follows:
 a. Attach a slide hammer (D) to threaded shaft (E) in the bearing assembly.
 b. Tap out bearing assembly (A) and seal (B).

3. Clean the inside of roller tube (C), check the tube for signs of wear or damage, and replace if necessary.

4. Install the new bearing assembly (A) by pressing the outer race of the bearing into the tube until it is 14–15 mm (9/16–19/32 in.) (B) from the outside edge of the tube.

5. Apply grease in front of bearing assembly (A). Refer to the inside back cover of this book for grease specifications.

6. Install a new seal (C) at the roller opening, and install a flat washer (1.0 in. I.D. x 2.0 in. O.D.) on the seal.

7. Tap seal (C) into the roller opening with a suitably sized socket. Tap the washer and the bearing assembly (A) until the seal is 3–4 mm (1/8–3/16 in.) (D) from the outside edge of the tube.
Installing Side Draper Drive Roller

1. Position drive roller (B) between the roller support arms.
2. Install bolt (A) to secure the drive roller to the arm closest to the cutterbar. Torque bolt to 95 Nm (70 lbf-ft).
3. Grease the motor shaft and insert into the end of drive roller (B).

4. Secure the motor to the roller support with four bolts (B). Torque to 27 Nm (20 lbf-ft).

 NOTE:
 Tighten any loosened bolts and reinstall plastic shield (C) if previously removed.

5. Ensure the motor is all the way into the roller, and tighten the two set screws (not shown) through access hole (A).

6. Wrap the draper over the drive roller and attach the ends of the draper using tube connectors (B), screws (A), and nuts.

 NOTE:
 The heads of the screws must face the center opening.
7. Tension the draper. Locate adjuster bolt (A) and follow the directions on decal (B) or refer to 5.12.3 Adjusting Draper Tension, page 526 for proper draper tensioning.

NOTE:
Figure at right shows tensioner located at the left side of the header. Tensioner on the right side is located opposite.

8. Disengage the reel and header safety props. Refer to Disengaging Reel Safety Props, page 36, and 3.2.1 Header Safety Props, page 34.

⚠️ **CAUTION**
Never start or move the machine until you are sure all bystanders have cleared the area.

9. Start the engine and lower the header and reel.

10. Run the machine to verify the draper tracks correctly. If additional adjustment is necessary, refer to 5.12.4 Adjusting Draper Tracking, page 528.
5.12.7 Draper Deflectors

Narrow draper deflectors can reduce bunching at the ends of the header when decks are set for center delivery.

Removing Narrow Draper Deflectors

⚠️ DANGER ⚠️

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION ⚠️

Never start or move the machine until you are sure all bystanders have cleared the area.

1. Raise the reel to its full height and lower the header to the ground.
2. Move the decks manually after shutting down the combine.
3. Stop the engine, remove the key, and engage the reel safety props.
4. Open the endshield.
5. Remove two Torx® head screws (A) and lock nuts.
6. Remove three carriage bolts (B) and lock nuts and remove the aft deflector (C).

7. Remove four screws (A) and remove the deflector (B).
8. Repeat for the opposite end of the header.

Figure 5.260: Aft Deflector

Figure 5.261: Forward Deflector – Left Side
Installing Narrow Draper Deflectors

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

1. Raise the reel to its full height and lower the header to the ground.
2. Move the decks manually after shutting down the combine.
3. Stop the engine, remove the key, and engage the reel safety props.
4. Open the endshield.
5. Position forward deflector (B) onto the endsheet and temporarily install forward and aft 3/8 x 5/8 in. self tapping screws (A).
6. Check the fit of the forward end of deflector (B) on the cutterbar and ensure there is no gap between the deflector and the cutterbar. Remove and bend the deflector as required to obtain the best fit.
7. Install two 3/8 x 5/8 in. self tapping screws (A) and tighten all four screws.

8. Position aft deflector (C) as shown and install three 3/8 x 3/4 in. carriage bolts (B) and lock nuts.
9. Install two Torx® head screws (A) and lock nuts with the heads facing down.
10. Tighten all fasteners.
11. Repeat for the opposite end of the header.

NOTE:

The draper deflector may be damaged by the reel tines if the reel height is set incorrectly. For instructions about setting the reel height, refer to 3.7.9 Reel Height, page 117.
5.13 Reel

CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 401.

5.13.1 Reel Clearance to Cutterbar

The minimum clearance between the reel fingers and the cutterbar ensures that the reel fingers do not contact the cutterbar during operation. The clearance is set at the factory, but some adjustment may be necessary before operation.

The finger to guard/cutterbar clearances with reels fully lowered are shown in the table below.

Table 5.3 Finger to Guard/Cutterbar Clearance

<table>
<thead>
<tr>
<th>Header Width</th>
<th>(X) 3 mm (+/- 1/8 in.) at Reel Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-Reel</td>
</tr>
<tr>
<td>6.1 m (20 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>7.6 m (25 ft.)</td>
<td>25 mm (1 in.)</td>
</tr>
<tr>
<td>9.1 m (30 ft.)</td>
<td>45 mm (1-3/4 in.)</td>
</tr>
<tr>
<td>10.7 m (35 ft.)</td>
<td>60 mm (2-3/8 in.)</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>—</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 5.264: Finger Clearance
Measuring Reel Clearance

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

1. Start the engine.
2. Lower the header fully on level ground.
3. Set the fore-aft position to the middle position (S) on the fore-aft position decal (A).
4. Lower the reel fully.
5. Shut down the engine, and remove the key from the ignition.

6. Measure the clearance (X) between points (A) and (B) at certain measurement locations. For clearance specifications, refer to 5.13.1 Reel Clearance to Cutterbar, page 543. For the measurement locations, refer to:
 - Figure 5.267, page 545 – single reel
 - Figure 5.268, page 545 – double reel

NOTE:
The reel is factory-set to provide more clearance at the center of the reel than at the ends (frown) to compensate for reel flexing.

NOTE:
When measuring reel clearance at the center of a double reel header, measure the lowest reel.
Measurement location (A): Outer ends of the reel (two places).

Measurement location (A): Both ends of both reels (four places).

7. Adjust the reel clearance, if required. Refer to *Adjusting Reel Clearance, page 546.*
Adjusting Reel Clearance

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Adjust the outboard reel arm lift cylinders to set the clearance at the outboard ends of the reel as follows:
 a. Loosen bolt (A).
 b. Turn cylinder rod (B) out of clevis to raise reel and increase clearance to cutterbar, or turn cylinder rod into clevis to lower reel and decrease clearance.
 c. Tighten bolt (A).
 d. Repeat at opposite side.

3. For double reel: Adjust center arm lift cylinder stop (A) to change clearance at inboard ends of reels as follows:
 a. Loosen nut (B).
 b. Turn nut (C) counterclockwise to raise reel and increase clearance to cutterbar, or clockwise to lower reel and decrease clearance.
 c. Tighten nut (B).

4. Check measurements and, if necessary, repeat adjustment procedures.

5. Move the reel back to ensure the steel end fingers do not contact the deflector shields.

6. If contact occurs, adjust the reel upward to maintain the clearance at all reel fore-aft positions. If contact cannot be avoided after adjusting the reel, trim the steel end fingers to obtain proper clearance.

7. Periodically check for evidence of contact during operation, and adjust clearance as required.
5.13.2 Reel Frown

The reel is factory-set to frown (providing more clearance at the center of the reel than at the ends) to compensate for reel flexing.

Adjusting Reel Frown

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Position the reel over the cutterbar (between 4 and 5 on the fore-aft position decal [A]) to provide adequate clearance at all reel fore-aft positions.

2. Record the measurement at each reel disc location for each reel tube.

 NOTE:

 Measure the frown profile before disassembling the reel for servicing so the profile can be maintained during reassembly.

3. Shut down the engine, and remove the key from the ignition.

4. Start with the reel disc closest to the center of the header and proceed outward towards the ends, adjusting the header profile as follows:

 a. Remove bolts (A).

 b. Loosen bolt (B) and adjust arm (C) until the desired measurement is obtained between the reel tube and cutterbar.

 NOTE:

 Allow the reel tubes to curve naturally and position the hardware accordingly.

 c. Reinstall the bolts (A) in the aligned holes and tighten.
5.13.3 Centering the Reel

Centering Double Reel

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

⚠️ CAUTION
Never start or move the machine until you are sure all bystanders have cleared the area.

1. Start the engine.
2. Raise the header enough to put 150 mm (6 in.) blocks under the outboard skid shoes. Lower the header onto the blocks, the ends of the header will be higher than the center section, causing the header to smile.
3. Shut down the engine, and remove the key from the ignition.
4. Loosen bolt (A) on each brace (B).
5. Move forward end of reel center support arm (C) laterally as required, to center both reels.
6. Tighten bolts (A) and torque to 382 Nm (282 lbf-ft).

![Figure 5.273: Reel Center Support Arm – Non-European Configured](image)

![Figure 5.274: Center Support Arm and Braces – European Configured](image)
MAINTENANCE AND SERVICING

8. Measure clearance at locations (A) between reel and both endsheets. The clearances should be the same if the reel is centered.

Figure 5.275: Measurement Locations

Centering Single Reel

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Loosen bolt (A) on the brace (B) at both ends of the reel.

2. Move the forward end of the reel support arm (C) laterally as required, to center the reel.

3. Tighten bolt (A) and torque to 359 Nm (265 lbf-ft). Repeat at opposite side.

Figure 5.276: Reel Support Arm
5.13.4 Reel Fingers

IMPORTANT:
Keep the reel fingers in good condition and straighten or replace them as necessary.

Removing Steel Fingers

⚠️ **WARNING**
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

⚠️ **WARNING**
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damaging it and other components.

1. Lower the header, raise the reel, and engage the reel safety props.
2. Shut down the engine, and remove the key from the ignition.
3. Remove the tine tube bushings from the applicable tine tube at the center and left reel discs. For instructions, refer to *Removing Bushings from Reels, page 554*.
4. Attach tine tube arms (B) to the reel disc at the original attachment locations (A).
5. Cut the damaged finger so it can be removed from the tine tube.
6. Remove bolts from the existing fingers and slide the fingers over to replace the finger that was cut off in Step 5, page 550 (remove the tine tube arms [B] from the tine tubes as necessary).

"Figure 5.277: Tine Tube Arm"
Installing Steel Fingers

WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

NOTE:
This procedure assumes a finger has already been removed from the machine. Refer to *Removing Steel Fingers, page 550* for instructions on removing fingers.

1. Slide the new finger and tine tube arm (A) onto the end of the tube.

2. Install the tine tube bushings. For instructions, refer to *Installing Bushings onto Reels, page 560.*

3. Attach the fingers to the tine tube with bolts and nuts (B).

Figure 5.278: Tine Tube
Removing Plastic Fingers

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

⚠️ WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

1. Lower the header, raise the reel, and engage the reel safety props.
2. Shut down the engine and remove the key from the ignition.
3. Remove screw (A) using a Torx® Plus 27 IP socket wrench.

4. Push the clip at the top of the finger back towards the reel tube as shown and remove the finger from the tube.
Installing Plastic Fingers

WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

NOTE:
This procedure assumes a finger has already been removed from the machine. Refer to Removing Plastic Fingers, page 552 for instructions on removing fingers.

1. Position the new finger on the rear of the finger tube.
 Engage the lug at the bottom of the finger in the lower hole in the tine tube.

2. Lift the top flange gently and rotate the finger as shown until the lug in the top of the finger engages the upper hole in the finger tube.

IMPORTANT:
Do NOT apply force to the finger prior to tightening the mounting screw. Applying force without tightening the mounting screw will break the finger or shear the locating pins.

3. Install screw (A) using a Torx® Plus 27 IP socket wrench and torque to 8.5–9.0 Nm (75–80 lbf-in).
5.13.5 Tine Tube Bushings

Removing Bushings from Reels

Bushings are located at the point where the reel tine connects to the reel disc.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

⚠️ WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

1. Lower the header, raise the reel, and engage the reel safety props.
2. Shut down the engine, and remove the key from the ignition.

NOTE:

If replacing only the cam end bushing, proceed to Step 8, page 556.

Center disc and tail end bushings

3. Remove the reel endshields and endshield support (C) from the tail end of the reel at the applicable tine tube location.

 NOTE:

 There are no endshields on the center disc.

4. Remove bolts (A) securing tine tube arm (B) to the disc.

IMPORTANT:

Note the hole locations in the arm and disc and ensure bolts (A) are reinstalled at the original locations.

Figure 5.283: Tail End
5. Release bushing clamps (A) using a small screwdriver to separate the serrations. Pull the clamp off the tine tube.

6. Rotate tine tube arm (A) until clear of the disc and slide the arm inboard off of bushing (B).

7. Remove bushing halves (B). If required, remove the next steel or plastic finger, so the arm can slide off the bushing. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 552
 - Removing Steel Fingers, page 550
Cam end bushings

8. Remove the endshields and endshield support (A) at the applicable tine tube location on the cam end.

 NOTE:
 Removing cam end bushings requires the tine tube be moved through the disc arms to expose the bushing.

9. Remove the reel endshields and endshield support (C) from the tail end of the reel at the applicable tine tube location.

 NOTE:
 There are no endshields on the center disc.

10. Remove bolts (A) securing tine tube arms (B) to the tail and center discs.

11. Release the bushing clamps or disconnect the support channels from the tine tube support (if installed) depending on which tine tube is being moved. Three tine tubes (A) require channel disconnection and two tine tubes (B) require only bushing clamp removal.
12. Remove bolt (A) from the cam linkage so tine tube (B) is free to rotate.

13. Release bushing clamps (A) at the cam disc using a small screwdriver to separate the serrations. Move the clamps off the bushings.

14. Slide tine tube (A) outboard to expose bushing (B).

15. Remove bushing halves (B). If required, remove the next steel or plastic finger so the arm can slide off the bushing. Refer to the following procedures if necessary:
 - Removing Plastic Fingers, page 552
 - Removing Steel Fingers, page 550
Tine tube support bushings (if installed)

16. Locate support (A) that requires a new bushing.

17. Remove four bolts (B) securing channel (C) to support (A).

18. Remove screw (E) and remove finger (D) if it is too close to the support to allow access to the bushing. For instructions, refer to *Removing Plastic Fingers, page 552* or *Removing Steel Fingers, page 550*.

19. Release bushing clamps (A) using a small screwdriver to separate the serrations.

20. Move clamps (A) off the bushings.
21. On each reel, there are three right-facing supports (A). Slide the support off bushing halves (B).

22. On each reel, there are two left-facing supports (A). Rotate the supports until the flanges clear the channels before moving them off bushing (B). Move the tube slightly away from the reel if necessary.

23. Remove bushing halves (B) from the tine tubes.
Installing Bushings onto Reels

NOTE:
This procedure assumes the steps for Removing Bushings from Reels, page 554 have been completed.

⚠️ WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damage to the tube or other components.

Use a pair of modified channel lock pliers (A) to install bushing clamps (C). Secure pliers in a vise and grind a notch (B) into the end of each arm to fit the clamp as shown.

Cam end bushings

1. Position bushing halves (B) on tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

2. Slide tine tube (A) towards the tail end of the reel to insert bushing (B) into the tine tube arm. If the tine tube supports are installed, ensure the bushings at those locations slide into the support.

3. Reinstall the previously removed fingers. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 552
 - Removing Steel Fingers, page 550
4. Install bushing clamp (A) onto the tine tube adjacent to the flangeless end of bushing (B).

5. Position clamp (A) on bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

6. Tighten clamp (A) using modified channel lock pliers (B) until finger pressure will NOT move the clamp.

 IMPORTANT:
 Overtightening clamp may result in breakage.

7. Line up tine tube (B) with the cam arm and install bolt (A). Torque bolt to 165 Nm (120 lbf·ft).
8. Install bolts (A) securing tine tube arm (B) to the center disc.

9. Install tine tube arm (B) and endshield support (C) to the tail end of the reel at the applicable tine tube location and secure with bolts (A).

 NOTE:
 There are no endshields on the center discs.

10. Install endshield support (A) at the applicable tine tube location at the cam end.

11. Reinstall the reel endshields. For instructions, refer to *Replacing Reel Endshields, page 567*.

Center disc and tail end bushings

12. Position bushing halves (B) on tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

13. Slide tine tube (A) onto bushing (B) and position against the disc at the original location.

14. Reinstall the previously removed fingers. Refer to
 - *Removing Plastic Fingers, page 552*
 - *Removing Steel Fingers, page 550*
15. Install bushing clamp (A) onto the tine tube adjacent to the flangeless end of bushing (B).

16. Position clamp (A) on bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

17. Tighten clamp (A) using modified channel lock pliers (B) until finger pressure will NOT move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.

18. Install bolts (A) securing tine tube arm (B) to the center disc.

19. Install tine tube arm (B) and endshield support (C) to the tail end of the reel at the applicable tine tube location and secure with bolts (A).

NOTE:
There are no endshields on the center discs.
Tine tube support bushings (if installed)

20. Position bushing halves (B) on tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

21. On each reel, there are three right-facing supports (A). Slide the support onto bushing (B).

22. On each reel, there are two left-facing supports (A). Rotate support (A) until its flanges clear channels (C) before moving the support onto bushing (B).

NOTE:
If necessary, move tine tube (D) slightly away from the reel to allow the support flange enough room to clear the channel.
23. Install bushing clamp (A) onto the tine tube adjacent to the flangeless end of bushing (B).

24. Position clamp (A) on bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

25. Tighten clamp (A) using modified channel lock pliers (B) until finger pressure will **NOT** move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.

26. Reattach channels (C) to the three right-facing supports (A) on each reel with screws (B) and nuts. Torque screws to 43 Nm (32 lbf·ft).

27. Using screws (E), reinstall any fingers (D) that were previously removed. Refer to
 - *Installing Plastic Fingers, page 553*
 - *Installing Steel Fingers, page 551*
28. Reattach channels (C) to the two left-facing supports (A) on each reel with screws (B) and nuts. Torque screws to 43 Nm (32 lbf-ft).

29. Using screws (E), reinstall any fingers (D) that were previously removed. Refer to
 - Installing Plastic Fingers, page 553
 - Installing Steel Fingers, page 551

Figure 5.314: Opposite Support
5.13.6 Reel Endshields

Reel endshields and supports do not require regular maintenance, but they should be checked periodically for damage and loose or missing fasteners. Slightly dented or deformed endshields and supports are repairable, but it’s necessary to replace severely damaged components.

You can attach reel endshields to either end of the reel.

Replacing Reel Endshields

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and reel.
2. Shut down the engine, and remove the key from the ignition.
3. Rotate the reel manually until the reel endshield (A) requiring replacement is accessible.
4. Remove three bolts (B).
5. Lift end of reel endshield (A) off support (B).
6. Remove the reel endshield from the supports.

Figure 5.317: Reel Endshield Remove

7. Install new reel endshield (C) onto support (B).

8. Reattach reel endshield (A) onto support (B), ensuring it is installed on top of reel endshield (C).

9. Reinstall bolts (D).

10. Tighten all hardware.

Figure 5.318: Reel Endshields
Replacements Reel Endshield Supports

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and reel.

2. Shut down the engine, and remove the key from the ignition.

3. Rotate the reel manually until the reel endshield support requiring replacement is accessible.

4. Remove bolt (B) from support (A).

5. Remove bolts (C) from support (A) and two adjacent supports.

6. Move reel endshields (A) away from the tine tube and rotate support (B) towards the reel to remove it.

7. Insert tabs of new support (B) into the slots in reel endshields (A). Ensure the tabs engage both reel endshields.

8. Secure support (B) to the disc sector with bolt (C) and nut. Do **NOT** tighten.

9. Secure reel endshields (A) to support (B) with bolt (D) and nut. Do **NOT** tighten.

10. Reattach the supports with bolts (E) and nuts.

11. Check the clearance between the tine tube and reel endshield support and adjust if necessary.

12. Torque nuts to 27 Nm (20 lbf-ft).
5.14 Reel System

The hydraulically driven reel motor drives the chain that is attached to the right end of the reel on a single-reel header, and between the reels on a double-reel header.

5.14.1 Reel Drive Cover

The reel drive cover protects the reel drive components from dirt and debris. Different covers are used on single- and double-reel headers.

Removing Reel Drive Cover

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

Single-reel drive:

2. Remove four bolts (A) securing cover (B) to the reel drive.

![Figure 5.321: Drive Cover – Single Reel](image)

Double-reel drive:

3. Remove six bolts (A) securing upper cover (B) to the reel drive and lower cover (C).
4. Remove upper cover (B).

![Figure 5.322: Drive Cover – Double Reel](image)
MAINTENANCE AND SERVICING

5. Remove three bolts (A) and remove lower cover (B) if necessary.

![Figure 5.323: Lower Drive Cover]

Installing Reel Drive Cover

⚠️ **WARNING**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

Single-reel drive:

2. Shut down the engine, and remove the key from the ignition.

3. Position drive cover (B) onto the reel drive, and secure with four bolts (A). Torque bolts to 12–13.2 Nm (9–10 lbf·ft).

![Figure 5.324: Drive Cover – Single Reel]
Double-reel drive:

4. Position lower drive cover (B) onto the reel drive (if previously removed), and secure with three bolts (A). Torque bolts to 12–13.2 Nm (9–10 lbf·ft).

5. Position upper drive cover (B) onto the reel drive and lower cover (C), and secure with six bolts (A). Torque bolts to 12–13.2 Nm (9–10 lbf·ft).

5.14.2 Reel Drive Chain Tension

Loosening Reel Drive Chain

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Lower the header fully.
2. Adjust the reel to full forward position for easier access to the work area.
3. Stop the engine, and remove the key from the ignition.
4. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
5. Loosen six nuts (A).

 NOTE:
 Parts removed from illustration for clarity.

6. Slide motor (B) and motor mount (C) down towards the reel shaft.

 IMPORTANT:
 Do NOT operate the reel with the reel cover removed.

7. To retighten the drive chain, refer to Tightening Reel Drive Chain, page 573.

Tightening Reel Drive Chain

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Lower the header fully.
2. Adjust the reel to full forward position for easier access to the work area.
3. Stop the engine, and remove the key from the ignition.
4. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
5. Slide motor (A) and motor mount (B) upward until chain (C) is tight.

6. Ensure there is 3 mm (1/8 in.) of slack at the chain midspan. Adjust if necessary.

7. Tighten six nuts (A). Torque to 73 Nm (54 lbf-ft).

8. Install the drive cover. For instructions, refer to Installing Reel Drive Cover, page 571.
5.14.3 Reel Drive Sprocket

The reel drive sprocket is attached to the motor.

For Case IH and New Holland combine models, configure the combine according to the reel sprocket size in order to optimize the auto reel to ground speed control. Refer to the combine service manual for more information.

Removing Reel Drive Sprocket

WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove the drive reel drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.

3. Loosen reel drive chain (A). For instructions, refer to Loosening Reel Drive Chain, page 573.

4. Remove reel drive chain (A) from reel drive sprocket (B).

5. Remove cotter pin (A), slotted nut (B), and flat washer (C) from the motor shaft.

6. Remove reel drive sprocket (D). Ensure the key remains in the shaft.

IMPORTANT:
To avoid damaging the motor, use a puller if the drive sprocket (D) does not come off by hand. Do NOT use a pry bar and/or hammer to remove the drive sprocket.

Figure 5.331: Reel Drive Sprocket

Figure 5.332: Reel Drive Sprocket
Installing Reel Drive Sprocket

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Align the keyway in sprocket (D) with the key on the motor shaft, and slide the sprocket onto the shaft. Secure with flat washer (C) and slotted nut (B).
2. Torque slotted nut (B) to 54 Nm (40 lbf-ft).
3. Install cotter pin (A). If necessary, tighten the slotted nut (B) to the next slot to install the cotter pin.

4. Install drive chain (A) onto drive sprocket (B).
5. Tighten the drive chain. For instructions, refer to *Tightening Reel Drive Chain, page 573*.
6. Reinstall the reel drive cover. For instructions, refer to *Installing Reel Drive Cover, page 571*.
5.14.4 Double-Reel Drive U-Joint

The double-reel drive U-joint allows each reel to move independently of the other.

Lubricate the U-joint according to the specifications. For instructions, refer to 5.3.6 Lubrication and Servicing, page 409.

Replace the U-joint if severely worn or damaged. For instructions, refer to Removing Double-Reel Drive U-Joint, page 577.

Removing Double-Reel Drive U-Joint

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.

3. Support the inboard end of the right reel with a front end loader and nylon slings (A) or equivalent lifting devices.

 IMPORTANT:
 Avoid damaging or denting the center tube by supporting the reel as close to the end disc as possible.

4. Remove six bolts (A) attaching U-joint flange (B) to driven sprocket (C).

5. Remove the U-joint.

 NOTE:
 It may be necessary to move the right reel sideways so that the U-joint can clear the tube.
Installing Double-Reel U-Joint

1. Position U-joint flange (B) onto driven sprocket (C) as shown. Install six bolts (A) and hand-tighten. Do NOT torque the bolts.

 NOTE:
 It may be necessary to move the right reel sideways so that the U-joint can clear the reel tube.

2. Position the right reel tube against the reel drive and engage the stub shaft into the U-joint pilot hole.

3. Rotate the reel until the holes in the end of the reel tube and U-joint flange (B) line up.

4. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to four 1/2 in. bolts (A) and secure with lock washers.

5. Torque to 102–115 Nm (75–85 lbf-ft).

6. Remove temporary reel support (A).

7. Install the drive cover. For instructions, refer to Installing Reel Drive Cover, page 571.
5.14.5 Reel Drive Motor

The reel drive motor is used on the reel drive system on single-reel and double-reel draper headers. This motor does not require regular maintenance or servicing. If problems occur with the motor, remove it and have it serviced by your MacDon Dealer.

Removing Reel Drive Motor

⚠ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Loosen the drive chain. For instructions, refer to Loosening Reel Drive Chain, page 573.
3. Remove the drive sprocket. For instructions, refer to Removing Reel Drive Sprocket, page 575.
4. Mark hydraulic lines (A) and their locations in motor (B) to ensure correct reinstallation.

 NOTE:
 Before disconnecting the hydraulic lines, clean the motor’s ports and exterior surfaces.

5. Disconnect hydraulic lines (A) at motor (B). Cap or plug open ports and lines.
6. Remove four nuts and bolts (C), and remove motor (B). Retrieve the spacer (if installed) from between motor (B) and the motor mount.
7. If the motor is being replaced, remove the hydraulic fittings from the old motor and install them in the new motor using the same orientations.

Figure 5.340: Reel Motor and Hoses
Installing Reel Drive Motor

1. Slide motor mount (A) up or down so the motor mounting holes (B) are accessible through the openings in the chain case.

2. Attach motor (A) (and spacer if previously removed) to motor mount (B) with four 1/2 x 1 3/4 in. countersunk bolts and nuts (C).

3. If installing a new motor, install the hydraulic fittings (not shown) from the original motor.

4. Remove the caps or plugs from the ports and lines and connect hydraulic lines (A) to hydraulic fittings (B) on motor (C).

 NOTE:
 Ensure hydraulic lines (A) are installed in their original locations.

5. Install the drive sprocket. For instructions, refer to Installing Reel Drive Sprocket, page 576.

6. Tighten the drive chain. For instructions, refer to Tightening Reel Drive Chain, page 573.
5.14.6 Replacing Drive Chain on Double Reel

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the reel drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
3. Loosen the drive chain. For instructions, refer to Loosening Reel Drive Chain, page 573.
4. Support the inboard end of the right reel with a front end loader and nylon slings (A) or equivalent lifting devices.

IMPORTANT:
Avoid damaging or denting the center tube by supporting the reel as close to the end of the reel as possible.

5. Remove the four bolts (A) securing the reel tube to the U-joint flange (B).

![Figure 5.344: Supporting Reel](image1)

![Figure 5.345: U-Joint](image2)
6. Move the right reel sideways to separate the reel tube (A) from the U-joint (B).
7. Remove the drive chain (C).
8. Route chain (C) over U-joint (B) and position onto the sprockets.

9. Position the right reel tube against the reel drive and engage the stub shaft into the U-joint pilot hole.
10. Rotate the reel until the holes in end of the reel tube and U-joint flange line up.
11. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to four 1/2 in. bolts (A) and secure with lock washers.
12. Torque to 102–115 Nm (75–85 lbf-ft.).

13. Remove the temporary reel support (A).
14. Tighten the drive chain. For instructions, refer to Tightening Reel Drive Chain, page 573.
15. Reinstall the reel drive cover. For instructions, refer to Installing Reel Drive Cover, page 571.
5.14.7 Replacing Drive Chain on Single Reel

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove the drive reel drive cover. For instructions, refer to *Removing Reel Drive Cover, page 570*.

3. Loosen the drive chain. For instructions, refer to *Loosening Reel Drive Chain, page 573*.

4. Lift chain (A) off drive sprocket (B).

5. Lower the chain until it is free of lower sprocket (C), and then remove the chain from the drive.

6. Position new chain (A) around the bottom teeth on lower sprocket (C).

7. Lift the chain onto drive sprocket (B), ensuring all the links are properly engaged in the teeth.

8. Tighten the drive chain. For instructions, refer to *Tightening Reel Drive Chain, page 573*.

9. Reinstall the reel drive cover. For instructions, refer to *Installing Reel Drive Cover, page 571*.

![Figure 5.349: Reel Drive](image)
5.14.8 Replacing Reel Speed Sensor

The reel speed sensors (and the procedures for replacing them) vary with the combine model.

Refer to the following topics depending on your combine model:

- Replacing Challenger, Gleaner, and Massey Ferguson Sensor, page 584
- Replacing John Deere Reel Speed Sensor, page 586
- Replacing CLAAS 400 Series Reel Speed Sensor, page 587
- Replacing CLAAS 500/700 Series Reel Speed Sensor, page 588

Replacing Challenger, Gleaner, and Massey Ferguson Sensor

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
3. Disconnect the electrical connector (A).

4. Cut cable tie (A) securing the harness to the cover.
5. Remove two screws (B), sensor (C), and the harness. If necessary, bend cover (D) to remove the harness.
6. Feed the wire of the new sensor behind cover (D) and through the chain case.
7. Locate the new sensor in support (E) and attach with two screws (B).
8. Adjust the gap between sensor disc (F) and sensor (C) to 0.5–1.5 mm (0.02–0.06 in.).
9. Connect sensor harness with the header harness (A).

IMPORTANT:
Ensure the sensor electrical harness does **NOT** contact the chain or sprocket.

10. Reinstall the drive cover. For instructions, refer to *Installing Reel Drive Cover, page 571*.

11. Verify proper operation of the sensor.

Figure 5.352: Electrical Harness
Replacing John Deere Reel Speed Sensor

WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
3. Disconnect electrical connector (D).
4. Remove top nut (C) and remove sensor (B).
5. Remove the top nut from the new sensor and position the sensor into the support. Secure with top nut (C).
6. Adjust the gap between sensor disc (A) and sensor (B) to 3 mm (1/8 in.) using nut (C).
7. Connect to sensor connector at (D) and to sensor harness (E).

IMPORTANT:
Ensure the sensor electrical harness does **NOT** contact the chain or sprocket.
8. Reinstall the drive cover. For instructions, refer to Installing Reel Drive Cover, page 571.

Figure 5.353: Speed Sensor
Replacing CLAAS 400 Series Reel Speed Sensor

⚠️ WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
3. Disconnect electrical connector (C).
4. Remove top nuts (D) and remove sensor (B).
5. Remove the top nut from the new sensor and position the sensor into the support. Secure with top nut (D).
6. Adjust the gap between sensor disc (A) and sensor (B) to 3 mm (1/8 in.) using nuts (D).
7. Route harness through knockout hole (E) and connect to harness at (C).

IMPORTANT:
Ensure the sensor electrical harness does NOT contact the chain or sprocket.
8. Reinstall the drive cover. For instructions, refer to Installing Reel Drive Cover, page 571.
Replacing CLAAS 500/700 Series Reel Speed Sensor

WARNING
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. For instructions, refer to Removing Reel Drive Cover, page 570.
3. Disconnect the electrical connector located behind the chain case from sensor (A).
4. Remove cable ties (B).
5. Remove shield (C) and rivets (D).
6. Remove nut (E) and remove sensor (A).
7. Position new sensor (A) into support (F). Secure with nut (E).
8. Adjust speed sensor to achieve a gap of 1–3 mm (1/16–1/8 in.) from the sensor disc (G).
9. Route harness through knockout hole in panel and connect to sensor (A). Secure harness in place with shield (C) and rivets (D).
10. Secure harness to sensor support with cable ties (B) as shown.

IMPORTANT:
Ensure the sensor electrical harness does NOT contact the chain or sprocket.

11. Reinstall the drive cover. For instructions, refer to Installing Reel Drive Cover, page 571.
5.15 Transport System (Optional)

Refer to 6.4.4 Stabilizer Wheels and Slow Speed Transport Package, page 602 for more information.

5.15.1 Checking Wheel Bolt Torque

If a transport system is installed, follow these steps to torque the wheel bolts:

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Turn off the engine and remove the key.
2. Follow the bolt tightening sequence shown, and torque the wheel bolts to 110–120 Nm (80–90 lbf-ft).

IMPORTANT:

Whenever a wheel is removed and reinstalled, check the wheel bolt torque after one hour of operation and every 100 hours thereafter.

![Figure 5.356: Bolt Tightening Sequence](image-url)
5.15.2 Checking Axle Bolt Torque

If a transport system is installed, do the following steps to torque the axle bolts:

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Figure 5.357: Axle Bolts

1. Check and tighten axle bolts **DAILY** until torque is maintained as follows:
 - (A): 244 Nm (180 lbf·ft)
 - (B): 203 Nm (150 lbf·ft)
 - (C): 244 Nm (180 lbf·ft)
5.15.3 Checking Tire Pressure

Check the tire inflation pressure and inflate according to the information provided in Table 5.4, page 591.

WARNING

- Service tires safely.
- A tire can explode during inflation, which could cause serious injury or death.
- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- Do NOT exceed maximum inflation pressure indicated on tire label or sidewall.
- Replace tires that have defects.
- Replace wheel rims that are cracked, worn, or severely rusted.
- Never weld a wheel rim.
- Never use force on an inflated or partially inflated tire.
- Make sure the tire is correctly seated before inflating to operating pressure.
- If the tire is not correctly positioned on the rim or is overinflated, the tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can thrust the tire in any direction endangering anyone in the area.
- Make sure all the air is removed from the tire before removing the tire from the rim.
- Do NOT remove, install, or repair a tire on a rim unless you have the proper equipment and experience to perform the job.
- Take the tire and rim to a qualified tire repair shop.

Table 5.4 Tire Pressure

<table>
<thead>
<tr>
<th>Size</th>
<th>Load Range</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST205/75 R15</td>
<td>D</td>
<td>517 kPa (75 psi)</td>
</tr>
<tr>
<td>ST205/75 R15</td>
<td>E</td>
<td>552 kPa (80 psi)</td>
</tr>
</tbody>
</table>
Chapter 6: Options and Attachments

The following options and attachments are available for use with your header. See your MacDon Dealer for availability and ordering information.

6.1 FM100 Float Module

6.1.1 Hillside Extension Kit

The Hillside Extension kit allows overfilling the hydraulic reservoir on FM100 Float Modules. This allows operation on steep hillsides while maintaining oil supply to the suction side of pump.

Installation instructions are included in the kit.

MD #B6057

Figure 6.1: Hillside Extension Kit
6.2 Reel

6.2.1 Multi-Crop Rapid Reel Conversion Kit

For use on double-reel headers only, the Multi-Crop Rapid Reel Conversion kit decreases the time required to change the fore-aft cylinder position on the reel support arm from the normal operating location to a farther aft location that minimizes crop disturbance. The kit also allows the reel fore-aft cylinders to be quickly moved to the normal operating location.

MD #B6590

NOTE:
The Multi-Crop Rapid Reed Conversion kit is not available for European-configured D1 Series headers.

6.2.2 Reel Arm Extension Kit – European-Configured Headers Only

This kit provides extensions for the outer reel support arms on an European-configured D1 Series header. These extensions provide the additional reel arm length required to properly install a vertical knife mount kit (MD #B6137, MD #B6138) onto the header. The Reel Arm Extension kit also includes reel fore-aft brackets allowing quick reel repositioning from the reel’s most forward position to its most rearward position.

NOTE:
Parts removed from illustration.
6.2.3 Reel Arm Extension Kit – North American-Configured Headers Only

This kit provides extensions for the outer reel support arms on and a North American-configured D1 Series header. These extensions provide the additional reel arm length required to properly install a Vertical Knife Mount kit (MD #B6608, MD #B6609) onto the header. The Reel Arm Extension kit also includes reel fore-aft brackets allowing quick reel repositioning from the reel’s most forward position to its most rearward position.

NOTE:
Parts removed from illustration.

6.2.4 Lodged Crop Reel Finger Kit

The steel fingers (A) provided in the Lodged Crop Reel Finger kit attach to the ends of every other tine bar and help to clear material in heavy, hard-to-cut crops such as lodged rice.

Each kit contains three fingers for the cam end of the reel and three fingers for the tail end. Hardware and installation instructions are included in the kit.

MD #B4831
6.2.5 PR15 Tine Tube Reel Conversion Kit

These kits allow conversion from a six-bat reel to a nine-bat reel.

Order the following bundles according to your header size and type:

Steel fingers:
- D115 – MD #B6514
- D120 – MD #B6515
- D125 – MD #B5656
- D130 – MD #B5657⁵⁵

Plastic fingers:
- D115 – MD #B6516
- D120 – MD #B6517
- D125 – MD #B5937
- D130 – MD #B6029⁵⁶

NOTE:
All six-bat to nine-bat reel conversion kits include reel endshields.

6.2.6 Reel Endshield Kit

The steel shields provided in the reel endshield kit attach to the ends of the reels and help to clear material in heavy, hard-to-cut crops. They are standard equipment on all headers (except those with nine-bat reels). Hardware and installation instructions are included in the kit.

See your MacDon Dealer for more information.

⁵⁵ Double reel units only.

⁵⁶ Double reel units only.
6.2.7 Tine Tube Reinforcing Kit

Tine tube reinforcing kits are available for five- and six-bat reels. They are designed to support high reel loads when cutting extremely heavy crops. Installation instructions are provided in the kit.

- Five-Bat Reels – MD #B5825
- Six-Bat Reels – MD #B5826

Figure 6.7: Five-Bat Reinforcing Kit Shown – Six-Bat Reinforcing Kit Similar
6.3 Cutterbar

6.3.1 Cutterbar Wearplate
Cutterbar wearplates are recommended for cutting on the ground when the soil is adhering to the steel.

Order one of the following bundles based on header size:

- D115 – MD #B4864
- D120 – MD #B4865
- D125 – MD #B4838
- D130 – MD #B4839
- D135 – MD #B4840
- D140 – MD #B4841
- D145 – MD #B5114

6.3.2 Knife Cutout Cover
Knife cutout covers attach to the endsheets and prevent cut crop, particularly severely lodged crop, from passing through the knifehead opening and accumulating in the knife drive box and endsheet.

Order the following kits according to your header size:

- D120–D125 – MD #220102 (stub guards)
- D130–D140 – MD #220103 (stub guards)
6.3.3 Extended Center Filler

The Extended Center Filler kit (MD #B6450) includes a reinforced flap 3 mm (1/8 in.) thick that extends onto the feed draper of a MacDon FM100 Float Module to help reduce loss when cutting crops such as beans and peas. Installation instructions are included with the kit.

MD #B6450

Figure 6.10: Extended Filler

6.3.4 Rock Retarder

The rock retarder (A) consists of a steel angle that is bolted to the cutterbar immediately aft of the knife, and helps prevent rocks and large debris from being swept onto the drapers with the crop. Installation instructions are included with the kit.

Order bundles by header size:
- 9.1–10.7 m (30–35 ft.) – MD #B5084
- 12.2–13.7 m (40–45 ft.) – MD #B5085

Figure 6.11: Rock Retarder

6.3.5 Stub Guard Conversion Kit

Stub guards, complete with top guides and adjuster shoes, are designed to cut tough crops.

Installation and adjustment instructions are included in the kits.

Order one of the following bundles according to your header size:
- 4.6 m (15 ft.) – MD #B5009
- 6.1 m (20 ft.) – MD #B5010
- 7.6 m (25 ft.) – MD #B5011
- 9.1 m (30 ft.) – MD #B5012
- 10.7 m (35 ft.) – MD #B5013

Figure 6.12: Stub Guards
6.3.6 Vertical Knife Mount Kits

Vertical Knife Mount kits allow a Ziegler vertical knife to be mounted D1 Draper headers. Installation and adjustment instructions are included in the bundles. Order the following Vertical Knife Mount kits depending on header configuration:

For non-European-configured D1 Series headers:
- Left Vertical Knife Mount – MD #B6608
- Right Vertical Knife Mount – MD #B6609

For European-configured D1 Series headers:
- Left Vertical Knife Mount – MD #B6137
- Right Vertical Knife Mount – MD #B6138

NOTE:
MD #B6137 and MD #B6138 can only be used on European-configured headers with short outer reel support arms.

NOTE:
Left Vertical Knife Mount kits (MD #B6608, MD #B6137) cannot be installed onto the header by itself and must be installed with the right Vertical Knife Mount kits (MD #B6609, MD #B6138).

NOTE:
Right Vertical Knife Mount kits (MD #B6609, MD #B6138) can be installed onto the header either by itself or with the Left Vertical Knife Mount kits (MD #6608, MD #6137).

NOTE:
Ziegler vertical knives are not included in the kits and must be ordered separately.

6.3.7 Vertical Knife Plumbing Kits

Order one of the following bundles according to your header type:

Single Reel
- Double Vertical Knife Hose, D115 single reel – MD #B6263
- Double Vertical Knife Hose, D120 single reel – MD #B6264
- Double Vertical Knife Hose, D125 single reel – MD #B6265
- Double Vertical Knife Hose, D130 single reel – MD #B6266
- Double Vertical Knife Hose, D135 single reel – MD #B6267

Double Reel
- Double Vertical Knife Hose, D130 double reel – MD #B6255
- Double Vertical Knife Hose, D135 double reel – MD #B6256
- Double Vertical Knife Hose, D140 double reel – MD #B6257
- Double Vertical Knife Hose, D145 double reel – MD #B6258

57. Order Ziegler part number 70-080613 for a right vertical knife and/or Ziegler part number 70-080614 for a left vertical knife.
6.4 Header

6.4.1 Divider Quick Latch Kit

Divider Quick Latch kits attach to the endsheets. They allow for quick removal and storage of endsheet divider cones and, if required, reduce the transport width of the header. Installation instructions are included in the kit.

MD #B6158

Figure 6.13: Divider Latch

6.4.2 Stabilizer Wheels

Stabilizer wheels help stabilize the header in field conditions that would otherwise cause the header to bounce, resulting in uneven cutting heights. Installation and adjustment instructions are included in the kit.

Available as an attachment for use with D130, D135, D140, and D145 headers.

MD #C1986

Figure 6.14: Stabilizer Wheel
6.4.3 Secondary Stabilizer Wheel

The secondary stabilizer wheel is added to existing stabilizer wheels to help stabilize the header in field conditions that would otherwise cause the header to bounce and result in uneven cutting height. Installation and adjustment instructions are included with the kit.

Available as an attachment for use with D130, D135, D140, and D145 headers.

MD #B61795

![Figure 6.15: Secondary Stabilizer Wheel](image1)

6.4.4 Stabilizer Wheels and Slow Speed Transport Package

The Stabilizer Wheels and Slow Speed Transport Package help to stabilize the header in field conditions that would otherwise cause the header to bounce, resulting in uneven cutting heights. This system is similar to the Stabilizer Wheel (MD #C1986) option. Refer to 6.4.2 Stabilizer Wheels, page 601.

The Stabilizer Wheels and Slow Speed Transport Package are also used to convert the header into transport mode for slow-speed towing behind a properly-configured combine (or agricultural tractor). A tow pole and installation instructions are included in the kit.

Non-European configured header: MD #C2007

European configured header: MD #C2008

![Figure 6.16: Stabilizer Wheels Slow Speed Transport](image2)

6.4.5 Stubble Light Kit

Stubble lights are used in low light conditions and allow the operator to see the stubble cut behind the header. The Stubble Light Mounting kit is available for MacDon D130, D135, D140, and D145 headers. This kit is currently compatible with John Deere combines only.

MD #B6634

58. Kit consists of one wheel assembly; two kits are required to upgrade both sides of the header.
6.4.6 Backsheet Extension Kit

The Backsheet Extension kit (A) helps retain small seeds in shatter prone crops such as canola. They are usually used with headers equipped with upper cross augers (UCA).

Order the following bundles according to your D1 Series Header size:

- D130 – MD #B6359
- D135 – MD #C2042
- D140 – MD #C2043
- D145 – MD #C2044

6.4.7 Center Skid Shoes Kit

The Center Skid Shoes kit provides improved performance when cutting low to the ground.

Installation instructions are included in the kit.

MD #B5615
6.4.8 Steel Skid Shoes

Steel skid shoes offer extra abrasion resistance.

IMPORTANT:
Not recommended for wet mud or conditions prone to sparking.
Installation instructions are included with the kit.

MD #B6583

Figure 6.19: Steel Skid Shoe
6.5 Crop Delivery

6.5.1 FM100 Dual Auto Header Height Control Sensor Kit

This kit adds two sensors to the float linkage, adding automatic lateral tilt compensation for the header. When installed, the combine will automatically tilt the feeder house from side to side to follow uneven terrain during operation.

Installation instructions are included in the kit.

NOTE:
Not recommended for extremely hilly conditions.

MD #86211

Figure 6.20: Dual AHHC Sensors

6.5.2 FM100 Feed Auger Flighting

Auger flighting (A) on the FM100 can be configured to specific combines and crop conditions. Refer to 3.7.1 FM100 Feed Auger Configurations, page 61 for combine/crop specific configurations.

Figure 6.21: FM100 Feed Auger Flighting
6.5.3 In-Cab Draper Speed Control Kit

Installing this kit allows Operators to adjust the side draper’s speed from the combine’s cab.

- MD #B6701 – Cab Draper Control, John Deere
- MD #B6702 – Cab Draper Control, Case New Holland
- MD #B6703 – Cab Draper Control, Generic

NOTE:
The John Deere cab draper control is shown in the illustration on the right. The Case New Holland and generic cab draper control look and operate similarly to it.

Installation instructions are included in the kit.

![In-Cab Draper Speed Control Panel](image)

6.5.4 Wide Draper Deflector

Wide metal draper deflectors attach to the inboard side of the endsheets to prevent material from falling through the gap between the endsheet and the draper. Kit includes extra parts for various cutterbar layouts.

Installation instructions are included with the kit.

MD #B6551

IMPORTANT:
The wide draper deflector is **NOT** compatible with the Lodged Crop Reel Finger (MD #B4831) option.

![Wide Draper Deflector](image)
6.5.5 EasyGuard Kit

The EasyGuard kit offers additional wear protection for the draper. It may prove useful in situations where conditions are dry or consistently hot.

Installation instructions are included with the kit.

MD #294859 for LEGG drapers
MD #294858 for WCCO drapers

Figure 6.24: EasyGuard

6.5.6 Stripper Bars

Stripper bars improve feeding in certain crops such as rice. They are NOT recommended in cereal crops.

Instructions are included with the kit.

Select the stripper bar kit based on combine feeder house width. Refer to Table 6.1, page 607

NOTE:
MD #B6043 is for John Deere S6X0 Series only.

Table 6.1 Stripper Bar Configurations and Recommendations

<table>
<thead>
<tr>
<th>Bundle (MD #)</th>
<th>Stripper Bar Length</th>
<th>Opening Width (Installed on FM100)</th>
<th>Recommended Feeder House Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6042</td>
<td>265 mm (10-1/2 in.)</td>
<td>1317 mm (52 in.)</td>
<td>1250–1350 mm (49–65 in.)</td>
</tr>
<tr>
<td>B6043</td>
<td>265 mm (10-1/2 in.)</td>
<td>1317 mm (52 in.)</td>
<td>For John Deere S6X0 Series only</td>
</tr>
<tr>
<td></td>
<td>(with cutout)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6044</td>
<td>325 mm (13 in.)</td>
<td>1197 mm (47 in.)</td>
<td>For specialty crops only</td>
</tr>
<tr>
<td>B6045</td>
<td>365 mm (14-1/2 in.)</td>
<td>1117 mm (44 in.)</td>
<td>1100 mm (43-1/2 in.) and below</td>
</tr>
<tr>
<td>B6046</td>
<td>403 mm (16 in.)</td>
<td>1041 mm (41 in.)</td>
<td>For specialty crops only</td>
</tr>
<tr>
<td>B6213</td>
<td>515 mm (20 in.)</td>
<td>817 mm (32 in.)</td>
<td>For specialty crops only</td>
</tr>
</tbody>
</table>

Figure 6.25: Stripper Bar
6.5.7 Auger Dent Repair Kit

This kit allows Operators to repair dents close to the finger/guide area that the feed auger may have sustained during regular use.

Attachment hardware and installation instructions are included in the kit.

MD #237563

Figure 6.26: Auger Dent Repair Kit

6.5.8 Upper Cross Auger

The upper cross auger (A) attaches in front of the backtube and improves crop feeding into the center of the header in heavy crop conditions. It is ideal for high-volume harvesting of forages, oats, canola, mustard, and other tall, bushy, hard-to-feed crops.

Order from the following list of kits according to your header model:

For D1 North American headers:
- D115 – MD #B6280
- D120 – MD #B6281
- D125 – MD #B6461
- D130 – MD #B6462
- D135 – MD #B6463
- D140 – MD #B6464
- D14559 – MD #B6465

Figure 6.27: Upper Cross Auger

59. This is a 12.2 m (40 ft.) auger, and is backtube mounted. It does NOT span the full length of the header.
6.5.9 European Combine Upper Cross Auger

The European Combine Upper Cross Auger (UCA) (A) attaches in front of the backtube and improves crop feeding at the center of the header in heavy crop conditions.

This kit is ideal for high-volume harvesting of forages, oats, canola, rapeseed, mustard, and other tall, bushy, and hard-to-feed crops.

IMPORTANT:
This optional kit is **ONLY** available for European markets, and should **ONLY** be used on combines. Do **NOT** use the European Combine UCA on self-propelled windrowers, as damage will occur at higher operating speeds.

Installation instructions are included with the kit.

Order from the following bundles according to header model:

- D125 – MD #B6584
- D130 – MD #B6585
- D135 – MD #B6586
- D140 – MD #B6587
- D14560 – MD #B6588

6.5.10 Rice Divider Rods

Rice divider rods attach to the left and right crop dividers and divide tall and tangled rice crops in a similar manner to standard crop divider rods performing in standing crops.

Installation instructions are included in the kit.

MD #B5609

60. This is a 12.2 m (40 ft.) auger, and is backtube mounted. It does **NOT** span the full length of the header.
6.5.11 Full Interface Filler Kit

The Full Interface Filler Kit eliminates the gap between the feed deck and header frame, increases seed collection.

NOTE:
This kit is only available for European-configured headers.
Installation instructions are included in the kit.
MD #B6446

Figure 6.30: Full Interface Filler Kit
Chapter 7: Troubleshooting

7.1 Crop Loss at Cutterbar

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Does not pick up downed crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutterbar too high</td>
<td>Lower cutterbar</td>
<td>• Cutting off the Ground, page 86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cutting on the Ground, page 91</td>
</tr>
<tr>
<td>Header angle too low</td>
<td>Increase header angle</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Reel too high</td>
<td>Lower reel</td>
<td>3.7.9 Reel Height, page 117</td>
</tr>
<tr>
<td>Reel too far back</td>
<td>Move reel forward</td>
<td>3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td>Ground speed too fast for reel speed</td>
<td>Increase reel speed or reduce</td>
<td>• 3.7.5 Reel Speed, page 111</td>
</tr>
<tr>
<td></td>
<td>ground speed</td>
<td>• 3.7.6 Ground Speed, page 112</td>
</tr>
<tr>
<td>Reel fingers not lifting crop sufficiently</td>
<td>Increase finger pitch</td>
<td>3.7.11 Reel Tine Pitch, page 138</td>
</tr>
<tr>
<td></td>
<td>aggressiveness</td>
<td></td>
</tr>
<tr>
<td>Reel fingers not lifting crop sufficiently</td>
<td>Install lifter guards</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Heads shattering or breaking off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.5 Reel Speed, page 111</td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.9 Reel Height, page 117</td>
</tr>
<tr>
<td>Ground speed too fast</td>
<td>Reduce ground speed</td>
<td>3.7.6 Ground Speed, page 112</td>
</tr>
<tr>
<td>Crop too ripe</td>
<td>Operate at night when humidity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is higher</td>
<td></td>
</tr>
<tr>
<td>Symptom: Material accumulating in gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between cut-out in endsheet and knifehead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop heads leaning away from</td>
<td>Add knifehead shields (except</td>
<td>5.8.8 Knifehead Shield, page 471</td>
</tr>
<tr>
<td>knifehead hole in endsheet</td>
<td>in damp or sticky soils</td>
<td></td>
</tr>
<tr>
<td>Symptom: Strips of uncut material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crowding uncut crop</td>
<td>Allow enough room for crop to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>be fed to cutterbar</td>
<td></td>
</tr>
<tr>
<td>Broken knife sections</td>
<td>Replace broken sections</td>
<td>5.8.1 Replacing Knife Section, page 460</td>
</tr>
<tr>
<td>Symptom: Excessive bouncing at normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>field speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Float set too light</td>
<td>Adjust header float</td>
<td>3.7.3 Header Float, page 94</td>
</tr>
<tr>
<td>Symptom: Divider rod running down standing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divider rods too long</td>
<td>Remove divider rod</td>
<td>3.7.12 Crop Dividers, page 143</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Refer to</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Symptom: Crop not being cut at ends</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel not frowning or not centered in header</td>
<td>Adjust reel horizontal position or reel frown</td>
<td>• 3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5.13.2 Reel Frown, page 547</td>
</tr>
<tr>
<td>Knife hold-down clips not adjusted properly</td>
<td>Adjust hold-down clips so knife works freely but still keep sections from lifting off guards</td>
<td>• Adjusting Hold-Down Clips with Pointed Guards, page 469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjusting Hold-Down Clips with Stub Guards, page 470</td>
</tr>
<tr>
<td>Knife sections or guards are worn or broken</td>
<td>Replace all worn and broken cutting parts</td>
<td>5.8 Knife, page 459</td>
</tr>
<tr>
<td>Header is not level</td>
<td>Level header</td>
<td>3.9 Leveling the Header, page 326</td>
</tr>
<tr>
<td>Reel fingers not lifting crop properly ahead of knife</td>
<td>Adjust reel position and/or finger pitch</td>
<td>• 3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3.7.11 Reel Tine Pitch, page 138</td>
</tr>
<tr>
<td>Divider runs down thick crop at ends preventing proper feeding due to material bridging the cutter guards</td>
<td>Replace 3–4 end guards with stub guards</td>
<td>• 5.8.7 Knife Guards, page 465</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6.3.5 Stub Guard Conversion Kit, page 599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Bushy or tangled crop flows over divider rod, builds up on endsheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divider rods providing insufficient separation</td>
<td>Install long divider rods</td>
<td>3.7.12 Crop Dividers, page 143</td>
</tr>
<tr>
<td>Symptom: Cut grain falling ahead of cutterbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground speed too slow</td>
<td>Increase ground speed</td>
<td>3.7.6 Ground Speed, page 112</td>
</tr>
<tr>
<td>Reel speed too slow</td>
<td>Increase reel speed</td>
<td>3.7.5 Reel Speed, page 111</td>
</tr>
<tr>
<td>Reel too high</td>
<td>Lower reel</td>
<td>3.7.9 Reel Height, page 117</td>
</tr>
<tr>
<td>Cutterbar too high</td>
<td>Lower cutterbar</td>
<td>• Cutting off the Ground, page 86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cutting on the Ground, page 91</td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Move reel back on arms</td>
<td>3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td>Cutting at speeds over 10 km/h (6 mph) with 10-tooth reel drive sprocket</td>
<td>Replace with 19-tooth reel drive sprocket</td>
<td>5.14.3 Reel Drive Sprocket, page 575</td>
</tr>
<tr>
<td>Worn or broken knife components</td>
<td>Replace components</td>
<td>5.8 Knife, page 459</td>
</tr>
</tbody>
</table>
7.2 Cutting Action and Knife Components

Table 7.2 Troubleshooting Cutting Action and Knife Components

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Ragged or uneven cutting of crop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Knife hold-down clips not adjusted properly | Adjust hold-down clips | - Adjusting Hold-Down Clips with Pointed Guards, page 469
- Adjusting Hold-Down Clips with Stub Guards, page 470 |
| Knife sections or guards are worn or broken | Replace all worn and broken cutting parts | 5.8 Knife, page 459 |
| Knife is not operating at recommended speed | Check engine speed of combine | The combine operator’s manual |
| Ground speed too fast for reel speed | Reduce ground speed or increase reel speed | - 3.7.5 Reel Speed, page 111
- 3.7.6 Ground Speed, page 112 |
| Reel fingers not lifting crop properly ahead of knife | Adjust reel position/finger pitch | - 3.7.10 Reel Fore-Aft Position, page 123
- 3.7.11 Reel Tine Pitch, page 138 |
| Cutterbar too high | Lower cutting height | Cutting off the Ground, page 86 or Cutting on the Ground, page 91 |
| Header angle too flat | Steepen header angle | 3.7.4 Header Angle, page 102 |
| Bent knife causing binding of cutting parts | Straighten bent knife and align guards | 5.8.7 Knife Guards, page 465 |
| Cutting edge of guards not close enough or parallel to knife sections | Align guards | 5.8.7 Knife Guards, page 465 |
| Tangled/tough-to-cut crop | Install stub guards | - See your MacDon Dealer
- Adjusting Hold-Down Clips with Pointed Guards, page 469 or Adjusting Hold-Down Clips with Stub Guards, page 470
- 6.3.5 Stub Guard Conversion Kit, page 599 |
| Reel too far back | Move reel forward | 3.7.10 Reel Fore-Aft Position, page 123 |
| Loose knife drive belt | Adjust drive belt tension | Checking and Tensioning, page 484 |

Symptom: Knife plugging

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
</table>
| Reel too high or too far forward | Lower reel or move reel rearward | - 3.7.9 Reel Height, page 117
- 3.7.10 Reel Fore-Aft Position, page 123 |
| Ground speed too slow | Increase ground speed | 3.7.6 Ground Speed, page 112 |
| Loose knife drive belt | Adjust drive belt tension | Checking and Tensioning, page 484 |
Table 7.2 Troubleshooting Cutting Action and Knife Components (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper knife hold-down clip</td>
<td>Adjust hold-down clip</td>
<td>• Adjusting Hold-Down Clips with Pointed Guards, page 469</td>
</tr>
<tr>
<td>adjustment</td>
<td></td>
<td>• Adjusting Hold-Down Clips with Stub Guards, page 470</td>
</tr>
<tr>
<td>Dull or broken knife section</td>
<td>Replace knife section</td>
<td>5.8.1 Replacing Knife Section, page 460</td>
</tr>
<tr>
<td>Bent or broken guards</td>
<td>Align or replace guards</td>
<td>5.8.7 Knife Guards, page 465</td>
</tr>
<tr>
<td>Reel fingers not lifting crop</td>
<td>Adjust reel position/ finger pitch</td>
<td>• 3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td>properly ahead of knife</td>
<td></td>
<td>• 3.7.11 Reel Tine Pitch, page 138</td>
</tr>
<tr>
<td>Steel pick-up fingers contacting</td>
<td>Increase reel clearance to cutterbar or</td>
<td>• 5.13.1 Reel Clearance to Cutterbar, page 543</td>
</tr>
<tr>
<td>knife</td>
<td>adjust “frown”</td>
<td>• 5.13.2 Reel Frown, page 547</td>
</tr>
<tr>
<td>Float too heavy</td>
<td>Adjust springs for lighter float</td>
<td>3.7.3 Header Float, page 94</td>
</tr>
<tr>
<td>Mud or dirt build-up on cutterbar</td>
<td>Raise cutterbar by lowering skid shoes</td>
<td>Cutting on the Ground, page 91</td>
</tr>
<tr>
<td>Mud or dirt build-up on cutterbar</td>
<td>Install cut-out sections</td>
<td>Installing Knifehead Shield, page 471</td>
</tr>
<tr>
<td>Mud or dirt build-up on cutterbar</td>
<td>Flatten header angle</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Knife is not operating at</td>
<td>Check engine speed of combine or</td>
<td>• The combine operator’s manual</td>
</tr>
<tr>
<td>recommended speed</td>
<td>header knife speed</td>
<td>• Checking Knife Speed, page 116</td>
</tr>
<tr>
<td>Symptom: Excessive header vibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knife on double-knife drive not timed</td>
<td>Adjust knife timing</td>
<td>Adjusting Timed Double-Knife Timing, page 492</td>
</tr>
<tr>
<td>Knife hold-down clips not adjusted</td>
<td>Adjust hold-down clips</td>
<td>• Adjusting Hold-Down Clips with Pointed Guards, page 469</td>
</tr>
<tr>
<td>properly</td>
<td></td>
<td>• Adjusting Hold-Down Clips with Stub Guards, page 470</td>
</tr>
<tr>
<td>Knife not operating at</td>
<td>Check engine speed of combine</td>
<td>The combine operator’s manual</td>
</tr>
<tr>
<td>recommended speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive knife wear</td>
<td>Replace knife</td>
<td>• 5.8.2 Removing Knife, page 461</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5.8.5 Installing Knife, page 463</td>
</tr>
<tr>
<td>Loose or worn knifehead pin or</td>
<td>Tighten or replace parts</td>
<td>5.8.1 Replacing Knife Section, page 460</td>
</tr>
<tr>
<td>drive arm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect knife speed</td>
<td>Adjust knife speed</td>
<td>Checking Knife Speed, page 116</td>
</tr>
<tr>
<td>Driveline U-joints worn</td>
<td>Replace U-joints</td>
<td>See your MacDon Dealer</td>
</tr>
</tbody>
</table>

61. Applies to timed double-knife drive headers only.
Table 7.2 Troubleshooting Cutting Action and Knife Components (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent cutterbar</td>
<td>Straighten cutterbar</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Excessive breakage of knife sections or guards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knife hold-down clips not adjusted properly</td>
<td>Adjust hold-down clips</td>
<td>• Adjusting Hold-Down Clips with Pointed Guards, page 469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjusting Hold-Down Clips with Stub Guards, page 470</td>
</tr>
<tr>
<td>Cutterbar operating too low in stony conditions</td>
<td>Raise cutterbar using skid shoes</td>
<td>Cutting on the Ground, page 91</td>
</tr>
<tr>
<td>Float is set too heavy</td>
<td>Adjust float springs for lighter float</td>
<td>3.7.3 Header Float, page 94</td>
</tr>
<tr>
<td>Bent or broken guard</td>
<td>Straighten or replace guard</td>
<td>5.8.7 Knife Guards, page 465</td>
</tr>
<tr>
<td>Header angle too steep</td>
<td>Flatten header angle</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Symptom: Knife back breakage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bent or broken guard</td>
<td>Straighten or replace guard</td>
<td>5.8.7 Knife Guards, page 465</td>
</tr>
<tr>
<td>Worn knifehead pin</td>
<td>Replace knifehead pin</td>
<td>• 5.8.3 Removing Knifehead Bearing, page 462</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5.8.4 Installing Knifehead Bearing, page 463</td>
</tr>
<tr>
<td>Dull knife</td>
<td>Replace knife</td>
<td>• 5.8.2 Removing Knife, page 461</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5.8.5 Installing Knife, page 463</td>
</tr>
</tbody>
</table>
7.3 Reel Delivery

Use the following tables to determine the cause of reel delivery problems and the recommended repair procedure.

Table 7.3 Troubleshooting Reel Delivery

<table>
<thead>
<tr>
<th>Symptom – Reel not releasing material in normal standing crop</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.5 Reel Speed, page 111</td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.9 Reel Height, page 117</td>
</tr>
<tr>
<td>Reel tines too aggressive</td>
<td>Reduce cam setting</td>
<td>3.7.11 Reel Tine Pitch, page 138</td>
</tr>
<tr>
<td>Reel too far back</td>
<td>Move reel forward</td>
<td>3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Reel not releasing material in lodged and standing crop (reel fully lowered)</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel tines too aggressive for standing crop</td>
<td>Reduce cam setting (one or two)</td>
<td>3.7.11 Reel Tine Pitch, page 138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Wrapping on reel end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel tines too aggressive</td>
</tr>
<tr>
<td>Reel too low</td>
</tr>
<tr>
<td>Reel speed too fast</td>
</tr>
<tr>
<td>Crop conditions</td>
</tr>
<tr>
<td>Reel not centered in header</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Reel releases crop too quickly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel tines not aggressive enough</td>
</tr>
<tr>
<td>Reel too far forward</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Reel will not lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel lift couplers are incompatible or defective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Reel will not turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick couplers not properly connected</td>
</tr>
<tr>
<td>Reel drive chain disconnected or broken</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Reel motion uneven under no load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive slack in reel drive chain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom – Reel motion is uneven or stalls in heavy crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel speed too fast</td>
</tr>
<tr>
<td>Reel fingers not aggressive enough</td>
</tr>
<tr>
<td>Reel too low</td>
</tr>
</tbody>
</table>
Table 7.3 Troubleshooting Reel Delivery (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relief valve on combine (not on combine float module) has low relief pressure setting</td>
<td>Increase relief pressure to manufacturer’s recommendations</td>
<td>Refer to your combine operator’s manual</td>
</tr>
<tr>
<td>Low oil reservoir level on combine</td>
<td>Fill to proper level</td>
<td>Refer to your combine operator’s manual</td>
</tr>
<tr>
<td>NOTE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sometimes there is more than one reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief valve malfunction</td>
<td>Replace relief valve</td>
<td>Refer to your combine operator’s manual</td>
</tr>
<tr>
<td>Cutting tough crops with standard torque (19-tooth) reel drive sprocket</td>
<td>Replace with high torque (10-tooth or 14-tooth) reel drive sprocket</td>
<td>5.14.3 Reel Drive Sprocket, page 575</td>
</tr>
<tr>
<td>Symptom – Plastic fingers cut at tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient reel to cutterbar clearance</td>
<td>Increase clearance</td>
<td>5.13.1 Reel Clearance to Cutterbar, page 543</td>
</tr>
<tr>
<td>Symptom – Plastic fingers bent rearward at tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel digging into ground with reel speed slower than ground speed</td>
<td>Raise header</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Reel digging into ground with reel speed slower than ground speed</td>
<td>Decrease header tilt</td>
<td></td>
</tr>
<tr>
<td>Reel digging into ground with reel speed slower than ground speed</td>
<td>Move reel aft</td>
<td>3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td>Symptom – Plastic fingers bent forward at tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel digging into ground with reel speed faster than ground speed</td>
<td>Raise header</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Reel digging into ground with reel speed faster than ground speed</td>
<td>Decrease header tilt</td>
<td></td>
</tr>
<tr>
<td>Reel digging into ground with reel speed faster than ground speed</td>
<td>Move reel aft</td>
<td>3.7.10 Reel Fore-Aft Position, page 123</td>
</tr>
<tr>
<td>Symptom – Plastic fingers bent close to tine tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive plugging at cutterbar with wads of crop accumulating at cutterbar while maintaining reel operation</td>
<td>Correct plugging/cutting issues</td>
<td>3.10 Unplugging the Cutterbar, page 328</td>
</tr>
<tr>
<td>Excessive plugging at cutterbar with wads of crop accumulating at cutterbar while maintaining reel operation</td>
<td>Stop reel before plugging becomes excessive</td>
<td>3.10 Unplugging the Cutterbar, page 328</td>
</tr>
</tbody>
</table>
7.4 Header and Drapers

Table 7.4 Troubleshooting Header and Drapers

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Insufficient header lift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low relief pressure</td>
<td>Increase relief pressure</td>
<td>Refer to your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Insufficient side draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed control set too low</td>
<td>Increase speed control setting</td>
<td>3.7.7 Draper Speed, page 113</td>
</tr>
<tr>
<td>Combine header drive too slow</td>
<td>Adjust to correct speed for</td>
<td>Refer to your combine operator’s manual</td>
</tr>
<tr>
<td>Symptom: Insufficient feed draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief pressure too low</td>
<td>Test side draper hydraulic system</td>
<td>Refer to your MacDon Dealer</td>
</tr>
<tr>
<td>Combine header drive too slow</td>
<td>Adjust to correct speed for</td>
<td>Refer to your combine operator’s manual</td>
</tr>
<tr>
<td>Symptom: Feed draper will not move</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers are loose</td>
<td>Tighten drapers</td>
<td>5.10.2 Checking and Adjusting Feed Draper Tension, page 501</td>
</tr>
<tr>
<td>Drive or idler roller wrapped with material</td>
<td>Loosen draper and clean rollers</td>
<td>5.10.2 Checking and Adjusting Feed Draper Tension, page 501</td>
</tr>
<tr>
<td>Slat or connector bar jammed by frame or material</td>
<td>Loosen draper and clear obstruction</td>
<td>5.10.2 Checking and Adjusting Feed Draper Tension, page 501</td>
</tr>
<tr>
<td>Roller bearing seized</td>
<td>Replace roller bearing</td>
<td>5.12.6 Draper Roller Maintenance, page 532</td>
</tr>
<tr>
<td>Low hydraulic oil</td>
<td>Fill combine hydraulic oil reservoir to full level</td>
<td>Refer to your combine operator’s manual</td>
</tr>
<tr>
<td>Material not feeding evenly off knife</td>
<td>Lower reel</td>
<td>3.7.9 Reel Height, page 117</td>
</tr>
<tr>
<td>Material not feeding evenly off knife</td>
<td>Install stub guards</td>
<td>5.8.7 Knife Guards, page 465</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3.5 Stub Guard Conversion Kit, page 599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Hesitation in flow of bulky crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header angle too low</td>
<td>Increase header angle</td>
<td>3.7.4 Header Angle, page 102</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Increase side draper speed</td>
<td>3.7.7 Draper Speed, page 113</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Install upper cross auger</td>
<td>6.5.8 Upper Cross Auger, page 608</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Add flighting extensions</td>
<td>Refer to your MacDon Dealer</td>
</tr>
</tbody>
</table>
Table 7.4 Troubleshooting Header and Drapers (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Drapers back-feed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers running too slow in heavy crop</td>
<td>Increase draper speed</td>
<td>3.7.7 Draper Speed, page 113</td>
</tr>
<tr>
<td>Symptom: Crop is thrown across opening and under opposite side draper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers running too fast in light crop</td>
<td>Reduce draper speed</td>
<td>3.7.7 Draper Speed, page 113</td>
</tr>
<tr>
<td>Symptom: Material accumulates inside or under front edge of draper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deck height improperly adjusted</td>
<td>Adjust deck height</td>
<td>5.12.5 Adjusting Deck Height, page 530</td>
</tr>
<tr>
<td>Symptom: Material accumulating on end deflectors and releasing in bunches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End deflectors too wide</td>
<td>For headers with manual deck shift only, trim deflector or replace with narrow deflector (MD #172381)</td>
<td>3.10 Unplugging the Cutterbar, page 328</td>
</tr>
</tbody>
</table>
Chapter 8: Reference

8.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

8.1.1 Metric Bolt Specifications

Table 8.1 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>

Figure 8.1: Bolt Grades
Table 8.2 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8.3 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf·ft) (*lbf·in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>
Table 8.4 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
</tr>
</tbody>
</table>

8.1.2 Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.5 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 (Cast Aluminum)</td>
</tr>
<tr>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td></td>
</tr>
</tbody>
</table>
8.1.3 Flare-Type Hydraulic Fittings

1. Check flare (A) and flare seat (B) for defects that might cause leakage.

2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.

3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 8.6, page 624.

4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.

5. Assess final condition of connection.

Table 8.6 Flare-Type Hydraulic Tube Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value*</th>
<th>Flats from Finger Tight (FFFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>lb-f</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>4–5</td>
<td>3–4</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>7–8</td>
<td>5–6</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>18–19</td>
<td>13–14</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>19–21</td>
<td>14–15</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>30–33</td>
<td>22–24</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>57–63</td>
<td>42–46</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>81–89</td>
<td>60–66</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>113–124</td>
<td>83–91</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/16–12</td>
<td>136–149</td>
<td>100–110</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>160–176</td>
<td>118–130</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>228–250</td>
<td>168–184</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>264–291</td>
<td>195–215</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>359–395</td>
<td>265–291</td>
</tr>
<tr>
<td>-40</td>
<td>3–12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*62. Torque values shown are based on lubricated connections as in reassembly.
8.1.4 O-Ring Boss Hydraulic Fittings – Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.

3. Check that O-ring (A) is NOT on threads and adjust if necessary.

4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until backup washer (D) and O-ring (A) contact part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).

8. Check final condition of fitting.
Table 8.7 O-Ring Boss (ORB) Hydraulic Fittings – Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value63</th>
<th>Nm</th>
<th>lbf-ft (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
<td>63</td>
<td>53–62</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
<td>63</td>
<td>106–115</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
<td>63</td>
<td>14–15</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
<td>63</td>
<td>15–24</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
<td>63</td>
<td>19–21</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
<td>63</td>
<td>34–37</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
<td>63</td>
<td>55–60</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132</td>
<td>63</td>
<td>88–97</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168</td>
<td>63</td>
<td>113–124</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193</td>
<td>63</td>
<td>130–142</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243</td>
<td>63</td>
<td>163–179</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298</td>
<td>63</td>
<td>199–220</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365</td>
<td>63</td>
<td>245–269</td>
</tr>
</tbody>
</table>

63 Torque values shown are based on lubricated connections as in reassembly.
8.1.5 O-Ring Boss Hydraulic Fittings – Non-Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 8.8, page 627.
6. Check final condition of fitting.

![Figure 8.9: Hydraulic Fitting](image)

Table 8.8 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value(^{64})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7 (*_{53–62})</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13 (*_{106–115})</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21 (14–15)</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33 (15–24)</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29 (19–21)</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50 (34–37)</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82 (55–60)</td>
</tr>
<tr>
<td>-12</td>
<td>1 1/16–12</td>
<td>120–132 (88–97)</td>
</tr>
<tr>
<td>-14</td>
<td>1 3/8–12</td>
<td>153–168 (113–124)</td>
</tr>
<tr>
<td>-16</td>
<td>1 5/16–12</td>
<td>176–193 (130–142)</td>
</tr>
<tr>
<td>-20</td>
<td>1 5/8–12</td>
<td>221–243 (163–179)</td>
</tr>
<tr>
<td>-24</td>
<td>1 7/8–12</td>
<td>270–298 (199–220)</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2–12</td>
<td>332–365 (245–269)</td>
</tr>
</tbody>
</table>

\(^{64}\) Torque values shown are based on lubricated connections as in reassembly.

REFERENCE

64. Torque values shown are based on lubricated connections as in reassembly.
8.1.6 O-Ring Face Seal Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 8.9, page 628.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 8.9 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-3</td>
<td>Note66</td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note66</td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1 3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
<tr>
<td>-14</td>
<td>Note66</td>
<td>7/8</td>
<td>–</td>
</tr>
</tbody>
</table>

65 Torque values and angles shown are based on lubricated connection as in reassembly.

66 O-ring face seal type end not defined for this tube size.
Table 8.9 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value (Nm, lbf·ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-16</td>
<td>1 7/16</td>
<td>1</td>
<td>150–165, 111–122</td>
</tr>
<tr>
<td>-20</td>
<td>1 11/16</td>
<td>1 1/4</td>
<td>205–226, 151–167</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1 1/2</td>
<td>315–347, 232–256</td>
</tr>
<tr>
<td>-32</td>
<td>2 1/2</td>
<td>2</td>
<td>510–561, 376–414</td>
</tr>
</tbody>
</table>

8.1.7 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks, scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The turns from finger tight (TFFT) and flats from finger tight (FFFT) values are shown in Table 8.10, page 629. Make sure that tube end of a shaped connector (typically 45 degree or 90 degree) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:
Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.10 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

67. Torque values and angles shown are based on lubricated connection as in reassembly.
8.2 Conversion Chart

Table 8.11 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td>SI Units (Metric)</td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>acre</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>US gallons per minute</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>pound force</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>foot</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilowatt</td>
<td>kW</td>
<td>horsepower</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Pressure</td>
<td>megapascal</td>
<td>MPa</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>pound feet or foot pounds</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>pound inches or inch pounds</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>°C</td>
<td>degrees Fahrenheit</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>feet per minute</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>feet per second</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>miles per hour</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>US gallon</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>mL</td>
<td>ounce</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>cubic inch</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>pound</td>
</tr>
</tbody>
</table>
8.3 Unloading and Assembly

Refer to the instructions for your specific header for unloading, assembly, and setup procedures that are included with your shipment.

<table>
<thead>
<tr>
<th>Shipping Destination</th>
<th>Header Description</th>
<th>MacDon Instruction Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>D1 Series Draper Header and FM100 Float Module</td>
<td>MD #214827</td>
</tr>
<tr>
<td>Export (anywhere other than North America)</td>
<td>D1 Series Draper Header and FM100 Float Module</td>
<td>MD #214828</td>
</tr>
</tbody>
</table>
Index

A

AGCO combines
 attaching header to combine 358
 replacing reel speed sensors 584
AHHC
 auto header height control 23
 definition .. 23
API
 definition .. 23
ASTM
 definition .. 23
augers
 auger drive sprockets
 adjusting auger drive chain tension 441
 auger position .. 150
 auger to pan clearance 436
 drive chains
 adjusting chain tension 441
 checking chain tension 439
 installing .. 445
 lubricating .. 421
 removing ... 442
 feed auger configurations 61
 converting from
 medium to narrow ... 70
 medium to ultra narrow 78
 medium to wide ... 73
 narrow to medium .. 65
 narrow to ultra narrow 83
 narrow to wide .. 75
 ultra narrow to medium 65
 ultra narrow to narrow 72
 ultra narrow to wide 75
 wide to medium ... 68
 wide to narrow .. 70
 wide to ultra narrow 78
 modifying wide configuration 77
fingers
 adjusting auger finger timing 457
 checking finger timing 457
 installing ... 450
 removing .. 448
 replacing auger finger guides 456
flighting .. 349, 458
 optional FM100 feed auger flighting 605, 610
tension springs
 checking and adjusting 57
tines, See fingers
auto header height control
 Case IH 2300 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 2500 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 5088/6088/7088 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 5130/6130/7130 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 7010 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 7120/8120/9120 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 7230/8230/9230 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Case IH 8010 combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Challenger 6 series combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Challenger 7 series combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 CLAAS 500 series combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 CLAAS 700 series combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Gleaner R62/R72 series combines
 sensor operation ... 154
 sensor output voltage
 checking voltage range manually 156
 Gleaner R65/R66/R75/R76 series combines
 sensor output voltage
INDEX

checking voltage range from the cab .. 226
Gleaner R65/R75 series combines .. 226
adjusting ground pressure ... 233
adjusting sensitivity ... 234
calibrating AHHC ... 230
engaging AHHC ... 228
sensor output voltage .. 154
calibrating sensor output voltage 234
sensor output voltage .. 154
troubleshooting alarms and faults 235
turning the accumulator off .. 232
Gleaner R65/R75 Series combines .. 226
adjusting raise/lower rate .. 232
Gleaner S series combines .. 226
Gleaner S series combines (pre-2016) 226
adjusting ground pressure .. 233
adjusting raise/lower rate .. 232
adjusting sensitivity .. 234
calibrating AHHC ... 230
engaging AHHC ... 228
calibrating sensor output voltage 234
calibrating sensor operation ... 154
calibrating AHHC ... 228
calibrating how AHHC works ... 152
calibrating sensor output voltage 154
combining output voltage requirements 154
Case IH 2300 combines .. 171
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH 2500 combines .. 171
adjusting sensitivity ... 172
calibrating AHHC ... 171
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH 5088/6088/7088 combines 171
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH 5130/6130/7130 combines 174
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH 5140/6140/7140 combines 174
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH 5150/6150/7150 combines 174
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH 5160/6160/7160 combines 174
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH S series combines ... 175
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
Case IH T series combines ... 175
adjusting preset cutting height ... 180
calibrating AHHC ... 179
maximum stubble height .. 305
how AHHC works ... 152
calibrating sensor output voltage 152
combining output voltage requirements 154
New Holland CR/CX series combines............................... 154
sensor output voltage ... 154
calibrating sensor output voltage 156
checking voltage range manually 156
checking voltage range from the cab 267
checking voltage range from the cab 267
New Holland CR/CX series combines............................... 154
checking voltage range manually 156
replacing sensor ... 166
calibrating sensor output voltage 162
two sensor system .. 163
auto header height control (AHHC), See specific combine section
INDEX

Case IH 7010 combines .. 183
adjusting
 preset cutting height 198
calibrating
 AHHC .. 190
 maximum stubble height 305
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 187
 combine output voltage requirements 154
Case IH 7120/8120/9120 combines 183
adjusting
 preset cutting height 198
calibrating
 AHHC .. 190
 maximum stubble height 305
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 187
 combine output voltage requirements 154
Case IH 7230/8230/9230 combines 183
adjusting
 preset cutting height 198
calibrating
 AHHC .. 190
 maximum stubble height 305
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 187
 combine output voltage requirements 154
Case IH 7240/8240/9240 combines 183
adjusting
 preset cutting height 198
calibrating
 AHHC .. 190
 maximum stubble height 305
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 187
Case IH 8010 combines .. 183
adjusting
 preset cutting height 198
calibrating
 AHHC .. 190
 maximum stubble height 305
header controls
 setting without a shift button on GSL 186
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 187
 checking voltage range manually 183
 combine output voltage requirements 154
Case IH combines
 checking reel height sensor voltage 197
Case IH combines with version 28.00 software
 calibrating the AHHC .. 193
Challenger 6 series combines 200
 adjusting
 header height .. 205
 raise/lower rate .. 206
 sensitivity ... 207
calibrating
 AHHC .. 203
 maximum stubble height 305
 engaging AHHC .. 202
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 200
 combine output voltage requirements 154
Challenger 7 series combines 200
calibrating
 maximum stubble height 305
 how AHHC works .. 152
sensor output voltage
 checking voltage range from the cab 200
 combine output voltage requirements 154
CLAAS 500 series combines 208
adjusting
 auto reel speed ... 214
 cutting height ... 210
 cutting height manually 211
 preset cutting height ... 210
 sensitivity ... 212
calibrating
 AHHC .. 208
 maximum stubble height 305
 how AHHC works .. 152
CLAAS 600 series combines 216
adjusting
 auto reel speed ... 221
 cutting height ... 219
 reel height ... 225
 sensitivity ... 219
calibrating
 AHHC .. 216
 reel height ... 222
CLAAS 700 series combines 216
adjusting
 auto reel speed ... 221
 cutting height ... 219
 reel height ... 225
 sensitivity ... 219
calibrating
 AHHC .. 216
 maximum stubble height 305
 reel height ... 222
 how AHHC works .. 152
Gleaner R62/R72 series combines
 calibrating
 maximum stubble height 305
 combine output voltage requirements 154
 how AHHC works .. 152
INDEX

CGVW

Challenger combines
attaching header to combine 358
auger configurations ... 61, 65
detaching combine from header 362
replacing reel speed sensors 584
CLAAS combines
attaching combine to header 373
auger configurations ... 61, 65
detaching combine from header 378
reel speed sensors
replacing on CLAAS 400 587
replacing on CLAAS 500/700 588
combines
attaching header to combine
AGCO .. 358
Case IH .. 350
Challenger .. 358
CLAAS ... 373
Gleaner ... 358
John Deere ... 366
Massey Ferguson .. 356
New Holland 381
New Holland CR/CX 381
attaching/detaching float module 390
attaching/detaching header 349
detaching combine from header
Case IH .. 355
Challenger .. 362
CLAAS ... 378
Gleaner ... 362
John Deere ... 370
Massey Ferguson .. 362
New Holland CR/CX 385
transporting header .. 332
on combine .. 332
towing the header .. 333
attaching to towing vehicle 333
crop delivery
options .. 605
crop divider rods ... 147
installing .. 149
removing .. 148
crop dividers .. 143
installing on header with latch option 145
installing on header without latch option 146
removing from header with latch option 143
removing from header without latch option 144
cutterbars
options .. 598
extended center filler .. 599

C
cams
adjusting reel cam ... 142
reel cam settings .. 139
Case IH combines
attaching combine to header 350
auger configurations ... 61, 65
detaching combine from header 355
center-links
definition .. 23
centering the reel
double reel ... 548
single reel ... 549
CGVW
definition .. 23
chains
auger drive chain
adjusting chain tension ... 441
checking auger drive chain tension 439
installing .. 445
lubricating .. 421
removing .. 442
gearbox drive chain
adjusting chain tension ... 435
reel drive chain
adjusting chain tension ... 573
loosening .. 573
replacing on double-reel drive 581
replacing on single-reel drive 583
tightening .. 573
bolts
definition .. 23
break-in inspections ... 406
break-in periods .. 42

D
D1 Series Draper Header 29
floating module – FM100 .. 30
conversion chart .. 630
CR feeder deflectors .. 389
crop delivery
options .. 605
crop divider rods ... 147
installing .. 149
removing .. 148
crop dividers .. 143
installing on header with latch option 145
installing on header without latch option 146
removing from header with latch option 143
removing from header without latch option 144
cutterbars
options .. 598
extended center filler .. 599

conversion chart .. 630
INDEX

knife cutout cover .. 598
wearplates ... 598
unplugging .. 328
cutting
height .. 86
off the ground .. 86
adjusting stabilizer wheels 89
adjusting stabilizer/slow speed transport
wheels ... 87
on the ground ... 91

D
D1 series headers
definition .. 23
daily start-up checks 41
DDD
definition .. 23
decks
side drapers
adjusting deck height 530
definition of terms .. 23
divider latch kits ... 601
divider rods .. 147
installing ... 149
removing ... 148
DK
definition .. 23
DKD
definition .. 23
double reels
centering the reel .. 548
DR
definition .. 23
draper decks
drive rollers .. 536
idler rollers .. 533
draper deflectors ... 541–542
replacing ... 541
wide .. 606
draper drive systems
drapers
adjusting side draper speed 113
header draper
maintaining draper rollers 532
draper roller bearings
inspecting ... 532
drapers
adjusting side draper speed 113
draper decks
drive rollers .. 536
idler rollers .. 533
draper rollers
maintaining .. 532
float module .. 498

float modules
adjusting draper tension 501
checking draper tension 501
idler rollers
draper deck idler roller
installing .. 536
side draper decks
drive rollers
installing .. 539
removing ... 536
idler rollers
removing ... 533
side drapers
adjusting tension ... 526
adjusting tracking ... 528
installing ... 524
removing ... 523
speed .. 113
drive roller bearings
feed draper drive roller
installing .. 507
removing ... 505
replacing ... 505
replacing drive roller bearing 538
drive rollers
feed draper drive roller 502
installing ... 504
removing ... 502
drivelines
adjusting tension on gearbox drive chain 435
driveline guards
installing ... 433
removing ... 431
installing driveline ... 430
removing driveline ... 429
drives
header drive .. 429

electrical system
maintaining electrical system 428
replacing light bulbs 428
sensors
ahhc sensors ... 154
reel height sensor
replacing ... 121
reel speed sensor
replacing on AGCO ... 584
replacing on CLAAS 400 587
replacing on CLAAS 500/700 588
replacing on John Deere 586
endshields ... 37
adjusting ... 39
INDEX

checking .. 39
closing .. 38
installing .. 39
opening ... 37
removing ... 38

F

feed auger configurations .. 61
feed deck pan
 lowering feed deck pan 513
 raising feed deck pan 515
feed deflectors .. 389
 float module .. 516
 installing on Gleaner combines 518
 installing on New Holland CR combines 517
feed drapers .. 498
 adjusting draper tension 501
 adjusting speed .. 114
 checking draper tension 501
drive roller bearing
 installing .. 507
 removing .. 505
 replacing .. 505
drive rollers .. 502
 installing feed draper drive roller 502
 removing feed draper drive roller 502
idler roller ... 508
 installing ... 512
 removing .. 508
idler roller bearing
 replacing .. 509
 replacing feed draper 498

FFFT

definition ... 23
fingers
 definition .. 23
 finger tight .. 23
auger fingers ... 448
 adjusting auger finger timing 457
 checking finger timing 457
 installing .. 450
 removing .. 448
 replacing auger finger guides 456
plastic reel fingers
 installing .. 553
 removing .. 552
steel reel fingers
 installing .. 551
 removing .. 550

flighting ... 349, 458
 installing .. 331
 removing .. 330
float .. 94
 header float .. 94
header float locks ... 101
float module .. 593
float modules
 attaching float module to header 390
 attaching/detaching 390
auger drive
 adjusting auger drive chain tension 441
 augers ... 436
 auger fingers ... 448
 adjusting auger finger timing 457
 checking finger timing 457
 installing .. 450
 removing .. 448
 replacing auger finger guides 456
 auger to pan clearance 436
 optional FM100 feed auger flighting 605, 610
 detaching from combine and header 396
 feed auger configurations 61
 feed deck pan
 lowering ... 513
 raising .. 515
feed deflectors ... 389, 516
 replacing on Gleaner combines 518
 replacing on New Holland CR combines 517
feed draper .. 498
 adjusting draper tension 501
 checking draper tension 501
 drive roller .. 502
 installing feed draper drive roller 502
 removing feed draper drive roller 502
 idler roller .. 508
 installing ... 512
 removing .. 508
 idler roller bearing
 replacing .. 509
 replacing feed draper 498
FM100
 component identification 30
 setup .. 349
 stripper bars ... 516
 installing ... 517
 kits .. 349
 removing .. 516
 unplugging .. 329
FM100 dual AHHC sensor 605
FM100 feed auger flighting 605, 610

INDEX

G

gearboxes
adjusting drive chain tension 435
header drive
adding oil ... 423
changing oil ... 423
checking oil level 422
lubricating ... 422
Gleaner combines
attaching header to combine 358
auger configurations 61, 65
detaching combine from header 362
replacing reel speed sensors 584
glossary ... 23
greasing
every 10 hours ... 409
every 100 hours ... 412
every 25 hours ... 409
every 250 hours .. 415
every 50 hours ... 410
every 500 hours .. 416
greasing procedure 417
maintenance schedule/records 403
ground speeds .. 112
GS
definition ... 23
guards
knife guards .. 465
adjusting knife guards 465
replacing pointed guards 466
replacing stub guards 467
stub guard conversion kit 599
GVW
definition .. 23

H

header angles
adjustment range 102
header draper decks
installing idler rollers 536
replacing drive roller bearing 538
header drapers, See drapers
idler roller bearings
replacing .. 535
inspecting draper roller bearing 532
maintaining draper rollers 532
header drives .. 429
driveline guards
installing .. 433
removing .. 431
gearbox drive chain 435
installing driveline 430
removing driveline 429
header safety props 34
headers
attaching float module 390
attachments ... 45
checking and adjusting 95
controls ... 44
definition ... 23
detaching from combine and float module 396
float ... 94–95
float locks ... 101
header angle
adjusting from combine 104
leveling .. 326
operating variables 60
optimizing for straight combining canola 56
options ... 601
recommended settings 45
setup ... 45
storing the header 348
towing the header 333
transporting header
on combine ... 332
towing the header 333
attaching to towing vehicle 333
unloading and assembly 631
hex keys
definition ... 23
hold-down clips
adjusting hold-down clips with stub guards 470
hold-downs
checking hold-downs 469
hold-downs clips
adjusting hold-down clips with pointed guards ... 469
hoses and lines
hydraulic .. 408
hydraulics
adding reservoir oil 425
changing oil filter 427
changing reservoir oil 426
fittings
flare-type ... 624
O-ring boss (ORB) adjustable 625
O-ring boss (ORB) non-adjustable 627
O-ring face seal (ORFS) 628
tapered pipe thread fittings 629
hoses and lines 408
hydraulic safety .. 6
reservoir .. 424
checking oil level in reservoir 424

I

idler roller bearings
feed draper idler roller
replacing idler roller bearing 509
INDEX

header draper idler roller ... 535
idler rollers ... 536
 draper deck idler roller ... 536
 feed draper idler roller ... 508
 installing .. 512
inspections ... 406
 break-in inspections ... 406
maintenance schedule/records ... 403
introduction .. v

J
John Deere combines .. 366
 attaching combine to header ... 366
 auger configurations ... 61, 65
 detaching combine from header ... 370
 replacing reel speed sensors ... 586

K
knife drive belts, See belts .. 465
knife drive boxes ... 472
 changing oil .. 481
 checking box .. 472
 checking mounting bolts ... 473
 installing box .. 478
 installing pulley .. 477
 removing box .. 474
 removing pulley .. 476
knife drive system ... 472
knife guards ... 465
knife drives ... 492
 adjusting timed double-knife timing ... 492
 belts, See belts ... 465
 hold-down clips ... 469
 adjusting hold-down clips with pointed .. 469
 adjusting hold-down clips with stub guards .. 470
 hold-downs ... 469
 checking knife hold-downs ... 469
knife drive belts, See belts .. 465
knife speed ... 116
 checking knife speed ... 116
knife guards ... 465
 installing .. 463
 See also hold-down clips ... 465
adjusting guards ... 465
checking guards ... 465
replacing pointed guards .. 466
replacing stub guards ... 467
knifehead bearings ... 463

L
light bulbs ... 428
 replacing .. 428
lodged crop reel finger kits .. 595
lubrication and servicing .. 409
 auger drive chains ... 421
 greasing procedure ... 417
 header drive gearbox ... 423
 checking oil .. 423
 checking oil level .. 422
 lubricating gearbox ... 422
 reel drive chain ... 419
 changing oil .. 423
 checking oil level .. 422
 lubricating gearbox ... 422
 reel drive chain ... 419

M
maintenance and servicing .. 401
 electrical .. 428
 lubrication .. 409
 maintenance specifications .. 402
 preparing for servicing ... 401
 preseason servicing ... 406
 requirements ... 403
 safety .. 5
 schedule .. 403
 service intervals ... 409
 storage .. 348
maintenance requirements .. 403
 servicing ... 406
 break-in inspections ... 406
 end of season servicing ... 407
Massey Ferguson combines .. 358
 attaching header to combine .. 358
 auger configurations ... 61, 65
 detaching combine from header ... 362
 replacing reel speed sensors ... 584
metric bolts ... 621
 torque specifications ... 621
model numbers ... x
 records .. 403
motors
INDEX

reel drive motors ... 579
installing (MD #143088) and (MD #273258) 580
removing ... 579
multi-crop rapid reel conversion kits 130, 594

N
New Holland combines
10 V adapter (MD #B6421) .. 155
attaching combine to header .. 381
auger configurations ... 61, 65
New Holland CR/CX combines
attaching combine to header .. 381
detaching combine from header 385
New Holland feeder deflector ... 389
NPT
definition .. 23

O
oils
changing knife drive box oil .. 481
header drive gearbox
adding oil ... 423
operating variables
headers ... 60
operations ... 33
operator responsibilities ... 33
optimizing headers
straight combining canola .. 56
options .. 593
augers
auger dent repair kit .. 608
crop delivery ... 605
auger dent repair kit .. 608
draper deflector (wide) .. 606
FM100 dual AHHC sensor kit 605
FM100 feed auger flighting .. 605, 610
stripper bars ... 607
upper cross auger (UCA) ... 330, 608
European combine upper cross auger 609
cutterbars ... 598
cutterbar wearplates .. 598
extended center filler .. 599
knife cutout cover .. 598
rock retarder kit .. 599
stub guard conversion kit .. 599
vertical knife plumbing kit 600
draper
in-cab draper speed control (ICDSC) kit 606
float module ... 593
float modules
hillside extension kit ... 593
header ... 601
backsheet extension kit .. 603
center skid shoes ... 603
divider latch kits .. 601
double vertical knife hose kits 600
rice divider rods ... 609
stubble light kit (John Deere only) 602
vertical knife kits ... 600
wheels
secondary stabilizer wheel .. 602
stabilizer wheels .. 601
stabilizer wheels and slow speed transport package 602
knifehead shields ... 471
installing ... 471
PR15 pick-up reels
reel endshield kit ... 596
tine tube reel conversion kits 596
reel arms
reel arm extension kit
European-configured headers 594
North American-configured headers 595
reel drive sprockets .. 111
reels .. 594
lodged crop reel finger kits 595
multi-crop rapid reel conversion kit 594
reel arm extension kit
European-configured headers 594
North American-configured headers 595
reel endshield kit ... 596
tine tube reinforcing kit ... 597
rice divider rods ... 149
transport systems ... 589
ORB
definition .. 23
owner responsibilities ... 33

P
pick-up reels, See PR15 pick-up reels
PR15 pick-up reels ... 543
adjusting reel frown ... 547
centering
single reel ... 549
centering the reel
double reel ... 548
fore-aft position
adjusting ... 124
repositioning cylinders
double reel ... 127, 133
single reel ... 125
with multi-crop rapid reel option kit 130
frown .. 547
options .. 547
recommended setting ... 58
reel cam
INDEX

adjusting reel cam .. 142
settings and guidelines .. 139
reel clearance .. 543
adjusting .. 546
measuring .. 544
reel drive motors .. 579
reel drives
adjusting chain tension .. 573
covers .. 570
installing .. 571
removing .. 570
double reel U-joint
installing .. 578
double-reel drive U-joint
removing .. 577
double-reel U-joint .. 577
drive sprockets .. 575
installing .. 576
optional for special conditions 111
removing .. 575
installing motors (MD #143088) and (MD #273258) .. 580
loosening chain .. 573
removing motor (MD #143088) and (MD #273258) .. 579
replacing chain – double reel 581
replacing chain – single reel 583
tightening chain .. 573
reel endshields .. 567
replacing endshield supports 569
replacing endshields .. 567
reel fingers .. 550
installing plastic fingers .. 553
installing steel fingers .. 551
removing plastic fingers .. 552
removing steel fingers .. 550
reel height ... 117
reel height sensor .. 118
replacing sensor .. 121
reel safety props .. 35
disengaging ... 36
engaging ... 35
reel speed ... 111
reel system ... 570
reel tine pitch ... 138
replacing reel speed sensors 584
AGCO combines .. 584
CLAAS 400 .. 587
CLAAS 500/700 .. 588
John Deere combines .. 586
tine tube bushings .. 554
installing ... 560
removing ... 554
preseason servicing .. 406
product overview .. 23

R
recommended fluids and lubricants .. 647
recommended settings
header .. 45
reel .. 58
reel arm extension kit
European-configured headers .. 594
North American-configured headers .. 595
reel clearance
adjusting .. 546
measuring ... 544
reel drive chains
loosening .. 573
replacing on double-reel drive .. 581
replacing on single-reel drive .. 583
tightening ... 573
reel drive motors .. 579
installing .. 580
removing (MD #143088) and (MD #273258) .. 579
reel drives
double reel U-joint
installing ... 578
double-reel U-joint .. 577
removing ... 577
reel endshields .. 567
kit .. 596
replacing endshield supports .. 569
replacing endshields .. 567
reel fingers .. 550
plastic
installing ... 553
removing ... 552
steel
installing ... 551
removing ... 550
reel fore-aft positions .. 123
adjusting ... 124
reel frown ... 547
adjusting ... 547
reel safety props .. 35
disengaging ... 36
engaging ... 35
reel speeds ... 111
reel system ... 570
recommended reel settings .. 58
reels
centering
single reel ... 549
centering the reel .. 548
double reel ... 548
references
unloading and assembly .. 631
rice divider rods .. 149, 609
rock retarder kits .. 599
RoHS
definition .. 23
rpm definition .. 23

S

SAE
definition .. 23
safety ... 1
daily start-up checks ... 41
genereal safety ... 3
header safety props ... 34
hydraulic safety .. 6
maintenance safety .. 5
operational safety ... 34
reel safety props ... 35
safety alert symbols ... 1
safety sign decals ... 7
installing decals .. 7
interpreting decals .. 16
locations .. 8
signal words ... 2
screws
definition .. 23
sealed bearings
installing .. 402

sensors
ahhc sensors ... 154
checking and adjusting reel height sensor 118
reel height sensor
replacing .. 121
reel speed sensor
replacing on AGCO ... 584
replacing on CLAAS 400 series 587
replacing on CLAAS 500/700 series 588
replacing on John Deere 586

serial numbers
locations .. x
records .. x

service intervals
lubrication .. 409
servicing, See maintenance and servicing
setting up the header ... 631
shutting down procedures 43
skid shoes, See cutting on the ground
adjusting inner skid shoes 92
adjusting outer skid shoes 93
slow speed transport package 602
spare knives .. 464
specifications
product specifications ... 25
torque specifications ... 621

speeds
draper speed ... 113
feed draper speed ... 114
ground speed ... 112
header draper speed
adjusting speed ... 113
knife speed
checking knife speed .. 116
knife speed data ... 115
reel speed .. 111
rpm definition .. 23

sprockets ... 570–571, 575
adjusting reel drive chain tension 573
installing reel drive sprocket 576
loosening reel drive chain 573
optional reel drive sprocket 111
removing reel drive sprocket 575
tightening reel drive chain 573
SR definition .. 23
stabilizer wheels .. 601–602
adjusting .. 89
secondary stabilizer wheel 602
stabilizer/slow speed transport wheels
adjusting ... 87
start-up
daily checks ... 41
storing the header ... 348
straight combining canola
optimizing headers ... 56
stripper bars ... 349, 607
float module .. 516
installing .. 517
removing .. 516
stub guard conversion kits 599

T

TFFT
definition ... 23
tine tubes
bushings
installing ... 560
removing ... 554
reel conversion kits .. 596
tine tube reinforcing kit 597
tire inflation/pressures .. 591
torque
definition ... 23
torque angles
definition ... 23
torque specifications ... 621
axle bolts ... 590
flare-type hydraulic fittings 624
metric bolt specifications 621
bolting into cast aluminum 623
O-ring boss (ORB) hydraulic fittings – adjustable .. 625
O-ring boss (ORB) hydraulic fittings — non-adjustable .. 627
O-ring face seal (ORFS) fittings............................. 628
tapered pipe thread fittings 629
torque-tension
definition... 23
tow-bars
attaching ... 345
removing ... 334
storing .. 335
towing the header .. 333
attaching to towing vehicle............................... 333
converting from field to transport....................... 340
 moving wheels
 front (left) wheels to transport position........ 340
 rear (right) wheels to transport position 342
 converting from transport to field 334
 moving wheels
 front (left) wheels to field position 337
 rear (right) wheels to field position 338
 removing tow-bar ... 334
 storing tow-bar .. 335
transport systems ... 589
 axle bolt torques .. 590
 converting from field to transport 340
 moving wheels
 front (left) wheels to transport position 340
 rear (right) wheels to transport position 342
 converting from transport to field 334
 moving wheels
 front (left) wheels to field position 337
 rear (right) wheels to field position 338
 removing tow-bar .. 334
 storing tow-bar .. 335
tire inflation/pressures 591
tow-bar, See tow-bars
transporting header .. 332
 on combine .. 332
 towing the header 333
 attaching to towing vehicle 333
wheel bolt torques .. 589
troubleshooting .. 611
crop loss at cutterbar 611
cutting action and knife components 613
header and drapers .. 618
reel delivery .. 616
trucks
definition... 23

U

U-joints
double reel U-joint
 installing ... 578
double-reel drive U-joint

double-reel U-joint .. 577
unloading and assembly 631
unplugging
cutterbar ... 328
float module .. 329
upper cross augers
 installing flighting 331
 removing flighting 330
upper cross augers (option) 330, 608
European combine upper cross auger (UCA) 609

troubleshooting .. 611
crop loss at cutterbar 611
cutting action and knife components 613
header and drapers .. 618
reel delivery .. 616
trucks
definition... 23

W

wheels
 stabilizer wheels (option) 601
 stabilizer wheels and slow speed transport package (option) 602
wheel bolt torques .. 589
wheels
 secondary stabilizer wheel (option) 602

V

Versatile combines
 auger configurations 61, 65
vertical knife
 options
 double vertical knife hose kits 600
 vertical knife mounts 600
 plumbing kit ... 600

wheels and tires
 stabilizer wheels (option) 601
 stabilizer wheels and slow speed transport package (option) 602
 tire inflation/pressures 591
 wheel bolt torques 589
washers
definition... 23
Recommended Fluids and Lubricants

Ensure your machine operates at top efficiency by using clean fluids and lubricants only.

- Use clean containers to handle all fluids and lubricants.
- Store fluids and lubricants in an area protected from dust, moisture, and other contaminants.

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>SAE multi-purpose</td>
<td>High temperature extreme pressure (EP) performance grease with 1% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
<td>—</td>
</tr>
<tr>
<td>Grease</td>
<td>SAE multi-purpose</td>
<td>High temperature extreme pressure (EP) performance grease with 10% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>Driveline slip-joints</td>
<td>—</td>
</tr>
<tr>
<td>Gear Lubricant</td>
<td>SAE 85W-140</td>
<td>API service class GL-5</td>
<td>Knife drive box</td>
<td>2.2 liters (2.3 quarts)</td>
</tr>
<tr>
<td>Gear Lubricant</td>
<td>SAE 85W-140</td>
<td>API service class GL-5</td>
<td>Main drive gearbox</td>
<td>2.5 liters (2.6 quarts)</td>
</tr>
<tr>
<td>Hydraulic Oil</td>
<td>Single grade trans-hydraulic oil. Recommended brands:</td>
<td>Petro-Canada Duratran, John Deere Hy-Gard J20C, Case Hy-Tran Ultraction, AGCO Power Fluid 821 XL</td>
<td>Lubricant trans / hydraulic oil</td>
<td>Header drive systems reservoir</td>
</tr>
</tbody>
</table>