D1XL Draper Header for Self-Propelled Windrowers

Published: September 2018
Declaration of Conformity

CE Declaration of Conformity

[1] MacDon Industries Ltd.
880 Moray Street,
Winipeg, Manitoba, Canada
R3J 3B3

[2] Windrower Draper Header

[3] MacDon DIX and DIXL Series

[4] As per Shipping Document

[5] July 11, 2018

[6] Christoph Martens
Product Integrity

<table>
<thead>
<tr>
<th>EN</th>
<th>NB</th>
<th>C2</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinennro. [2]</td>
<td>Declaration of Conformity</td>
<td>Protokollegger, de produkter:</td>
<td>Enhver, at produktet:</td>
</tr>
<tr>
<td></td>
<td>Harmonised standards used, as referred to in Article 7(1):</td>
<td>Ansvarsstyrkende standarder, som henvises til i paragraf 7(1):</td>
<td>Ordfører dirigeres at bekvemmelser i direktiv 2006/42/EC.</td>
</tr>
<tr>
<td></td>
<td>EN ISO 4245-1:2013</td>
<td>EN ISO 4245-1:2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Målet for den deklarerede (5)</td>
<td>Mål og dato for erkendelsen (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indlæg i den tekniske fil:</td>
<td>Indlæg i den tekniske fil:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anbefalinger, som er derfor relevante for at opnå godkendelse:</td>
<td>Anbefalinger, som er derfor relevante for at opnå godkendelse:</td>
<td></td>
</tr>
</tbody>
</table>

[DI]

<table>
<thead>
<tr>
<th>EN</th>
<th>NB</th>
<th>C2</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinennro. [2]</td>
<td>Declaration of Conformity</td>
<td>Protokollegger, at produktet:</td>
<td>Enhver, at produktet:</td>
</tr>
<tr>
<td></td>
<td>Harmonised standards used, as referred to in Article 7(1):</td>
<td>Ansvarsstyrkende standarder, som henvises til i paragraf 7(1):</td>
<td>Ordfører dirigeres at bekvemmelser i direktiv 2006/42/EC.</td>
</tr>
<tr>
<td></td>
<td>EN ISO 4245-1:2013</td>
<td>EN ISO 4245-1:2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Målet for den deklarerede (5)</td>
<td>Mål og dato for erkendelsen (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ikke i takt med, at deklarerede (5)</td>
<td>Ikne i takt med, at deklarerede (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indlæg i den tekniske fil:</td>
<td>Indlæg i den tekniske fil:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anbefalinger, som er derfor relevante for at opnå godkendelse:</td>
<td>Anbefalinger, som er derfor relevante for at opnå godkendelse:</td>
<td></td>
</tr>
</tbody>
</table>

The Harvesting Specialists

214776 i Revision A
EC Declaration of Conformity

Declaration

Manufacturer:
Mladenovic & Mladenovic GmbH
Hagenauer Straße 59
65223 Wiesbaden (Hessen)
boettmeis@madason.com

Product:
Röntgengeräte (X-ray equipment)

CC: Certification
Maastricht (NL)

European Regulations
- **EN ISO 4034-1:2013**
- **EN ISO 4034-7:2003**
- **EN ISO 4034-9:2003**

Type of Equipment:
Medical equipment

Conformity:
The manufacturer declares that the product is in conformity with the requirements of the relevant harmonized standards and the essential safety and health requirements of the Directives.

Conformity Marking:
CE

Provisions:
- **Annex I**
- **Annex II**

Representative:
Mladenovic & Mladenovic GmbH
Hagenauer Straße 59
65223 Wiesbaden (Hessen)
boettmeis@madason.com
Introduction

This instructional manual contains information on D1X and D1XL Series Draper Headers. Teamed with your windrower, D1X and D1XL Series Draper Headers will cut and lay crop into fluffy, uniform windrows.

The D1X and D1XL Series Draper Headers are designed as a straight-cut header, equipped to work well in all straight-cut conditions whether cutting on or above the ground.

Use this manual as your first source of information about the machine. If you follow the instructions provided, your header will work well for many years. If you require more detailed service information, a technical manual is available from your MacDon Dealer.

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer’s instructions

Conventions

The following conventions are used in this document:

- Right and left are determined from the operator’s position. The front of the header faces the crop.
- Unless otherwise noted, use the standard torque values provided in this manual.

This manual is available in English only.

Carefully read the information provided in this manual before attempting to maintain, service, or use the machine.

The Table of Contents and Index will guide you to specific areas within this manual. Examine the Table of Contents and familiarize yourself with the organization of the information.

NOTE:

Keep your MacDon publications up-to-date. The most current version can be downloaded from our Dealer-only site (https://portal.macdon.com) (login required).
Keep this manual handy for frequent reference or to pass on to new Operators or Owners. A manual storage case (A) is located inside the endshield on the left side of the header.

Call your MacDon Dealer if you need assistance, information, or additional copies of this manual.

Figure 1: Left Endshield Manual Storage Location
List of Revisions

<table>
<thead>
<tr>
<th>Summary of Change</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the Declaration of Conformity</td>
<td>Declaration of Conformity, page i</td>
</tr>
<tr>
<td>Updated bundle MD #B5757 to B6608, and B6572 to B6609</td>
<td>6.2.6 Vertical Knife Mounts, page 229</td>
</tr>
<tr>
<td>Added procedure to replacing cleat saver clips</td>
<td>5.7.6 Replacing Cleat Saver Clips, page 171</td>
</tr>
</tbody>
</table>
Model and Serial Number

Record the model number, serial number, and model year of the header and Slow Speed Transport / Stabilizer Wheel option (if installed) on the lines below.

NOTE:
Right and left designations are determined from the operator’s position, facing forward.

Header Model: __
Serial Number: ___
Year: __

The serial number plate (A) is located in the upper corner on the left endsheet.

Slow Speed Transport / Stabilizer Wheel Option

Serial Number: ___
Year: __

The serial number plate (A) is located on the right axle assembly.
TABLE OF CONTENTS

Declaration of Conformity...i
Introduction .. iii
List of Revisions.. v
Model and Serial Number ... vi

Chapter 1: Safety ... 1

1.1 Safety Alert Symbols .. 1
1.2 Signal Words ... 2
1.3 General Safety ... 3
1.4 Maintenance Safety ... 5
1.5 Hydraulic Safety ... 6
1.6 Safety Signs .. 7
 1.6.1 Installing Safety Decals .. 7
1.7 Safety Decal Locations ... 8
1.8 Understanding Safety Signs ... 16

Chapter 2: Product Overview .. 23

2.1 Definitions .. 23
2.2 Component Identification .. 26
2.3 Specifications .. 27

Chapter 3: Operation ... 31

3.1 Owner/Operator Responsibilities .. 31
3.2 Operational Safety ... 32
 3.2.1 Header Safety Props .. 32
 3.2.2 Reel Safety Props ... 33
 Engaging Reel Safety Props .. 33
 Disengaging Reel Safety Props ... 34
 3.2.3 Endshields ... 35
 Opening Endshields .. 35
 Closing Endshields .. 36
 Removing Endshields .. 36
 Installing Endshields ... 37
 Checking and Adjusting Endshields .. 37
 3.2.4 Daily Start-Up Check ... 39
3.3 Break-in Period .. 40
3.4 Shutting down the Windrower ... 41
3.5 Cab Controls .. 42
3.6 Header Setup .. 43
 3.6.1 Header Attachments .. 43
 3.6.2 Header Settings .. 43
 3.6.3 Reel Settings ... 53
3.7 Header Operating Variables .. 55
 3.7.1 Cutting Height ... 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting off the Ground</td>
<td>55</td>
</tr>
<tr>
<td>Cutting on the Ground</td>
<td>58</td>
</tr>
<tr>
<td>3.7.2 Header Float</td>
<td>60</td>
</tr>
<tr>
<td>3.7.3 Header Angle</td>
<td>60</td>
</tr>
<tr>
<td>Adjusting Header Angle</td>
<td>61</td>
</tr>
<tr>
<td>3.7.4 Reel Speed</td>
<td>61</td>
</tr>
<tr>
<td>Optional Reel Drive Sprockets</td>
<td>61</td>
</tr>
<tr>
<td>3.7.5 Ground Speed</td>
<td>62</td>
</tr>
<tr>
<td>3.7.6 Draper Speed</td>
<td>62</td>
</tr>
<tr>
<td>3.7.7 Knife Speed</td>
<td>63</td>
</tr>
<tr>
<td>3.7.8 Reel Height</td>
<td>63</td>
</tr>
<tr>
<td>3.7.9 Reel Fore-Aft Position</td>
<td>63</td>
</tr>
<tr>
<td>Adjusting Reel Fore-Aft Position</td>
<td>64</td>
</tr>
<tr>
<td>3.7.10 Reel Tine Pitch</td>
<td>64</td>
</tr>
<tr>
<td>Reel Settings</td>
<td>65</td>
</tr>
<tr>
<td>Adjusting Reel Cam</td>
<td>66</td>
</tr>
<tr>
<td>3.7.11 Crop Dividers</td>
<td>67</td>
</tr>
<tr>
<td>Removing Crop Dividers with Latch Option from Header</td>
<td>67</td>
</tr>
<tr>
<td>Removing Crop Dividers without Latch Option from Header</td>
<td>68</td>
</tr>
<tr>
<td>Installing Crop Dividers with Latch Option onto Header</td>
<td>68</td>
</tr>
<tr>
<td>Installing Crop Dividers without Latch Option onto Header</td>
<td>70</td>
</tr>
<tr>
<td>3.7.12 Crop Divider Rods</td>
<td>71</td>
</tr>
<tr>
<td>Removing Crop Divider Rods</td>
<td>72</td>
</tr>
<tr>
<td>Installing Crop Divider Rods</td>
<td>72</td>
</tr>
<tr>
<td>3.8 Delivery Opening</td>
<td>74</td>
</tr>
<tr>
<td>3.8.1 Manually Adjusting Delivery Opening on Header</td>
<td>74</td>
</tr>
<tr>
<td>3.8.2 Adjusting Delivery Opening on Header using Hydraulic Deck Shift.</td>
<td>75</td>
</tr>
<tr>
<td>3.9 Double Windrowing</td>
<td>76</td>
</tr>
<tr>
<td>3.9.1 Shifting Decks Hydraulically</td>
<td>76</td>
</tr>
<tr>
<td>3.10 Windrow Types</td>
<td>77</td>
</tr>
<tr>
<td>3.11 Haying Tips</td>
<td>79</td>
</tr>
<tr>
<td>3.11.1 Curing</td>
<td>79</td>
</tr>
<tr>
<td>3.11.2 Topsoil Moisture</td>
<td>79</td>
</tr>
<tr>
<td>3.11.3 Weather and Topography</td>
<td>79</td>
</tr>
<tr>
<td>3.11.4 Windrow Characteristics</td>
<td>79</td>
</tr>
<tr>
<td>3.11.5 Driving on Windrow</td>
<td>80</td>
</tr>
<tr>
<td>3.11.6 Raking and Tedding</td>
<td>80</td>
</tr>
<tr>
<td>3.11.7 Using Chemical Drying Agents</td>
<td>80</td>
</tr>
<tr>
<td>3.12 Levelling the Header</td>
<td>81</td>
</tr>
<tr>
<td>3.13 Unplugging the Cutterbar</td>
<td>82</td>
</tr>
<tr>
<td>3.14 Upper Cross Auger (UCA)</td>
<td>83</td>
</tr>
<tr>
<td>3.15 Transporting the Header</td>
<td>84</td>
</tr>
<tr>
<td>3.15.1 Transporting Header on Windrower</td>
<td>84</td>
</tr>
<tr>
<td>3.15.2 Towing</td>
<td>84</td>
</tr>
<tr>
<td>Attaching Header to Towing Vehicle</td>
<td>85</td>
</tr>
<tr>
<td>Towing the Header</td>
<td>85</td>
</tr>
</tbody>
</table>
Chapter 4: Header Attachment/Detachment ... 101
4.1 Attaching Header to M1170/M1240 Windrower .. 101
4.2 Detaching Header from M1170/M1240 Windrower 104

Chapter 5: Maintenance and Servicing ... 107
5.1 Preparing Machine for Servicing ... 107
5.2 Maintenance Specifications .. 108
5.2.1 Installing a Roller Chain .. 108
5.2.2 Installing a Sealed Bearing .. 108
5.3 Maintenance Requirements ... 109
5.3.1 Maintenance Schedule/Record .. 109
5.3.2 Break-In Inspection ... 110
5.3.3 Preseason Servicing ... 111
5.3.4 End-of-Season Service .. 111
5.3.5 Checking Hydraulic Hoses and Lines .. 112
5.3.6 Lubrication and Servicing... 113
5.3.7 Greasing Procedure ... 113
5.3.8 Service Intervals .. 113
5.4 Electrical System ... 119
5.4.1 How It Works ... 119
5.4.2 Replacing Light Bulbs ... 121
5.4.3 Checking and Adjusting Reel Height Sensor ... 122
5.5 Cutterbar ... 124
5.5.1 Replacing Knife Section .. 124
5.5.2 Removing Knife ... 125
5.5.3 Removing Knifehead Bearing ... 125
5.5.4 Installing Knifehead Bearing ... 126
5.5.5 Installing Knife .. 126
5.5.6 Spare Knife .. 127
5.5.7 Knife Guards ... 127
5.5.8 Knifehead Shield .. 135
5.5.9 Installing Knifehead Shield .. 135
5.6 Service Intervals .. 113
5.7 Greasing Procedure .. 113
5.8 Installing Knifehead Shield .. 135
5.6 Knife Drive System

5.6.1 Knife Drive Box
- Checking Mounting Bolts ... 136
- Removing Knife Drive Box ... 136
- Removing Knife Drive Box Pulley .. 139
- Installing Knife Drive Box Pulley ... 140
- Installing Knife Drive Box ... 140
- Changing Oil in Knife Drive Box .. 146

5.6.2 Knife Drive Belts
- Untimed Knife Drive Belts ... 147
- Timed Double-Knife Drive Belts ... 150

5.7 Drapers

5.7.1 Removing Drapers .. 163
5.7.2 Installing Drapers .. 163
5.7.3 Adjusting Draper Tension .. 165
5.7.4 Adjusting Draper Tracking .. 167
5.7.5 Adjusting Deck Height .. 169
5.7.6 Replacing Cleat Saver Clips .. 171
5.7.7 Draper Roller Maintenance .. 173
- Inspecting Draper Roller Bearing ... 173
- Draper Deck Idler Roller ... 173
- Draper Deck Drive Roller ... 177
5.7.8 Draper Deflectors
- Installing Narrow Draper Deflectors ... 181
- Installing Narrow Draper Deflectors ... 182

5.8 Reel

5.8.1 Reel Clearance to Cutterbar
- Measuring Reel Clearance ... 184
- Adjusting Reel Clearance ... 186
5.8.2 Reel Frown
- Adjusting Reel Frown ... 187
5.8.3 Centering the Reel
- Centering Double Reels .. 188
- Centering Single Reel .. 189
5.8.4 Reel Fingers
- Installing Plastic Fingers ... 190
5.8.5 Tine Tube Bushings
- Removing Bushings from Five-, Six-, or Nine-Bat Reels 192
- Installing Bushings on Five-, Six-, or Nine-Bat Reels 197
5.8.6 Reel Endshields
- Replacing Reel Endshields ... 203
- Replacing Reel Endshields – Right Reel on Double-Reel Header 205
5.9 Reel System

5.9.1 Reel Drive Cover .. 208
- Removing Reel Drive Cover ... 208
Chapter 6: Options and Attachments .. 225

6.1 Reel ... 225
 6.1.1 Multi-Crop Rapid Reel Conversion Kit .. 225
 6.1.2 Lodged Crop Reel Finger Kit .. 225
 6.1.3 PR15 Tine Tube Reel Conversion Kit .. 225
 6.1.4 Reel Endshield Kit .. 226
 6.1.5 Tine Tube Reinforcing Kit .. 226

6.2 Cutterbar ... 227
 6.2.1 Cutterbar Wearplate .. 227
 6.2.2 Knifehead Shield ... 227
 6.2.3 Extended Center Filler ... 228
 6.2.4 Rock Retarder .. 228
 6.2.5 Stub Guard Conversion Kit .. 228
 6.2.6 Vertical Knife Mounts ... 229

6.3 Header ... 230
 6.3.1 Divider Latch Kit ... 230
 6.3.2 Stabilizer Wheels ... 230
 6.3.3 Secondary Stabilizer Wheel ... 231
 6.3.4 Stabilizer Wheels and Slow Speed Transport Package ... 231
 6.3.5 Stubble Light Kit ... 231
 6.3.6 Backsheet Extension Kit ... 232
 6.3.7 Center Skid Shoes Kit ... 232
 6.3.8 Steel Skid Shoes .. 233

6.4 Crop Delivery ... 234

5.9.2 Reel Drive Chain Tension ... 210
 Loosening Reel Drive Chain ... 210
 Tightening Reel Drive Chain ... 211

5.9.3 Reel Drive Sprocket ... 213
 Removing Reel Drive Sprocket .. 213
 Installing Reel Drive Sprocket ... 213

5.9.4 Double-Reel U-Joint .. 214
 Removing Double-Reel U-Joint .. 214
 Installing Double-Reel U-Joint ... 215

5.9.5 Reel Drive Motor .. 216
 Removing Reel Drive Motor ... 216
 Installing Reel Drive Motor ... 217

5.9.6 Replacing Drive Chain on Double Reel ... 218
 Replacing Chain Using the Reel Drive Method ... 218
 Replacing Chain Using Breaking the Chain Method .. 220

5.9.7 Replacing Drive Chain on Single Reel ... 221

5.10 Transport System (Optional) .. 222
 5.10.1 Checking Wheel Bolt Torque ... 222
 5.10.2 Checking Axle Bolt Torque ... 222
 5.10.3 Checking Tire Pressure .. 223
Chapter 1: Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- ATTENTION!
- BECOME ALERT!
- YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

- Accidents disable and kill
- Accidents cost
- Accidents can be avoided

Figure 1.1: Safety Symbol
1.2 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. Two signal words, IMPORTANT and NOTE identify non-safety related information. Signal words are selected using the following guidelines:

⚠️ DANGER
Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ CAUTION
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

IMPORTANT:
Indicates a situation that, if not avoided, could result in a malfunction or damage to the machine.

NOTE:
Provides additional non-essential information or advice.
1.3 General Safety

⚠️ CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do **NOT** take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip-resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. **NEVER** ignore warning signs of fatigue.
• Wear close-fitting clothing and cover long hair. **NEVER** wear dangling items such as scarves or bracelets.

• Keep all shields in place. **NEVER** alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.

• Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

• Keep hands, feet, clothing, and hair away from moving parts. **NEVER** attempt to clear obstructions or objects from a machine while engine is running.

• Do **NOT** modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine’s life.

• To avoid bodily injury or death from unexpected startup of machine, **ALWAYS** stop the engine and remove the key from the ignition before leaving the operator’s seat for any reason.

• Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

• Keep work area well lit.

• Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do **NOT** allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.

• **NEVER** use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

• When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator’s manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Keep work area well lit
- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lubricant fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high-pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If original part on which a safety sign was installed is replaced, be sure the repair part displays the current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

1.6.1 Installing Safety Decals

1. Clean and dry installation area.
2. Decide on exact location before you remove decal backing paper.
3. Remove smaller portion of split backing paper.
4. Place decal in position and slowly peel back remaining paper, smoothing decal as it is applied.
5. Prick small air pockets with a pin and smooth out.

Figure 1.14: Operator’s Manual Decal
1.7 Safety Decal Locations

Figure 1.15: Upper Cross Auger (Optional)

Figure 1.16: Slow Speed Transport (Optional)
SAFETY

Figure 1.17: Slow Speed Transport Tow-Bar (Optional)

Figure 1.18: Vertical Knife (Optional)
Figure 1.19: Endsheets, Reel Arms, and Backsheet

A - MD #184422 (Four Places)
B - MD #131393 (x3 on Single Reel)
C - MD #174632
D - MD #166466 (Two Places)
E - MD #131392 (Double Reel)
F - MD #131391 (Two Places)
Figure 1.20: Backtube – 4.6 m (15 ft.) Header

A - MD #184422 B - MD #184372 C - MD #131391
Figure 1.21: Backtube – 6.1 m (20 ft.) Header

A - MD #184372 B - MD #166466 C - MD #131391
Figure 1.22: Backtube – 7.6 m (25 ft.) Header

A - MD #184372
B - MD #166466
C - MD #131391
SAFETY

Figure 1.23: Backtube – 10.7 m (35 ft.) Header (9.1 M [30 Ft.] Header Similar)

A - MD #184372
B - MD #166466
C - MD #131391
D - MD #131392
(10.7 M [35-Ft.] Double Reel Only)
Figure 1.24: Backtube – 12.2 m (40 ft.) Header (13.7 m [45 ft.] Header Similar)

SAFETY

A - MD #184372 B - MD #166466 C - MD #131391 D - MD #131392
1.8 Understanding Safety Signs

MD #113482

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do **NOT** allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #131391

Crushing hazard

DANGER

- Rest header on ground or engage safety props before going under unit.
MD #131392
Crushing hazard

WARNING
- To avoid injury from fall of raised reel; fully raise reel, stop the engine, remove the key, and engage safety prop on each reel support arm before working on or under reel.

MD #131393
Reel hazard

WARNING
- To avoid injury from fall of raised reel; fully raise reel, stop the engine, remove the key, and engage safety prop on each reel support arm before working on or under reel.

MD #166466
High-pressure oil hazard

WARNING
- Do not go near leaks.
- High-pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.
MD #174436
High-pressure oil hazard

WARNING
- Do not go near leaks.
- High-pressure oil easily punctures skin, causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

MD #174632
Reel entanglement hazard

CAUTION
- To avoid injury from entanglement with rotating reel, stand clear of header while machine is running.

MD #174684
Sharp component hazard

CAUTION
- Wear heavy canvas or leather gloves when working with knife.
- Be sure no one is near the vertical knife when removing or rotating knife.
SAFETY

MD #184372
General hazard pertaining to machine operation and servicing

CAUTION
To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #184422
Chain drive hand and arm entanglement hazard

WARNING
- Do not open or remove safety shields while engine is running.
- To avoid injury, stop the engine and remove the key before opening shield.
MD #193147
Transport/roading hazard

WARNING

• Ensure tow-bar lock mechanism is locked.

MD #220797
Tipping hazard in transport mode

WARNING

• Read the operator’s manual for more information on potential tipping or rollover of header while transporting.

MD #220798
Loss of control hazard in transport

CAUTION

• Do not tow the header with a dented or otherwise damaged tow pole (the circle with the red X shows a dent in the pole).
• Consult the operator’s manual for more information.
MD #220799
Transport/roading hazard

WARNING

• Ensure tow-bar lock mechanism is locked.

MD #279085
Auger entanglement hazard

WARNING

• To avoid injury from rotating auger, stand clear of auger while machine is running.
Chapter 2: Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with Operator and cab facing in direction of travel</td>
</tr>
<tr>
<td>CDM</td>
<td>Cab display module on a windrower</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between header and machine used to change header angle</td>
</tr>
<tr>
<td>CGVVW</td>
<td>Combined gross vehicle weight</td>
</tr>
<tr>
<td>D1X Series header</td>
<td>MacDon D115X, D120X, and D125X rigid draper headers for M1 Series Windrowers</td>
</tr>
<tr>
<td>D1XL Series header</td>
<td>MacDon D130XL, D135XL, D140XL, and D145XL rigid draper headers for M1 Series Windrowers</td>
</tr>
<tr>
<td>DDD</td>
<td>Double-draper drive</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DKD</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>DR</td>
<td>Double reel</td>
</tr>
<tr>
<td>DWA</td>
<td>Double Windrow Attachment</td>
</tr>
<tr>
<td>Engine-forward</td>
<td>Windrower operation with Operator and engine facing in direction of travel</td>
</tr>
<tr>
<td>Export header</td>
<td>Header configuration typical outside North America</td>
</tr>
<tr>
<td>FFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose</td>
</tr>
<tr>
<td>GSL</td>
<td>Ground speed lever</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with use of a fastener where joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms</td>
</tr>
<tr>
<td>HDS</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>HPT display</td>
<td>Harvest Performance Tracker display module on a windrower</td>
</tr>
<tr>
<td>ISC</td>
<td>Intermediate Speed Control</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed standard sizing and shape for original 37” flared fitting</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>North American header</td>
<td>Header configuration typical in North America</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>PARK</td>
<td>The slot opposite the NEUTRAL position on operator’s console of M1 Series windrowers</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part</td>
</tr>
<tr>
<td>SDD</td>
<td>Single-draper drive</td>
</tr>
<tr>
<td>Self-Propelled (SP) Windrower</td>
<td>Self-propelled machine consisting of a power unit with a header</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>SR</td>
<td>Single reel</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Timed knife drive</td>
<td>Synchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf-ft)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw</td>
</tr>
<tr>
<td>Truck</td>
<td>A four-wheel highway/road vehicle weighing no less than 3400 kg (7500 lb.)</td>
</tr>
<tr>
<td>UCA</td>
<td>Upper cross auger</td>
</tr>
<tr>
<td>Untimed knife drive</td>
<td>Unsynchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor or two hydraulic motors</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCM</td>
<td>Windrower control module</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit of a self-propelled header</td>
</tr>
<tr>
<td>WOT</td>
<td>Wide open throttle</td>
</tr>
</tbody>
</table>
2.2 Component Identification

Figure 2.1: Windrower Header Components

A - Reel Cam
B - Pick-Up Reel Tines
C - Draper
D - Center Reel Arm Prop Handle
E - Hydraulic Connections
F - Transport Light
G - Reel Safety Prop
H - Endshield
J - Reel Lift Cylinder
K - Skid Shoe
L - Reel Fore-Aft Cylinder
M - Knife Drive Box
N - Crop Divider
P - Crop Divider Rod
Q - Reel Endshield
R - Hose Support Arm
2.3 Specifications

The following symbol and letters are used in Table 2.1, page 27 and Table 2.2, page 29:

<table>
<thead>
<tr>
<th>D1X</th>
<th>D1XL</th>
<th>Attachments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S: standard / O:: optional (factory installed) / OD: optional (dealer installed) / —: not available</td>
</tr>
</tbody>
</table>

Table 2.1 Header Specifications

<table>
<thead>
<tr>
<th>Cutterbar</th>
<th>Effective cutting width (distance between crop divider points)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D115X – 4.6 m (15 ft.) header</td>
<td>4572 mm (180 in.)</td>
<td>S</td>
</tr>
<tr>
<td>D120X – 6.1 m (20 ft.) header</td>
<td>6096 mm (240 in.)</td>
<td>S</td>
</tr>
<tr>
<td>D125X – 7.6 m (25 ft.) header</td>
<td>7620 mm (300 in.)</td>
<td>S</td>
</tr>
<tr>
<td>D130XL – 9.1 m (30 ft.) header</td>
<td>9144 mm (360 in.)</td>
<td>S</td>
</tr>
<tr>
<td>D135XL – 10.7 m (35 ft.) header</td>
<td>10,668 mm (420 in.)</td>
<td>S</td>
</tr>
<tr>
<td>D140XL – 12.2 m (40 ft.) header</td>
<td>12,192 mm (480 in.)</td>
<td>S</td>
</tr>
<tr>
<td>D145XL – 13.7 m (45 ft.) header</td>
<td>13,716 mm (540 in.)</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutterbar lift range at guard tip (center-link fully retracted)</th>
<th>1265 mm (49-13/16 in.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Knife</th>
<th>Knife stroke</th>
<th>Double-knife speed (strokes per minute)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76 mm (3 in.)</td>
<td>D115X: 1500–1900 spm S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D120X: 1400–1700 spm S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D125X: 1400–1700 spm S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D130XL: 1200–1600 spm S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D135XL: 1200–1400 spm S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D140XL: 1100–1400 spm S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D145XL: 1100–1400 spm S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knife Sections</th>
<th>Over-serrated / solid / bolted / 9 serrations per inch</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Over-serrated / solid / bolted / 14 serrations per inch</td>
<td>OD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knife overlap at center (double-knife headers)</th>
<th>3 mm (1/8 in.)</th>
</tr>
</thead>
</table>

¹ Under normal cutting conditions, set knife speed at the knife drive pulley between 600 and 640 rpm (1200 and 1280 spm). If set to low side of chart, you could experience knife stalling.
Table 2.1 Header Specifications (continued)

<table>
<thead>
<tr>
<th>Guards and Hold-Downs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guard: pointed / forged / double heat treated (DHT)</td>
<td>Of</td>
</tr>
<tr>
<td>Hold-down: sheet metal / adjustment bolt</td>
<td></td>
</tr>
<tr>
<td>Guard: stub / forged bottom / forged top / adjustment plate</td>
<td>Od</td>
</tr>
<tr>
<td>Guard: stub / forged bottom / sheet metal top / adjustment bolt</td>
<td>Od</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guard Angle (Cutterbar on Ground)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Center-link retracted 4.6–7.6 m (15–25 ft.)</td>
<td>7.5 degrees</td>
</tr>
<tr>
<td>Center-link retracted 9.1–13.7 m (30–45 ft.)</td>
<td>2.5 degrees</td>
</tr>
<tr>
<td>Center-link extended 4.6–7.6 m (15–25 ft.)</td>
<td>17.0 degrees</td>
</tr>
<tr>
<td>Center-link extended 9.1–13.7 m (30–45 ft.)</td>
<td>12.0 degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conveyor (Draper) and Decks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Draper width (D1X Series)</td>
<td>1057 mm (41.6 in.)</td>
</tr>
<tr>
<td>Draper width (D1XL Series)</td>
<td>1270 mm (50 in.)</td>
</tr>
<tr>
<td>Draper drive Hydraulic</td>
<td></td>
</tr>
<tr>
<td>Draper speed</td>
<td>225 m/min. (0–742 fpm)</td>
</tr>
<tr>
<td>Delivery opening width (center delivery) / variable by shifting decks 4.6 m (15 ft.)</td>
<td>1540–1770 mm (60-5/8 – 69-11/16 in.)</td>
</tr>
<tr>
<td>Delivery opening width (center delivery) / variable by shifting decks 6.1–13.7 m (20–45 ft.)</td>
<td>1720–1950 mm (67-1/8 – 76-11/16 in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PR15 Pick-Up Reel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of tine tubes</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Center tube diameter</td>
<td>10.7 m (35 ft.) (single reel) only 254 mm (10 in.)</td>
</tr>
<tr>
<td>Center tube diameter</td>
<td>All reel sizes (except 10.7 m [35 ft.] single reel) 203 mm (8 in.)</td>
</tr>
<tr>
<td>Finger tip radius</td>
<td>Factory-set 800 mm (31-1/2 in.)</td>
</tr>
<tr>
<td>Finger tip radius</td>
<td>Adjustment range 766–800 mm (30-3/16 – 31-1/2 in.)</td>
</tr>
<tr>
<td>Effective reel diameter (via cam profile)</td>
<td>1650 mm (65 in.)</td>
</tr>
<tr>
<td>Finger length</td>
<td>290 mm (11 in.)</td>
</tr>
<tr>
<td>Finger spacing (staggered on alternate bats)</td>
<td>150 mm (6 in.)</td>
</tr>
<tr>
<td>Reel drive</td>
<td>Hydraulic S</td>
</tr>
<tr>
<td>Reel speed (auto-adjust from cab using ground speed index)</td>
<td>0–85 rpm</td>
</tr>
</tbody>
</table>
Table 2.1 Header Specifications (continued)

<table>
<thead>
<tr>
<th>Header Width (Field Mode)</th>
<th>(\text{Cut width} + 384 \text{ mm} \ (15-1/8 \text{ in.}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header Width (Transport Mode, Reel Fore-Aft Fully Retracted)</td>
<td>(\text{D1XL Series headers}) ((B)^2) (long dividers installed) (2845 \text{ mm} \ (112 \text{ in.})) S</td>
</tr>
<tr>
<td></td>
<td>(\text{D1XL Series headers}) ((A)^2) (long dividers removed) (2667 \text{ mm} \ (105 \text{ in.})) S</td>
</tr>
<tr>
<td></td>
<td>(\text{D1X Series headers}) ((B)^2) (long dividers installed) (2636 \text{ mm} \ (104 \text{ in.})) S</td>
</tr>
<tr>
<td></td>
<td>(\text{D1X Series headers}) ((A)^2) (long dividers removed) (2452 \text{ mm} \ (97 \text{ in.})) S</td>
</tr>
</tbody>
</table>

Figure 2.2: Header Width

Table 2.2 Header Attachments

<table>
<thead>
<tr>
<th>Upper Cross Auger</th>
<th>(O_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside diameter</td>
<td>305 mm (12 in.)</td>
</tr>
<tr>
<td>Tube diameter</td>
<td>All sizes 152 mm (6 in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stabilizer Wheel / Slow Speed Transport</th>
<th>(O_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheels</td>
<td>15 in.</td>
</tr>
<tr>
<td>Tires</td>
<td>P205/75 R-15</td>
</tr>
</tbody>
</table>

Table 2.3 Header Weights

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated weight range with base header (variances are due to different package configurations)</td>
<td></td>
</tr>
</tbody>
</table>

2. Refer to Figure 2.2, page 29.
Table 2.3 Header Weights (continued)

<table>
<thead>
<tr>
<th>Header Width (m ft.)</th>
<th>Weight Range (kg lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 (15 ft.) header (D115X)</td>
<td>1479–1538 kg (3260–3390 lb.)</td>
</tr>
<tr>
<td>6.0 (20 ft.) header (D120X)</td>
<td>1678–1640 kg (3615–3700 lb.)</td>
</tr>
<tr>
<td>7.6 (25 ft.) header (D125X)</td>
<td>1753 kg (3872 lb.)</td>
</tr>
<tr>
<td>9.1 (30 ft.) header (D130XL)</td>
<td>2318 kg (5110 lb.)</td>
</tr>
<tr>
<td>10.7 (35 ft.) header (D135XL)</td>
<td>2562–2730 kg (5649–6018 lb.)</td>
</tr>
<tr>
<td>12.2 (40 ft.) header (D140XL)</td>
<td>2823 kg (6224 lb.)</td>
</tr>
<tr>
<td>13.7 (45 ft.) header (D145XL)</td>
<td>2996 kg (6605 lb.)</td>
</tr>
</tbody>
</table>
Chapter 3: Operation

3.1 Owner/Operator Responsibilities

⚠️ CAUTION

- It is your responsibility to read and understand this manual completely before operating the header. Contact your MacDon Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety decals on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do NOT modify the machine. Unauthorized modifications may impair the function and/or safety of the machine and may reduce the length of service you receive from your machine.
- The safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
3.2 Operational Safety

CAUTION

Adhere to the following safety precautions:

- Follow all safety and operational instructions provided in your operator’s manuals. If you do not have a windrower manual, get one from your Dealer and read it thoroughly.
- Never attempt to start the engine or operate the machine except from the operator’s seat.
- Check the operation of all controls in a safe, clear area before starting work.
- Do NOT allow riders on the windrower.

CAUTION

- Never start or move the machine until you are sure all bystanders have cleared the area.
- Avoid travelling over loose fill, rocks, ditches, or holes.
- Drive slowly through gates and doorways.
- When working on inclines, travel uphill or downhill whenever possible. Be sure to keep transmission in gear when travelling downhill.
- Never attempt to get on or off a moving machine.
- Do NOT leave operator’s station while the engine is running.
- To avoid bodily injury or death from unexpected startup of a machine, always stop the engine and remove the key before adjusting or removing plugged material from the machine.
- Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure. Refer to 3.4 Shutting down the Windrower, page 41.
- Operate only in daylight or good artificial light.

3.2.1 Header Safety Props

The header safety props “located on the header lift cylinders” prevent the lift cylinders from unexpectedly retracting and lowering the header. Refer to your windrower operator’s manual for instructions.

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.
3.2.2 Reel Safety Props
The reel safety props, located on the reel support arms, prevent the reel from unexpectedly lowering.

WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
To prevent damage to the reel support arms, do **NOT** transport the header with the reel safety props engaged.

Engaging Reel Safety Props
1. Raise reel to maximum height.
2. Move reel safety props (A) to engaged position.

 NOTE:
 Keep pivot bolt (B) sufficiently tight so prop remains in stored position when not in use, but can be engaged using hand force.
3. Repeat on right reel arm.
4. Use handle (A) to move lock rod to inboard position (B), which engages pin (C) under prop.
5. Lower reel until safety props contact the outer arm cylinder mounts and the center arm pins.
Disengaging Reel Safety Props

1. Raise the reel to maximum height.
2. Move the reel safety props (A) back inside the reel arms.
3. Use handle (B) to move lock rod (A) to the outboard position.
3.2.3 Endshields

A hinged, polyethylene endshield is fitted on each end of the header.

Opening Endshields

1. Push release lever (A) located on the backside of the endshield to unlock the shield.
2. Pull endshield open using handle depression (B).

3. Pull endshield at handle depression (A). Endshield is retained by a hinge tab (B) and will open in direction (C).

4. If additional clearance is required, pull the endshield free of hinge tab (A) and swing shield toward the rear of the header.
5. Engage safety latch (B) on hinge arm to secure the shield in fully open position.
Closing Endshields

1. Disengage lock (B) to allow endshield to move.
2. Insert front of endshield behind hinge tab (A) and into divider cone.

3. Swing endshield in direction (A) into closed position. Engage lock with a firm push.
4. Check that endshield is locked.

Removing Endshields

NOTE:

D1X header shown in illustration. D1XL header similar.

1. Fully open the endshield. For instructions, refer to *Opening Endshields, page 35*.
2. Engage lock (A) to prevent endshield movement.
3. Remove self-tapping screw (B).
4. Slide endshield upwards and remove from hinge arm (C).
5. Place endshield away from work area.
Installing Endshields

NOTE:
D1X header shown in illustration. D1XL header similar.

1. Guide endshield onto hinge arm (C) and slowly slide it downwards.

NOTE:
Ensure hinge arm (C) is installed in the outboard hole on the hinge bracket, as shown in illustration at right.

2. Install self-tapping screw (B).

3. Disengage lock (A) to allow endshield movement.

4. Close endshield. Refer to *Closing Endshields, page 36*.

NOTE:
Endshields may expand or contract when subjected to large temperature changes. Top pin and lower latch bracket positions can be adjusted to compensate for dimensional changes. Refer to *Checking and Adjusting Endshields, page 37*.

Checking and Adjusting Endshields

Endshields are subject to expansion or contraction caused by large temperature variations. The position of the top pin and lower latch can be adjusted to compensate for dimensional changes.

Checking the endshield:

1. Check gap (X) between front end of the shields and the header frame and compare to the values in Table 3.1, page 37.

Table 3.1 Endshield Gap at Various Temperatures

<table>
<thead>
<tr>
<th>Temperature in °C (°F)</th>
<th>Gap (X) mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (45)</td>
<td>13–18 (1/2–23/32)</td>
</tr>
<tr>
<td>18 (65)</td>
<td>10–15 (3/8–19/32)</td>
</tr>
<tr>
<td>29 (85)</td>
<td>7–12 (9/32–15/32)</td>
</tr>
<tr>
<td>41 (105)</td>
<td>4–9 (5/32–11/32)</td>
</tr>
</tbody>
</table>
OPERATION

Adjusting the endshield gap:

1. Loosen the four bolts (A) on support tube bracket (B).

 NOTE:
 D1X header shown in illustration. D1XL header similar.

2. Loosen the three bolts (A) on latch assembly (B).

3. Adjust latch assembly (B) to achieve the desired gap between the front end of the shield and the header frame. Refer to Table 3.1, page 37 for the recommended endshield gap at various temperatures.

4. Tighten the three bolts (A) on the latch assembly.

5. Tighten the four bolts (A) on support tube bracket (B).

 NOTE:
 D1X header shown in illustration. D1XL header similar.

6. Close endshield.
3.2.4 Daily Start-Up Check

CAUTION

- Clear the area of other persons, pets, etc. Keep children away from machinery. Walk around the machine to be sure no one is under, on, or close to it.
- Wear close-fitting clothing and protective shoes with slip-resistant soles.
- Remove foreign objects from the machine and surrounding area.
- Carry with you any protective clothing and personal safety devices that could be necessary through the day. Do NOT take chances. You may need a hard hat, protective glasses or goggles, heavy gloves, a respirator or filter mask, or wet weather gear.
- Protect against noise. Wear a suitable hearing protective device such as ear muffs or ear plugs to protect against objectionable or uncomfortably loud noises.

Complete the following tasks each day before start-up:

1. Check the machine for leaks and any parts that are missing, broken, or not working correctly.

 NOTE:

 Use proper procedure when searching for pressurized fluid leaks. Refer to 5.3.5 Checking Hydraulic Hoses and Lines, page 112.

2. Clean all lights and reflective surfaces on the machine.

3. Perform all daily maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 109.
3.3 Break-in Period

⚠️ CAUTION

Before investigating an unusual sound or attempting to correct a problem, shut off engine and remove key.

NOTE:
Until you become familiar with the sound and feel of your new header, be extra alert and attentive.

After attaching the header to the header for the first time, follow these steps:

1. Operate the machine with the reels, drapers, and knives running slowly for five minutes. Watch and listen FROM THE OPERATOR’S SEAT for binding or interfering parts.

 NOTE:
 Reels and side drapers will not operate until oil flow fills the lines.

2. Refer to 5.3.2 Break-In Inspection, page 110 and perform all specified tasks.
3.4 Shutting down the Windrower

Before leaving the operator’s seat for any reason, shut down the windrower by following these steps:

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Park on level ground whenever possible.
2. Lower the header fully.
3. Place all controls in NEUTRAL or PARK.
4. Disengage the header drive.
5. Lower and fully retract the reel.
6. Stop the engine and remove the key from the ignition.
7. Wait for all movement to stop.
3.5 Cab Controls

CAUTION
Be sure all bystanders are clear of machine before starting engine or engaging any header drives.

Refer to your windrower operator’s manual for identification of the following in-cab controls:

- Header engage/disengage control
- Header height
- Header angle
- Ground speed
- Reel speed
- Reel height
- Reel fore-aft position
3.6 Header Setup

3.6.1 Header Attachments
Several optional attachments that can improve your header's performance are available. Optional attachments can be ordered and installed by your MacDon Dealer. Refer to 6 Options and Attachments, page 225 for descriptions of available items.

3.6.2 Header Settings
Refer also to 3.6.3 Reel Settings, page 53.
Table 3.2 Recommended D1X/D1XL Header Settings for Canola, Stubble Height 102–203 mm (4–8 in.)

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle</th>
<th>Skid Shoe Position</th>
<th>Reel Cam</th>
<th>Reel Speed %</th>
<th>Knife Speed</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8–10</td>
<td>Variable</td>
<td>2</td>
<td>5–10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>8–10</td>
<td>Middle or Down</td>
<td>1</td>
<td>10</td>
<td>Low</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>8–10</td>
<td>Variable</td>
<td>1</td>
<td>10</td>
<td>Low</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>8–10</td>
<td>Middle or Down</td>
<td>2</td>
<td>5–10</td>
<td>Low</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

3. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
4. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
5. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
6. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
7. Refer to Reel Cam Settings, page 65.
8. Percentage above ground speed.
9. Refer to 3.7.7 Knife Speed, page 63.
10. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.3 Recommended D1X/D1XL Header Settings for Canola, Stubble Height >203 mm (>8 in.)

<table>
<thead>
<tr>
<th>Stabilizer Wheels(^{11})</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)(^{12})</td>
<td>667 (150)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle(^{13})</th>
<th>Skid Shoe Position(^{14})</th>
<th>Reel Cam(^{15})</th>
<th>Reel Speed %(^{16})</th>
<th>Knife Speed(^{17})</th>
<th>Reel Position(^{18})</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>8–10</td>
<td>Not applicable</td>
<td>2</td>
<td>5–10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>8–10</td>
<td>Not applicable</td>
<td>2</td>
<td>10</td>
<td>Low</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>8–10</td>
<td>Not applicable</td>
<td>3</td>
<td>10</td>
<td>Low</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>8–10</td>
<td>Not applicable</td>
<td>3</td>
<td>5–10</td>
<td>Low</td>
<td>3 or 4</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

11. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
12. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
13. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
14. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
15. Refer to Reel Cam Settings, page 65.
16. Percentage above ground speed.
17. Refer to 3.7.7 Knife Speed, page 63.
18. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.4 Recommended D1X/D1XL Header Settings for Cereals, Stubble Height <102 mm (<4 in.)

<table>
<thead>
<tr>
<th>Stabilizer Wheels<sup>19</sup></th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)<sup>20</sup></td>
<td>311 (70)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle<sup>21</sup></th>
<th>Skid Shoe Position<sup>22</sup></th>
<th>Reel Cam<sup>23</sup></th>
<th>Reel Speed %<sup>24</sup></th>
<th>Knife Speed<sup>25</sup></th>
<th>Reel Position<sup>26</sup></th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>0–3</td>
<td>Up or Middle</td>
<td>2</td>
<td>10–15</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>0–3</td>
<td>Up or Middle</td>
<td>2</td>
<td>10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>4–7</td>
<td>Up or Middle</td>
<td>2</td>
<td>10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>4–7</td>
<td>Up or Middle</td>
<td>3</td>
<td>5–10</td>
<td>Medium</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

19. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
20. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
21. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
22. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
23. Refer to Reel Cam Settings, page 65.
24. Percentage above ground speed.
25. Refer to 3.7.7 Knife Speed, page 63.
26. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.5 Recommended D1X/D1XL Header Settings for Cereals, Stubble Height 102–203 mm (4–8 in.)

<table>
<thead>
<tr>
<th>Stabilizer Wheels<sup>27</sup></th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)<sup>28</sup></td>
<td>311 (70)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle<sup>29</sup></th>
<th>Skid Shoe Position<sup>30</sup></th>
<th>Reel Cam<sup>31</sup></th>
<th>Reel Speed %<sup>32</sup></th>
<th>Knife Speed<sup>33</sup></th>
<th>Reel Position<sup>34</sup></th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>0–3</td>
<td>Middle or Down</td>
<td>2</td>
<td>10–15</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>0–3</td>
<td>Middle or Down</td>
<td>2</td>
<td>10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>4–7</td>
<td>Middle or Down</td>
<td>2</td>
<td>10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>4–7</td>
<td>Down</td>
<td>3</td>
<td>5–10</td>
<td>Medium</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

27. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
28. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
29. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
30. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
31. Refer to Reel Cam Settings, page 65.
32. Percentage above ground speed.
33. Refer to 3.7.7 Knife Speed, page 63.
34. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.6 Recommended D1X/D1XL Header Settings for Cereals, Stubble Height >203 mm (>8 in.)

<table>
<thead>
<tr>
<th>Stabilizer Wheels<sup>35</sup></th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)<sup>36</sup></td>
<td>667 (150)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle<sup>37</sup></th>
<th>Skid Shoe Position<sup>38</sup></th>
<th>Reel Cam<sup>39</sup></th>
<th>Reel Speed %<sup>40</sup></th>
<th>Knife Speed<sup>41</sup></th>
<th>Reel Position<sup>42</sup></th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>0–3</td>
<td>Not applicable</td>
<td>2</td>
<td>10–15</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>0–3</td>
<td>Not applicable</td>
<td>2</td>
<td>10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>4–7</td>
<td>Not applicable</td>
<td>2</td>
<td>10</td>
<td>Medium</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>4–7</td>
<td>Not applicable</td>
<td>3</td>
<td>5–10</td>
<td>Medium</td>
<td>4 or 5</td>
<td>Not required</td>
</tr>
</tbody>
</table>

35. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
36. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
37. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
38. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
39. Refer to Reel Cam Settings, page 65.
40. Percentage above ground speed.
41. Refer to 3.7.7 Knife Speed, page 63.
42. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.7 Recommended D1X/D1XL Header Settings for Edible Beans, Ground Level Stubble Height (0 mm [0 in.])

<table>
<thead>
<tr>
<th>Stabilizer Wheels<sup>43</sup></th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)<sup>44</sup></td>
<td>445 (100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle<sup>40</sup></th>
<th>Skid Shoe Position<sup>46</sup></th>
<th>Reel Cam<sup>47</sup></th>
<th>Reel Speed %<sup>48</sup></th>
<th>Knife Speed<sup>49</sup></th>
<th>Reel Position<sup>50</sup></th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Off</td>
<td>8–10</td>
<td>Up or Middle</td>
<td>2</td>
<td>5–10</td>
<td>Medium</td>
<td>3 or 4</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>Off</td>
<td>8–10</td>
<td>Up or Middle</td>
<td>2</td>
<td>5–10</td>
<td>Medium</td>
<td>3 or 4</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>Off</td>
<td>8–10</td>
<td>Up or Middle</td>
<td>2</td>
<td>5–10</td>
<td>Medium</td>
<td>3 or 4</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>Off</td>
<td>8–10</td>
<td>Up or Middle</td>
<td>3</td>
<td>5–10</td>
<td>Medium</td>
<td>3 or 4</td>
<td>Not required</td>
</tr>
</tbody>
</table>

43. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
44. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
45. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
46. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
47. Refer to Reel Cam Settings, page 65.
48. Percentage above ground speed.
49. Refer to 3.7.7 Knife Speed, page 63.
50. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.8 Recommended D1X/D1XL Header Settings for Flax, Stubble Height 51–153 mm (2–6 in.)

<table>
<thead>
<tr>
<th>Stabilizer Wheels(^{51})</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)(^{52})</td>
<td>311–445 (70–100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle(^{53})</th>
<th>Skid Shoe Position(^{54})</th>
<th>Reel Cam(^{55})</th>
<th>Reel Speed %(^{56})</th>
<th>Knife Speed(^{57})</th>
<th>Reel Position(^{58})</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>4–7</td>
<td>Middle or Down</td>
<td>2</td>
<td>5–10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>0–3</td>
<td>Middle or Down</td>
<td>2</td>
<td>10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>4–7</td>
<td>Middle or Down</td>
<td>2</td>
<td>10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>8–10</td>
<td>Middle or Down</td>
<td>2</td>
<td>10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

51. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
52. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
53. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
54. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
55. Refer to Reel Cam Settings, page 65.
56. Percentage above ground speed.
57. Refer to 3.7.7 Knife Speed, page 63.
58. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.9 Recommended D1X/D1XL Header Settings for Grass, Ground Level Stubble Height (0 mm [0 in.])

<table>
<thead>
<tr>
<th>Stabilizer Wheels<sup>59</sup></th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float N (lbf)<sup>60</sup></td>
<td>311–445 (70–100)</td>
</tr>
<tr>
<td>Crop Condition</td>
<td>Divider Rods</td>
</tr>
<tr>
<td>Light</td>
<td>On</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
</tr>
</tbody>
</table>

59. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
60. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
61. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
62. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
63. Refer to Reel Cam Settings, page 65.
64. Percentage above ground speed.
65. Refer to 3.7.7 Knife Speed, page 63.
66. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
Table 3.10 Recommended D1X/D1XL Header Settings for Alfalfa, Ground Level Stubble Height (0 mm [0 in.])

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Divider Rods</th>
<th>Header Angle</th>
<th>Skid Shoe Position</th>
<th>Reel Cam</th>
<th>Reel Speed %</th>
<th>Knife Speed</th>
<th>Reel Position</th>
<th>Upper Cross Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>On</td>
<td>Variable</td>
<td>Up or Middle</td>
<td>3</td>
<td>10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Normal</td>
<td>On</td>
<td>Variable</td>
<td>Up or Middle</td>
<td>2</td>
<td>10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Heavy</td>
<td>On</td>
<td>Variable</td>
<td>Up or Middle</td>
<td>2</td>
<td>10</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
<tr>
<td>Lodged</td>
<td>On</td>
<td>Variable</td>
<td>Up or Middle</td>
<td>3</td>
<td>10–15</td>
<td>High</td>
<td>6 or 7</td>
<td>Not required</td>
</tr>
</tbody>
</table>

67. Stabilizer wheels are used to limit the side-to-side movement when cutting off the ground in rolling terrain and to minimize bouncing.
68. Force required to lift header at ends. Refer to your windrower operator’s manual for adjustment procedures.
69. Set header angle as shallow as possible (setting A) with center-link and skid shoes while maintaining cutting height. Refer to 3.7.3 Header Angle, page 60.
70. Skid shoe position is used in combination with header angle to determine the cutting height when cutting on or very close to the ground. Refer to Adjusting Skid Shoes, page 59.
71. Refer to Reel Cam Settings, page 65.
72. Percentage above ground speed.
73. Refer to 3.7.7 Knife Speed, page 63.
74. Refer to 3.7.9 Reel Fore-Aft Position, page 63.
3.6.3 Reel Settings

Table 3.11, page 53 illustrates the profile of the reel at each cam or finger pitch setting as well as the reel position relative to the ground at different positions on the reel arm. Refer to 3.6.2 Header Settings, page 43 for the applicability of each finger pattern and reel position.

Table 3.11 Recommended Reel Settings

<table>
<thead>
<tr>
<th>Cam Setting Number (Finger Speed Gain)</th>
<th>Reel Position Number</th>
<th>Reel Finger Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0)</td>
<td>6 or 7</td>
<td>![Reel Finger Pattern 1 (0)]</td>
</tr>
<tr>
<td>2 (20%)</td>
<td>3 or 4</td>
<td>![Reel Finger Pattern 2 (20%)]</td>
</tr>
</tbody>
</table>
Table 3.11 Recommended Reel Settings (continued)

<table>
<thead>
<tr>
<th>Cam Setting Number (Finger Speed Gain)</th>
<th>Reel Position Number</th>
<th>Reel Finger Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (30%)</td>
<td>6 or 7</td>
<td></td>
</tr>
<tr>
<td>4 (35%)</td>
<td>2 or 3</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

- Adjust the reel forward to get closer to the ground while tilting the header back. Fingers/tines will dig into the ground at extreme reel-forward positions, so adjust skid shoes or header angle to compensate. Adjust the reel rearwards to position the reel farther away from the ground when tilting the header forward.

- Header tilt can be increased to position the reel closer to the ground, or decreased to position the reel farther from the ground, while keeping material flowing onto drapers.

- To leave the maximum amount of stubble behind in lodged crop, raise the header and increase the header tilt to keep the reel close to the ground. Position the reel fully forward.

- The reel may have to be moved back to prevent lumps or plugging on the cutterbar in thinner crops.

- Minimum crop carrying capacity (minimum area of exposed draper between the reel and the header backsheets) occurs with the reel in the farthest aft position.

- Maximum crop carrying capacity (maximum area of exposed draper between the reel and the header backsheets) occurs with the reel in the farthest forward position.

- The tip speed of the fingers/tines at the cutterbar becomes higher than the reel speed at higher cam settings due to the nature of the cam action. Refer to Table 3.11, page 53.
3.7 Header Operating Variables

Satisfactory function of the header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and increases productivity. As well, proper adjustments and timely maintenance will increase the length of service you receive from your machine.

The variables listed in Table 3.12, page 55 and detailed on the following pages will affect the performance of your header.

You will quickly become adept at adjusting the machine to achieve the results you desire. Most of the adjustments have been preset at the factory, but the settings can be changed to suit crop conditions.

Table 3.12 Operating Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting height</td>
<td>3.7.1 Cutting Height, page 55</td>
</tr>
<tr>
<td>Header float</td>
<td>3.7.2 Header Float, page 60</td>
</tr>
<tr>
<td>Header angle</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>Reel speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Ground speed</td>
<td>3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>Reel height</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Reel fore-aft position</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Reel tine pitch</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Crop divider rods</td>
<td>3.7.12 Crop Divider Rods, page 71</td>
</tr>
</tbody>
</table>

3.7.1 Cutting Height

The header design allows you to cut the crop above the ground in relation to the desired stubble height or to cut the crop at ground level with the header on the ground. Cutting height will vary depending on a range of factors including crop type, crop conditions, etc.

Cutting off the Ground

The stabilizer wheel system is designed to minimize bouncing at the header ends and may be used to float the header to achieve an even cutting height when cutting above ground level in cereal grains. The system produces even stubble height and greatly reduces operator fatigue.

Cutting height is controlled using a combination of the windrower header height control and a stabilizer wheel system (or stabilizer/slow speed transport wheel system).

The header stabilizer wheel system (or stabilizer/slow speed transport wheel system) is available for all header widths.

If stabilizer wheels are installed, refer to Adjusting Stabilizer Wheels, page 57 to change the wheel position.

If stabilizer/slow speed transport wheels are installed, refer to Adjusting Stabilizer/Slow Speed Transport Wheels, page 55 to change the wheel position.

Adjusting Stabilizer/Slow Speed Transport Wheels

A properly adjusted header will achieve a balance between the amount of header weight carried by the float and the amount carried by the stabilizer/slow speed transport wheels.

Refer to 3.6.2 Header Settings, page 43 for recommended use in specific crops and crop conditions.
DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Raise the header so the stabilizer wheels are off the ground. Shut down the engine and remove the key.

2. Check that the float is working properly. Refer to your windrower operator’s manual for instructions.

CAUTION
Handle may be under tension, especially when the wheels are on the ground. Raise header so that wheels are off the ground before making adjustments.

3. Remove hairpin (A) from the latch on the right wheel assembly.

4. Disengage latch (B), lift wheel out of hook, and place wheel on the ground as shown. (This reduces weight of assembly and makes adjusting wheel position easier.)

5. Lift left wheel slightly to support weight of the wheel, and pull handle (C) upwards to release lock.

6. Lift left wheel to desired height and engage support channel into slot (D) in upper support.

7. Push down on handle (C) to lock.

8. Lift right wheel back into field position and ensure latch (B) is engaged.

10. Support wheel weight by lifting slightly with one hand, and pull up on handle (A) to release lock.

11. Lift wheels to desired height, and engage support channel into slot (B) in upper support.

12. Push down on handle (A) to lock.
13. Lower header to desired cutting height using the windrower controls.

14. Check the load indicator.

IMPORTANT:
Continuous operation with excessive spring compression (i.e., load indicator reading greater than 4 or a compressed length [A] less than 295 mm [11-5/8 in.]) can result in damage to the suspension system.

15. Adjust the header angle to the desired working angle using the windrower header angle controls. If header angle is not critical, set it to mid-position.

16. Use the windrower Harvest Performance Tracker (HPT) controls to automatically maintain cutting height. Refer to your windrower operator’s manual for details.

Adjusting Stabilizer Wheels

A properly adjusted header will achieve a balance between the amount of header weight carried by the float and the amount carried by the stabilizer wheels.

Refer to **3.6.2 Header Settings, page 43** for recommended use in specific crops and crop conditions.

DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

CAUTION
Handle may be under tension—especially when the wheels are on the ground. Raise the header until the wheels are off the ground before making adjustments.

1. Raise the header until the stabilizer wheels are off the ground. Shut down the engine and remove the key.

2. Check that the float is working properly. Refer to your windrower manual for instructions.
3. Support the wheel weight by lifting slightly with one hand on handle (B), and pull up on handle (A) to release lock.

4. Lift the wheel using handle (B), and engage the support channel into center slot (C) in upper support.

5. Push down on handle (A) to lock.

6. Lower header to desired cutting height using windrower controls.

7. Check the load indicator.

IMPORTANT:
Continuous operation with excessive spring compression (i.e., load indicator reading greater than 4 or a compressed length less than 295 mm [11-5/8 in.]) (A) can result in damage to the suspension system.

8. Adjust the header angle to the desired working angle with the windrower header angle controls. If angle is not critical, set it to mid-position.

9. Use the Harvest Performance Tracker (HPT) controls to automatically maintain cutting height. Refer to your windrower operator’s manual for details.

Cutting on the Ground
Cutting on the ground is performed with the header fully lowered and the cutterbar on the ground. The orientation of the knife and knife guards relative to the ground (header angle) is controlled by the skid shoes and the center-link—it is **NOT** controlled by the header lift cylinders. The skid shoes and center-link allow the Operator to adjust to field conditions and maximize the amount of material cut while reducing damage to the knife caused by stones and debris.
The header float system floats the header over the surface to compensate for ridges, trenches, and other variations in ground contour to prevent the cutterbar from pushing into the ground or leaving uncut crop.

Refer to the following for additional information:

- 3.6.2 Header Settings, page 43
- Adjusting Skid Shoes, page 59
- 3.7.2 Header Float, page 60

Adjusting Skid Shoes

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise header to full height, engage safety props, shut off engine, and remove key.
2. Raise the stabilizer wheels or slow speed transport wheels fully (if installed). Refer to the following:
 - Adjusting Stabilizer/Slow Speed Transport Wheels, page 55
 - Adjusting Stabilizer Wheels, page 57

IMPORTANT:

Note the adjustment hole position on support (A) and ensure each skid shoe is set to the same position.

3. Remove lynch pin (B) from each skid shoe.
4. Hold shoe and remove pin (C) by disengaging from frame and pulling away from shoe.
5. Raise or lower skid shoe to desired position using holes in support (A) as a guide.
6. Install pin (C), engage in frame, and secure with lynch pin (B).
7. Check that all of the skid shoes are adjusted to the same position.
8. Check header float as described in your windrower operator’s manual.
3.7.2 Header Float

Headers are designed to ride on skid shoes while cutting on the ground. The windrower float system, however, reduces the ground pressure at the cutterbar allowing the header to float over obstacles and follow ground contours instead of being supported by the windrower lift cylinders. Refer to your windrower operator’s manual for details about header float adjustments.

3.7.3 Header Angle

Header angle is adjustable to accommodate different crop conditions and/or soil types and can be adjusted using the center-link between the windrower and the header.

Refer to the windrower operator’s manual for in-cab adjustment details.

Header angle (A) is the angle between the header and the ground.

The header angle controls the distance (B) between the cutterbar knife and the ground and is a critical component for effective cutting crop at ground level.

Adjusting the header angle pivots the header at the point of skid shoe/ground contact (C).

Guard angle (D) is the angle between the upper surface of the cutterbar guards and the ground.

1. Set the header angle according to the type and condition of crop and soil as follows:

a. Use shallower settings (A) (position A on the indicator) for normal cutting conditions and wet soil to reduce soil buildup at the cutterbar. Shallow angle settings also minimize damage to the knife in stony fields.

b. Use steeper settings (D) (position D on the indicator) for lodged crops and crops that are close to the ground such as soybeans.

![Figure 3.28: Header Angle](image)

![Figure 3.29: Center-Link](image)
The shallowest angle (A) (center-link fully retracted) produces the highest stubble when cutting on the ground.

The steepest angle (D) (center-link fully extended) produces the lowest stubble when cutting on the ground.

Choose an angle that maximizes performance for your crop and field conditions. Refer to the table below for a summary of adjustment ranges.

Table 3.13 D1 Series Header Angle

<table>
<thead>
<tr>
<th>Header Size</th>
<th>Guard Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 and 7.6 m</td>
<td>7.0–12.4°</td>
</tr>
<tr>
<td>(20 and 25 ft.)</td>
<td></td>
</tr>
<tr>
<td>9.1–13.7 m</td>
<td>2.0–7.4°</td>
</tr>
<tr>
<td>(30–45 ft.)</td>
<td></td>
</tr>
</tbody>
</table>

Refer to **3.6.2 Header Settings, page 43** for recommended header/guard angle settings for your particular crop conditions.

Adjusting Header Angle

Header angle can be adjusted using the center-link between the windrower and the header.

Refer to the windrower operator’s manual for adjustment details.

3.7.4 Reel Speed

Reel speed is one of the factors that determines how crop is moved from the cutterbar onto the drapers.

The reel performs best when it appears to be driven by the ground. It should move the cut crop evenly through the cutterbar and onto the drapers without bunching and with minimal disturbance.

In standing crop, reel speed should be slightly higher than, or equal to, ground speed.

In flattened crop or crop that is leaning away from the cutterbar, the reel speed needs to be higher than the ground speed. To achieve this, either increase the reel speed or decrease the ground speed.

Excessive shattering of grain heads or crop loss over the header backtube may indicate that the reel speed is too high. Excessive reel speed also increases reel component wear and overloads the reel drive.

Slower reel speeds can be used with nine-bat reels, which is advantageous in shatter-prone crops.

Refer to **3.6.2 Header Settings, page 43** for recommended reel speeds in specific crops and crop conditions.

The reel speed is adjustable using the controls in the windrower cab. Refer to your windrower operator’s manual for adjustment details.

Optional Reel Drive Sprockets

Optional reel drive sprockets for use in special crop conditions are available as an alternative to the factory-installed sprocket.

The header is factory-equipped with a 19-tooth sprocket that drives the reel and it is suitable for most crop conditions. Other sprockets are available that provide more torque to the reel in heavy cutting conditions or allow for higher reel speeds in light crops when operating at increased ground speeds. See your MacDon Dealer for ordering information.

For installation details, refer to **5.9.3 Reel Drive Sprocket, page 213**.
3.7.5 Ground Speed

Operating at the proper ground speed will result in cleanly cut crop and evenly distributed crop material in uniform windrows.

Refer to 3.10 Windrow Types, page 77 for effects of ground speed on windrow formation.

Reduce ground speed in difficult cutting conditions to reduce loads on cutting components and drives.

Use lower ground speeds in very light crops (e.g., short soybeans) to allow the reel to pull in short plants. Start at 4.8–5.8 km/h (3.0–3.5 mph) and adjust as required.

Higher ground speeds may require heavier float settings to prevent excessive bouncing that causes uneven cutting and possible damage to the cutting components. If ground speed is increased, draper and reel speeds should generally be increased to handle the extra material.

Figure 3.31, page 62 illustrates the relationship between ground speed and area cut for the various sized headers.

Figure 3.31: Ground Speed versus Acres

Example: A 7.6 m (25 ft.) header operating at a ground speed of 9.7 km/h (6 mph) would produce a cut area of approximately 7.3 hectares (18 acres) in one hour.

3.7.6 Draper Speed

Operating with the correct draper speed is an important factor for achieving good flow of cut crop away from the cutterbar.

The draper speed is controlled with the windrower Harvest Performance Tracker (HPT). Refer to your windrower operator’s manual for instructions.
Adjust the draper speed to achieve good feeding of crop for a good windrow. Excessive draper speed will reduce draper life.

3.7.7 Knife Speed

The header knife drive is powered by the windrower hydraulic pump and is controlled using the windrower Harvest Performance Tracker (HPT) (refer to your windrower operator’s manual). The default speed is 1200 strokes per minute (spm).

<table>
<thead>
<tr>
<th>Header Size (m [ft.])</th>
<th>Recommended Knife Speed Range (spm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 (15)</td>
<td>1500–1900</td>
</tr>
<tr>
<td>6.1 (20)</td>
<td>1400–1700</td>
</tr>
<tr>
<td>7.6 (25)</td>
<td>1400–1700</td>
</tr>
<tr>
<td>9.1 (30)</td>
<td>1200–1600</td>
</tr>
<tr>
<td>10.7 (35)</td>
<td>1200–1400</td>
</tr>
<tr>
<td>12.2 (40)</td>
<td>1100–1400</td>
</tr>
<tr>
<td>13.7 (45)</td>
<td>1100–1400</td>
</tr>
</tbody>
</table>

The header knife drive is powered by the windrower hydraulic pump and is controlled using the windrower Harvest Performance Tracker (HPT) (refer to your windrower operator’s manual). The default speed is 1200 strokes per minute (spm).

3.7.8 Reel Height

The reel operating position depends on the type of crop and cutting conditions. You can create preset reel height positions using the Headland Management feature on either an M1170 or M1240 Windrower. To set up this feature, refer to your windrower operator’s manual. Set the reel height and fore-aft position to carry material past the knife and onto the drapers with minimal damage to the crop. Refer to 3.7.9 Reel Fore-Aft Position, page 63.

The reel height is controlled manually or with button presets on the ground speed lever (GSL) in the windrower cab. Refer to your windrower operator’s manual for instructions on controlling reel height or setting up auto reel height presets.

The following conditions might result if the reel is set too low:
- Crop loss over the header backtube
- Crop disturbance on the drapers caused by the reel fingers
- Crop being pushed down by the tine tubes

The following conditions might result if the reel is set too high:
- Cutterbar plugging
- Crop lodging and being left uncut
- Grain stalks dropping ahead of cutterbar

Refer to 3.6.2 Header Settings, page 43 for recommended reel heights for specific crops and crop conditions.

IMPORTANT:

Maintain adequate clearance to prevent fingers contacting the knife or the ground. Refer to 5.8.1 Reel Clearance to Cutterbar, page 184.

3.7.9 Reel Fore-Aft Position

Reel fore-aft position is a critical factor for achieving the best results in adverse conditions. The factory-set reel position suits normal conditions, but the fore-aft position can be adjusted as required using the controls inside the cab. You can
create preset reel fore-aft positions using the Headland Management feature on either an M1170 or M1240 Self-Propelled Windrower. To set up this feature, refer to your windrower operator’s manual.

Decal (A) is attached to the right reel support arm for identifying reel position. The aft edge of the cam disc (B) is the reel fore-aft position marker.

For straight standing crop, center the reel over the cutterbar (4–5 on decal).

For crops that are down, tangled, or leaning, it may be necessary to move the reel ahead of the cutterbar (lower number on decal).

NOTE:
If experiencing difficulty picking up flattened crop, adjust to a steeper header angle. Refer to 3.7.3 Header Angle, page 60 for adjustment instructions. Adjust reel position only if header angle adjustments are not satisfactory.

For recommended reel positions in specific crops and crop conditions, refer to 3.6.2 Header Settings, page 43.

NOTE:
In crops that are difficult to pick up such as rice, or severely lodged crops that require full forward positioning of the reel, set the reel tine pitch to provide proper placement of the crop onto the drapers. Refer to 3.7.10 Reel Tine Pitch, page 64 for adjustment details.

Adjusting Reel Fore-Aft Position

1. Operate the hydraulics to move the reel to the desired position while using the gauge as a reference.

2. Check the reel clearance to cutterbar after making changes to the cam setting. Refer to the following for measurement and adjustment procedures:
 - 5.8.1 Reel Clearance to Cutterbar, page 184
 - Adjusting Reel Frown, page 187

IMPORTANT:
Operating with the reel too far forward can result in the fingers contacting the ground. When operating with the reel in this position, lower the skid shoes or adjust the header tilt as required to prevent damaging the fingers.

3.7.10 Reel Tine Pitch

IMPORTANT:
The following describes the conceptual and operational guidelines of the pick-up reel. Please read carefully before operating the machine.

The pick-up reel is designed to pick up flattened and severely lodged crops. Because the cam setting is mainly used to determine how the crop gets delivered onto the drapers, it is not always necessary to increase the tine pitch (select a higher cam setting) to pick up lodged crops.

The positioning of the fingers relative to the ground (tine pitch) is not significantly affected by the cam setting. For example, with the cam position range at 33°, the corresponding finger pitch range is only 5° at the lowest point of the reel’s rotation.

For the best results, use the minimum cam setting that delivers the crop past the rear edge of the cutterbar and onto the drapers. Refer to 3.6.2 Header Settings, page 43.
Reel Cam Settings

The following outlines the function of each cam setting and provides set-up guidelines for various crop conditions.

The setting numbers are visible above the slots on the cam disc. Refer to Adjusting Reel Cam, page 66.

Cam Position 1, Reel Position 6 or 7 delivers the most even crop flow onto the drapers without fluffing or disturbing the material.

- This setting will release crop close to the cutterbar and works best if the cutterbar is on the ground.
- Some crops will not be delivered past the cutterbar when the cutterbar is raised off the ground and the reel is pushed forward; therefore, set the initial reel speed approximately equal to the ground speed.

Cam Position 2, Reel Position 3 or 4 is the recommended starting position for most crops and conditions.

- If the crop is stalling on the cutterbar when the reel is in the forward position, increase the cam setting to push the crop past the rear edge of the cutterbar.
- If the crop is getting fluffed or if there is a disruption to the flow across the drapers, decrease the cam setting.
- This setting generates a fingertip speed that is approximately 20% faster than the reel speed.

Cam Position 3, Reel Position 6 or 7 is mainly used to leave long stubble.

- This position allows the reel to reach forward and lift the crop across the knife and onto the drapers.
- This setting generates a fingertip speed that is approximately 30% faster than the reel speed.
Cam Position 4, Reel Position 2 or 3 is used with the reel fully forward to leave the maximum amount of stubble in lodged crops.

- This position allows the reel to reach forward and lift the crop across the knife and onto the drapers.
- This setting generates a fingertip speed that is approximately 35% faster than the reel speed.

Cam Position 4, Header Angle at Maximum, and Reel Fully Forward provides the maximum amount of reel reach below the cutterbar to pick up lodged crops.

- Leaves a significant amount of stubble when cutting height is set to approximately 203 mm (8 in.). In damp materials such as rice, it is possible to double the ground speed because of the reduction of cut material.
- This setting generates a fingertip speed that is approximately 35% faster than the reel speed.

IMPORTANT:
The reel to cutterbar clearance should always be checked following adjustments to reel tine pitch and reel fore-aft positions (refer to 5.8.1 Reel Clearance to Cutterbar, page 184). Refer to 3.6.2 Header Settings, page 43 for recommended reel tine pitch in specific crops and crop conditions.

NOTE:
Higher cam settings with the reel fore-aft position set between 4–5 sharply decrease the draper capacity because the reel disrupts the crop flow across the drapers and the fingers engage the crop that is moving on the drapers. High cam settings are recommended only with the reel at, or close to, full forward settings.

Adjusting Reel Cam

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Turn the latch pin (A) counterclockwise using a 3/4 in. wrench to release the cam disc.

2. Use the wrench on bolt (B) to rotate the cam disc and align the latch pin (A) with the desired cam disc hole position (C) (1 to 4).

NOTE:
Bolt (B) is positioned through the cam disc (transparent view shown in illustration for improved clarity).

3. Turn the latch pin (A) clockwise to engage and lock the cam disc.

4. Repeat the above procedure for the opposite reel.

IMPORTANT:
Ensure the cam is secured into position before operating the machine.

3.7.11 Crop Dividers

Crop dividers are used to help divide the crop when harvesting. They are removable to allow installation of vertical knives and to decrease transport width.

Removing Crop Dividers with Latch Option from Header

⚠️ **DANGER**
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your windrower operator’s manual for instructions.

2. Stop engine and remove key.

4. Open or remove endshields. Refer to **3.2.3 Endshields, page 35**.

5. Lift safety lever (A).

6. Hold onto crop divider (B), push lever (C) to open latch, and lower crop divider.
7. Lift crop divider off endsheet and store as follows:
 a. Insert pin (A) on crop divider into hole in endsheet at location shown.
 b. Lift crop divider and position lugs (B) on crop divider into bracket on endsheet. Ensure lugs engage bracket.

8. Close or install endshields. Refer to 3.2.3 Endshields, page 35.

Removing Crop Dividers without Latch Option from Header

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your windrower operator’s manual for instructions.
2. Stop engine and remove key.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 35.
5. Remove bolt (A), lock washer, and flat washer.
6. Lower crop divider (B) and then lift to remove from endsheet.
7. Close or install endshields. Refer to 3.2.3 Endshields, page 35.

Installing Crop Dividers with Latch Option onto Header

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your windrower operator’s manual for instructions.
2. Stop engine and remove key.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 35.

5. Remove crop divider from storage location by lifting crop divider to disengage lugs (A) at lower end and then lowering it slightly to disengage pin (B) from endsheet.

6. Position crop divider as shown by inserting lugs (A) into holes in endsheet.

7. Lift forward end of crop divider until pin (B) at top of crop divider engages and closes latch (C).

8. Push safety lever (D) downwards to lock pin into latch (C).
9. Pull the tip of the crop divider to ensure there is no lateral movement. If necessary, adjust bolts (A) to tighten crop divider and eliminate lateral movement.

10. Close or install endshields. Refer to 3.2.3 Endshields, page 35.

Figure 3.44: Crop Divider

Installing Crop Dividers without Latch Option onto Header

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Lower reel and raise header. Refer to your windrower operator’s manual for instructions.
2. Stop engine and remove key.
4. Open or remove endshields. Refer to 3.2.3 Endshields, page 35.
5. Remove crop divider from storage location by lifting crop divider to disengage lugs (A) at lower end and then lowering it slightly to disengage pin (B) from endsheet.

Figure 3.45: Stored Crop Divider
6. Position crop divider as shown by inserting lugs (A) into holes in endsheet.

7. Lift forward end of crop divider and install bolt (A) and special stepped washer (B) (step towards divider). Tighten bolt.

8. Pull the tip of the crop divider to ensure there is no lateral movement. If necessary, adjust bolts (C) to tighten crop divider and eliminate lateral movement.

9. Close or install endshields. Refer to 3.2.3 Endshields, page 35.

3.7.12 Crop Divider Rods

Crop divider rods are used in conjunction with crop dividers. The removable crop divider rods are most useful when crop is bushy or down. In standing crops, using only crop dividers is recommended.

Table 3.15 Crop Divider Rods Recommended Use

<table>
<thead>
<tr>
<th>With Divider Rods</th>
<th>Without Divider Rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Edible beans</td>
</tr>
<tr>
<td>Canola</td>
<td>Milo</td>
</tr>
<tr>
<td>Flax</td>
<td>Rice</td>
</tr>
<tr>
<td>Grass seed</td>
<td>Soybeans</td>
</tr>
<tr>
<td>Lentils</td>
<td>Sudan grass</td>
</tr>
<tr>
<td></td>
<td>Winter forage</td>
</tr>
<tr>
<td>Lodged cereal</td>
<td>Standing cereal</td>
</tr>
</tbody>
</table>
Removing Crop Divider Rods

1. Loosen bolt (A) and remove crop divider rod (B) from both sides of header.

2. Store both crop divider rods (A) inboard on the right side endsheet.

Installing Crop Divider Rods

1. Remove crop divider rods (A) from storage location on inboard of right side endsheet.
2. Position crop divider rod (B) on tip of crop divider as shown and tighten bolt (A).

3. Repeat procedure at opposite end of header.

Figure 3.51: Divider Rod on Crop Divider
3.8 Delivery Opening

The width and location of the delivery opening affects the width and configuration of the windrow.

The decision to widen or narrow the center delivery opening, or to double windrow, should be based on the following factors:

- Windrower pick-up capability
- Type and yield of crop
- Weather conditions (rain, humidity, wind, etc.)
- Available drying time

Refer to 3.10 Windrow Types, page 77 for the pros and cons of various windrow configurations with respect to these factors, and also refer to 3.9 Double Windrowing, page 76.

3.8.1 Manually Adjusting Delivery Opening on Header

Both decks can be moved manually to adjust the delivery opening between 1720 mm and 1950 mm (67-1/8 in. and 76-11/16 in.).

1. Loosen bolts (A) on both decks.
2. Slide decks desired amount. Retighten bolts (A).

Figure 3.52: Manual Deck Shift
3.8.2 Adjusting Delivery Opening on Header using Hydraulic Deck Shift

The width and position of the delivery opening affects the width and configuration of the windrow. Adjust the delivery opening by moving the inboard deck shift stops.

Adjusting inboard deck shift stop

1. Remove two 1/4 in. hex head bolts (A) and nuts.
2. Slide stop (B) outboard to decrease the maximum opening size, or slide stop inboard to increase the maximum opening size.

⚠️ **CAUTION**

Adjust the outboard stops to prevent the decks from contacting each other.

3. Install two 1/4 in. hex head bolts (A) and nuts and tighten.

Adjusting outboard deck shift stop

4. Remove two 1/4 in. hex head bolts (A) and nuts.
5. To prevent decks from contacting each other, slide stop (B) inboard to move decks away from each other, or outboard to move decks closer to each other.
6. Install two 1/4 in. hex head bolts (A) and nuts and tighten.
3.9 Double Windrowing

Double windrowing involves laying two swaths side-by-side. Larger capacity combines or forage harvesters can then pick up twice as much material in a single pass which saves time and fuel.

Double windrowing is performed using the header’s deck shifting ability.

Deck shifting is used for crops that don’t require conditioning such as grains, canola, and beans. Refer to 3.9.1 Shifting Decks Hydraulically, page 76.

3.9.1 Shifting Decks Hydraulically

The hydraulic deck shift option allows the Operator to select center, left, or right delivery from the windrower cab. It is available only on 9.1 m and 10.7 m (30 ft. and 35 ft.) headers. Refer to for ordering information.

Refer to your windrower operator’s manual for identification and operation of the deck shift control.

Laying a double windrow

1. Use the deck shift control in the windrower to position decks at the left end of header and deliver crop from right end (A), or shift the decks to the right end of the header and deliver crop from left end (B).

 NOTE:
 Raise transport or stabilizer system wheels on 9.1 m (30 ft.) headers to avoid interference with windrow.

2. Shift decks to the left end of the header to deliver crop from the right end (A).

3. Complete one round or one length of the field.

4. Complete the second round or length in the opposite direction to lay a double windrow.

 NOTE:
 The end delivery opening is designed to provide adequate clearance between the first windrow and standing crop while maintaining optimum space between the two windrows.
3.10 Windrow Types

The following criteria determine windrow quality:

- **Weight Distribution**: Heads and stalks distributed evenly across full width of windrow.
- **Good Curing**: A loose, open windrow for better drying.
- **Good Weatherability**: A well-formed windrow that supports heads off the ground and holds together in extreme weather conditions.

Table 3.16 Windrow Types

<table>
<thead>
<tr>
<th>Windrow Type</th>
<th>Description</th>
<th>Weight Distribution</th>
<th>Curing</th>
<th>Weatherability</th>
<th>Machine Setting Guidelines</th>
</tr>
</thead>
</table>
| Herringbone | The most desirable form of windrow, stalks are crossed and interwoven. Heads are distributed across full width of windrow. This windrow can be formed by center delivery only. | Good | Good | Excellent | • Reel and ground speed approximately equal
• Medium draper speed
• Center delivery |
| Fantail | The stalks are crossed in the center and the heads are in line along outside edges. This windrow can be formed by center delivery only. | Fair | Fair | Fair | • Low draper speed
• Low header angle
• Center delivery |
| Dovetail | The stalks are lined along outside edges of windrow and heads are crossed in center. This windrow can be formed by center delivery only. | Poor | Fair | Poor | • High draper speed
• High header angle
• Center delivery |
| Parallel | The stalks are parallel to windrow and heads are evenly distributed across width of windrow. This windrow can be formed by center delivery or end delivery. | Good | Good | Good | • Medium draper speed
• Medium header angle
• Center or end delivery |
Table 3.16 Windrow Types (continued)

<table>
<thead>
<tr>
<th>Windrow Type</th>
<th>Description</th>
<th>Weight Distribution</th>
<th>Curing</th>
<th>Weatherability</th>
<th>Machine Setting Guidelines</th>
</tr>
</thead>
</table>
| 45° diagonal | The stalks are lined along one edge and heads are lined along opposite edge, 45° to windrow perpendicular. This windrow can be formed by end delivery or by center delivery if the crop is leaning to one side. | Poor | Fair | Poor | - Low reel speed
- Less aggressive tine pitch
- If crop is leaning, end delivery or center delivery |
| 75° diagonal | The stalks are closer to parallel than the 45° windrow. Stalk tips are lined along one edge with heads opposite, 75° to windrow perpendicular. This windrow can be formed by end delivery or by center delivery if the crop is leaning to one side. | Fair | Good | Fair | - Low reel speed
- Less aggressive tine pitch
- If crop is leaning, end delivery or center delivery |
3.11 Haying Tips

3.11.1 Curing

Curing crops quickly helps maintain the highest quality because for each day that hay lies on the ground, 5% of the protein is lost.

Leaving the windrow as wide and fluffy as possible results in the quickest curing. Cured hay should be baled as soon as possible.

3.11.2 Topsoil Moisture

Table 3.17 Topsoil Moisture Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>% Moisture</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>Over 45%</td>
<td>Soil is muddy</td>
</tr>
<tr>
<td>Damp</td>
<td>25–45%</td>
<td>Shows footprints</td>
</tr>
<tr>
<td>Dry</td>
<td>Under 25%</td>
<td>Surface is dusty</td>
</tr>
</tbody>
</table>

• On wet soil, the general rule of wide and thin does not apply. A narrower windrow will dry faster than hay left flat on wet ground.

• When the ground is wetter than the hay, moisture from the soil is absorbed by the hay above it. Determine topsoil moisture level before cutting. Use a moisture tester or estimate level.

• If ground is wet due to irrigation, wait until soil moisture drops below 45%.

• If ground is wet due to frequent rains, cut when weather allows and let the forage lie on wet ground until it dries to the moisture level of the ground.

• Cut hay will dry only to the moisture level of the ground beneath it, so consider moving the windrow to drier ground.

3.11.3 Weather and Topography

• Cut as much hay as possible by midday when drying conditions are best.

• Fields sloping south get up to 100% more exposure to the sun’s heat than do north-sloping fields. If hay is baled and chopped, consider baling the south-facing fields and chopping those facing north.

• When relative humidity is high, the evaporation rate is low and hay dries slowly.

• If there is no wind, saturated air becomes trapped around the windrow. Raking or tedding will expose the hay to fresh, less saturated air.

• Cut hay perpendicular to the direction of the prevailing winds if possible.

3.11.4 Windrow Characteristics

Producing windrows with the recommended characteristics will achieve the greatest results. Refer to 3.7 Header Operating Variables, page 55 for instructions on adjusting the header.

Table 3.18 Recommended Windrow Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High and fluffy</td>
<td>Enables airflow through windrow which is more important to the curing process than direct sunlight</td>
</tr>
<tr>
<td>Consistent formation (not bunching)</td>
<td>Permits an even flow of material into the baler, chopper, etc.</td>
</tr>
</tbody>
</table>
Table 3.18 Recommended Windrow Characteristics (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even distribution of material across windrow</td>
<td>Results in even and consistent bales to minimize handling and stacking problems</td>
</tr>
<tr>
<td>Properly conditioned</td>
<td>Prevents excessive leaf damage</td>
</tr>
</tbody>
</table>

3.11.5 Driving on Windrow

Driving on previously cut windrows that will not be raked can extend drying time by a full day. If practical, set the forming shields to produce a narrower windrow that the machine can straddle.

NOTE:
Driving on the windrow in high-yield crops may be unavoidable if a full width windrow is necessary.

3.11.6 Raking and Tedding

Raking or tedding speeds up drying; however, the resulting leaf loss may outweigh the benefits. There is little or no advantage to raking or tedding if the ground beneath the windrow is dry.

Large windrows on damp or wet ground should be turned over when moisture levels reach 40–50%. Hay should not be raked or tedded at moisture levels below 25% or excessive yield loss will result.

3.11.7 Using Chemical Drying Agents

Hay-drying agents work by removing wax from legume surfaces and allows water to escape and evaporate faster. However, treated hay lying on wet ground will absorb ground moisture faster.

Before deciding to use a drying agent, carefully compare the relative costs and benefits for your area.
3.12 Levelling the Header

The windrower linkages are factory-set to provide the proper level for the header and should not normally require adjustment.

NOTE:
The float springs are **NOT** used to level the header.

If the header is not level, check the pressure of the windrower’s tires to ensure proper inflation (refer to your windrower operator’s manual).

If the windrower’s tires are properly inflated and the header is still not level, adjust the windrower linkages as required (refer to the appropriate section in the windrower operator’s manual).
3.13 Unplugging the Cutterbar

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION

Wear heavy gloves when working around or handling knives.

⚠️ CAUTION

Lowering rotating reel on a plugged cutterbar will damage the reel components.

To unplug cutterbar, reverse the windrower feeder house. If the cutterbar is still plugged, do the following:

1. Stop the forward movement of the machine and disengage the header drives.
2. Raise the header to prevent it from filling with dirt, and engage the header drive clutch.
3. Disengage the header drive clutch and fully raise the header if plug does NOT clear.
4. Shut off the engine, remove the key from the ignition, and engage the park brake.
5. Engage the header safety props.
6. Clean off the cutterbar by hand.

NOTE:

If cutterbar plugging persists, refer to *8 Troubleshooting, page 243.*
3.14 Upper Cross Auger (UCA)

The UCA (A) improves delivery of very bulky crops across the header.

NOTE:
Optional wide draper deflectors are **NOT** compatible with the upper cross auger.

Figure 3.57: Upper Cross Auger
3.15 Transporting the Header

WARNING

Do NOT drive the windrower with header attached on a road or highway at night, or in conditions which reduce visibility, such as fog or rain. The width of the header may not be apparent under these conditions.

3.15.1 Transporting Header on Windrower

CAUTION

- Check local laws for width regulations and lighting or marking requirements before transporting on roads.
- Follow all recommended procedures in your windrower operator’s manual for transporting, towing, etc.
- Disengage header drive clutch when travelling to and from the field.
- Before driving windrower on a roadway, be sure flashing amber lamps, red tail lamps, and head lamps are clean and working properly. Pivot amber lamps for best visibility by approaching traffic. Always use lamps when travelling on roads to provide adequate warning to other vehicles.
- Do NOT use field lamps on roads—they may confuse other drivers.
- Before driving on a roadway, clean slow moving vehicle signs and reflectors, adjust rear view mirrors, and clean windows.
- Lower the reel fully and raise the header unless transporting in hills.
- Maintain adequate visibility and be alert for roadside obstructions, oncoming traffic, and bridges.
- When travelling downhill, reduce speed and keep header at a minimum height to provide maximum stability if forward momentum is stopped for any reason. Raise header completely at bottom of grade to avoid contacting the ground.
- Travel at safe speeds to ensure complete machine control and stability at all times.

3.15.2 Towing

Headers with the Slow Speed Transport/Stabilizer Wheel option can be towed behind a properly configured MacDon windrower or an agricultural tractor. For instructions, refer to the windrower operator’s manual.
Attaching Header to Towing Vehicle

CAUTION

Adhere to the following slow speed transport instructions to prevent loss of control leading to bodily injury and/or machine damage:

- Weight of towing vehicle must exceed header weight to ensure adequate control and braking performance.
- Do NOT tow with any highway-capable vehicle. Use only an agricultural tractor, agricultural combine, or a properly configured MacDon windrower.
- Ensure reel is fully lowered and back on support arms to increase header stability during transport. For headers with hydraulic reel fore-aft, never connect the fore-aft couplers to each other or the circuit will be complete and the reel could creep forward during transport.
- Check that all pins are properly secured in transport position at wheel supports, cutterbar support, and hitch.
- Check tire condition and pressure prior to transporting.
- Connect hitch to towing vehicle using a proper hitch pin with a spring locking pin or other suitable fastener.
- Attach hitch safety chain to towing vehicle. Adjust safety chain length to provide only enough slack to permit turning.
- Connect header seven-pole plug wiring harness to mating receptacle on towing vehicle. (The seven-pole receptacle is available from your MacDon Dealer parts department.)
- Ensure lights are functioning properly and clean the slow moving vehicle sign and other reflectors. Use flashing warning lights unless prohibited by law.

Towing the Header

CAUTION

Adhere to the following slow speed transport instructions to prevent loss of control leading to bodily injury and/or machine damage:

- Do NOT exceed 32 km/h (20 mph).
- Reduce transport speed to less than 8 km/h (5 mph) for slippery or rough conditions
- Reduce transport speed to less than 8 km/h (5 mph) for corners as header stability is reduced while cornering. Do NOT accelerate when making or coming out of a turn.
- Obey all highway traffic regulations in your area when transporting on public roads. Use flashing amber lights unless prohibited by law.
3.15.3 Converting from Transport to Field Position

Removing Tow-Bar

1. Block the tires to prevent the header from rolling, and unhook the header from the towing vehicle.
2. Disconnect the electrical connector (A) on the tow-bar.
3. Remove pin (B) from the tow-bar, and disassemble the outer section (C) from the inner section (D).
4. Disconnect the electrical connector (A) at the front wheel.
5. Remove clevis pin (A) and set aside for reinstallation.
6. Push latch (B) and lift the tow-bar (C) from the hook. Release latch.
7. Install clevis pin (A).
Storing the Tow-Bar

The tow-bar consists of two sections, an inner half (A) and an outer half (B), to make storage and handling easier.

1. Place the inner end of the outer half of the tow-bar into the cradle (A) on the left side of the header backtube.
2. Secure clevis/pintle end of the tow-bar in support (B) on the endsheet using hitch pin (C). Secure with lynch pin.
3. Install the rubber strap (D) on the cradle (A).
4. **At the right end of the 10.7 m and 12.2 m (35 ft. and 40 ft.) header:**
 a. Place the inner end of the inner half of the tow-bar in cradle (A) on header backtube.
 b. Secure tube end in support (B) with clevis pin (C). Secure with hairpin.
 c. Install rubber strap (D) on cradle (A).

5. **At the right end of the 9.1 m (30 ft.) header:**
 a. Place the inner end of the inner half of the tow-bar in cradle (A) on header backtube.
 b. Secure tube end in support (B) with pin (C).
 c. Install rubber strap on cradle (A).

6. Attach the header to the windrower. Refer to the windrower operator’s manual for instructions.

IMPORTANT:
Carrying the tow-bar on the header will affect the main header float. Refer to the windrower operator’s manual for adjustment procedures.

7. Place the transport wheels into field position. Refer to the following:
 - *Moving Front (Left) Wheels into Field Position, page 89*
 - *Moving Rear (Right) Wheels into Field Position, page 90*
Moving Front (Left) Wheels into Field Position

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Raise the header fully and engage the header safety props.

2. Swivel the front wheel assembly (A) so the wheels are aligned with the lower frame.

3. Remove pin (B) and pull the wheel assembly towards the rear of header. Store the pin in hole (C) at the top of the leg.

4. Pull handle (D) upwards to release and lower the linkage into the vertical support.

5. Align lift hook (A) with lug (B) and lift the wheel assembly to engage the pin in the lift hook. Ensure latch (C) is engaged.

6. Install clevis pin (D) and secure to the center of the axle with hairpin.

Figure 3.65: Front Wheels

Figure 3.66: Front Wheels
7. Lift the wheel assembly to the desired height and slide the linkage (A) into the appropriate slot in the vertical support.
8. Push down on the handle (B) to lock.

Moving Rear (Right) Wheels into Field Position

1. Pull pin (A) on the left rear wheel. Swivel the wheel clockwise and lock with pin.

2. Remove pin (A) and store at location (B).
3. Pull handle (C) upwards to release.
4. Lift the wheel to the desired height, and engage the support channel into slot (D) in the vertical support.
5. Push down on handle (C) to lock.
6. Pull the pin (A) on brace (B) on the right wheel in front of the cutterbar. Disengage the brace from the cutterbar, and lower the brace against the axle (C).

7. Remove pin (D), lower support (E) onto axle, and reinsert pin into support.

8. Swing the axle (C) clockwise towards the rear of the header.

9. Pull pin (A) on right axle, swivel the wheel counterclockwise to position shown, and lock with pin (A).

10. Remove the hairpin (B) from the latch (C).

11. Lift the wheel, lift latch (C), and engage lug (D) onto the left axle. Ensure the latch closes.

12. Secure the latch with hairpin (B), ensuring the open end of the pin faces the rear of the windrower.

IMPORTANT:
Check that wheels are locked and that handle is in locked position.

NOTE:
The hairpin can become dislodged by crop if installed with the open end facing the cutterbar.
13. Complete the conversion by ensuring the left side (A) and right side (B) wheels are in the position shown.

Figure 3.72: Field Position

3.15.4 Converting from Field to Transport Position

Moving Front (Left) Wheels into Transport Position

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

⚠️ CAUTION
Stand clear of wheels and release linkage carefully as wheels will drop once the mechanism is released.

1. Pull the handle (B) upwards to release and raise the linkage (A) fully upwards into the vertical support.

2. Raise the header fully, stop the engine, and remove the key from ignition. Engage the header safety props.

Figure 3.73: Suspension Linkage
3. Remove the hair pin and clevis pin (A).

4. Pull the latch handle (B) to release the suspension linkage (C), and pull the suspension linkage away from the spindle (D).

5. Lower the wheels slowly.

6. Lower the handle (A) to lock.
7. Remove the pin (A) from storage at the top of the leg (B).
8. Move and swivel the wheels clockwise until the connector (C) is turned towards the front end of the header.
9. Insert pin (A) and turn to lock.
10. Lower the header until the left wheels are just touching the ground.

Moving Rear (Right) Wheels into Transport Position

1. Remove the hairpin (A) from the latch (B).
2. Lift the latch (B), disengage the right axle (C), and lower to the ground.

⚠️ CAUTION
Stand clear of wheels and release linkage carefully as wheels will drop once the mechanism is released.

3. Pull handle (D) carefully to release the spring and lower the wheel to the ground.
4. Lift the wheel and linkage with handle (E) and position the linkage in the second slot from the bottom.
5. Lower the handle (C) to lock.
6. Remove the pin (A) and install at location (B) to secure the linkage. Turn the pin to lock.

7. Pull the pin (D), swivel the wheel (C) counterclockwise 90 degrees, and release the pin to lock.

8. Ensure the left wheel is in the transport position as shown.

9. Pull the pin (A) and swivel the right rear wheel (B) clockwise 90 degrees.
10. Lock the wheel (A) with pin (B). Move the right axle (C) to the front of the header.

11. Remove the pin (A), raise support (B) to the position shown, and reinsert pin.

IMPORTANT:
Ensure the pin (A) engages the tube on the axle.

12. Swing the brace (C) into the position shown and insert the brace into the slot (D) behind the cutterbar. Position the brace so that pin (E) engages the hole in the bracket (F). The right wheel is now in transport position.

13. Disengage the header cylinder lift stops.

14. Detach the header’s hydraulic and electrical connections from the windrower. Refer to *4 Header Attachment/ Detachment, page 101*.

15. Start the windrower and lower the header to the ground.
Attaching Tow-Bar

The tow-bar consists of two sections making for easier storage and handling.

1. Unhook the rubber strap (D) from the cradle (A) on the right side of the header.
2. Remove the clevis pin (C) and detach the tube end from the support (B).
3. Replace the clevis pin (C).
4. Lift the inner half of the tow-bar off the header and place it near the left side of the header.

5. Unhook the rubber strap (D) from the cradle (A) on the left side of the header.
6. Remove the hitch pin (C) from the support (B), and remove the tow-bar.
7. Install the rubber strap (D) on the cradle (A).
8. Connect the outer half (B) of the tow-bar to the inner half (A).

9. Lift the outer half (B) and insert it into the inner half (A).

10. Secure the two halves together with the L-pin (A) and then turn to lock. Secure the L-pin with ring (B).

11. Connect the electrical harness to connector (C).
12. Position the tow-bar (A) onto the axle, and push against the latch (B) until the tow-bar pins drop into the hooks (C).

13. Check that latch (B) has engaged the tow-bar.

14. Install the clevis pin (D) and secure with hairpin.

15. Connect the electrical harness (A) at the front wheel.
Chapter 4: Header Attachment/Detachment

This chapter includes instructions for setting up, attaching, and detaching the header.

4.1 Attaching Header to M1170/M1240 Windrower

NOTE:
Attaching the D125X or D1XL Series header to an M1170 or M1240 windrower requires installation of the hydraulic hose management arm onto the header (see your MacDon Dealer). Refer to your windrower operator’s manual for procedures to mechanically attach the header to the windrower.

1. Swing the left side windrower platform backwards. Refer to windrower operator’s manual.

For D1X headers 6 m (20 ft.) and larger, and all D1XL headers:

2. Push the lever (A) up and pull the arm (B) to get the pin (C) out of the latch (D).

Figure 4.1: Left Side Windrower Platform

Figure 4.2: Hydraulic Hose Management Arm
For 4.6 m (15 ft.) D1X headers:

3. Pull the hose management arm (A) towards the left outboard end of the header, disengaging the ball stud (B) from the cradle in support (C).

4. Connect the hydraulic hose management arm (A) to the left outer leg of the windrower by pushing the ball stud (B) into the ball stud latch (C).

 NOTE:
 Hydraulic hoses removed from illustration for clarity.

5. Check connectors and ensure they are clean before connecting hydraulics and electrical harnesses.

6. Retrieve draper drive and reel control multicoupler (A) from hose management arm.

7. Push knob (B) on hydraulic receptacle and pull handle (C) fully away from windrower.

8. Open cover (D) and position coupler onto receptacle. Align pins in coupler with slots in handle (C) and push handle toward windrower so that coupler is locked onto receptacle and knob (B) snaps out.

9. Remove cover from electrical connector (E), push electrical connector onto receptacle, and secure by turning collar on electrical connector clockwise.
10. Retrieve knife and reel drive multicoupler (A) from hose management arm.

11. Push knob (B) on hydraulic receptacle and pull handle (C) fully away from windrower.

12. Open cover (D) and position coupler onto receptacle. Align pins in coupler with slots in handle (C) and push handle toward windrower so that coupler is locked onto receptacle and knob (B) snaps out.

13. Swing the left side windrower platform forward. Refer to windrower operator’s manual.

14. Ensure hydraulic hose routing is as straight as possible and avoid potential rub/wear points.
4.2 Detaching Header from M1170/M1240 Windrower

1. Lower the reel fully.

2. Swing the left side windrower platform backwards. Refer to windrower operator’s manual.

 NOTE:
 Firmly hold handle (C) when disconnecting the multicoupler (A). Pressure may cause the handle to kick back with force.

3. Push lock button (B) and pull handle (C) to disengage multicoupler (A) and disconnect the hydraulics from the windrower knife/reel drive receptacle.

4. Remove any debris that may have accumulated on the receptacle, and close the cover (D).

5. Route hose bundle with multicoupler (A) back to the storage position on the hydraulic hose management arm.

6. Push lock button (B), and pull handle (C) to disengage multicoupler (A) and disconnect the hydraulics from the windrower draper/reel receptacle.

7. Remove any debris that may have accumulated on the windrower front receptacle, and close cover (D).

8. Disconnect electrical connector (E).

9. Route hose bundle with multicoupler back to the storage position on the hydraulic hose management arm.

10. Disconnect the hydraulic hose management arm (A) from the left outer leg of the windrower by pulling ball stud latch handle (C) to disengage the ball stud (B) from the support.

 NOTE:
 Hydraulic hoses removed from illustration for clarity.
For D1X headers 6 m (20 ft.) and larger, and all D1XL headers:

11. Pull arm (B) towards latch (D), on the left side of the header. Align pin (C) to the latch opening. Push arm (B) so lever (A) can secure the pin.

For 4.6 m (15 ft.) D1X headers:

12. Pull hose management arm (A) inboard and toward the center of the header. Set ball stud (B) into the cradle on support (C).

13. Swing the left side windrower platform forwards. Refer to windrower operator’s manual.

Chapter 5: Maintenance and Servicing

The following instructions provide information about routine header service. Detailed maintenance and service information is available in the technical service manual that is available from your Dealer. A parts catalog is provided in the plastic manual case inside the left endshield of the header.

Log hours of operation and use the maintenance record provided (refer to 5.3.1 Maintenance Schedule/Record, page 109) to keep track of your scheduled maintenance.

5.1 Preparing Machine for Servicing

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

⚠️ CAUTION
To avoid personal injury, follow all the safety precautions listed before servicing header or opening drive covers.

1. Lower the header fully. If it is necessary to service the header in the raised position, always engage the safety props.
2. Stop the engine and remove the key from the ignition.
3. Engage the park brake.
4. Wait for all moving parts to stop.
5.2 Maintenance Specifications

5.2.1 Installing a Roller Chain

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Position the ends of the chain onto the sprocket.
2. Install the pin connector (A) (not available as a MacDon part) into the chain (preferably from backside of sprocket).
3. Install connector (B) onto the pins.
4. Install the spring clip (C) onto the front pin (D) with the closed end of the spring clip facing the direction of sprocket rotation.
5. Position one leg of the spring clip (C) into the groove of the aft pin (E).
6. Press the other leg of the spring clip (C) over the face of the aft pin (E) until it slips into the groove. Do NOT press the spring clip lengthwise from the closed end.
7. Ensure the spring clip (C) is seated into the grooves of the front pin (D) and the aft pin (E).

5.2.2 Installing a Sealed Bearing

1. Clean the shaft and apply a rust-preventive coating.
2. Install flangette (A), bearing (B), second flangette (C), and then lock the collar (D).

NOTE:
The locking cam is only on one side of the bearing.

3. Install flangette bolts (E). Do NOT tighten.
4. Position the shaft correctly, and lock the lock collar with a punch. Lock the collar in the same direction the shaft rotates, and tighten the setscrew in the collar.
5. Tighten flangette bolts (E).
6. Loosen the flangette bolts on the mating bearing (one turn) and then retighten. This will allow the bearing to properly line up.
5.3 Maintenance Requirements

Periodic maintenance requirements are organized according to service intervals.

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine's life.

When servicing the machine, refer to the specific headings in this section and use only fluids and lubricants specified inside the back cover. Refer to Recommended Fluids and Lubricants, page 109.

Log hours of operation, use the maintenance record, and keep copies of your maintenance records (refer to 5.3.1 Maintenance Schedule/Record, page 109).

If a service interval specifies more than one timeframe, e.g., 100 hours or Annually, service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).

⚠ CAUTION
Carefully follow safety messages. Refer to 5.1 Preparing Machine for Servicing, page 107 and 1 Safety, page 1.

5.3.1 Maintenance Schedule/Record

<table>
<thead>
<tr>
<th>Action</th>
<th>✓ - Check</th>
<th>⬤ - Lubricate</th>
<th>▲ - Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour Meter Reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviced By</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Use</td>
<td>Refer to 5.3.2 Break-In Inspection, page 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of Season</td>
<td>Refer to 5.3.4 End-of-Season Service, page 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Hours or Daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Hydraulic Hoses and Lines - Refer to 5.3.5 Checking Hydraulic Hoses and Lines, page 112.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Knife Sections, Guards, and Hold-Downs - Refer to 5.5 Cutterbar, page 124.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Tire Pressure - Refer to 5.10.3 Checking Tire Pressure, page 223.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🔞 Knife (except in sandy conditions) - Refer to 5.5 Cutterbar, page 124.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🔞 Knifehead(s) - Refer to 5.5 Cutterbar, page 124.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.2 Break-In Inspection

Break-in inspection involves checking belts, fluids, and performing general machine inspections for loose hardware or other areas of concern. Break-in inspections ensure that all components can operate for an extended period without requiring service or replacement. The break-in period is the first 50 hours of operation after the machine’s initial start up.

<table>
<thead>
<tr>
<th>Inspection Interval</th>
<th>Item</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Hours</td>
<td>Check for loose hardware and tighten to required torque.</td>
<td>9.1 Torque Specifications, page 257</td>
</tr>
</tbody>
</table>
| 5 Hours | Check knife drive belts tension (check periodically for first 50 hours). | • Checking and Tensioning, page 149
• Tensioning Timed Knife Drive Belts, page 154 |
| 10 Hours | Check knife drive box mounting bolts. | Checking Mounting Bolts, page 136 |
| 50 Hours | Change knife drive box lubricant. | Changing Oil in Knife Drive Box, page 146 |
5.3.3 Preseason Servicing

Perform the following procedures at the beginning of each operating season:

⚠️ CAUTION

- Review this manual to refresh your memory on the safety and operating recommendations.
- Review all the safety decals and other decals on the header and note the hazard areas.
- Be sure all the shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
- Ensure you have a first aid kit and fire extinguisher. Know where they are and how to use them.

1. Lubricate the machine completely. Refer to 5.3.6 Lubrication and Servicing, page 113.
2. Adjust the tension on the drive belts. Refer to Checking and Tensioning, page 149 or Tensioning Timed Knife Drive Belts, page 154.
3. Perform all annual maintenance tasks. Refer to 5.3.1 Maintenance Schedule/Record, page 109.

5.3.4 End-of-Season Service

Perform the following procedures at the end of each operating season:

⚠️ CAUTION

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

⚠️ CAUTION

Cover cutterbar and knife guards to prevent injury from accidental contact.

1. Clean the header thoroughly.
2. Bring the machine for storage in a dry and protected place if possible. If storing outside, always cover the machine with a waterproof canvas or other protective material.

NOTE:
If storing the machine outside, remove the drapers and store them in a dark, dry place. If not removing the drapers, store the header with the cutterbar lowered so water and snow will not accumulate on the drapers. The weight of water and snow accumulation puts excessive stress on the drapers and header.
3. Lower the header onto blocks to keep the cutterbar off the ground.
4. Lower the reel completely. If stored outside, tie the reel to the frame to prevent rotation caused by the wind.
5. Repaint all worn or chipped painted surfaces to prevent rust.
6. Loosen the drive belts.
7. Lubricate the header thoroughly leaving excess grease on the fittings to keep moisture out of the bearings.
8. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components.
9. Lubricate the knife. Refer to the inside back cover for recommended lubricants.
10. Check for worn components and repair as necessary.
11. Check for broken components and order replacements from your Dealer. Immediate repair of these items will save time and effort at the beginning of next season.

12. Replace or tighten any missing or loose hardware. Refer to 9.1 Torque Specifications, page 257.

5.3.5 Checking Hydraulic Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure. Keep hands and body away from pin holes and nozzles which eject fluids under high pressure.
- If any fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

- Use a piece of cardboard or paper to search for leaks.

IMPORTANT:

Keep hydraulic coupler tips and connectors clean. Allowing dust, dirt, water, or foreign material to enter the system is the major cause of hydraulic system damage. Do NOT attempt to service hydraulic systems in the field. Precision fits require a perfectly clean connection during overhaul.
5.3.6 Lubrication and Servicing

WARNING

To avoid personal injury, before servicing mower conditioner or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 107.

Greasing points are marked on the machine by decals showing a grease gun and the grease interval in hours of operation.

Refer to the inside back cover for recommended lubricants.

Log hours of operation and use the Maintenance Record provided to keep a record of scheduled maintenance. Refer to 5.3.1 Maintenance Schedule/Record, page 109.

Greasing Procedure

DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open driveshields at ends of header to access greasing points. Refer to Opening Endshields, page 35.
2. Wipe grease fitting with a clean cloth before greasing to avoid injecting dirt and grit.
3. Inject grease through fitting with grease gun until grease overflows fitting, except where noted.

IMPORTANT:

Use only recommended lubricants specified in this manual. Refer to Recommended Fluids and Lubricants, page

4. Leave excess grease on fitting to keep out dirt.
5. Replace any loose or broken fittings immediately.
6. Remove and thoroughly clean any fitting that will not take grease. Also clean lubricant passageway. Replace fitting if necessary.

Service Intervals

Every 10 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.
Knife: Lubricate the knife every 10 hours or daily, except in sandy conditions. If sandy conditions exist then lubricate it less, as sand will stick to the lubricant.

Every 25 Hours

Use high temperature extreme pressure (EP2) performance grease with 1% max molybdenum disulphide (NLGI Grade 2) lithium base unless otherwise specified.

Knifehead: Lubricate the knifehead (A) every 25 hours. Check for signs of excessive heating on the first few guards after greasing. If required, relieve the pressure by pressing the check-ball in the grease fitting.

IMPORTANT:

Overgreasing the knifehead puts pressure on the knife causing it to rub against the guards, resulting in excessive wear from binding. Do **NOT** overgrease the knifehead. Apply only one to two pumps using a mechanical grease gun (do **NOT** use an electric grease gun). If more than six to eight pumps of the grease gun are required to fill the cavity, replace the seal in the knifehead. Refer to **5.5.3 Removing Knifehead Bearing, page 125.**
Every 100 Hours

NOTE:
Use High Temperature Extreme Pressure (EP2) Performance with 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base unless otherwise specified.

Figure 5.9: Every 100 Hours

A - Knife Drive Box (Check Oil Level with Top of Knife Drive Box in Horizontal Position)
B - Dipstick (Level between Lower Hole and End of Dipstick)
C - Upper Cross Auger Bearing
D - Reel Drive Chain
E - Hydraulic Couplers (Use WD40® or Equivalent)
Every 250 Hours

NOTE:
Use High Temperature Extreme Pressure (EP2) Performance with 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base unless otherwise specified.

Figure 5.10: Every 250 Hours

A - Upper Cross Auger U-Joint
B - Upper Cross Auger Bearing (Two Places)

75. U-joint has an extended lubrication cross and bearing kit. Stop greasing when greasing becomes difficult or if U-joint stops taking grease. Overgreasing will damage U-joint. Six to eight pumps are sufficient at first grease done at (factory). Decrease grease interval as U-joint wears and requires more than six pumps.

76. Use High Temperature Extreme Pressure (EP2) Performance With 1.5–5.0% Molybdenum Disulphide (NLGI Grade 2) Lithium Base Grease.
NOTE:
Use High Temperature Extreme Pressure (EP2) Performance with 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base unless otherwise specified.

Figure 5.11: Every 250 Hours

A - Front Wheel Pivot
B - Frame/Wheel Pivot (Both Sides)
C - Double Reel U-Joint

77. U-joint has an extended lubrication cross and bearing kit. Stop greasing when greasing becomes difficult or if U-joint stops taking grease. Overgreasing will damage U-joint. Six to eight pumps are sufficient at first grease (done at factory). Decrease grease interval as U-joint wears and requires more than six pumps.
Every 500 Hours

NOTE:
Use High Temperature Extreme Pressure (EP2) Performance with 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base unless otherwise specified.

Figure 5.12: Every 500 Hours

A - Reel – Right Side Bearing
B - Reel – Center Bearing
C - Wheel Bearings (Four Places)
D - Reel – Left Bearing
5.4 Electrical System

5.4.1 How It Works

The electrical system supplies power to solenoids and sensors on the header.

Use electrical tape and wire clips as required to prevent wires from dragging or rubbing.

Keep lights clean and replace defective bulbs.

Electrical wires are identified by a two letter wire location (A), four digit identification number (B), one digit branch wire location (C), one letter for color (D), and two digit wire size (E). The wire identification is printed on each wire covering.

Table 5.1 D1XL Series Wire Prefix Identification

<table>
<thead>
<tr>
<th>Wire Prefix</th>
<th>Wire System</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>D1XL main harness</td>
</tr>
<tr>
<td>DS</td>
<td>Header deck shift</td>
</tr>
<tr>
<td>HA</td>
<td>Auger/draper adapter</td>
</tr>
<tr>
<td>HR</td>
<td>Reel extend</td>
</tr>
<tr>
<td>HT</td>
<td>Transport lights</td>
</tr>
<tr>
<td>IDA</td>
<td>Header identification (30 ft.)</td>
</tr>
<tr>
<td>IDB</td>
<td>Header identification (35 ft.)</td>
</tr>
<tr>
<td>IDC</td>
<td>Header identification (40/45 ft.)</td>
</tr>
<tr>
<td>XL</td>
<td>Draper speed (left)</td>
</tr>
<tr>
<td>XR</td>
<td>Draper speed (right)</td>
</tr>
</tbody>
</table>

Table 5.2 D1X Series Wire Prefix Identification

<table>
<thead>
<tr>
<th>Wire Prefix</th>
<th>Wire System</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>D1 main harness</td>
</tr>
<tr>
<td>DX</td>
<td>D1 reel extension harness</td>
</tr>
</tbody>
</table>

Wire example, CH1234B XXX: The location (A) is the chassis harness. The identification number (B) is 1234. The branch wire location (C) is B. This means that there is one splice point before you reach CH1234B.
Table 5.2 D1X Series Wire Prefix Identification (continued)

<table>
<thead>
<tr>
<th>Wire Prefix</th>
<th>Wire System</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>Hydraulic deck shift</td>
</tr>
<tr>
<td>HA</td>
<td>Auger/draper adapter</td>
</tr>
</tbody>
</table>

Color codes apply to actual wire colors on the header. For the color code legend, refer to Table 5.3, page 120.

Wire example, XXXXXXX N18: The wire color (A) is brown and the wire gauge (B) is 18.

Table 5.3 Wire Color Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>N</td>
<td>Brown</td>
<td>Brown</td>
</tr>
<tr>
<td>DN</td>
<td>Brown</td>
<td>Dark brown</td>
</tr>
<tr>
<td>LN</td>
<td>Brown</td>
<td>Light brown</td>
</tr>
<tr>
<td>U</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>DU</td>
<td>Blue</td>
<td>Dark blue</td>
</tr>
<tr>
<td>LU</td>
<td>Blue</td>
<td>Light blue</td>
</tr>
<tr>
<td>G</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>DG</td>
<td>Green</td>
<td>Dark green</td>
</tr>
<tr>
<td>LG</td>
<td>Light green</td>
<td>Light green</td>
</tr>
<tr>
<td>P</td>
<td>Purple</td>
<td>Purple</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>W</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Y</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>O</td>
<td>Orange</td>
<td>Orange</td>
</tr>
<tr>
<td>S</td>
<td>Slate</td>
<td>Slate (gray)</td>
</tr>
<tr>
<td>K</td>
<td>Pink</td>
<td>Pink</td>
</tr>
<tr>
<td>V</td>
<td>Violet</td>
<td>Violet</td>
</tr>
</tbody>
</table>

Figure 5.15: Wire Identification
5.4.2 Replacing Light Bulbs

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Use a Phillips screwdriver to remove the screws (A) from the fixture, and remove the plastic lens. Retain screws (A).
2. Replace the bulb, and reinstall the plastic lens and screws.

NOTE:

Use bulb trade #1156 for amber transport lights and #1157 for red tail light (Slow Speed Transport option).
5.4.3 Checking and Adjusting Reel Height Sensor

The output voltage range of the auto reel height sensor can be checked from inside the windrower or manually at the sensor. For in-cab instructions, refer to the windrower operator’s manual.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

IMPORTANT:

Ensure minimum reel height is properly set before adjusting reel height sensor. For instructions, refer to 5.8.1 Reel Clearance to Cutterbar, page 184.

NOTE:

Sensor arm made semitransparent to show sensor pointer behind it.

1. Check that sensor arm (C) and pointer (D) are configured properly for your machine. Refer to Figure 5.18, page 122.

Figure 5.18: Sensor Arm/Pointer Configurations

A - Sensor Arm (Shown Semitransparent) B - Sensor Pointer (Shown Under Sensor Arm)
IMPORTANT:
To measure the output voltage of the reel height sensor, the windrower engine needs to be running and supplying power to the sensor. Always engage the windrower parking brake and stay away from the reel.

Table 5.4 Reel Height Sensor Voltage Limits

<table>
<thead>
<tr>
<th>Power Unit</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Voltage</td>
</tr>
<tr>
<td>M1 Series Windrower</td>
<td>0.5–0.9 V</td>
</tr>
</tbody>
</table>

To check the voltage range manually, follow these steps:

1. Engage the windrower parking brake.
2. Start the engine and fully lower the reel.
3. Use the windrower display or a voltmeter (if measuring the sensor manually) to measure voltage range Y. Refer to Table 5.4, page 123 for range requirements.
4. If using a voltmeter, measure the voltage between the ground (Pin 2 wire) and the signal (Pin 3 wire) at the reel height sensor (B).
5. Stop the engine and remove key.
6. Adjust length of threaded rod (A) to modify voltage range Y.
7. Repeat checking and adjusting until voltage range Y is within the range specified.

8. Start the engine, and fully raise the reel.
9. Use the windrower display or a voltmeter (if measuring the sensor manually), to measure voltage range X. Refer to Table 5.4, page 123 for range requirements.
10. If using a voltmeter, measure the voltage between the ground (Pin 2 wire) and the signal (Pin 3 wire) at the reel height sensor (A).
11. Stop the engine and remove the key.
12. Loosen two M5 hex nuts (B) and rotate sensor (A) to achieve voltage range X.
13. Repeat checking and adjusting until voltage range X is within the range specified.
14. Start the engine and fully lower the reel.
15. Recheck voltage range Y and ensure it is still within the range specified. Adjust if required.
5.5 Cutterbar

⚠️ WARNING
Keep hands clear of the area between guards and knife at all times.

⚠️ CAUTION
To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 107.

⚠️ CAUTION
Wear heavy gloves when working around or handling knives.

5.5.1 Replacing Knife Section

Inspect the knife sections daily and ensure they are firmly bolted to the knife back and are not worn or damaged (worn and damaged sections leave behind uncut plants). Worn or damaged sections can be replaced without removing the knife from the cutterbar.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the engine, and remove the key from the ignition.
2. Stroke the knife as required to center knife section (A) between guards (E).
3. Remove and retain nuts (B).
4. Remove bars (C) and lift knife section (A) off the knife bar.
5. Remove splice bar (D) if knife section is under the bar.
6. Clean dirt off the knife back, and position the new knife section onto the knife back.
7. Reposition bars (C) and/or splice bars (D), and install nuts (B).

 📌 NOTE:
 If replacing screws, ensure they are fully inserted. Do NOT use nuts to draw screws into the knife bar.
8. Torque nuts to 9.5 Nm (7 lbf-ft).

Figure 5.21: Cutterbar Hazard

Figure 5.22: Cutterbar
5.5.2 Removing Knife

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING
Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

1. Shut down the engine, and remove the key from the ignition.
2. Manually stroke the knife to its outer limit.
3. Clean the area around the knifehead.
4. Remove grease fitting (B) from the pin.
 NOTE: Removing the grease fitting will make it easier to reinstall the knifehead pin later.
5. Remove bolt and nut (A).
6. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.
7. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.
8. Push the knife assembly inboard until it is clear of the output arm.
9. Seal the knifehead bearing with plastic or tape to keep out dirt and debris unless it is being replaced.
10. Wrap a chain around the knifehead and pull out the knife.

5.5.3 Removing Knifehead Bearing

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING
Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

IMPORTANT:
Repeat this procedure for each knife.

1. Shut down the engine, and remove the key from the ignition.
2. Remove the knife. Refer to 5.5.2 Removing Knife, page 125.
 NOTE: Because the bearing is being replaced, it is not necessary to wrap the knifehead to protect the bearing.
3. Use a flat-ended tool with the same approximate diameter as pin (A). Tap seal (B), bearing (C), plug (D), and O-ring (E) from the underside of the knifehead.

NOTE:
Seal (B) can be replaced without removing the bearing. When changing the seal, check the pin and needle bearing for wear and replace if necessary.

5.5.4 Installing Knifehead Bearing

1. Place O-ring (E) and plug (D) into knifehead.

 IMPORTANT:
 Install the bearing with the stamped end (the end with the identification markings) facing up.

2. Use a flat-ended tool (A) with the same approximate diameter as bearing (C), and push the bearing into the knifehead until the top of the bearing is flush with the step in the knifehead.

3. Install seal (B) into the knifehead with the lip facing outwards.

 IMPORTANT:
 To prevent premature knifehead or knife drive box failure, ensure there is a tight fit between the knifehead pin and the needle bearing, and between the knifehead pin and the output arm.

4. Install the knife. Refer to **5.5.5 Installing Knife, page 126**.

5.5.5 Installing Knife

WARNING

Stand to rear of knife during installation to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.
1. Slide the knife into place and align the knifehead with the output arm.

2. Install knifehead pin (A) through output arm (C) and into the knifehead.

 NOTE:
 Remove the grease fitting from the knifehead pin for easier installation of knifehead pin.

3. Position the pin so that groove (B) is 1.5 mm (1/16 in.) above the output arm (C).

4. Secure pin with 5/8 x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf-ft).

5. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

6. Slowly apply grease to the knifehead until slight downward movement of the knifehead is observed.

 IMPORTANT:
 Do NOT overgrease the knifehead. Overgreasing leads to knife misalignment causing excessive heating of guards and overloading of drive systems. If overgreasing occurs, remove the grease fitting to release pressure.

5.5.6 Spare Knife

A spare knife can be stored in the header frame tube (A) at the left end. Ensure the spare knife is secured in place.

5.5.7 Knife Guards

Perform **DAILY** inspections to ensure the knife guards are aligned and the knife sections are contacting the shear surfaces of the knife guards.
Adjusting Knife Guards

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

NOTE:
Use guard straightening tool (MD #140135) available from your MacDon Dealer.

1. Position tool (A) as shown, and pull up to adjust the guard tips upwards.

![Figure 5.29: Upward Adjustment](image)

2. Position tool (A) as shown, and push down to adjust the guard tips downwards.

 NOTE:
 If material is tough to cut, install stub guards with top guard and adjuster plate. A kit is available from your MacDon Dealer. Refer to 6.2.5 Stub Guard Conversion Kit, page 228.

![Figure 5.30: Downward Adjustment](image)

Replacing Pointed Guards

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Replacing standard and drive side guards
1. Shut down the windrower, and remove the key from the ignition.

2. Stroke the knife manually until the knife sections are spaced midway between the guards.

3. Remove two nuts (B) and bolts attaching guard (A) and hold-down (C) (if applicable) to the cutterbar.

4. Remove guard (A), hold-down (C), and the plastic wearplate (if installed).

IMPORTANT:
The first four outboard guards (B) on the drive sides of the header do not have ledger plates. Ensure proper replacement guards are installed at these locations.

5. Position new guard (A), hold-down (C), and the plastic wearplate (if applicable) onto the cutterbar. Secure with two nuts (B) and bolts, but do **NOT** tighten.

6. Check and adjust the clearance between the hold-downs and the knife. Refer to *Checking Knife Hold-Downs, page 132.*

Replacing center guard: Double Knife (DK)

NOTE:
The guard at the center of a double-knife header (where the two knives overlap) requires a slightly different replacement procedure than a pointed guard.
1. Shut down the windrower, and remove the key from the ignition.

2. Remove the two nuts (B) and bolts attaching guard (A) and top guide (C) to the cutterbar.

3. Remove guard (A), the plastic wearplate (if installed), top guide (C), and adjuster bar (D).

4. Position the plastic wearplate (if applicable), replacement center guard (A), the adjuster bar, and top guide (B) onto the cutterbar. Install bolts, but do **NOT** tighten.

IMPORTANT:
Ensure center guard (A) (right of the cutterbar split) has offset cutting surfaces.

NOTE:
Top guide (B) must accommodate the two overlapping knives at the center guard location. Ensure the proper replacement guard is installed at this location.

5. Check and adjust the clearance between the hold-down and knife. Refer to *Checking Knife Hold-Downs, page 132.*

Replacing Stub Guards

Stub guards, complete with top guides and adjuster plates, are designed to cut tough crops and are factory-installed at the outer ends of specific headers.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Replacing standard, drive side, and end guard
1. Shut down the engine, and remove the key from the ignition.

2. Stroke the knife manually until the knife sections are spaced midway between the guards.

3. Remove the two nuts (A) and bolts attaching guard (B) and top guide (C) to the cutterbar.

4. Remove guard (B), the plastic wearplate (if installed), top guide (C), and adjuster bar (D).

IMPORTANT:
The first four outboard guards (A) on the drive sides of the header do not have ledger plates. Ensure the proper replacement guards are installed at these locations.
5. Position the plastic wearplate (if applicable), replacement guard (B), adjuster bar (D), and top guide (C), and then install bolts and nuts (A). Do **NOT** tighten.

6. Check and adjust the clearance between the hold-downs and the knife. Refer to *Checking Knife Hold-Downs, page 132*.

Figure 5.38: Stub Guards

Checking Knife Hold-Downs

Perform daily inspections to ensure the knife hold-downs are preventing the knife sections from lifting off the guards while permitting the knife to slide without binding. Use a feeler gauge to measure the clearance between the hold-downs and knife sections, and refer to the following for adjustment procedures:

- *Adjusting Hold-Downs with Pointed Guards, page 132*
- *
- *
- *Adjusting Hold-Downs with Stub Guards, page 134*

NOTE:

Align guards prior to adjusting the hold-downs. Refer to *Adjusting Knife Guards, page 128*.

Adjusting Hold-Downs with Pointed Guards

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.
1. Shut down the engine, and remove the key from the ignition.

2. Use a feeler gauge to measure the clearance between the standard guard hold-down (A) and the knife section. Ensure the clearance is 0.1–0.6 mm (0.004–0.024 in.).

3. To lower the front of the hold-down and decrease clearance, turn bolt (B) clockwise; to raise the front of the hold-down and increase clearance, turn bolt (B) counterclockwise.

 NOTE:
 For larger adjustments, it may be necessary to loosen nuts (C), turn adjuster bolt (B), and then retighten nuts.

4. Use a feeler gauge to measure the clearance between the center guard hold-down (A) and the knife section. Ensure the clearance is between the following measurements:
 - **At guide tip (B):** 0.1–0.4 mm (0.004–0.016 in.)
 - **At rear of guide (C):** 0.1–1.0 mm (0.004–0.040 in.)

5. Adjust the clearance as follows:
 a. Tighten nuts (D) until finger tight.
 b. Turn the three adjuster bolts (E) clockwise to raise the front of the hold-down and increase clearance, or counterclockwise to lower the front of the hold-down and decrease clearance.
 c. When all the adjustments are complete and the specified clearances are achieved, torque nuts (D) to 88 Nm (65 lbf-ft).

 WARNING
 Check to be sure all bystanders have cleared the area.

6. Complete the hold-down adjustments, run the header at low engine speed, and listen for noise caused by insufficient clearance.

 NOTE:
 Insufficient hold-down clearance will result in overheating of the knife and guards—readjust as necessary.

Adjusting Hold-Down at Double-Knife Center Pointed Guard

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.
1. Shut down windrower, and remove key from ignition.
2. Manually stroke knives so that sections (A) are under hold-down (B) as shown.
3. Loosen nuts (C) and back off bolts (D) until they don’t contact cutterbar.
4. Lightly clamp hold-down (B) to guard (E) with a C-clamp or equivalent. Position clamp on trash bar at location (F) as shown.
5. Turn bolts (D) until they contact cutterbar, then tighten ONE turn.
6. Remove clamp.
7. Tighten nuts (C) and torque to 45 Nm (35 lbf-ft).

Adjusting Hold-Downs with Stub Guards

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Shut down the engine, and remove the key from the ignition.
2. Use a feeler gauge to measure the clearance between the stub guard hold-down (A) and the knife section. Ensure the clearance is between the following measurements:
 - At guide tip (B): 0.1–0.4 mm (0.004–0.016 in.)
 - At rear of guide (C): 0.1–1.0 mm (0.004–0.040 in.)
3. Adjust the clearance as follows:
 a. Tighten nuts (D) until they are finger tight.
 b. To lower the front of the hold-down and decrease clearance, turn the three adjuster bolts (E) clockwise; to raise the front of the hold-down and increase clearance, turn the adjuster bolts (E) counterclockwise.
 c. Torque the nuts (D) to 72 Nm (53 lbf-ft) after all the adjustments are complete and the specified clearances are achieved.

⚠️ WARNING
Check to be sure all bystanders have cleared the area.

4. Complete the hold-down adjustments, run the header at low engine speed, and listen for noise caused by insufficient clearance.

NOTE:
Insufficient hold-down clearance will result in overheating of the knife and guards—readjust as necessary.
5.5.8 Knifehead Shield

The knifehead shield attaches to the endsheet and reduces the knifehead opening to prevent cut crop from accumulating in the knifehead cut-out.

The shields and mounting hardware are available from your MacDon Dealer.

IMPORTANT:

Remove the shields when using the cutterbar on the ground in muddy conditions. Mud may pack into the cavity behind the shield which could result in knife drive box failure.

Installing Knifehead Shield

The knifehead shield is supplied in flattened form, but it can be bent to suit installation on pointed or stub guard cutterbars. Knifehead shields differ slightly depending on header size and guard configuration, so ensure you are using the proper knifehead shield for your header. Refer to your parts catalog for proper replacement parts.

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

CAUTION

Wear heavy gloves when working around or handling knives.

1. Raise the reel to its full height, lower the header to the ground.
2. Shut down the engine, and remove the key from the ignition.
3. Engage the reel arm locks.
4. Place the knifehead shield (A) against the endsheet as shown. Align the shield so the cutout matches the profile of the knifehead and/or hold-downs.
5. Bend the knifehead shield (A) along the slit to conform to the endsheet.
6. Align the mounting holes and secure with two 3/8 x 1/2 in. Torx® head bolts (B).
7. Tighten the bolts (B) just enough to hold the knifehead shield (A) in place while allowing it to be adjusted as close to the knifehead as possible.
8. Manually rotate the knife drive box pulley to move the knife and check for areas of contact between the knifehead and knifehead shield (A). Adjust the shield to eliminate interference with the knife if necessary.
9. Tighten the bolts (B).
5.6 Knife Drive System

5.6.1 Knife Drive Box

⚠️ CAUTION
To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 107.

Double-knife headers have a knife drive box (A) at each end. Knife drive boxes are belt-driven by a hydraulic motor, and convert rotational motion into the reciprocating motion of the knife.

![Figure 5.44: Left Side Knife Drive Box Shown – Right Side Similar](image)

Checking Mounting Bolts

Check the torque on the four knife drive box mounting bolts (A) and (B) after the first 10 hours of operation and every 100 hours thereafter.

1. Torque the side bolts (A) first, then torque the bottom bolts (B). Torque all bolts to 271 Nm (200 lbf-ft).

![Figure 5.45: Knife Drive Box](image)

Removing Knife Drive Box

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
For timed double-knife headers:

NOTE:
The procedure is the same for both ends of a timed double-knife header. Images shown are for the left end—the right end is opposite.

1. Shut down the windrower, and remove the key from the ignition.
2. Open the endshield. Refer to Opening Endshields, page 35.
3. Loosen the two nuts (A) enough to allow the idler pulleys (B) to pivot.
4. Loosen the jam nut (C).
5. Turn flange nut (A) counterclockwise on adjuster bolt (B) to relieve knife drive belt tension.
For untimed double-knife headers:

1. Shut down the windrower, and remove the key from the ignition.
2. Open the endshield. Refer to *Opening Endshields, page 35.*
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.
4. Loosen the belt tension by turning tensioning bolt (B) counterclockwise.

5. To provide clearance between the knife drive box pulley and the endsheet, open access cover (A) on the endsheet behind the cutterbar.

6. Remove belt (A) from drive pulley (B).
7. Slip belt (A) over and behind knife drive box pulley (C). Use the notch in the pulley to assist with belt removal.
8. Manually stroke the knife to its outer limit.
9. Clean the area around the knifehead.
10. Remove grease fitting (B) from the pin.

NOTE:
Removing the grease fitting will make it easier to reinstall the knifehead pin later.

11. Remove bolt and nut (A).
12. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.
13. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.
14. Push the knife assembly inboard until it is clear of the output arm.
15. Seal the knifehead bearing with plastic or tape to keep out dirt and debris unless it is being replaced.
16. Remove bolt (A) that clamps the knife drive arm (B) to the knife drive box output shaft.
17. Remove knife drive arm (B) from the knife drive box output shaft.
18. Remove the four knife drive box mounting bolts (C) and (D).

NOTE:
Do **NOT** remove bolt (E); it is factory-set to properly position the knife drive box in the correct fore-aft position.

CAUTION
The knife drive box and pulley weigh over 35 kg (65 lb.) Use care when removing or installing. Lug (L) can be used for lifting.

Removing Knife Drive Box Pulley
Before removing the knife drive box pulley, remove the knife drive box from the header. Refer to _Removing Knife Drive Box, page 136_.

Figure 5.51: Knifehead

Figure 5.52: Knife Drive Box
MAINTENANCE AND SERVICING

1. Loosen and remove knife drive box pulley clamping bolt (A) and nut (B).
2. Using a three-jaw puller, remove knife drive box pulley (C).

![Figure 5.53: Knife Drive Box and Pulley](image)

Installing Knife Drive Box Pulley

Before removing the knife drive box pulley, remove the knife drive box from the header. Refer to *Removing Knife Drive Box, page 136.*

1. Ensure the splines and bores in the pulley and drive arm are free of paint, oil, and solvents.
2. Apply two bands (A) of medium-strength threadlocker (Loctite® 243 or equivalent) around the shaft as shown at right. Apply one band at the end of the spline and the second band in the middle.
3. Press pulley (B) onto shaft until flush with the end of the shaft.
4. Secure the pulley with a 5/8 x 3 in. hex head bolt with distorted thread NC lock nut and torque to 217 Nm (160 lbf·ft).

![Figure 5.54: Knife Drive Box](image)

Installing Knife Drive Box

NOTE:

If the pulley was removed from the knife drive box, refer to *Installing Knife Drive Box Pulley, page 140.* If the pulley was NOT removed, proceed to Step 1, page 141.
CAUTION
The knife drive box and pulley weigh over 35 kg (65 lb.) Use care when removing or installing. Lug (L) can be used for lifting.

1. Position the knife drive box onto the header mount and install the belt onto the pulley.

2. Secure the knife drive box to the frame using two 5/8 x 1-3/4 in. grade 8 hex head bolts (A) on the side and two 5/8 x 2-1/4 in. grade 8 hex head bolts (B) on the bottom.

3. Tighten knife drive box side bolts (A) slightly, then tighten bottom bolts (B) to ensure proper contact with the vertical and horizontal mounting surfaces. Do NOT torque the bolts at this time.

4. Apply two bands (A) of medium-strength threadlocker (Loctite® 243 or equivalent) to the output shaft as shown. Apply one band at the end of the output shaft and the second band in the middle.

5. Slide output arm (B) onto the output shaft. Rotate the pulley to ensure the splines are properly aligned and the drive arm clears the frame on the inboard stroke.
6. Position output arm (A) to the farthest outboard position.

7. Move output arm (A) up or down on the splined shaft until it is almost contacting the knifehead (B) (exact clearance [C] is set during the knifehead pin installation).

8. Torque output arm bolt (A) to 217 Nm (160 lbf·ft).

9. Slide the knife into place and align the knifehead with the output arm.

10. Install knifehead pin (A) through output arm (C) and into the knifehead.

 NOTE:
 Remove the grease fitting from the knifehead pin for easier installation of knifehead pin.

11. Position the pin so that groove (B) is 1.5 mm (1/16 in.) above the output arm (C).

12. Secure pin with 5/8 x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf·ft).
13. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

14. Slowly apply grease to the knifehead until slight downward movement of the knifehead is observed.

IMPORTANT:
Do **NOT** overgrease the knifehead. Overgreasing leads to knife misalignment causing excessive heating of guards and overloading of drive systems. If overgreasing occurs, remove the grease fitting to release pressure.

15. Check the alignment of the knife drive box pulley and the drive pulley. If pulleys require adjustment, contact your MacDon Dealer.

16. Tighten the knife drive box side bolts (A) first, then tighten the bottom bolts (B). Torque to 271 Nm (200 lbf·ft).

17. Move the output arm to the mid-stroke position, and ensure the knife bar doesn’t contact the front of the first guard. If the knife drive box requires adjustment, contact your MacDon Dealer.

18. Install and tension the knife drive belts.
 - For untimed belts, refer to *Checking and Tensioning, page 149*.
 - For timed double-knife headers, also check the knife timing, refer to *Adjusting Double-Knife Timing, page 156*.
 - For timed belts, refer to *Tensioning Timed Knife Drive Belts, page 154*.

19. Close the endshield. Refer to *Closing Endshields, page 36*.

Adjusting Knife Drive Box Squareness

1. Place a straight edge (A) along the face of the knife drive box pulley (B) and measure a distance of 1000 mm (39-3/8 in.) between point (C) and point (D).

2. Measure distance (E) between the straight edge and endsheet at point (C) and point (D). Check that the measurements at point (C) and point (D) are within a tolerance of +/- 3 mm (1/8 in.).

NOTE:
If the difference between measurements at point (C) and point (D) is greater than 5 mm (3/16 in.), install a shim.
MAINTENANCE AND SERVICING

3. Loosen four bolts (A) securing the knife drive box to the frame.

4. Manufacture a U-shaped shim (A) to fit under the side bolts securing the knife drive box to the frame. Place the shim between the header mount and the knife drive box. Shim the drive box as required to align the pulley.

5. Refer to Installing Knife Drive Box, page 140 for bolt installation instructions.

6. Tighten bolts and recheck squareness.

7. Refer to Checking and Tensioning, page 149 for belt tensioning instructions.

Adjusting Knife Drive Box Fore-Aft

Perform this procedure if there is contact between the guard and the knife bar, or if adjustments have been made to the alignment tab.

1. Identify the location of contact between the guard and the knife bar to determine which direction to move the knife drive box.

NOTE:
The procedure is the same for both ends of a timed double-knife header. Images shown are for the left end—the right end is opposite.
2. Shut down the windrower, and remove the key from the ignition.
3. Open the endshield. Refer to *Opening Endshields, page 35.*
4. Loosen the two nuts (A) enough to allow the idler pulleys (B) to pivot.

5. Loosen the jam nut (C).
6. Turn flange nut (A) counterclockwise on adjuster bolt (B) to relieve knife drive belt tension.

7. Loosen four bolts (A) securing the knife drive box to the mount.
8. Loosen bolt (C) securing the knife drive box locating tab (B).
9. Move the output arm to the mid-stroke position, and adjust the knife drive box until there is a 1–2 mm (1/32–1/16 in.) gap (B) between the front of knife bar (A) and guard (C).

NOTE:
If the knife bar (A) makes contact with the front of the guard (C), move the knife drive box rearwards. If the knife bar makes contact with the rear of the guard, move the knife drive box forwards.

10. Tighten bolt (A) securing the knife drive box locating tab (B).

11. Tighten knife drive box side bolts (A) first, then tighten the bottom bolts (B). Torque to 271 Nm (200 lbf-ft).

12. Install and tension the knife drive belts.
 - For non-timed belts, refer to *Checking and Tensioning, page 149*.
 - For timed belts, refer to *Tensioning Timed Knife Drive Belts, page 154*.

Changing Oil in Knife Drive Box

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
Change the knife drive box lubricant after the first 50 hours of operation and every 1000 hours (or 3 years) thereafter.

1. Shut down the windrower, and remove the key from the ignition.

2. Raise the header and place a container large enough to hold approximately 2.2 liters (2.3 quarts) under the knife drive box to collect the oil.

3. Open the endshield. Refer to Opening Endshields, page 35.

4. Remove the breather/dipstick (A) and the drain plug (B).

5. Allow the oil to drain from the knife drive box and into the container placed below it.

6. Reinstall the drain plug (B).

7. Add oil to the knife drive box. Refer to inside back cover for recommended fluids and lubricants.

5.6.2 Knife Drive Belts

Untimed Knife Drive Belts

The knife drive box is driven by a V-belt that is powered by a hydraulic motor on the header endsheets.

Removing

The is the same for both sides of a double-knife header.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
MAINTENANCE AND SERVICING

1. Shut down the windrower, and remove the key from the ignition.
2. Open the endshield. Refer to *Opening Endshields, page 35.*
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.
4. Loosen the belt tension by turning tensioning bolt (B) counterclockwise.
5. To provide clearance between the knife drive box pulley and the endsheet, open access cover (A) on the endsheet behind the cutterbar.
6. Remove belt (A) from drive pulley (B).
7. Slip belt (A) over and behind knife drive box pulley (C). Use the notch in the pulley to assist with belt removal.

Installing

The procedure for installing untimed knife drive belts is the same for both sides of the header.

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
1. Shut down the windrower, and remove the key from the ignition.
2. Route knife drive belt (A) around knife drive box pulley (C) and knife drive pulley (B). Use the notch in the pulley to assist with the belt installation.

NOTE:
Ensure the drive motor is fully forward, do **NOT** pry the belt over the pulley.

3. Tension the knife drive belt. Refer to *Checking and Tensioning, page 149*.
4. Install access cover (A) and secure with bolt.
5. Close the endshield. Refer to *Closing Endshields, page 36*.

Checking and Tensioning

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

IMPORTANT:

To prolong the belt and drive life, do **NOT** overtighten the belt.

1. Shut down the windrower, and remove the key from the ignition.
2. Open the left endshield. Refer to *Opening Endshields, page 35*.
3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.

4. Check drive belt tension. A properly tensioned drive belt (C) should deflect 24–28 mm (15/16–1-1/8 in.) when 133 N (30 lbf) of force is applied at the midspan. If the belt needs to be tensioned, turn the adjuster bolt (B) clockwise to move the drive motor until proper tension is set.

5. Ensure the clearance between belt (A) and belt guide (B) is 1 mm (1/16 in.).

6. Loosen the three bolts (C), and adjust the position of guide (B) as required.

7. Tighten the three bolts (C).

NOTE: Readjust the tension of a new belt after a short run-in period (about 5 hours).

9. Double-knife headers only: Repeat procedure on the other side of the header.

Timed Double-Knife Drive Belts

Removing Timed Drive V-Belts

WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the windrower, and remove the key from the ignition.

2. Open the endshield. Refer to Opening Endshields, page 35.

3. Loosen the two bolts (A) securing the motor assembly to the header endsheet.

4. Turn adjuster bolt (B) counterclockwise to loosen and remove the two V-belts (C).
Installing Timed Drive V-Belts

NOTE:
Install new V-belts in matching pairs.

1. Shut down the windrower, and remove the key from the ignition.
2. Position V-belts (C) onto the pulleys.

 NOTE:
 Ensure the drive motor is fully forward, do NOT pry the belts over the pulley.

3. Turn adjuster bolt (B) clockwise to tighten the V-belts. A properly tensioned V-belt should deflect 4 mm (5/32 in.) when a force of 52–77 N (12–17 lbf) is applied at midspan.

 IMPORTANT:
 To prolong the life of V-belts and drives. Do NOT overtighten the V-belts.

4. Tighten the two bolts (A) on the endsheet.
5. Close the endshield. Refer to Closing Endshields, page 36.
6. Check the tension of the new V-belts after a short run-in period (about five hours).

Removing Timed Knife Drive Belt

The timed knife drive belt removal procedure is the same for both sides of the header.

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the windrower, and remove the key from the ignition.
2. Open the endshield. Refer to Opening Endshields, page 35.
3. Loosen the two nuts (A) enough to allow the idler pulleys (B) to pivot.
MAINTENANCE AND SERVICING

4. Loosen the jam nut (C).

5. To relieve knife drive belt tension, turn flange nut (A) counterclockwise on adjuster bolt (B).

NOTE:
The following two steps apply only to the left-side drive.

6. Loosen two bolts (A) on the endsheet.

7. Turn adjuster bolt (B) counterclockwise to loosen, and remove the two V-belts (C).

8. Open access cover (A) on the endsheet behind the cutterbar to provide clearance between the knife drive box pulley and the endsheet.

9. Remove the knife drive belt.

Installing Timed Knife Drive Belt

The procedure for installing timed knife drive belts is the same for both sides of the header.

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
1. Shut down the windrower, and remove the key from the ignition.

2. Route knife drive belt (A) around pulley (B) and knife drive box pulley (C).

 NOTE:
 Ensure the drive motor is fully forward. Do **NOT** pry the belt over the pulley.

3. Install V-belts (C) onto the pulleys.

 NOTE:
 Ensure the drive motor is fully forward, do **NOT** pry the belts over the pulley.

4. Turn adjuster bolt (B) clockwise to tighten the V-belts. A properly tensioned V-belt should deflect 4 mm (5/32 in.) when a force of 52–77 N (12–17 lbf) is applied at the midspan.

 IMPORTANT:
 To prolong the life of V-belts and drives, do **NOT** overtighten the V-belts.

 NOTE:
 If the belt is out of alignment, refer to *Adjusting Belt Tracking, page 159*.

5. Tighten the two bolts (A) on the endsheet.

 For D1X headers only:

1. Ensure the knives are timed before tightening the belt. Refer to *Adjusting Double-Knife Timing, page 156*.

2. Slide idler pulley (A) up the slot on support bracket (B) to take up the slack in the timing belt.

 NOTE:
 Ensure nut (C) is as high as possible in the slot on support bracket (B).

3. Tighten nut (D) to 212–234 Nm (157–173 lbf-ft).
For D1XL headers only:

1. Ensure the knives are timed before tightening the belt. Refer to *Adjusting Double-Knife Timing, page 156*.
2. Slide pulley (A) up the slot on support bracket (B) to take up the slack in the timing belt and tighten adjuster nut (C).

 NOTE:
 Ensure idler pulley (A) is as high as possible in the support bracket slot.
3. Tighten nut (D) to 212–234 Nm (157–173 lbf-ft).

 NOTE:
 If the belt is out of alignment, refer to *Adjusting Belt Tracking, page 159*.

4. Tension the knife drive belt. Refer to *Tensioning Timed Knife Drive Belts, page 154*.
5. Install access cover (A) and secure with bolt.
6. Close the endshield. Refer to .

Tensioning Timed Knife Drive Belts

The procedure for tensioning timed knife drive belts is the same for both sides of the header. The illustrations shown are for the left side—the right side is opposite.

IMPORTANT:

To prolong belt and drive life, do **NOT** overtighten belt.

IMPORTANT:

Do **NOT** use the adjuster bolt at the drive pulley to adjust timing belt tension.

1. Shut down the windrower, and remove the key from the ignition.
2. Open the endshield. Refer to *Opening Endshields, page 35*.

Figure 5.88: Knife Drive (D1XL Header Shown)

Figure 5.89: Access Cover
3. Loosen two nuts (A) enough to allow the idler pulleys (B) to pivot.

4. Thread flange nut (C) down adjuster bolt (B) to push the bracket (A) up.

NOTE:
Tension is checked at midspan of the belts. The belts should deflect 20 mm (3/4 in.) with 89 N (20 lbf) of force applied.

5. Tighten nuts (A) on idler pulleys (B) to 217 Nm (160 lbf·ft).
6. Tighten jam nut (A) to prevent loosening of the adjuster bolt (B).

7. Ensure there is a clearance of 2.5–3.5 mm (1/8 in.) between the lower belt (A) and lower guide (B).

8. If necessary, loosen the three bolts (C) and adjust lower guide (B) as required. Tighten bolts.

9. Check that upper belt (D) and upper guide (E) have a clearance of 1.5–2.5 mm (1/16–1/8 in.). If necessary, loosen the two bolts (F) and adjust as required. Tighten the bolts.

11. Repeat procedure for other side of header.

Adjusting Double-Knife Timing

Timed double-knife drive headers (10.7 m [35 ft.] and smaller) require the knives to be properly timed to move in opposite directions.

⚠️ WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Shut down the windrower, and remove the key from the ignition.

2. Open both endshields. Refer to Opening Endshields, page 35.

3. Remove the right belt. Refer to Removing Timed Knife Drive Belt, page 151.
4. Rotate the left knife drive box-driven pulley clockwise until the left knife (A) is at the center of the inboard stroke (B) (moving towards the center of the header).

NOTE:
The center stroke is when the knife sections (C) are centered between the guard points.

5. Rotate the right knife drive box pulley counterclockwise until the right knife (A) is at the center of the inboard stroke (B) (moving towards the center of the header).

NOTE:
The center stroke is when the knife sections (C) are centered between the guard points.

6. Install the right-side belt (A).

NOTE:
Ensure the knife drive box drive pulley and driven pulley do **NOT** rotate during belt installation.
7. Slide idler pulley (A) up by hand to remove most of the belt slack. Tighten nut (B).

8. Pull the idler pulley (A) as high as possible by hand.
9. Thread flange nut (B) down adjuster bolt (C) to achieve final tension.

NOTE:
Tension is checked at midspan of the belts. The belts should deflect 18–22 mm (11/16–7/8 in.) with 89 N (20 lbf) of force applied.

10. Tighten hex nuts (A) on idler pulleys (B).
11. To check for the correct knife timing, rotate the drive slowly by hand, and observe where the knives overlap at the center of the header.

IMPORTANT:
The knives must begin moving at the exact same time, and must move in opposite directions.

12. If necessary, adjust the knife timing by loosening the right-side drive belt just enough to reposition it to the next cog (s), and proceed as follows:
 a. If the right knife leads the left knife, rotate the right-side driven pulley (C) clockwise.
 b. If the right knife lags the left knife, rotate the right-side driven pulley (C) counterclockwise.

13. Ensure the drive pulleys don’t rotate, and tension the right-side drive belts (refer to Step 10, page 158 to Step 11, page 158).
MAINTENANCE AND SERVICING

IMPORTANT:
Do NOT use the adjuster bolt at the drive pulley to adjust the timing belt tension.

14. Recheck the timing (refer to Step 11, page 158) and readjust if necessary (refer to Step 12, page 158).

15. Close both endshields. Refer to Closing Endshields, page 36.

Adjusting Belt Tracking

The procedure for adjusting belt tracking is the same for both sides of timed knife headers.

Two people are required for this procedure—one to operate the windrower and header, and the other to observe and adjust the belt tracking.

IMPORTANT:
Belts that are not tracking properly are subject to premature failure; ensure the pulleys are aligned and parallel. Follow the belt tensioning procedures in this manual to prevent misalignment.

Cogged timing belts should be centered on the knife drive box pulley and positioned at least 2 mm (3/32 in.) from either edge of the pulley when the header is running (a gap should be visible between the belt and the edge of the pulley).

NOTE:
The belt should not make continuous contact with the flanges of the drive pulley, but occasional contact is acceptable.

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open both endshields. Refer to Opening Endshields, page 35.

⚠️ CAUTION
Exercise extreme care when operating the header with the endshields open.

2. Operate the header. Observe the belt tracking on both the drive pulley and the knife drive box pulley on both sides of the header. Stop the windrower and remove the key from the ignition before making any adjustments.
3. If the belt is tracking towards the inboard side of the drive pulley, the likely cause is a toe-out problem (A) and (B). If the belt tends to move towards the low tension [inboard] side of the pulley, proceed to Step 6, page 161.

4. If the belt is tracking towards the outboard side of the drive pulley, the likely cause is a toe-in problem (C) and (D). If the belt tends to move towards the high tension [outboard] side of the pulley, proceed to Step 6, page 161.

5. If belt (A) is tracking to one side of the knife drive box pulley (B), the likely cause is an out-of-position idler pulley (C). Proceed to Step 7, page 161.
6. If there is a tracking problem on the drive pulley, adjust the position of the cross-shaft support tube as follows:
 a. Loosen nut (A) on support assembly (B).
 b. To correct a toe-out condition, slide support assembly (B) rearward in slot (C).
 c. To correct a toe-in condition, slide support assembly (B) forward.
 d. Tighten nut (A).
 e. Operate the header and check the belt tracking. Adjust the support assembly as required.
 f. If belt tracking problems continue, proceed to Step 8, page 162.

7. Correct a tracking problem on the knife drive box pulley by adjusting idler positions as follows:
 a. Loosen jam nuts (A).
 b. Loosen jam nut and adjuster bolt (B) to relieve belt tension.
 c. Turn bolts (C) and (D) clockwise to move belt inboard, or counterclockwise to move belt outboard.

 NOTE:
 Bolts must touch the endsheet to prevent vibration.
 d. Check that belt does not ride against flanges on pulley (E).
 e. Tighten jam nuts (A).
 f. Tension the belt. Refer to *Tensioning Timed Knife Drive Belts, page 154*.
 g. Operate the header and check the belt tracking.
8. If further adjustment is required to correct drive pulley tracking, proceed as follows:
 a. Loosen jam nuts (A).
 b. Loosen jam nut and adjuster bolt (B) to relieve belt tension.
 c. Loosen nuts (C) at the drive pulley location.
 d. To correct toe-in problems, turn the adjuster bolt (D) clockwise to enable the belt to track inboard.
 e. To correct toe-out problems, turn the adjuster bolt (D) counterclockwise to enable the belt to track outboard.
 f. Tighten the nuts (C) at the drive pulley location.
 g. Tension the belt. Refer to *Tensioning Timed Knife Drive Belts, page 154.*
 h. Operate the header, check the belt tracking, and readjust the drive pulley as necessary.
5.7 Drapers
Two drapers convey cut crop to center opening. Replace drapers if torn, cracked, or missing slats.

5.7.1 Removing Drapers

DANGER
To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel and engage the reel safety props.
2. Raise the header and engage the safety props.
3. Move the draper until the draper joint is in the work area.

NOTE:
The D1 Series deck can also be shifted towards the center to provide an opening at the endsheet.

4. Shut down the windrower, and remove the key from the ignition.
5. Release the tension on the draper. Refer to 5.7.3 Adjusting Draper Tension, page 165.
6. Remove the screws (A) and tube connectors (B) at the draper joint.
7. Pull the draper from deck.

Figure 5.107: Draper Connector

5.7.2 Installing Drapers

WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

NOTE:
Check the deck height before installing the drapers. Refer to 5.7.5 Adjusting Deck Height, page 169.
1. Apply talc, baby powder, or talc/graphite lubricant mix to the draper surface that forms the seal with the cutterbar and to the underside of the draper guides.

2. Insert the draper into the deck at the outboard end under the rollers. Pull the draper into the deck while feeding it at the end.

3. Feed in the draper until it can be wrapped around the drive roller.

4. Insert the opposite end of the draper into the deck over the rollers. Pull the draper fully into the deck.

5. Loosen the mounting bolts (B) on the rear deck deflector (A) (this may help with draper installation).

6. Attach the ends of the draper with tube connectors (B), screws (A) (with the heads facing the center opening), and nuts.

7. Adjust the draper tension. Refer to 5.7.3 Adjusting Draper Tension, page 165.
8. Check clearance (A) between drapers (B) and cutterbar (C). Clearance should be 0–3 mm (0–1/8 in.). Refer to 5.7.5 Adjusting Deck Height, page 169 to adjust if necessary.

9. If adjustment of the backsheet deflector (A) is required, loosen nut (D) and move the deflector until there is a 1–7 mm (1/32–5/16 in.) gap (C) between the draper (B) and the deflector.

10. Operate the drapers with the engine at idle so the talc or talc/graphite lubricant makes contact and adheres to the draper seal surfaces.

5.7.3 Adjusting Draper Tension

⚠️ WARNING
To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under machine for any reason.

1. Ensure the white indicator bar (A) is at the halfway point in the window.

⚠️ WARNING
Check to be sure all bystanders have cleared the area.

2. Start the engine and fully raise the header.

3. Shut down the windrower and remove the key from the ignition.

4. Engage the header safety props.
5. Ensure the draper guide (the rubber track on the underside of the draper) is properly engaged in the groove (A) on the drive roller.

6. Ensure the idler roller (A) is between the draper guides (B).

NOTE:
The drapers are tensioned at the factory and rarely need adjustment. If adjustment is required, tension the drapers just enough to prevent slipping and to keep the draper from sagging below the cutterbar.
IMPORTANT:
Do NOT adjust nut (C). This nut is used for draper alignment only.

7. To loosen draper tension, turn adjuster bolt (A) counterclockwise. The white indicator bar (B) will move outboard in the direction of arrow (D) to indicate that the draper is loosening. Loosen until the white indicator bar is at the halfway point in the window.

8. To tighten draper tension, turn adjuster bolt (A) clockwise. The white indicator bar (B) will move inboard in the direction of arrow (E) to indicate that the draper is tightening. Tighten until the white indicator bar is at the halfway point in the window.

IMPORTANT:
To avoid premature failure of the draper, draper rollers, and/or tightener components, do NOT operate if the white bar is not visible.

IMPORTANT:
To prevent scooping dirt, ensure the draper is tight enough that it does not sag below the point where the cutterbar contacts the ground.

5.7.4 Adjusting Draper Tracking
The draper tracking is adjusted by aligning the drive and idler draper rollers.

⚠️ CAUTION
To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 107.

NOTE:
The images shown in the following procedure are applicable to the left draper deck. Right side is opposite.
1. Refer to the following table to determine which roller requires adjustment and which adjustments are necessary.

Table 5.5 Header Draper Tracking

<table>
<thead>
<tr>
<th>Tracking</th>
<th>At Location</th>
<th>Adjustment</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td>Drive roller</td>
<td>Increase C</td>
<td>Tighten nut (C)</td>
</tr>
<tr>
<td>Forward</td>
<td>Drive roller</td>
<td>Decrease C</td>
<td>Loosen nut (C)</td>
</tr>
<tr>
<td>Backward</td>
<td>Idler roller</td>
<td>Increase D</td>
<td>Tighten nut (H)</td>
</tr>
<tr>
<td>Forward</td>
<td>Idler roller</td>
<td>Decrease D</td>
<td>Loosen nut (H)</td>
</tr>
</tbody>
</table>

2. Adjust drive roller (A) to change C (refer to Table 5.5, page 168) as follows:
 - a. Loosen nuts (A) and jam nut (B).
 - b. Turn the adjuster nut (C).

NOTE:
Some parts removed from illustration for illustration purposes.
3. Adjust idler roller (B) to change D (refer to Table 5.5, page 168) as follows:

 a. Loosen nut (A) and jam nut (B).
 b. Turn the adjuster nut (C).

 NOTE:
 If the draper does not track at the idler roller end after the idler roller adjustment, the drive roller is likely not square to the deck. Adjust the drive roller, and then readjust the idler roller.

5.7.5 Adjusting Deck Height

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

IMPORTANT:

New factory-installed drapers are pressure and heat checked at the factory. The gap between draper and cutterbar is set to 0–3 mm (0–1/8 in.). This is to prevent material from entering into the side drapers and stalling them. You may need to decrease the deck clearance to 1 mm (1/16 in.).

1. Shut down the windrower, and remove key from ignition.
2. Check that clearance (A) between draper (B) and cutterbar (C) is 0–3 mm (0–1/8 in.).
3. Take measurement at deck supports (A) with the header in working position. Depending on the header size, there are between two and five supports per deck.

4. Loosen the draper tension. Refer to 5.7.3 Adjusting Draper Tension, page 165.

5. Lift the front edge of draper (A) past cutterbar (B) to expose the deck support.

6. Measure and note the thickness of the draper belt.

7. Loosen the two lock nuts (A) on deck support (B) **ONE HALF-TURN ONLY**.

 NOTE:
 The number of deck supports (B) is determined by the header reels: four on single-reel headers, and eight on double-reel headers.

8. Tap deck (C) with a hammer to lower the deck relative to the deck supports. Tap deck support (B) using a punch to raise the deck relative to the deck supports.
9. To create a seal, adjust deck (A) so that clearance (B) between cutterbar (C) and deck is 1 mm (1/16 in.) plus the draper thickness as measured in Step 6, page 170.

10. Tighten deck support hardware (D).

11. Recheck gap (B). Refer to Step 9, page 171.

12. Tension the draper. Refer to 5.7.3 Adjusting Draper Tension, page 165.

13. If required, adjust the backsheet deflector (A) by loosening nut (D) and moving the deflector until there is a 1–7 mm (1/32–5/16 in.) gap (C) between draper (B) and the deflector.

5.7.6 Replacing Cleat Saver Clips

1. Lower the header to the ground.

2. Raise the reel, and engage the reel safety props. Refer to 3.2.2 Reel Safety Props, page 33.

3. Shut down the engine and remove the key.

NOTE:
Views are from the left end of the header.
4. Remove the existing cleat saver clips (A) from the draper.

5. Clean the area with water and a rag. Coat the installation surface of the clip with a small amount of dish soap to allow the clip to slide on easier.

6. Rotate the draper slat, until it is aligned with a roller. Using a rubber mallet, hit the clips directly down onto the cleat being careful not to hit too hard as the clips may break when hit too hard. It may take a couple hits to achieve the desired fit.

7. Repeat this for each slat on both drapers.

NOTE:
The clips may have a small gap (approximately 1 mm [0.04 in.]) between the draper slat and the clip.
5.7.7 Draper Roller Maintenance

The draper rollers have non-greaseable bearings; however, the external seal should be checked every 200 hours (more frequently in sandy conditions) to achieve maximum bearing life.

Inspecting Draper Roller Bearing

Using an infrared thermometer, check for bad draper roller bearings as follows:

1. Engage the header and run the drapers for approximately three minutes.
2. Check the temperature of the draper roller bearings at each of the roller arms (A), (B), and (C) on each deck. Ensure the temperature does not exceed 44°C (80°F) above the ambient temperature.

DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:
If the draper connector is not visible, engage the header until the connector is accessible (preferably close to the outboard end of the deck).

1. Start the engine, raise the header, and raise the reel.
2. Shut down the windrower, and remove the key from the ignition.
3. Engage the reel safety props, and engage the header safety props.
4. Loosen the draper by turning adjuster bolt (A) counterclockwise.
5. Remove the screws (A), tube connectors (B), and nuts from the draper joint to uncouple the draper.

6. Pull the draper off the idler roller.

7. Remove bolt (A) and washer from the idler roller at the back of the header deck.

8. Remove bolt (B) and washer from the idler roller at the front of the header deck.

9. Spread the roller arms (C) and (D), and remove the idler roller.

Replacing Draper Idler Roller Bearing

1. Remove draper deck idler roller. Refer to *Removing Draper Idler Roller, page 173*.

2. Clamp the idler roller (A) in a vise, with cloth wrapped around the roller to prevent damage to the roller.

3. Use a slide hammer to remove bearing assembly (B) and seal (C) from the roller.
MAINTENANCE AND SERVICING

IMPORTANT:
When installing the new bearing, do **NOT** place the end of the roller directly onto the ground. The bearing assembly (A) protrudes past the roller tube (B), and placing the end on the ground will push the bearing farther into the tube.

4. Cut a relief (A) into a block of wood.
5. Place the end of idler roller (B) onto the block, with the protruding bearing assembly inside relief (A).

6. Install the new bearing assembly (C) by pressing the outer race of the bearing into the tube until it is 14–15 mm (9/16–19/32 in.) (B) from the outside edge of the tube.

NOTE:
Before installing new seal, fill area (A) with approximately 8 pumps of grease.

Figure 5.133: Idler Roller

Figure 5.134: Idler Roller

Figure 5.135: Idler Roller Bearing
7. Install new seal (A) by pressing on the inner and outer race of the seal until it is 3–4 mm (1/8–3/16 in.) (B) from the outside edge of the tube.

NOTE:
The seal can be oriented in either direction.

Installing Draper Idler Roller

1. Install idler roller (A) between the idler arms (B), and secure with two bolts (C) and washers. Tighten bolts to 95 Nm (70 lbf ft).

2. Attach the screws (A) (with the heads facing the center opening), tube connectors (B), and nuts to the draper joint to couple the draper.

NOTE:
Use channel lock pliers to bring the tube connectors (B) together. Place the draper seal under the cutterbar.
3. Tighten the draper by turning adjuster bolt (A) clockwise. Refer to 5.7.3 Adjusting Draper Tension, page 165.

4. Disengage the reel and header safety props.

⚠️ CAUTION

Check to be sure all bystanders have cleared the area.

5. Start the engine and lower the header and reel.

6. Run machine to verify that draper tracks correctly. Refer to 5.7.4 Adjusting Draper Tracking, page 167, if additional adjustment is necessary.

Draper Deck Drive Roller

Removing Draper Drive Roller

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

NOTE:
If the draper connector is not visible, engage the header until the connector is accessible (preferably close to the outboard end of the deck).

1. Start the engine, raise the header, and raise the reel.

2. Shut down the windrower, and remove the key from the ignition.

3. Loosen the draper by turning the adjuster bolt (A) counterclockwise.
4. Remove the tube connectors (B), screws (A), and nuts from the draper joint to uncouple the draper.

5. Pull the draper off the drive roller.

6. Align the setscrews with the hole (A) in the guard. Remove the two setscrews holding the motor onto the drive roller.

 NOTE:
 The setscrews are 1/4 turn apart.

7. Remove the four bolts (B) securing the motor to the drive roller arm.

 NOTE:
 It may be necessary to remove the plastic shield (C) to gain access to the top bolt.

8. Remove the bolt (A) securing the opposite end of the drive roller (B) to the support arm.

9. Remove the drive roller (B).

Replacing Draper Drive Roller Bearing

1. Remove draper idler roller assembly. Refer to *Removing Draper Drive Roller, page 177.*
2. Remove bearing assembly (A) and seal (B) from roller tube (C) as follows:
 a. Attach a slide hammer (D) to threaded shaft (E) in bearing assembly.
 b. Tap out the bearing assembly (A) and seal (B).
3. Clean inside of roller tube (C). Check tube for wear or damage, and replace if necessary.

4. Install new bearing assembly (A) into roller by pushing on the outer race of the bearing. The bearing is properly positioned when a dimension of 14 mm (9/16 in.) (B) is achieved.

5. Apply approximately 8 pumps of high temperature extreme pressure (EP) performance with 1% max. molybdenum disulphide (NLGI Grade 2) lithium base grease in front of bearing.

6. Position seal (C) at roller opening, and position a flat washer (1.0 in. I.D. x 2.0 in. O.D.) onto seal.

7. Tap seal into roller opening using a suitable socket on the washer until it seats on the bearing assembly (A). Seal (C) is properly positioned when a dimension of 3 mm (1/8 in.) (D) is achieved.
Installing Draper Drive Roller

1. Position drive roller (B) between the roller support arms.
2. Install bolt (A) to secure the drive roller to the arm closest to the cutterbar. Torque bolt to 95 Nm (70 lbf-ft).
3. Grease the motor shaft and insert into the end of drive roller (B).

4. Secure the motor to the roller support with four bolts (B). Torque to 27 Nm (20 lbf-ft).

 NOTE:
 Tighten any loosened bolts and reinstall plastic shield (C) if previously removed.

5. Ensure the motor is all the way into the roller, and tighten the two setscrews (not shown) through access hole (A).

6. Wrap the draper over the drive roller and attach the ends of the draper using tube connectors (B), screws (A), and nuts.

 NOTE:
 The heads of the screws must face the center opening.
7. Tension the draper. Locate adjuster bolt (A) and follow the directions on decal (B) or refer to 5.7.3 Adjusting Draper Tension, page 165 for the proper draper tensioning.

8. Disengage the reel and header safety props. Refer to Disengaging Reel Safety Props, page 34, and 3.2.1 Header Safety Props, page 32.

9. Start the engine and lower the header and reel.

10. Run the machine to verify the draper tracks correctly. If additional adjustment is necessary, refer to 5.7.4 Adjusting Draper Tracking, page 167.

5.7.8 Draper Deflectors

Removing Narrow Draper Deflectors

Narrow draper deflectors can reduce bunching at the ends of the header when decks are set for center delivery.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel to its full height and lower the header to the ground.

2. Shift the decks to create a work space at one end of the header if hydraulic deck shift is installed; otherwise, move the decks manually after shutting down the windrower.

3. Stop the engine, remove the key, and engage the reel safety props.

4. Open the endshield. Refer to Opening Endshields, page 35.

5. Remove two Torx® head screws (A) and lock nuts.

6. Remove three carriage bolts (B) and lock nuts and remove the aft deflector (C).
MAINTENANCE AND SERVICING

7. Remove four screws (A) and remove the deflector (B).
8. Repeat for the opposite end of the header.

Installing Narrow Draper Deflectors

Narrow draper deflectors can reduce bunching at the ends of the header when decks are set for center delivery.

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator’s seat, and always engage safety props before going under the machine for any reason.

1. Raise the reel to its full height and lower the header to the ground.
2. Shift the decks to create a work space at one end of the header if hydraulic deck shift is installed; otherwise, move the decks manually after shutting down the windrower. Refer to 3.9.1 Shifting Decks Hydraulically, page 76 for instructions if hydraulic deck shift is installed.
3. Stop the engine, remove the key, and engage the reel safety props.
4. Open the endshield. Refer to Opening Endshields, page 35.
5. Position the forward deflector (B) onto the endsheet and temporarily install forward and aft 3/8 x 5/8 in. self tapping screws (A).
6. Check the fit of the forward end of the deflector (B) on the cutterbar and ensure there is no gap between the deflector and cutterbar. Remove and bend the deflector as required to obtain the best fit.
7. Install two 3/8 x 5/8 in. self tapping screws (A) and tighten all four screws.
8. Position the aft deflector (C) as shown and install three 3/8 x 3/4 in. carriage bolts (B) and lock nuts.

9. Install two Torx® head screws (A) and lock nuts with the heads facing down.

10. Tighten all fasteners.

11. Repeat for the opposite end of the header.

NOTE:
Draper deflector may be damaged by reel tines if reel height is set incorrectly. Refer to 3.7.8 Reel Height, page 63.
5.8 Reel

CAUTION

To avoid personal injury, before servicing machine or opening drive covers, refer to 5.1 Preparing Machine for Servicing, page 107.

5.8.1 Reel Clearance to Cutterbar

The minimum clearance between the reel fingers and the cutterbar ensures that the reel fingers do not contact the cutterbar during operation. The clearance is set at the factory, but some adjustment may be necessary before operation.

The finger to guard/cutterbar clearances with reels fully lowered are shown in Table 5.6, page 184.

Table 5.6 Finger to Guard/Cutterbar Clearance

<table>
<thead>
<tr>
<th>Header Width</th>
<th>(X) 3 mm (+/- 1/8 in.) at Reel Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Reel</td>
</tr>
<tr>
<td>4.6 m (15 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>6.1 m (20 ft.)</td>
<td>20 mm (3/4 in.)</td>
</tr>
<tr>
<td>7.6 m (25 ft.)</td>
<td>25 mm (1 in.)</td>
</tr>
<tr>
<td>9.1 m (30 ft.)</td>
<td>55 mm (2-11/64 in.)</td>
</tr>
<tr>
<td>10.7 m (35 ft.)</td>
<td>70 mm (2-3/4 in.)</td>
</tr>
<tr>
<td>12.2 m (40 ft.)</td>
<td>—</td>
</tr>
<tr>
<td>13.7 m (45 ft.)</td>
<td>—</td>
</tr>
</tbody>
</table>

Measuring Reel Clearance

DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Park the header on level ground.
2. Set the fore-aft position to the middle position on the fore-aft position decal (A).

3. Lower the reel fully.

4. Shut down the engine and remove key from the ignition.

5. Measure the clearance (X) at all possible points of contact (between points [B] and [C] at the ends of each reel [A]) as shown in Figures 5.157, page 186 and 5.158, page 186.

NOTE:
The reel is factory-set to provide more clearance at the center of the reel than at the ends (frown) to compensate for reel flexing.

NOTE:
When measuring reel clearance at the center of a double-reel header, measure the lowest reel.

6. Check all possible points of contact between points (B) and (C). Depending on the reel fore-aft position, minimum clearance can result at the guard tine, hold-down, or cutterbar.
7. Adjust the reel if necessary. Refer to Adjusting Reel Clearance, page 186.

Adjusting Reel Clearance

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under header for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Adjust outboard reel arm lift cylinders to set clearance at outboard ends of reel as follows:
 a. Loosen bolt (A).
 b. Turn cylinder rod (B) out of clevis to raise reel and increase clearance to cutterbar, or turn cylinder rod into clevis to lower reel and decrease clearance.
 c. Tighten bolt (A).
 d. Repeat at opposite side.

Figure 5.157: Single Reel Measurement Locations (Two Places)

Figure 5.158: Double Reel Measurement Locations (Four Places)

Figure 5.159: Outside Reel Arm
3. **For double reel:** Adjust center arm lift cylinder stop (A) to change clearance at inboard ends of reels as follows:
 a. Loosen nut (B).
 b. Turn nut (C) counterclockwise to raise reel and increase clearance to cutterbar, or clockwise to lower reel and decrease clearance.
 c. Tighten nut (B).

 ![Figure 5.160: Underside of Center Arm](image)

 - Figure 5.160: Underside of Center Arm

4. Check measurements and if necessary, repeat adjustment procedures.

5. Move reel back to ensure steel end fingers do not contact deflector shields.

6. If contact occurs, adjust reel upward to maintain clearance at all reel fore-aft positions. If contact cannot be avoided after adjusting the reel, trim steel end fingers to obtain proper clearance.

7. Periodically check for evidence of contact during operation, and adjust clearance as required.

5.8.2 Reel Frown

The reel is factory-set to frown (providing more clearance at the center of the reel than at the ends) to compensate for reel flexing.

Adjusting Reel Frown

⚠️ **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

Adjust the frown by repositioning the hardware connecting the reel tube arms to the reel discs.

NOTE:
Measure the frown profile before disassembling the reel for servicing so the profile can be maintained during reassembly.

1. Position the reel over the cutterbar (between 4 and 5 on the fore-aft position decal [A]) to provide adequate clearance at all reel fore-aft positions.

2. Record the measurement at each reel disc location for each reel tube.

3. Shut down the engine, and remove the key from the ignition.

![Figure 5.161: Fore-Aft Position Decal](image)

 - Figure 5.161: Fore-Aft Position Decal
4. Start with the reel disc closest to the center of the header and proceed outward towards the ends, adjusting the header profile as follows:

a. Remove bolts (A).

b. Loosen bolt (B) and adjust arm (C) until the desired measurement is obtained between the reel tube and cutterbar.

 NOTE:
 Allow the reel tubes to curve naturally and position the hardware accordingly.

 c. Reinstall the bolts (A) in the aligned holes and tighten.

5.8.3 Centering the Reel

To check and center the reel, follow these steps:

WARNING

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

CAUTION

Never start or move the machine until you are sure all bystanders have cleared the area.

Centering Double Reels

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Loosen bolts (A) on each brace (B) located on both sides of the reel center support arm (C).

2. Move the forward end of the reel center support arm (C) laterally as required, to center both reels.

3. Tighten bolts (A) and torque to 382 Nm (282 lbf-ft).
Centering Single Reel

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before adjusting machine.

1. Loosen bolt (A) on the brace (B) at both ends of the reel.
2. Move the forward end of the reel support arm (C) laterally as required, to center the reel.
3. Tighten bolt (A) and torque to 359 Nm (265 lbf·ft). Repeat at opposite side.

![Reel Support Arm](image)

Figure 5.164: Reel Support Arm

5.8.4 Reel Fingers

IMPORTANT:

Keep the reel fingers in good condition and straighten or replace them as necessary.

Removing Steel Fingers

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

Ensure the tine tube is supported at all times to prevent damaging it and other components.

1. Lower the header, raise the reel, and engage the reel safety props.
2. Shut down the windrower, and remove the key from the ignition.
3. Remove the tine tube bushings from the applicable tine tube at the center and left reel discs. Refer to *Removing Bushings from Five-, Six-, or Nine-Bat Reels*, page 192.
4. Attach tine tube arms (B) to the reel disc at the original attachment locations (A).

5. Cut the damaged finger so it can be removed from the tine tube.

6. Remove bolts from the existing fingers and slide the fingers over to replace the finger that was cut off in Step 4, page 190 (remove the tine tube arms [B] from the tine tubes as necessary).

Installing Steel Fingers

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:

Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

1. Remove the applicable finger. Refer to *Removing Steel Fingers, page 189*.

2. Slide the new fingers and tine tube arm (A) onto the end of the tube.

3. Install the tine tube bushings. Refer to *Installing Bushings on Five-, Six-, or Nine-Bat Reels, page 197*.

4. Attach the fingers to the tine tube with bolts and nuts (B).

Removing Plastic Fingers

WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.
1. Shut down the engine and remove key from the ignition.

2. Remove screw (A) using a Torx® Plus 27 IP socket wrench.

3. Push the clip at the top of the finger back towards the reel tube as shown and remove the finger from the tube.

Installing Plastic Fingers

WARNING

To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

1. Position the finger on the rear of the finger tube. Engage the lug at the bottom of the finger in the lower hole in the tine tube.

2. Lift the top flange gently and rotate the finger as shown until the lug in the top of the finger engages the upper hole in the finger tube.
IMPORTANT:
Do NOT apply force to the finger prior to tightening the mounting screw. Applying force without tightening the mounting screw will break the finger or shear the locating pins.

3. Install screw (A) using a Torx® Plus 27 IP socket wrench and torque to 8.5–9.0 Nm (75–80 lbf-in).

5.8.5 Tine Tube Bushings

Removing Bushings from Five-, Six-, or Nine-Bat Reels

\[\textbf{WARNING}\]
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

\[\textbf{WARNING}\]
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damage to the tube and other components.

1. Lower the header, raise the reel, and engage the reel safety props.

2. Shut down the engine, and remove the key from the ignition.

\[\textbf{NOTE}\]
If replacing only the cam end bushing, refer to Step 8, page 193.

\textit{Center disc and tail end bushings}

3. Remove the reel endshields and endshield support (C) from the tail end of the reel at the applicable tine tube location.

\[\textbf{NOTE}\]
There are no endshields on the center disc.

4. Remove bolts (A) securing tine tube arm (B) to the disc.

\[\textbf{IMPORTANT}\]
Note the hole locations in the arm and disc and ensure bolts (A) are reinstalled at the original locations.
5. Release bushing clamps (A) using a small screwdriver to separate the serrations. Pull the clamp off the tine tube.

6. Rotate tine tube arm (A) until clear of the disc and slide the arm inboard off of bushing (B).

7. Remove bushing halves (B). If required, remove the next tine or plastic finger so the arm can slide off the bushing. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 190
 - Removing Steel Fingers, page 189

Cam end bushings

8. Remove the endshields and endshield support (A) at the applicable tine tube location on the cam end.

 NOTE:
 Removing cam end bushings requires the tine tube be moved through the disc arms to expose the bushing.
9. Remove the reel endshields and endshield support (C) from the tail end of the reel at the applicable tine tube location.

NOTE:
There are no endshields on the center disc.

10. Remove bolts (A) securing tine tube arms (B) to the tail and center discs.

![Figure 5.175: Tail End](image1)

11. Release the bushing clamps or disconnect the support channels from the tine tube support (if installed) depending on which tine tube is being moved. Three tine tubes (A) require channel disconnection and two tine tubes (B) require only bushing clamp removal.

![Figure 5.176: Tine Tube Supports](image2)

12. Remove bolt (A) from the cam linkage so tine tube (B) is free to rotate.

![Figure 5.177: Cam End](image3)
13. Release bushing clamps (A) at the cam disc using a small screwdriver to separate the serrations. Move the clamps off the bushings.

14. Slide tine tube (A) outboard to expose bushing (B).
15. Remove bushing halves (B). If required, remove the next tine or plastic finger so the arm can slide off the bushing. Refer to the following procedures if necessary:
 - Removing Plastic Fingers, page 190
 - Removing Steel Fingers, page 189

Tine tube bushings (if installed)

16. Locate support (A) that requires a new bushing.
17. Remove four bolts (B) securing channel (C) to support (A).
18. Remove screw (E) and remove finger (D) if it is too close to the support to allow access to the bushing. Refer to Removing Plastic Fingers, page 190.
19. Release bushing clamps (A) using a small screwdriver to separate the serrations.

20. Move clamps (A) off the bushings.

21. On each reel, there are three right-facing supports (A). Slide the support off bushing halves (B).
22. On each reel, there are two left-facing supports (A). Rotate the supports until the flanges clear the channels before moving them off bushing (B). Move the tine tube slightly away from the reel if necessary.

23. Remove bushing halves (B) from the tine tubes.

Installing Bushings on Five-, Six-, or Nine-Bat Reels

⚠️ WARNING
To avoid bodily injury from fall of raised reel, always engage reel safety props before going under raised reel for any reason.

IMPORTANT:
Ensure the tine tube is supported at all times to prevent damage to the tube or other components.

NOTE:
Use a pair of modified channel lock pliers (A) to install bushing clamps (C). Secure pliers in a vise and grind a notch (B) into the end of each arm to fit the clamp as shown.

Cam end bushings
1. Position bushing halves (B) on the tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

2. Slide tine tube (A) towards the tail end of the reel to insert bushing (B) into the tine tube arm. If the tine tube supports are installed, ensure the bushings at those locations slide into the support.

3. Reinstall the previously removed fingers or tines. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 190
 - Removing Steel Fingers, page 189

4. Install bushing clamp (A) onto the tine tube adjacent to the flangeless end of bushing (B).

5. Position clamp (A) on bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

6. Tighten clamp (A) using modified channel lock pliers (B) until finger pressure will NOT move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.
7. Line up tine tube (B) with the cam arm and install bolt (A). Torque bolt to 165 Nm (120 lbf·ft).

8. Install bolts (A) securing tine tube arm (B) to the center disc.

9. Install tine tube arm (B) and endshield support (C) to the tail end of the reel at the applicable tine tube location and secure with bolts (A).

NOTE:
There are no endshields on the center discs.

10. Install endshield support (A) at the applicable tine tube location at the cam end.

11. Reinstall the reel endshields. Refer to *Replacing Reel Endshields, page 203.*

Center disc and tail end bushings
12. Position bushing halves (B) on the tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

13. Slide tine tube (A) onto bushing (B) and position against the disc at the original location.

14. Reinstall the previously removed fingers or tines. Refer to the following procedures as necessary:
 - Removing Plastic Fingers, page 190
 - Removing Steel Fingers, page 189

15. Install bushing clamp (A) onto the tine tube adjacent to the flangeless end of bushing (B).

16. Position clamp (A) on bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

17. Tighten clamp (A) using modified channel lock pliers (B) until finger pressure will **NOT** move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.
18. Install bolts (A) securing tine tube arm (B) to the center disc.

19. Install tine tube arm (B) and endshield support (C) to the tail end of the reel at the applicable tine tube location and secure with bolts (A).

NOTE:
There are no endshields on the center discs.

Tine tube support (if installed) bushings

20. Position bushing halves (B) on the tine tube (A) with the flangeless end adjacent to the tine tube arm, and position the lug in each bushing half into the hole in the tine tube.

21. On each reel, there are three right-facing supports (A). Slide the support onto the bushing (B).
22. On each reel, there are two left-facing supports (A). Rotate the support (A) until its flanges clear the channels (C) before moving the support onto the bushing (B).

NOTE:
If necessary, move the tine tube (D) slightly away from the reel to allow the support flange enough room to clear the channel.

23. Install bushing clamp (A) onto the tine tube adjacent to the flangeless end of bushing (B).

24. Position clamp (A) on bushing (B) so the edges of the clamp and bushing are flush when the clamp is fit into the groove on the bushing and the lock tabs are engaged.

25. Tighten clamp (A) using modified channel lock pliers (B) until finger pressure will *NOT* move the clamp.

IMPORTANT:
Overtightening clamp may result in breakage.
26. Reattach channels (C) to the three right-facing supports (A) on each reel with screws (B) and nuts. Torque screws to 43 Nm (32 lbf-ft).

27. Using screws (E), reinstall any fingers (D) that were previously removed. Refer to Installing Plastic Fingers, page 191.

28. Reattach channels (C) to the two left-facing supports (A) on each reel with screws (B) and nuts. Torque screws to 43 Nm (32 lbf-ft).

29. Using screws (E), reinstall any fingers (D) that were previously removed. Refer to Installing Plastic Fingers, page 191.

5.8.6 Reel Endshields

Reel endshields and supports do not require regular maintenance, but they should be checked periodically for damage and loose or missing fasteners. Slightly dented or deformed endshields and supports are repairable, but it’s necessary to replace severely damaged components.

You can attach reel endshields to either end of the reel.

Replacing Reel Endshields

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Lower the header and reel.
2. Shut down the engine, and remove the key from the ignition.
3. Rotate the reel manually until the reel endshield (A) requiring replacement is accessible.
4. Remove three bolts (B).

5. Lift end of reel endshield (A) off support (B).

6. Remove the reel endshield from the supports.
7. Remove the reel endshield (A) from support (B).
8. Install new reel endshield (C) onto support (B).
9. Reattach reel endshield (A) onto support (B), ensuring it is installed on top of reel endshield (C).
10. Reinstall bolts (D).
11. Tighten all hardware.

Replacing Reel Endshields – Right Reel on Double-Reel Header

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and reel, shut down the engine, and remove the key from the ignition.
2. Rotate the reel manually until the reel endshield (A) requiring replacement is accessible.
3. Remove six bolts (B). Retain hardware.

4. Lift end of reel endshield (A) off endshield (E) and rotate down.
5. Remove bolt (B), steel tine (C), and bushing (D). Retain hardware.
6. Remove the reel endshield (E).
7. Install new reel endshield (A) onto reel.
8. Reattach bushing (B) and steel tine (C) using retained hardware (D).
9. Rotate endshield (E) to connect with endshield (A).
10. Reinstall bolts (A).
11. Tighten all hardware.

Replacing Reel Endshield Supports

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the header and reel.
2. Shut down the engine, and remove the key from the ignition.
3. Rotate the reel manually until the reel endshield requiring replacement is accessible.
4. Remove bolt (B) from support (A).
5. Remove bolts (C) from support (A) and two adjacent supports.
6. Move the reel endshields (A) away from the tine tube and rotate the support (B) towards the reel to remove it.

7. Insert tabs of new support (B) into the slots in the reel endshields (A). Ensure the tabs engage both reel endshields.

8. Secure support (B) to the disc with bolt (C) and nut. Do NOT tighten.

9. Secure the reel endshields (A) to support (B) with bolt (D) and nut. Do NOT tighten.

10. Reattach the supports with bolts (E) and nuts.

11. Check the clearance between the tine tube and reel endshield support and adjust if necessary.

12. Torque nuts to 27 Nm (20 lbf-ft).
5.9 Reel System

The hydraulically driven reel motor drives the chain case that is attached to the right end of the reel on a single-reel header, and between the reels on a double-reel header.

5.9.1 Reel Drive Cover

Removing Reel Drive Cover

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Single-reel drive:
1. Shut down the engine, and remove the key from the ignition.
2. Remove four bolts (A) securing cover (B) to the reel drive.

Double-reel drive:
3. Shut down the engine, and remove the key from the ignition.
4. Remove six bolts (A) securing upper cover (B) to the reel drive and lower cover (C).
5. Remove three bolts (A) and remove lower cover (B) if necessary.

Installing Reel Drive Cover

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Single-reel drive:

1. Position drive cover (B) onto the reel drive, and secure with four bolts (A).
Double-reel drive:

2. Position lower drive cover (B) onto the reel drive (if previously removed), and secure with three bolts (A).

3. Position upper drive cover (B) onto the reel drive and lower cover (C), and secure with six bolts (A).

5.9.2 Reel Drive Chain Tension

Loosening Reel Drive Chain

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Lower reel, shut down the engine, and remove the key from the ignition.
2. Remove the drive cover. Refer to *Removing Reel Drive Cover, page 208*.
3. Loosen six nuts (A). Slide the motor (B) and motor mount (C) down towards the reel shaft.

Tightening Reel Drive Chain

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Lower the reel, shut down the engine, and remove the key from the ignition.
2. Ensure the six bolts (A) securing the motor mount to the chain case are loose.
3. Slide the motor (A) and motor mount (B) upward until the chain (C) is tight.

4. Ensure there is 3 mm (1/8 in.) of slack at the chain midspan. Adjust if necessary.

5. Tighten six nuts (A).

6. Torque nuts (A) to 73 Nm (54 lbf-ft).

7. Install the drive cover. Refer to Installing Reel Drive Cover, page 209.
5.9.3 Reel Drive Sprocket

Removing Reel Drive Sprocket

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove drive reel drive cover. Refer to Removing Reel Drive Cover, page 208.

4. Remove the drive chain (A) from the drive sprocket (B).

5. Remove the cotter pin (A), slotted nut (B), and flat washer (C) from the motor shaft.

6. Remove the drive sprocket (D). Ensure the key remains in the shaft.

IMPORTANT:
To avoid damaging the motor, use a puller if the drive sprocket (D) does not come off by hand. Do NOT use a pry bar and/or hammer to remove the drive sprocket.

Installing Reel Drive Sprocket

⚠️ DANGER
To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Align the keyway in sprocket (D) with the key on the motor shaft, and slide the sprocket onto the shaft. Secure with flat washer (C) and slotted nut (B).

2. Torque slotted nut (B) to 54 Nm (40 lbf·ft).

3. Install cotter pin (A). If necessary, tighten the slotted nut (B) to the next slot to install the cotter pin.

4. Install the drive chain (A) onto the drive sprocket (B).

5. Tighten the drive chain. Refer to Tightening Reel Drive Chain, page 211.

6. Replace reel drive cover. Refer to Installing Reel Drive Cover, page 209.

5.9.4 Double-Reel U-Joint

The double-reel drive U-joint allows each reel to move independently of the other.

Lubricate the U-joint according to the specifications. Refer to 5.3.6 Lubrication and Servicing, page 113.

Replace the U-joint if severely worn or damaged. Refer to Removing Double-Reel U-Joint, page 214.

Removing Double-Reel U-Joint

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Remove the drive cover. Refer to Removing Reel Drive Cover, page 208.
3. Support the inboard end of the right reel with a front end loader and nylon slings (A) (or equivalent lifting device).

IMPORTANT:
Avoid damaging or denting the center tube by supporting the reel as close to the end disc as possible.

4. Remove the six bolts (A) attaching U-joint flange (B) to driven sprocket (C).

5. Remove the U-joint.

NOTE:
It may be necessary to move the right reel sideways so that the U-joint can clear the tube.

Installing Double-Reel U-Joint

NOTE:
It may be necessary to move the right reel sideways so that the U-joint can clear the reel tube.

1. Position U-joint flange (B) onto driven sprocket (C) as shown. Install six bolts (A) and hand-tighten. Do **NOT** torque the bolts.
2. Position the right reel tube against the reel drive and engage the stub shaft into the U-joint pilot hole.

3. Rotate the reel until the holes in the end of the reel tube and U-joint flange (B) line up.

4. Apply medium-strength threadlocker (Loctite® 243 or equivalent) to four 1/2 in. bolts (A) and secure with lock washers.

5. Torque to 102–115 Nm (75–85 lbf-ft).

6. Remove temporary reel support (A).

7. Install the drive cover. Refer to Installing Reel Drive Cover, page 209.

5.9.5 Reel Drive Motor

The reel drive motor does not require regular maintenance or servicing. If problems occur with the motor, remove it and have it serviced by your MacDon Dealer.

Removing Reel Drive Motor

⚠️ DANGER

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Loosen the drive chain. Refer to Loosening Reel Drive Chain, page 210.

3. Remove the drive sprocket. Refer to Removing Reel Drive Sprocket, page 213.
4. Mark hydraulic lines (A) and their locations in the motor (B) to ensure correct reinstallation.

5. Disconnect hydraulic lines (A) at motor (B). Cap or plug open ports and lines.

6. Remove four nuts and bolts (C), and remove the motor (B). Retrieve the spacer (if installed) from between motor (B) and the motor mount.

7. If the motor is being replaced, remove the hydraulic fittings from the old motor and install them in the new motor using the same orientations. Refer to 9 Reference, page 257 for torque specifications.

Installing Reel Drive Motor

1. Slide motor mount (A) up or down so the motor mounting holes (B) are accessible through the openings in the chain case.

2. Attach motor (A) (and spacer if previously removed) to motor mount (B) with four 1/2 x 1-3/4 in. countersunk bolts and nuts (C).

3. Torque nuts (C) to 73 Nm (54 lbf·ft).

4. If installing a new motor, install the hydraulic fittings (not shown) from the original motor and torque to 110–120 Nm (81–89 lbf·ft).
5. Remove the caps or plugs from the ports and lines and connect hydraulic lines (A) to hydraulic fittings (B) on motor (C).

NOTE:
Ensure hydraulic lines (A) are installed in their original locations.

6. Install the drive sprocket. Refer to *Installing Reel Drive Sprocket*, page 213.

7. Tighten the drive chain. Refer to *Tightening Reel Drive Chain*, page 211.

5.9.6 Replacing Drive Chain on Double Reel

Refer to the following two methods for replacing the drive chain on a double-reel drive:

- *Replacing Chain Using the Reel Drive Method*, page 218
- *Replacing Chain Using Breaking the Chain Method*, page 220

Both procedures are acceptable, but disconnecting the reel drive method is preferable because it doesn’t affect the chain’s integrity.

Replacing Chain Using the Reel Drive Method

⚠️ **DANGER**

To avoid bodily injury or death from unexpected start-up of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Loosen the drive chain. Refer to *Loosening Reel Drive Chain*, page 210.

2. Stop the engine, and remove the key from the ignition.

3. Support the inboard end of the right reel with a front end loader and nylon slings (A) (or equivalent lifting device).

IMPORTANT:
Avoid damaging or denting the center tube by supporting the reel as close to the end disc as possible.
4. Remove the four bolts (A) securing the reel tube to U-joint flange (B).

5. Move the right reel sideways to separate reel tube (A) from U-joint (B).
6. Remove drive chain (C).
7. Route new chain (C) over U-joint (B), and position onto the sprockets.
8. Position right reel tube (A) against the reel drive, and engage the stub shaft into the U-joint pilot hole.
9. Rotate the reel until the holes in end of the reel tube and U-joint flange (B) line up.

10. Apply medium-strength threadlocker (Loctite® #243 or equivalent) to four 1/2 in. bolts (A), and secure with lock washers.
11. Torque to 102–115 Nm (75–85 lbf-ft).
12. Remove the temporary reel support (A).

Replacing Chain Using Breaking the Chain Method

1. Grind off the head of a link rivet on chain (A), punch out the rivet, and remove the chain.
2. Grind off the head of a link rivet on the new chain, punch out the rivet, and separate the chain.
3. Position the ends of the new chain onto the sprocket (B).

4. Install pin connector (A) (not available as a MacDon part) into the chain, preferably from the backside of the sprocket.
5. Install connector (B) onto pins.
6. Install spring clip (C) onto front pin (D) with the closed end of the spring clip facing the direction of the sprocket rotation.
7. Position one leg of spring clip (C) into the groove of aft pin (E).
8. Press the other leg of spring clip (C) over the face of aft pin (E) until it slips into the groove. Do **NOT** press the spring clip lengthwise from the closed end.
9. Ensure spring clip (C) is seated into the grooves of front pin (D) and aft pin (E).
10. Tighten the drive chain. Refer to *Tightening Reel Drive Chain, page 211.*
5.9.7 Replacing Drive Chain on Single Reel

1. Remove drive reel drive cover. Refer to *Removing Reel Drive Cover, page 208.*
2. Loosen the drive chain. Refer to *Loosening Reel Drive Chain, page 210.*
3. Lift chain (A) off drive sprocket (B).
4. Lower the chain until free of lower sprocket (C) and remove the chain from the drive.
5. Position new chain (A) around the bottom teeth on lower sprocket (C).
6. Lift the chain onto drive sprocket (B) ensuring all the links are properly engaged in the teeth.
7. Tighten the drive chain. Refer to *Tightening Reel Drive Chain, page 211.*
8. Replace reel drive cover. Refer to *Installing Reel Drive Cover, page 209.*
5.10 Transport System (Optional)

Refer to 6.3.4 Stabilizer Wheels and Slow Speed Transport Package, page 231 for more information.

5.10.1 Checking Wheel Bolt Torque

If a transport system is installed, adhere to the following procedure for torquing the wheel bolts:

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.

1. Turn off the engine and remove key.

2. Follow the bolt tightening sequence shown, and torque the wheel bolts to 110–120 Nm (80–90 lbf-ft).

 ✅ IMPORTANT:
 Whenever a wheel is removed and reinstalled, check the wheel bolt torque after one hour of operation and every 100 hours thereafter.

![Figure 5.246: Bolt Tightening Sequence](image)

5.10.2 Checking Axle Bolt Torque

If a transport system is installed, adhere to the following procedure for torquing the axle bolts:

⚠️ WARNING
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key before making adjustments to machine.
1. Check and tighten axle bolts **DAILY** until torque is maintained as follows:
 - (A): 244 Nm (180 lbf·ft)
 - (B): 203 Nm (150 lbf·ft)
 - (C): 244 Nm (180 lbf·ft)

5.10.3 Checking Tire Pressure

Check the tire inflation pressure and inflate according to the information provided in Table 5.7, *page 224*.

WARNING

- Service tires safely.
- A tire can explode during inflation, which could cause serious injury or death.
- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- Do NOT exceed maximum inflation pressure indicated on tire label or sidewall.
- Replace tires that have defects.
- Replace wheel rims that are cracked, worn, or severely rusted.
- Never weld a wheel rim.
- Never use force on an inflated or partially inflated tire.
- Make sure the tire is correctly seated before inflating to operating pressure.
MAINTENANCE AND SERVICING

- If the tire is not correctly positioned on the rim or is overinflated, the tire bead can loosen on one side causing air to escape at high speed and with great force. An air leak of this nature can thrust the tire in any direction endangering anyone in the area.

- Make sure all the air is removed from the tire before removing the tire from the rim.

- Do NOT remove, install, or repair a tire on a rim unless you have the proper equipment and experience to perform the job.

- Take the tire and rim to a qualified tire repair shop.

Table 5.7 Tire Pressure

<table>
<thead>
<tr>
<th>Size</th>
<th>Load Range</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST205/75 R15</td>
<td>D</td>
<td>517 kPa (75 psi)</td>
</tr>
<tr>
<td>ST205/75 R15</td>
<td>E</td>
<td>552 kPa (80 psi)</td>
</tr>
</tbody>
</table>
Chapter 6: Options and Attachments

The following options and attachments are available for use with your header. See your MacDon Dealer for availability and ordering information.

6.1 Reel

6.1.1 Multi-Crop Rapid Reel Conversion Kit

For use on double reel headers only, the multi-crop rapid reel conversion kit decreases the time required to change the fore-aft cylinder position on the reel support arm from the normal operating location to a farther aft location that minimizes crop disturbance. The kit also allows the reel fore-aft cylinders to be quickly moved to the normal operating location.

MD #B6590

6.1.2 Lodged Crop Reel Finger Kit

The steel fingers (A) provided in the Lodged Crop Reel Finger kit attach to the ends of every other tine bar and help to clear material in heavy, hard-to-cut crops such as lodged rice.

Each kit contains three fingers for the cam end of the reel and three fingers for the tail end. Hardware and installation instructions are included in the kit.

MD #B4831

6.1.3 PR15 Tine Tube Reel Conversion Kit

These kits allow conversion from a five- or six-bat reel to a nine-bat reel.

Order the following bundles according to your header size and type:

- D115X – Steel Fingers – MD #B6514
- D115X – Plastic Fingers – MD #B6516
- D120X – Steel Fingers – MD #B6515
• D120X – Plastic Fingers – MD #B6517
• D125X – Steel Fingers – MD #B5656
• D125X – Plastic Fingers – MD #B5937
• D130XL – Plastic Fingers – MD #B6029

NOTE:
You must also order additional endshields when converting the reel.

6.1.4 Reel Endshield Kit
The steel shields provided in the reel endshield kit attach to the ends of the reels and help to clear material in heavy, hard-to-cut crops. They are standard equipment on all headers (except those with nine-bat reels). Hardware and installation instructions are included in the kit.

See your MacDon Dealer for more information.

6.1.5 Tine Tube Reinforcing Kit
Tine tube reinforcing kits are available for five- and six-bat reels. They are designed to support high reel loads when cutting extremely heavy crops. Installation instructions are provided in the kit.

• Five-Bat Reels – MD #B5825
• Six-Bat Reels – MD #B5826
6.2 Cutterbar

6.2.1 Cutterbar Wearplate

Cutterbar wearplates are recommended for cutting on the ground when the soil is adhering to the steel.

Order one of the following bundles based on header size:

- 4.6 m (15 ft.) – MD #B4864
- 6.1 m (20 ft.) – MD #B4865
- 7.6 m (25 ft.) – MD #B4838

6.2.2 Knifehead Shield

Knifehead shields attach to the endsheets and reduce the knifehead opening to prevent cut crop, particularly severely lodged crop, from accumulating over the knifehead and damaging the knife drive box and endsheet.

Order the following bundles according to your guard type:

- Regular guards – MD #220101
- Stub guards – MD #220103
6.2.3 Extended Center Filler

The Extended Center Filler kit (MD #B6450) includes a reinforced flap 3 mm (1/8 in.) thick that extends onto the feed draper of a MacDon FM100 Float Module to help reduce loss when cutting crops such as beans and peas. Installation instructions are included with the kit.

MD #B6450

Figure 6.7: Extended Filler

6.2.4 Rock Retarder

The rock retarder (A) consists of a steel angle that is bolted to the cutterbar immediately aft of the knife, and helps prevent rocks and large debris from being swept onto the drapers with the crop. Installation instructions are included with the kit.

Order bundles by header size:
- 9.1–10.7 m (30–35 ft.) – MD #B5084
- 12.2–13.7 m (40–45 ft.) – MD #B5085

Figure 6.8: Rock Retarder

6.2.5 Stub Guard Conversion Kit

Stub guards, complete with top guides and adjuster shoes, are designed to cut tough crops.

Installation and adjustment instructions are included in the kits.

Order one of the following bundles according to your header size:
- 4.6 m (15 ft.) – MD #B5009
- 6.1 m (20 ft.) – MD #B5010
- 7.6 m (25 ft.) – MD #B5011
- 9.1 m (30 ft.) – MD #B5012
- 10.7 m (35 ft.) – MD #B5013

Figure 6.9: Stub Guards
6.2.6 Vertical Knife Mounts

The vertical knife mounts allow the installation of vertically oriented knives onto both ends of the header.

The vertical knives themselves are not sold by MacDon and must be purchased from a separate supplier.

Installation and adjustment instructions are included in the kits.

Order mount kits based on whether they will be installed on the left or right side of the header:

NOTE:
While the Right Vertical Knife Mount kit can be installed independently of the Left Vertical Knife Mount kit, the Left Vertical Knife Mount kit **must** be installed with the Right Vertical Knife Mount kit.

NOTE:
Additional plumbing may be required by Dealer depending on header size/attachments. If mounting onto multiple headers, you will also require the Auxiliary Vertical knife plumbing kit MD #B5406.

- **Left** – MD #B6608 (includes hardware and some plumbing. This mount requires installation of MD #B6609)
- **Right** – MD #B6609 (includes flow control, template, hardware, and some plumbing. This mount can be installed individually or with MD #B6608)

Order mounts based on the left or right side of the header:
6.3 Header

6.3.1 Divider Latch Kit

Divider latch kits attach to the endsheets. They allow for quick removal and storage of endsheet divider cones and, if required, reduce the transport width of the header. Installation instructions are included in the kit.

MD #B6158

![Figure 6.11: Divider Latch](image)

6.3.2 Stabilizer Wheels

Stabilizer wheels help stabilize the header in field conditions that would otherwise cause the header to bounce, resulting in uneven cutting heights. Installation and adjustment instructions are included in the kit.

Available as an attachment for use with 9.1–13.7 m (30–45 ft.) headers.

MD #C1986

![Figure 6.12: Stabilizer Wheel](image)
6.3.3 Secondary Stabilizer Wheel

The secondary stabilizer wheel is added to existing stabilizer wheels to help stabilize the header in field conditions that would otherwise cause the header to bounce and result in uneven cutting height. Installation and adjustment instructions are included with the kit.

Available as an attachment for use headers.

MD #B6179

6.3.4 Stabilizer Wheels and Slow Speed Transport Package

The Stabilizer Wheels and Slow Speed Transport Package help to stabilize the header in field conditions that would otherwise cause the header to bounce, resulting in uneven cutting heights. This system is similar to the Stabilizer Wheel (MD #C1986) option. Refer to 6.3.2 Stabilizer Wheels, page 230.

The Stabilizer Wheels and Slow Speed Transport Package are used to convert the header into transport mode for slow-speed towing behind a properly-configured windrower (or agricultural tractor). A tow pole and installation instructions are included in the kit.

This option is available for use with 9.1 m (30 ft.) and wider headers.

MD #C2009

6.3.5 Stubble Light Kit

Stubble lights are used in low light conditions and allow the operator to see the stubble cut behind the header. The Stubble Light Mounting kit (MD #B6634) is available for MacDon 9.1–13.7 m (30–45 ft.) D1 Draper Header or FD1 FlexDraper® Header. This kit is currently compatible with John Deere combines only.

MD #B6634

78. Kit consists of one wheel assembly; two kits are required to upgrade both sides of the header.
6.3.6 Backsheet Extension Kit

The Backsheet Extension kit (A) helps retain small seeds in shatter prone crops such as canola. They are usually used with headers equipped with upper cross augers (UCA).

- MD #B6359 – Backsheet Extension Kit
- MD #B6379 – Backsheet Panel Extensions

![Figure 6.15: Backsheet Extensions](image)

6.3.7 Center Skid Shoes Kit

The Center Skid Shoes kit provides improved performance when cutting low to the ground.

Installation instructions are included in the kit.

MD #B5615

![Figure 6.16: Center Skid Shoe](image)
6.3.8 Steel Skid Shoes

Steel skid shoes offer extra abrasion resistance.
Installation instructions are included with the kit.
MD #B6583
6.4 Crop Delivery

6.4.1 Draper Deflector (Narrow)

Narrow metal draper deflectors attach to the inboard side of the endsheets to prevent material from falling through the gap between the endsheet and the draper while minimizing reel carryover in bushy crops.

NOTE:
Narrow draper deflectors are not recommended for double windrowing; wide draper deflectors are available for this purpose.

Refer to the header parts catalog for the necessary parts.

![Figure 6.18: Draper Deflector (Narrow)](image)

6.4.2 Draper Deflector (Wide)

Wide metal draper deflectors attach to the inboard side of the endsheets to prevent material from falling through the gap between the endsheet and the draper.

NOTE:
Required for double swathing only (leaves a gap between the standing crop and the swath for the divider to run through).

MD #B6551 - for D1X (includes extra parts for various cutterbar layouts).

MD #B6552 - for D1XL

IMPORTANT:
The wide draper deflector is NOT compatible with the Upper Cross Auger option.

![Figure 6.19: Draper Deflector (Wide)](image)
6.4.3 Cleat Saver Kit

The cleat saver kit offers additional wear protection for the draper. They may prove useful in situations where conditions are dry or consistently hot.

Installation instruction are included with the kit.

MD #294859 (LEGG Header)
MD #294858 (WCCO Header)

![Figure 6.20: Cleat Saver](image)

6.4.4 Upper Cross Auger (UCA)

The upper cross auger (A) attaches in front of the backtube and improves crop feeding into the center of the header in heavy crop conditions. It is ideal for high-volume harvesting of forages, oats, canola, mustard, and other tall, bushy, hard-to-feed crops.

Order from the following list of kits according to your header size:

- D115X – MD #B6280
- D120X – MD #B6281
- D125X – MD #B6461
- D130XL – MD #B6462
- D135XL – MD #B6463
- D140XL – MD #B6264
- D145XL\(^79\) – MD #B6465

NOTE:
The wide draper deflector option is **NOT** compatible with the upper cross auger option.

\(^79\) This is a 12.2 m (40 ft.) auger, and is backtube mounted. It does **NOT** span the full length of the header.
6.4.5 Rice Divider Rods

Rice divider rods attach to the left and right crop dividers and divide tall and tangled rice crops in a similar manner to standard crop divider rods performing in standing crops. Installation instructions are included in the kit.

MD #B5609

Figure 6.22: Rice Divider Rod

6.4.6 Double Draper Drive (DDD) Kit

The DDD kit provides power to four draper rollers instead of the usual two in order to minimize draper slipping when using the side delivery feature in heavy forage crops.

Installation instructions are included in the kit.

NOTE:
The draper slip sensor is disabled with the installation of this kit.
- D1X Series – MD #B5653
- D1XL Series – MD #B6039

6.4.7 Double Windrow Attachment (DWA)

The DWA lays up to 14.6 m (48 ft.) of crop in a single windrow which is ideal for large forage harvesters. It is designed to mount only on SP windrowers equipped with an HC10 Conditioner.

MD #C1987

Figure 6.23: Double Windrow Attachment

6.4.8 Draper Extension Kit

The draper extension kit increases the inboard length of each deck up to 500 mm (20 in.) which narrows the header opening and decreases windrow width when cutting light/thin crops.

The kit includes roller support extensions, a draper repair kit, all necessary hardware, and installation instructions.
6.4.9 Swath Forming Rods (Center Delivery)

Swath forming rods form windrows so the heads are in the center and protected from shatter. Swath forming rods are mainly used for grass seed cutting applications.

Installation and adjustment instructions are included with the kit.

MD #B4803

6.4.10 Swath Rods

End delivery deflector rods are used for double swathing with end delivery only.

The deflector rods help prevent delivered crop at the opening from interfering with the standing crop.

Installation and adjustment instructions are included in the kit.

Kits are available for installation on the left or the right side of the header:

- Left side: MD #B5088
- Right side: MD #B5089

For center delivery, order MD #B4803.
6.4.11 HC10 Hay Conditioner

The HC10 Hay Conditioner lays uniform, fluffy windrows. Conditioning or crimping the cut hay allows the release of moisture, resulting in faster drying times and earlier processing.

A parts list and installation and operating instructions are included with the kit.

MD #C1982

NOTE:
Not for use on M205 Windrower.

6.4.12 Hydraulic Deck Shift Package

This system allows Operators to shift the decks using the in-cab console when double-swathing.

Installation and adjustment instructions are included with the kit.

Available on 7.6–13.7 m (25–40 ft.) headers.

MD #B5664

6.4.13 Upper Cross Auger (UCA) Hydraulic Kit for Double Draper Drive (DDD)

This kit is required to provide hydraulic power to the UCA on headers with both UCA and DDD kits installed. Operating both options without this kit can result in damage to the UCA motor and inadequate power to the draper drive system. This kit is not applicable to M100 and M105 Windrowers.

MD #B5606
6.4.14 Upper Cross Auger (UCA) Case Drain Kit for Single Draper Drive (SDD)

This kit is intended for SDD headers equipped with an UCA and is applicable to all M Series windrows, except the M205.

MD #B5842

Figure 6.28: Case Drain
Chapter 7: Unloading and Assembly

Refer to the header-specific instructions for unloading, assembly, and setup procedures that are included with your shipment.

Table 7.1 Unloading and Assembly Instructions

<table>
<thead>
<tr>
<th>Shipping Destination</th>
<th>Header Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>D1X and D1XL Series Draper Header for Windrowsers</td>
</tr>
</tbody>
</table>
Chapter 8: Troubleshooting

8.1 Crop Loss at Cutterbar

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Does not pick up downed crop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Cutterbar too high | Lower cutterbar | • Cutting off the Ground, page 55
• Cutting on the Ground, page 58 |
| Header angle too low | Increase header angle | 3.7.3 Header Angle, page 60 |
| Reel too high | Lower reel | 3.7.8 Reel Height, page 63 |
| Reel too far back | Move reel forward | 3.7.9 Reel Fore-Aft Position, page 63 |
| Ground speed too fast for reel speed | Increase reel speed or reduce ground speed | • 3.7.4 Reel Speed, page 61
• 3.7.5 Ground Speed, page 62 |
| Reel fingers not lifting crop sufficiently | Increase finger pitch aggressiveness | 3.7.10 Reel Tine Pitch, page 64 |
| Reel fingers not lifting crop sufficiently | Install lifter guards | See your MacDon Dealer |

Symptom: Heads shattering or breaking off		
Reel speed too fast	Reduce reel speed	3.7.4 Reel Speed, page 61
Reel too low	Raise reel	3.7.8 Reel Height, page 63
Ground speed too fast	Reduce ground speed	3.7.5 Ground Speed, page 62
Crop too ripe	Operate at night when humidity is higher	—

| **Symptom: Material accumulating in gap between cut-out in endsheet and knifehead** | | |
| Crop heads leaning away from knifehead hole in endsheet | Add knifehead shields (except in damp or sticky soils) | 5.5.8 Knifehead Shield, page 135 |

Symptom: Strips of uncut material		
Crowding uncut crop	Allow enough room for crop to be fed to cutterbar	—
Broken knife sections	Replace broken sections	5.5.1 Replacing Knife Section, page 124

| **Symptom: Excessive bouncing at normal field speed** | | |
| Float set too light | Adjust header float | 3.7.2 Header Float, page 60 |

| **Symptom: Divider rod running down standing crop** | | |
| Divider rods too long | Remove divider rod | 3.7.11 Crop Dividers, page 67 |

| **Symptom: Crop not being cut at ends** | | |
| Reel not frowning or not centered in header | Adjust reel horizontal position or reel frown | • 3.7.9 Reel Fore-Aft Position, page 63
• 5.8.2 Reel Frown, page 187 |
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife hold-downs not adjusted properly</td>
<td>Adjust hold-downs so knife works freely but still keep sections from lifting off guards</td>
<td>Adjusting Hold-Downs with Pointed Guards, page 132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjusting Hold-Downs with Stub Guards, page 134</td>
</tr>
<tr>
<td>Knife sections or guards are worn or broken</td>
<td>Replace all worn and broken cutting parts</td>
<td>5.5 Cutterbar, page 124</td>
</tr>
<tr>
<td>Header is not level</td>
<td>Level header</td>
<td>3.12 Levelling the Header, page 81</td>
</tr>
<tr>
<td>Reel fingers not lifting crop properly ahead of knife</td>
<td>Adjust reel position and/or finger pitch</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Divider runs down thick crop at ends</td>
<td>Replace 3–4 end guards with stub guards</td>
<td>5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td>preventing proper feeding due to material bridging the cutter guards</td>
<td></td>
<td>6.2.5 Stub Guard Conversion Kit, page 228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Bushy or tangled crop flows over divider rod, builds up on endsheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divider rods providing insufficient separation</td>
<td>Install long divider rods</td>
<td>3.7.11 Crop Dividers, page 67</td>
</tr>
<tr>
<td>Symptom: Cut grain falling ahead of cutterbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground speed too slow</td>
<td>Increase ground speed</td>
<td>3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>Reel speed too slow</td>
<td>Increase reel speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Reel too high</td>
<td>Lower reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Cutterbar too high</td>
<td>Lower cutterbar</td>
<td>Cutting off the Ground, page 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutting on the Ground, page 58</td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Move reel back on arms</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Cutting at speeds over 10 km/h (6 mph) with 10-tooth reel drive sprocket</td>
<td>Replace with 19-tooth reel drive sprocket</td>
<td>5.9.3 Reel Drive Sprocket, page 213</td>
</tr>
<tr>
<td>Worn or broken knife components</td>
<td>Replace components</td>
<td>5.5 Cutterbar, page 124</td>
</tr>
</tbody>
</table>
8.2 Cutting Action and Knife Components

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Knife hold-downs not properly adjusted</td>
<td>Adjust hold-downs</td>
<td>Checking Knife Hold-Downs, page 132</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Knife sections or guards are worn or broken</td>
<td>Replace all worn and broken cutting parts</td>
<td>Checking Knife Hold-Downs, page 132</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Knife is not operating at recommended speed</td>
<td>Check engine speed of windrower</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Ground speed too fast for reel speed</td>
<td>Reduce ground speed or increase reel speed</td>
<td>• 3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Reel fingers not properly lifting crop ahead of knife</td>
<td>Adjust reel position and/or finger pitch</td>
<td>• 3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Cutterbar too high</td>
<td>Lower cutting height</td>
<td>3.7.1 Cutting Height, page 55</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Header angle too flat</td>
<td>Steepen header angle</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Bent knife causing binding of cutting parts</td>
<td>Straighten bent knife, and align guards</td>
<td>5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Cutting edge of guards not close enough or parallel to knife sections</td>
<td>Align guards</td>
<td>5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Tangled crop tough to cut</td>
<td>Install stub guards</td>
<td>• 5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6.2.5 Stub Guard Conversion Kit, page 228</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• See your MacDon Dealer</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Reel too far back</td>
<td>Move reel forward</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop</td>
<td>Loose knife drive belt</td>
<td>Adjust drive belt tension</td>
<td>• Checking and Tensioning, page 149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tensioning Timed Knife Drive Belts, page 154</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Reel too high or too far forward</td>
<td>Lower reel or move reel rearward</td>
<td>• 3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Ground speed too slow</td>
<td>Increase ground speed</td>
<td>3.7.5 Ground Speed, page 62</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife plugging</td>
<td>Loose knife drive belt</td>
<td>Adjust drive belt tension</td>
<td>• Checking and Tensioning, page 149
• Tensioning Timed Knife Drive Belts, page 154</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Improper knife hold-down adjustment</td>
<td>Adjust hold-down</td>
<td>Checking Knife Hold-Downs, page 132</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Dull or broken knife sections</td>
<td>Replace knife sections</td>
<td>5.5.1 Replacing Knife Section, page 124</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Bent or broken guards</td>
<td>Align or replace guards</td>
<td>5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Reel fingers not properly lifting crop ahead of knife</td>
<td>Adjust reel position and/or finger pitch</td>
<td>• 3.7.9 Reel Fore-Aft Position, page 63
• 3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Steel pick-up fingers contacting knife</td>
<td>Increase reel clearance to cutterbar or adjust frown</td>
<td>• Measuring Reel Clearance, page 184
• 5.8.2 Reel Frown, page 187</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Float is set too heavy</td>
<td>Adjust springs for lighter float</td>
<td>3.7.2 Header Float, page 60</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Mud or dirt build-up on cutterbar</td>
<td>Raise cutterbar by lowering skid shoes</td>
<td>Cutting on the Ground, page 58
Cutting On the Ground</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Mud or dirt build-up on cutterbar</td>
<td>Install cut-out sections</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Mud or dirt build-up on cutterbar</td>
<td>Flatten header angle</td>
<td>Adjusting Header Angle, page 61</td>
</tr>
<tr>
<td>Knife plugging</td>
<td>Knife is not operating at recommended speed</td>
<td>Check engine speed of windrower</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Knife back breakage</td>
<td>Bent or broken guard</td>
<td>Straighten or replace guard</td>
<td>5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td>Knife back breakage</td>
<td>Worn knifehead pin</td>
<td>Replace knifehead pin</td>
<td>5.5.3 Removing Knifehead Bearing, page 125</td>
</tr>
<tr>
<td>Knife back breakage</td>
<td>Dull knife</td>
<td>Replace knife</td>
<td>• 5.5.2 Removing Knife, page 125
• 5.5.5 Installing Knife, page 126</td>
</tr>
<tr>
<td>Excessive header vibration</td>
<td>Knife hold-downs not properly adjusted</td>
<td>Adjust hold-downs</td>
<td>Checking Knife Hold-Downs, page 132</td>
</tr>
<tr>
<td>Excessive header vibration</td>
<td>Knives on double-knife drive not timed</td>
<td>Adjust knife timing</td>
<td>Adjusting Double-Knife Timing, page 156</td>
</tr>
<tr>
<td>Excessive header vibration</td>
<td>Knife not operating at recommended speed</td>
<td>Check engine speed of windrower</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive header vibration</td>
<td>Excessive knife wear</td>
<td>Replace knife</td>
<td>• 5.5.2 Removing Knife, page 125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5.5.5 Installing Knife, page 126</td>
</tr>
<tr>
<td>Excessive header vibration</td>
<td>Loose or worn knifehead pin or drive arm</td>
<td>Tighten or replace parts</td>
<td>• 5.5.3 Removing Knifehead Bearing, page 125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5.6.1 Knife Drive Box, page 136</td>
</tr>
<tr>
<td>Excessive header vibration</td>
<td>Bent cutterbar</td>
<td>Straighten cutterbar</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Excessive breakage of knife sections or guards</td>
<td>Knife hold-downs not properly adjusted</td>
<td>Adjust hold-downs</td>
<td>Checking Knife Hold-Downs, page 132</td>
</tr>
<tr>
<td>Excessive breakage of knife sections or guards</td>
<td>Cutterbar operating too low in stony conditions</td>
<td>Raise cutterbar using skid shoes</td>
<td>Cutting on the Ground, page 58</td>
</tr>
<tr>
<td>Excessive breakage of knife sections or guards</td>
<td>Float is set too heavy</td>
<td>Adjust springs for lighter float</td>
<td>3.7.2 Header Float, page 60</td>
</tr>
<tr>
<td>Excessive breakage of knife sections or guards</td>
<td>Bent or broken guard</td>
<td>Straighten or replace guard</td>
<td>5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td>Excessive breakage of knife sections or guards</td>
<td>Header angle too steep</td>
<td>Flatten header angle</td>
<td>Adjusting Header Angle, page 61</td>
</tr>
</tbody>
</table>

Excessive header vibration

- **Solution**: Replace knife
- **Refer to**: **5.5.2 Removing Knife**, page 125; **5.5.5 Installing Knife**, page 126

Excessive header vibration

- **Solution**: Tighten or replace parts
- **Refer to**: **5.5.3 Removing Knifehead Bearing**, page 125; **5.6.1 Knife Drive Box**, page 136

Excessive header vibration

- **Solution**: See your MacDon Dealer

Excessive breakage of knife sections or guards

- **Solution**: Adjust hold-downs
- **Refer to**: **Checking Knife Hold-Downs**, page 132

Excessive breakage of knife sections or guards

- **Solution**: Raise cutterbar using skid shoes
- **Refer to**: **Cutting on the Ground**, page 58

Excessive breakage of knife sections or guards

- **Solution**: Adjust springs for lighter float
- **Refer to**: **3.7.2 Header Float**, page 60

Excessive breakage of knife sections or guards

- **Solution**: Straighten or replace guard
- **Refer to**: **5.5.7 Knife Guards**, page 127

Excessive breakage of knife sections or guards

- **Solution**: Flatten header angle
- **Refer to**: **Adjusting Header Angle**, page 61
Troubleshooting

8.3 Reel Delivery

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel not releasing material in normal standing crop</td>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Reel not releasing material in normal standing crop</td>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Reel not releasing material in normal standing crop</td>
<td>Reel tines too aggressive</td>
<td>Reduce cam setting</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Reel not releasing material in normal standing crop</td>
<td>Reel too far back</td>
<td>Move reel forward</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Reel not releasing material in lodged and standing crop (reel fully lowered)</td>
<td>Reel tines too aggressive for standing crop</td>
<td>Reduce cam setting</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Wrapping on reel end</td>
<td>Reel tines too aggressive</td>
<td>Reduce cam setting</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Wrapping on reel end</td>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Wrapping on reel end</td>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Wrapping on reel end</td>
<td>Crop conditions</td>
<td>Install optional endshields</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Wrapping on reel end</td>
<td>Reel not centered in header</td>
<td>Center reel in header</td>
<td>5.8.3 Centering the Reel, page 188</td>
</tr>
<tr>
<td>Reel releases crop too quickly</td>
<td>Reel tines not aggressive enough</td>
<td>Increase cam setting</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Reel releases crop too quickly</td>
<td>Reel too far forward</td>
<td>Move reel back</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Reel will not lift</td>
<td>Reel lift couplers are incompatible or defective</td>
<td>Change quick coupler</td>
<td>—</td>
</tr>
<tr>
<td>Reel will not turn</td>
<td>Control set at ‘0’</td>
<td>Activate reel speed control</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Reel will not turn</td>
<td>Quick couplers not properly connected</td>
<td>Connect couplers</td>
<td>4 Header Attachment/ Detachment, page 101</td>
</tr>
<tr>
<td>Reel will not turn</td>
<td>Reel drive chain disconnected</td>
<td>Connect reel drive chain</td>
<td>5.9.7 Replacing Drive Chain on Single Reel, page 221</td>
</tr>
<tr>
<td>Reel motion uneven under no load</td>
<td>Excessive slack in reel drive chain</td>
<td>Tighten drive chain</td>
<td>5.9.2 Reel Drive Chain Tension, page 210</td>
</tr>
<tr>
<td>Reel motion is uneven or stalls in heavy crops</td>
<td>Reel speed too fast</td>
<td>Reduce reel speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Reel motion is uneven or stalls in heavy crops</td>
<td>Reel fingers not aggressive enough</td>
<td>Move to a more aggressive finger pitch notch</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Reel motion is uneven or stalls in heavy crops</td>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Reel motion is uneven or stalls in heavy crops</td>
<td>Relief valve on windrower has low relief pressure setting</td>
<td>Increase relief pressure to manufacturer’s recommendations</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Refer to</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Reel motion is uneven or stalls in heavy crops | Low oil level in reservoir on windrower
NOTE: There may be more than one reservoir. | Fill to proper level | Refer to the windrower operator’s manual |
| Reel motion is uneven or stalls in heavy crops | Relief valve malfunction | Replace relief valve | Refer to the windrower operator’s manual |
| Reel motion is uneven or stalls in heavy crops | Cutting tough crops with standard torque (19-tooth) reel drive sprocket | Replace with high torque (10-tooth) or 14-tooth reel drive sprocket | 5.9.3 Reel Drive Sprocket, page 213 |
| Plastic fingers cut at tip | Insufficient reel to cutterbar clearance | Increase clearance | 5.8.1 Reel Clearance to Cutterbar, page 184 |
| Plastic fingers bent rearward at tip | Reel digging into ground with reel speed slower than ground speed | Raise header | 3.7.1 Cutting Height, page 55 |
| Plastic fingers bent rearward at tip | Reel digging into ground with reel speed slower than ground speed | Decrease header tilt | 3.7.3 Header Angle, page 60 |
| Plastic fingers bent rearward at tip | Reel digging into ground with reel speed slower than ground speed | Move reel aft | 3.7.9 Reel Fore-Aft Position, page 63 |
| Plastic fingers bent forward at tip | Reel digging into ground with reel speed faster than ground speed | Raise header | 3.7.1 Cutting Height, page 55 |
| Plastic fingers bent forward at tip | Reel digging into ground with reel speed faster than ground speed | Decrease header tilt | 3.7.3 Header Angle, page 60 |
| Plastic fingers bent forward at tip | Reel digging into ground with reel speed faster than ground speed | Move reel aft | 3.7.9 Reel Fore-Aft Position, page 63 |
| Plastic fingers bent close to tine tube | Excessive plugging at cutterbar with wads of crop accumulating at cutterbar while maintaining reel operation | Correct plugging and cutting issues | 3.13 Unplugging the Cutterbar, page 82 |
| Plastic fingers bent close to tine tube | Excessive plugging at cutterbar with wads of crop accumulating at cutterbar while maintaining reel operation | Stop reel before plugging becomes excessive | — |
8.4 Header and Drapers

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Insufficient header lift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low relief pressure</td>
<td>Increase relief pressure</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Insufficient side draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed control set too low</td>
<td>Increase speed control setting</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Windrower header drive too slow</td>
<td>Adjust to correct speed for windrower model</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Insufficient feed draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief pressure too low</td>
<td>Increase relief pressure to recommended setting</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Windrower header drive too slow</td>
<td>Adjust to correct speed for windrower model</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Insufficient draper speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worn out gear pump</td>
<td>Replace gear pump</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Pressure compensator (V7) set too low</td>
<td>Adjust to increase setting</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Feed draper will not move</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapers are loose</td>
<td>Tighten drapers</td>
<td>5.7.3 Adjusting Draper Tension, page 165</td>
</tr>
<tr>
<td>Drive or idler roller wrapped with material</td>
<td>Loosen draper and clean rollers</td>
<td>5.7.3 Adjusting Draper Tension, page 165</td>
</tr>
<tr>
<td>Slat or connector bar jammed by frame or material</td>
<td>Loosen draper and clear obstruction</td>
<td>5.7.3 Adjusting Draper Tension, page 165</td>
</tr>
<tr>
<td>Roller bearing seized</td>
<td>Replace roller bearing</td>
<td>5.7.7 Draper Roller Maintenance, page 173</td>
</tr>
<tr>
<td>Low hydraulic oil</td>
<td>Fill windrower hydraulic oil reservoir to full level</td>
<td>Refer to the windrower operator’s manual</td>
</tr>
<tr>
<td>Symptom: Draper stalling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material not feeding evenly off knife</td>
<td>Lower reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Material not feeding evenly off knife</td>
<td>Install stub guards</td>
<td>• 5.5.7 Knife Guards, page 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6.2.5 Stub Guard Conversion Kit, page 228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• See your MacDon Dealer</td>
</tr>
<tr>
<td>Symptom: Hesitation in flow of bulky crop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header angle too low</td>
<td>Increase header angle</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Increase side draper speed</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Install upper cross auger</td>
<td>6.4.4 Upper Cross Auger (UCA), page 235</td>
</tr>
<tr>
<td>Material overload on drapers</td>
<td>Add flighting extensions</td>
<td>See your MacDon Dealer</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Drapers back feed</td>
<td>Drapers running too slow in heavy crop</td>
<td>Increase draper speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Symptom: Crop is thrown across opening and under opposite side draper</td>
<td>Drapers running too fast in light crop</td>
<td>Reduce draper speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Symptom: Material accumulates inside or under front edge of draper</td>
<td>Deck height improperly adjusted</td>
<td>Adjust deck height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.7.5 Adjusting Deck Height, page 169</td>
</tr>
<tr>
<td>Symptom: Material accumulating on end deflectors and releasing in bunches</td>
<td>End deflectors too wide</td>
<td>For headers with manual deck shift only, trim deflector or replace with narrow deflector (MD #172381)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.13 Unplugging the Cutterbar, page 82</td>
</tr>
</tbody>
</table>
8.5 Cutting Edible Beans

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom: Plants being stripped and complete or partial plants left behind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header off ground</td>
<td>Lower header to ground and run on skid shoes and/or cutterbar</td>
<td>Cutting on the Ground, page 58</td>
</tr>
<tr>
<td>Float set too light—rides on high spots and does not lower soon enough</td>
<td>Set float for the following conditions:</td>
<td>3.7.2 Header Float, page 60</td>
</tr>
<tr>
<td></td>
<td>- Dry ground: 100–150 lbf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wet ground: 50–100 lbf</td>
<td></td>
</tr>
<tr>
<td>Reel too high</td>
<td>Fully retract reel cylinders</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Reel too high with cylinders fully retracted</td>
<td>Adjust reel height</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Finger pitch not aggressive enough</td>
<td>Adjust finger pitch</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Reel too far aft</td>
<td>Move reel forward until the fingertips skim the soil surface with header on the ground and the center-link properly adjusted</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Header angle too shallow</td>
<td>Lengthen center-link</td>
<td>Adjusting Header Angle, page 61</td>
</tr>
<tr>
<td>Header angle too shallow</td>
<td>Increase header angle by fully retracting lift cylinders (if cutting on ground)</td>
<td>Adjusting Header Angle, page 61</td>
</tr>
<tr>
<td>Reel too slow</td>
<td>Adjust reel speed to be marginally faster than ground speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Ground speed too fast</td>
<td>Lower ground speed</td>
<td>3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>Skid shoes too low</td>
<td>Raise skid shoes to highest setting</td>
<td>Cutting on the Ground, page 58</td>
</tr>
<tr>
<td>Dirt packs on bottom of cutterbar and raises cutterbar off the ground</td>
<td>Install plastic wear strips on bottom of cutterbar and skid shoes</td>
<td>See your MacDon Dealer</td>
</tr>
<tr>
<td>Dirt packing on bottom of cutterbar with plastic wear strips on cutterbar and raises cutterbar off the ground</td>
<td>Ground too wet – allow soil to dry</td>
<td></td>
</tr>
<tr>
<td>Dirt packing on bottom of cutterbar with plastic wear strips on cutterbar and raises cutterbar off the ground</td>
<td>Manually clean the bottom of cutterbar when excessive accumulation occurs</td>
<td></td>
</tr>
<tr>
<td>Plastic wear strip for cutterbar has been installed over top of steel wearplates</td>
<td>Remove steel cutterbar wearplates when installing the plastic wear strips for cutterbar</td>
<td></td>
</tr>
<tr>
<td>Header not level</td>
<td>Level header</td>
<td>3.12 Levelling the Header, page 81</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Refer to</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Worn or damaged knife sections</td>
<td>Replace sections or replace knife</td>
<td>5.5 Cutterbar, page 124</td>
</tr>
<tr>
<td>Parts of vines get caught in pointed guard tip. (Occurs more in row-cropped beans that are hilled from cultivating.)</td>
<td>Install stub guard conversion kit</td>
<td>6.2.5 Stub Guard Conversion Kit, page 228</td>
</tr>
<tr>
<td>Symptom: Excessive losses at dividers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divider rod running down crop and shattering pods</td>
<td>Remove divider rod</td>
<td>3.7.11 Crop Dividers, page 67</td>
</tr>
<tr>
<td>Vines and plants build up on endsheet</td>
<td>Install divider rod</td>
<td>3.7.11 Crop Dividers, page 67</td>
</tr>
<tr>
<td>Symptom: Plant vines pinched between top of draper and cutterbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutterbar fills with debris when draper to cutterbar gap is properly adjusted</td>
<td>Raise header fully at each end of field (or as required) and shift decks back and forth to help clean out cutterbar</td>
<td>—</td>
</tr>
<tr>
<td>Shifting the decks with header raised does not clean out cutterbar debris.</td>
<td>Manually remove debris from cutterbar cavity to prevent damaging the drapers</td>
<td>—</td>
</tr>
<tr>
<td>Symptom: Crop accumulating at guards and not moving rearward onto drapers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel finger pitch not aggressive enough</td>
<td>Increase finger aggressiveness (cam position)</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Reel too high</td>
<td>Lower reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Minimum reel clearance to cutterbar setting too high</td>
<td>Adjust minimum reel height with cylinders fully retracted</td>
<td>5.8.1 Reel Clearance to Cutterbar, page 184</td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Reposition reel</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Symptom: Crop wrapping around reel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Symptom: Reel shattering pods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reel too far forward</td>
<td>Reposition reel</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
<tr>
<td>Reel speed too high</td>
<td>Reduce reel speed</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td>Bean pods too dry</td>
<td>Cut at night when heavy dew is present and pods have softened</td>
<td>—</td>
</tr>
<tr>
<td>Reel finger pitch not aggressive enough</td>
<td>Increase finger aggressiveness (cam position)</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Symptom: Cutterbar guards breaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Float insufficient (float setting too heavy)</td>
<td>Increase float (adjust to lighter float setting)</td>
<td>3.7.2 Header Float, page 60</td>
</tr>
</tbody>
</table>
Problem: Excessive number of rocks in field
Consider installing optional stub guards
Tip: Install a few guards on one section of the cutterbar and compare the performance of the two different guard styles

Symptom: Cutterbar pushing too much debris and dirt

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header too heavy</td>
<td>Readjust float to make header lighter</td>
<td>3.7.2 Header Float, page 60</td>
</tr>
<tr>
<td>Header angle too steep</td>
<td>Decrease header angle with center-link</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>Header angle too steep</td>
<td>Shorten the center-link</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>Guards plug with debris or and soil</td>
<td>Install stub guard kit</td>
<td>6.2.5 Stub Guard Conversion Kit, page 228</td>
</tr>
<tr>
<td>Insufficient support for header</td>
<td>Install center skid shoes on header</td>
<td>Cutting on the Ground, page 58</td>
</tr>
</tbody>
</table>

Symptom: Crop wrapping around reel ends

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncut crop interfering on reel ends</td>
<td>Add reel endshields</td>
<td>Refer to the header parts catalog</td>
</tr>
</tbody>
</table>

Symptom: Cutterbar fills up with dirt

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive gap between draper and cutterbar</td>
<td>Adjust front deck supports to achieve proper clearance between cutterbar and draper</td>
<td>5.7.5 Adjusting Deck Height, page 169</td>
</tr>
<tr>
<td>Excessive gap between draper and cutterbar</td>
<td>Raise header fully at each end of field (or as required) and shift decks back and forth to help clean out cutterbar</td>
<td>—</td>
</tr>
</tbody>
</table>

Symptom: Reel occasionally carries over plants in same location

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel fingers bent and hooking plants from drapers</td>
<td>Straighten fingers (steel)</td>
<td>—</td>
</tr>
<tr>
<td>Dirt accumulation on end of fingers preventing plants from falling off fingers onto drapers</td>
<td>Raise reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>Dirt accumulation on end of fingers preventing plants from falling off fingers onto drapers</td>
<td>Adjust reel fore-aft position to move fingers out of the ground</td>
<td>3.7.9 Reel Fore-Aft Position, page 63</td>
</tr>
</tbody>
</table>

Symptom: Cutterbar pushing soil

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire tracks or row crop ridges</td>
<td>Cut at angle to crop rows or ridges</td>
<td>—</td>
</tr>
<tr>
<td>Rolling terrain along length of field</td>
<td>Cut at 90° to undulations (provided knife floats across without digging in)</td>
<td>—</td>
</tr>
</tbody>
</table>

Symptom: Reel carries over an excessive amount of plants or wads
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive accumulation of crop on drapers (up to reel center tube)</td>
<td>Increase draper speed</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Finger pitch too slow</td>
<td>Increase finger pitch</td>
<td>3.7.10 Reel Tine Pitch, page 64</td>
</tr>
</tbody>
</table>
8.6 Windrow Formation

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads on ground and scattered</td>
<td>Draper speed too slow</td>
<td>Increase draper speed</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Heads on ground and scattered</td>
<td>Draper angle too flat</td>
<td>Increase header angle</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>Heads on ground and scattered</td>
<td>Ground speed too slow</td>
<td>Increase ground speed</td>
<td>3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>Heads on ground and scattered</td>
<td>Crop too ripe</td>
<td>Cut crop before too mature</td>
<td>—</td>
</tr>
<tr>
<td>Hollow in center</td>
<td>Draper speed too slow</td>
<td>Increase draper speed</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Hollow in center</td>
<td>Delivery opening too wide</td>
<td>Decrease delivery opening width</td>
<td>3.8 Delivery Opening, page 74</td>
</tr>
<tr>
<td>All heads in center</td>
<td>Draper speed too fast or</td>
<td>Reduce draper speed and/or decrease</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td></td>
<td>header angle too steep</td>
<td>header angle</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>All heads in center</td>
<td>Draper speed too fast or</td>
<td>Reduce draper speed and/or decrease</td>
<td>3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td></td>
<td>header angle too steep</td>
<td>header angle</td>
<td>3.7.3 Header Angle, page 60</td>
</tr>
<tr>
<td>All heads in center</td>
<td>Ground speed too fast</td>
<td>Reduce ground speed</td>
<td>3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>All heads in center</td>
<td>Crop too green</td>
<td>Allow crop to mature</td>
<td>—</td>
</tr>
<tr>
<td>All heads to one side</td>
<td>Crop leaning to one side and</td>
<td>Increase reel speed to re-orient</td>
<td>• 3.7.4 Reel Speed, page 61</td>
</tr>
<tr>
<td></td>
<td>reel too slow</td>
<td>crop parallel to draper slats and/or</td>
<td>• 3.7.10 Reel Tine Pitch, page 64</td>
</tr>
<tr>
<td>Uneven windrow (any crop</td>
<td>Ground speed too fast for</td>
<td>Reduce ground speed or increase draper</td>
<td>• 3.7.5 Ground Speed, page 62</td>
</tr>
<tr>
<td>condition)</td>
<td>drapers, causing heads to</td>
<td>speed</td>
<td>• 3.7.6 Draper Speed, page 62</td>
</tr>
<tr>
<td>Uneven windrow (any crop</td>
<td>fan out and crop to leave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>condition)</td>
<td>drapers unevenly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uneven windrow (any crop</td>
<td>Reel too low</td>
<td>Raise reel</td>
<td>3.7.8 Reel Height, page 63</td>
</tr>
<tr>
<td>condition)</td>
<td>Reel speed too fast</td>
<td>Reduce reel</td>
<td>3.7.4 Reel Speed, page 61</td>
</tr>
</tbody>
</table>
Chapter 9: Reference

9.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by $f=0.65$.

Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

9.1.1 SAE Bolt Torque Specifications

Torque values shown in following tables are valid for non-greased, or non-oiled threads and heads; therefore, do NOT grease or oil bolts or cap screws unless otherwise specified in this manual.

Table 9.1 SAE Grade 5 Bolt and Grade 5 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4-20</td>
<td>11.9</td>
<td>13.2</td>
</tr>
<tr>
<td>5/16-18</td>
<td>24.6</td>
<td>27.1</td>
</tr>
<tr>
<td>3/8-16</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7/16-14</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>1/2-13</td>
<td>106</td>
<td>118</td>
</tr>
<tr>
<td>9/16-12</td>
<td>153</td>
<td>170</td>
</tr>
<tr>
<td>5/8-11</td>
<td>212</td>
<td>234</td>
</tr>
<tr>
<td>3/4-10</td>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td>7/8-9</td>
<td>606</td>
<td>669</td>
</tr>
<tr>
<td>1-8</td>
<td>825</td>
<td>912</td>
</tr>
</tbody>
</table>

Figure 9.1: Bolt Grades

A - Nominal Size
C - SAE-5
B - SAE-8
D - SAE-2
Table 9.2 SAE Grade 5 Bolt and Grade F Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>8.1</td>
<td>9</td>
</tr>
<tr>
<td>5/16-18</td>
<td>16.7</td>
<td>18.5</td>
</tr>
<tr>
<td>3/8-16</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>7/16-14</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>1/2-13</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>9/16-12</td>
<td>105</td>
<td>116</td>
</tr>
<tr>
<td>5/8-11</td>
<td>144</td>
<td>160</td>
</tr>
<tr>
<td>3/4-10</td>
<td>259</td>
<td>286</td>
</tr>
<tr>
<td>7/8-9</td>
<td>413</td>
<td>456</td>
</tr>
<tr>
<td>1-8</td>
<td>619</td>
<td>684</td>
</tr>
</tbody>
</table>

Table 9.3 SAE Grade 8 Bolt and Grade G Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>16.8</td>
<td>18.6</td>
</tr>
<tr>
<td>5/16-18</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>3/8-16</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>7/16-14</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>1/2-13</td>
<td>102</td>
<td>113</td>
</tr>
<tr>
<td>9/16-12</td>
<td>148</td>
<td>163</td>
</tr>
<tr>
<td>5/8-11</td>
<td>204</td>
<td>225</td>
</tr>
<tr>
<td>3/4-10</td>
<td>362</td>
<td>400</td>
</tr>
<tr>
<td>7/8-9</td>
<td>583</td>
<td>644</td>
</tr>
<tr>
<td>1-8</td>
<td>874</td>
<td>966</td>
</tr>
</tbody>
</table>
Table 9.4 SAE Grade 8 Bolt and Grade 8 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>16.8</td>
<td>18.6</td>
</tr>
<tr>
<td>5/16-18</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>3/8-16</td>
<td>61</td>
<td>68</td>
</tr>
<tr>
<td>7/16-14</td>
<td>98</td>
<td>109</td>
</tr>
<tr>
<td>1/2-13</td>
<td>150</td>
<td>166</td>
</tr>
<tr>
<td>9/16-12</td>
<td>217</td>
<td>239</td>
</tr>
<tr>
<td>5/8-11</td>
<td>299</td>
<td>330</td>
</tr>
<tr>
<td>3/4-10</td>
<td>531</td>
<td>587</td>
</tr>
<tr>
<td>7/8-9</td>
<td>855</td>
<td>945</td>
</tr>
<tr>
<td>1-8</td>
<td>1165</td>
<td>1288</td>
</tr>
</tbody>
</table>

9.1.2 Metric Bolt Specifications

Table 9.5 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>
Table 9.6 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>4-0.7</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>5-0.8</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>6-1.0</td>
<td>7.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>18.8</td>
<td>20.8</td>
</tr>
<tr>
<td>10-1.5</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>12-1.75</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>14-2.0</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>16-2.0</td>
<td>161</td>
<td>178</td>
</tr>
<tr>
<td>20-2.5</td>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>24-3.0</td>
<td>543</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 9.7 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*lbf-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>4-0.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5-0.8</td>
<td>8.4</td>
<td>9.3</td>
</tr>
<tr>
<td>6-1.0</td>
<td>14.3</td>
<td>15.8</td>
</tr>
<tr>
<td>8-1.25</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>10-1.5</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>12-1.75</td>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>14-2.0</td>
<td>210</td>
<td>232</td>
</tr>
<tr>
<td>16-2.0</td>
<td>326</td>
<td>360</td>
</tr>
<tr>
<td>20-2.5</td>
<td>637</td>
<td>704</td>
</tr>
<tr>
<td>24-3.0</td>
<td>1101</td>
<td>1217</td>
</tr>
</tbody>
</table>

![Figure 9.6: Bolt Grades](image1)

![Figure 9.7: Bolt Grades](image2)
Table 9.8 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (Nm)</th>
<th>Torque (lbf-ft) (*)lbf-in</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>1.3</td>
<td>1.5</td>
<td>*12</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>2.1</td>
<td>2.3</td>
<td>*19</td>
</tr>
<tr>
<td>4-0.7</td>
<td>3.1</td>
<td>3.4</td>
<td>*28</td>
</tr>
<tr>
<td>5-0.8</td>
<td>6.3</td>
<td>7</td>
<td>*56</td>
</tr>
<tr>
<td>6-1.0</td>
<td>10.7</td>
<td>11.8</td>
<td>*95</td>
</tr>
<tr>
<td>8-1.25</td>
<td>26</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>10-1.5</td>
<td>51</td>
<td>57</td>
<td>38</td>
</tr>
<tr>
<td>12-1.75</td>
<td>90</td>
<td>99</td>
<td>66</td>
</tr>
<tr>
<td>14-2.0</td>
<td>143</td>
<td>158</td>
<td>106</td>
</tr>
<tr>
<td>16-2.0</td>
<td>222</td>
<td>246</td>
<td>165</td>
</tr>
<tr>
<td>20-2.5</td>
<td>434</td>
<td>480</td>
<td>322</td>
</tr>
<tr>
<td>24-3.0</td>
<td>750</td>
<td>829</td>
<td>556</td>
</tr>
</tbody>
</table>

9.1.3 Metric Bolt Specifications Bolting into Cast Aluminum

Table 9.9 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 (Cast Aluminum)</td>
</tr>
<tr>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
</tr>
<tr>
<td>M6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
</tr>
</tbody>
</table>
9.1.4 Flare-Type Hydraulic Fittings

1. Check flare (A) and flare seat (B) for defects that might cause leakage.

2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.

3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 9.10, page 262.

4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.

5. Assess final condition of connection.

![Figure 9.10: Hydraulic Fitting](image)

Table 9.10 Flare-Type Hydraulic Tube Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>80</sup></th>
<th>Flats from Finger Tight (FFFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>lbf-ft</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>4–5</td>
<td>3–4</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>7–8</td>
<td>5–6</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>18–19</td>
<td>13–14</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>19–21</td>
<td>14–15</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>30–33</td>
<td>22–24</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>57–63</td>
<td>42–46</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>81–89</td>
<td>60–66</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>113–124</td>
<td>83–91</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/16–12</td>
<td>136–149</td>
<td>100–110</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>160–176</td>
<td>118–130</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>228–250</td>
<td>168–184</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>264–291</td>
<td>195–215</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>359–395</td>
<td>265–291</td>
</tr>
<tr>
<td>-40</td>
<td>3–12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

⁸⁰ Torque values shown are based on lubricated connections as in reassembly.
9.1.5 O-Ring Boss (ORB) Hydraulic Fittings – Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.
3. Check that O-ring (A) is NOT on threads and adjust if necessary.
4. Apply hydraulic system oil to O-ring (A).

5. Install fitting (B) into port until backup washer (D) and O-ring (A) contact part face (E).
6. Position angle fittings by unscrewing no more than one turn.
7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).
8. Check final condition of fitting.
Table 9.11 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>81</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365</td>
</tr>
</tbody>
</table>

⁸¹ Torque values shown are based on lubricated connections as in reassembly.
9.1.6 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is NOT on threads and adjust if necessary.
3. Apply hydraulic system oil to O-ring.
4. Install fitting (C) into port until fitting is hand-tight.
5. Torque fitting (C) according to values in Table 9.12, page 265.
6. Check final condition of fitting.

Table 9.12 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>82</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>Nm 6–7 lbf·ft (*lbf·in) *53–62</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>12–13 *106–115</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>19–21 14–15</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>21–33 15–24</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>26–29 19–21</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>46–50 34–37</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>75–82 55–60</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>120–132 88–97</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>153–168 113–124</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>176–193 130–142</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>221–243 163–179</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>270–298 199–220</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>332–365 245–269</td>
</tr>
</tbody>
</table>

⁸² Torque values shown are based on lubricated connections as in reassembly.
9.1.7 O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to O-ring (B).

3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to values in Table 9.13, page 266.

 NOTE:
 If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check final condition of fitting.

Table 9.13 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value(^{83})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Note(^{84})</td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>25–28</td>
</tr>
<tr>
<td>-5</td>
<td>Note(^{84})</td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>40–44</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>55–61</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>80–88</td>
</tr>
<tr>
<td>-12</td>
<td>1-3/16</td>
<td>3/4</td>
<td>115–127</td>
</tr>
<tr>
<td>-14</td>
<td>Note(^{84})</td>
<td>7/8</td>
<td>–</td>
</tr>
</tbody>
</table>

83. Torque values and angles shown are based on lubricated connection as in reassembly.
84. O-ring face seal type end not defined for this tube size.
Table 9.13 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value<sup>85</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>-16</td>
<td>1-7/16</td>
<td>1</td>
<td>150–165</td>
</tr>
<tr>
<td>-20</td>
<td>1-11/16</td>
<td>1-1/4</td>
<td>205–226</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1-1/2</td>
<td>315–347</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2</td>
<td>2</td>
<td>510–561</td>
</tr>
</tbody>
</table>

9.1.8 Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

1. Check components to ensure that fitting and port threads are free of burrs, nicks and scratches, or any form of contamination.
2. Apply pipe thread sealant (paste type) to external pipe threads.
3. Thread fitting into port until hand-tight.
4. Torque connector to appropriate torque angle. The Turns From Finger Tight (TFFT) values are shown in Table 9.14, page 267. Make sure that tube end of a shaped connector (typically 45 degree or 90 degree) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
5. Clean all residue and any excess thread conditioner with appropriate cleaner.
6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 9.14 Hydraulic Fitting Pipe Thread

<table>
<thead>
<tr>
<th>Tapered Pipe Thread Size</th>
<th>Recommended TFFT</th>
<th>Recommended FFFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8–27</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/4–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/8–18</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>1/2–14</td>
<td>2–3</td>
<td>12–18</td>
</tr>
<tr>
<td>3/4–14</td>
<td>1.5–2.5</td>
<td>12–18</td>
</tr>
<tr>
<td>1–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/4–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>1 1/2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
<tr>
<td>2–11 1/2</td>
<td>1.5–2.5</td>
<td>9–15</td>
</tr>
</tbody>
</table>

^{85.} Torque values and angles shown are based on lubricated connection as in reassembly.
9.2 Conversion Chart

Table 9.15 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI Units (Metric)</th>
<th>Factor</th>
<th>US Customary Units (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
<td>Unit Name</td>
</tr>
<tr>
<td>Area</td>
<td>hectare</td>
<td>ha</td>
<td>x 2.4710 = acre</td>
</tr>
<tr>
<td>Flow</td>
<td>liters per minute</td>
<td>L/min</td>
<td>x 0.2642 = US gallons per minute</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>x 0.2248 = pound force</td>
</tr>
<tr>
<td>Length</td>
<td>millimeter</td>
<td>mm</td>
<td>x 0.0394 = inch</td>
</tr>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>x 3.2808 = foot</td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>kW</td>
<td>x 1.341 = horsepower</td>
</tr>
<tr>
<td>Pressure</td>
<td>kilopascal</td>
<td>kPa</td>
<td>x 0.145 = pounds per square inch</td>
</tr>
<tr>
<td>Pressure</td>
<td>megapascal</td>
<td>MPa</td>
<td>x 145.038 = pounds per square inch</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar (Non-SI)</td>
<td>bar</td>
<td>x 14.5038 = pounds per square inch</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 0.7376 = pound feet or foot pounds</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>Nm</td>
<td>x 8.8507 = pound inches or inch pounds</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>ºC</td>
<td>(ºC x 1.8) + 32 = degrees Fahrenheit</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per minute</td>
<td>m/min</td>
<td>x 3.2808 = feet per minute</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters per second</td>
<td>m/s</td>
<td>x 3.2808 = feet per second</td>
</tr>
<tr>
<td>Velocity</td>
<td>kilometers per hour</td>
<td>km/h</td>
<td>x 0.6214 = miles per hour</td>
</tr>
<tr>
<td>Volume</td>
<td>liter</td>
<td>L</td>
<td>x 0.2642 = US gallon</td>
</tr>
<tr>
<td>Volume</td>
<td>milliliter</td>
<td>ml</td>
<td>x 0.0338 = ounce</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic centimeter</td>
<td>cm³ or cc</td>
<td>x 0.061 = cubic inch</td>
</tr>
<tr>
<td>Weight</td>
<td>kilogram</td>
<td>kg</td>
<td>x 2.2046 = pound</td>
</tr>
</tbody>
</table>
Index

A

API
definition... 23
ASTM
definition... 23
axle bolts .. 222

B

bearings
header draper
 inspecting draper roller bearing 173
idler roller bearings
 replacing .. 174
knifehead bearings
 installing ... 126
 removing .. 125
belts
 adjusting belt tracking 159
 knife drive belts ... 147
 single knife
 removing .. 147
 timed V-belts
 installing ... 151
 removing .. 150
 timed, DK
tensioning .. 154
 timed, double knife
 installing ... 152
 removing .. 151
 untimed ... 147
 installing ... 148
 removing .. 147
 tensioning .. 149
bolts
definition... 23
break-in inspections .. 110
break-in periods .. 40

c

cab-forward
definition.. 23
cams
 adjusting reel cam 66
 reel cam settings .. 65
center-links
definition... 23
centering
double reel ... 188
 single reel .. 189

CGVW
definition.. 23
chains
 reel drive chain
 adjusting chain tension 210
 loosening .. 210
 replacing on single reel drive 221
 tensioning .. 211
combines
 transporting header
 towing the header ... 84–85
 attaching to towing vehicle 85
component identification ... 26
conversion chart .. 268
crop delivery
 options .. 234
crop divider rods .. 71
 installing ... 72
 removing ... 72
crop dividers ... 67
 installing on header with latch option 68
 installing on header without latch option 70
 removing from header with latch option 67
 removing from header without latch option 68
cutterbars .. 124
 options .. 227
 extended center filler 228
 knifehead shield ... 227
 wearplates .. 227
 unplugging ... 82
cutting
 height ... 55
 off the ground .. 55
 adjusting stabilizer wheels 57
 adjusting stabilizer/slow speed transport wheels 55
 on the ground .. 58

D

D1X Series headers
definition .. 23
D1XL Series headers
definition .. 23
daily start-up checks ... 39
DDD
definition .. 23
decal locations .. 8
definition of terms .. 23
delivery openings .. 74
 adjusting using hydraulic deck shift 75
 manually adjusting delivery opening on header ... 74
drying agents ... 80
DWA
 definition .. 23
division rods .. 71
installing .. 72
removing .. 72
DK
 definition .. 23
DKD
 definition .. 23
double draper drives ... 236
double windrow attachment (DWA) 236
DR
 definition .. 23
draper decks
 adjusting deck height ... 169
drive rollers ... 177
idler rollers .. 173
 shifting decks hydraulically 76
draper deflectors
 narrow .. 234
 installing .. 182
 removing .. 181
 replacing .. 181
 wide .. 234
draper drive systems
 adjusting draper tension 165
 adjusting draper tracking 167
header draper
 maintaining draper rollers 173
draper extension kits ... 236
draper roller bearings
 inspecting .. 173
drapers ... 163
 adjusting
 draper tension .. 165
 draper tracking .. 167
draper decks
 drive rollers ... 177
 installing .. 180
 removing .. 177
 replacing bearing ... 178
 idler rollers ... 173
 installing .. 176
 removing .. 173
 replacing bearing ... 174
draper rollers
 maintaining .. 173
 installing drapers ... 163
 removing drapers ... 163
speed ... 62
drying agents ... 80
DWA
 definition .. 23
E
 electrical system
 how it works ... 119
 maintaining electrical system 119
 replacing light bulbs .. 121
endshields .. 35
 checking and adjusting ... 37
 closing ... 36
 installing .. 35
 opening ... 35
 removing .. 36
draper deflectors
 narrow .. 234
 installing .. 182
 removing .. 181
 replacing .. 181
 wide .. 234
draper drive systems
 adjusting draper tension 165
 adjusting draper tracking 167
header draper
 maintaining draper rollers 173
draper extension kits ... 236
draper roller bearings
 inspecting .. 173
drapers ... 163
 adjusting
 draper tension .. 165
 draper tracking .. 167
draper decks
 drive rollers ... 177
 installing .. 180
 removing .. 177
 replacing bearing ... 178
 idler rollers ... 173
 installing .. 176
 removing .. 173
 replacing bearing ... 174
draper rollers
 maintaining .. 173
 installing drapers ... 163
 removing drapers ... 163
speed ... 62
drying agents ... 80
DWA
 definition .. 23
F
 FFFT
 definition .. 23
 finger tight
 definition .. 23
 fingers
 plastic reel fingers
 installing .. 191
 removing .. 190
 steel reel fingers
 installing .. 190
 removing .. 189
glossary ... 23
greasing
 every 10 hours .. 113
 every 100 hours .. 115
 every 25 hours .. 114
 every 250 hours .. 116
 every 500 hours .. 118
 maintenance schedule/records 109
ground speeds ... 62
guards
 knife guards ... 127
 adjusting knife guards 127
 replacing pointed guards 128
 replacing stub guards 130
 stub guard conversion kit 228
guards ... 127
GVW
 definition .. 23
hay conditioners ... 238
haying tips .. 79
Chemical Drying Agents
- 80

Curing
- 79

Driving on Windrows
- 80

Raking and Tedding
- 80

Topsoil Moisture
- 79

Weather and Topography
- 79

Hydraulic Deck Shifts
- 76

Hold-Downs
- 60

Hex Keys
- 60

Header Safety Props
- 32

Header Float
- 60

Header Angles
- Adjusting
- 61
- Adjustment Range
- 60

Header Drapers
- Inspecting Draper Roller Bearing
- 173

Adjusting Hold-Downs
- with Pointed Guards
- 132
- with Stub Guards
- 134

Checking Hold-Downs
- 132

Inspecting Draper Roller Bearing
- 173

Fittings
- Flare-Type
- 262
- O-Ring Boss (ORB) Adjustable
- 263
- O-Ring Boss (ORB) Non-Adjustable
- 265
- O-Ring Face Seal (ORFS)
- 266
- Tapered Pipe Thread Fittings
- 267

Hydraulic Deck Shifts
- 76

Hydraulic
- 112

Hydraulics
- 76

O-Ring Face Seal (ORFS)
- 266

Hydraulic Safety
- 6

Idler Rollers
- Replacing Idler Roller Bearing
- 174

Inspections
- Break-In Inspections
- 110
- Maintenance Schedule/Records
- 109

Knife Drive Belts
- 147-152, 154

Knife Drive Boxes
- Adjusting Fore-Aft
- 144
- Adjusting Squareness
- 143
- Changing Oil
- 146
- Checking Mounting Bolts
- 136
- Installing Box
- 140
- Installing Pulley
- 140
- Removing Box
- 136
- Removing Pulley
- 139

Knife Drive System
- 136

Knife Drive Box
- 136

Knife Drives
- Adjusting Double Knife Timing
- 156

Hold-Downs
- Adjusting Hold-Downs with Pointed Guards
- 132
- Adjusting Hold-Downs with Stub Guards
- 134
- Checking Knife Hold-Downs
- 132

Knife Drive Belts
- 159

Knife Guards
- Adjusting Guards
- 128
- Checking Guards
- 127
- Replacing Pointed Guards
- 128
- Replacing Stub Guards
- 130

Knifehead Bearings
- Installing
- 126
- Removing
- 125

Knifehead Shields
- 135, 227
- Installing
- 135

Knives
- Hold-Downs
- Pointed Guard
- Adjusting Hold-Downs
- 133

Installing Knife
- 126

Knife Sections
- Replacing
- 124

Knife Speed
- 63

Removing Knife
- 125

Spare Knife Location
- 127
INDEX

L
- light bulbs
 - replacing ... 121
- lodged crop reel finger kits 225
- lubrication and servicing 113

M
- maintenance and servicing 107
- electrical .. 119
- lubrication ... 113
- maintenance requirements 109
- maintenance specifications 108
- preparing for servicing 107
- preseason servicing 111
- safety .. 5
- schedule .. 109
- service intervals 113
- maintenance requirements
 - lubrication and servicing 113
 - greasing procedure 113
 - maintenance records 109
 - servicing
 - break-in inspections 110
 - end of season servicing 111
 - maintenance schedule/records 109
 - metric bolts
 - torque specifications 259
 - model numbers
 - records .. vi
 - moisture .. 79
 - motors
 - reel drive motors 216
 - installing ... 217
 - removing ... 216
 - multi-crop rapid reel conversion kits 225

N
- NPT
 - definition ... 23

O
- oils
 - changing knife drive box oil 146
- operating variables
 - headers .. 55
 - operations .. 31
 - operator responsibilities 31
 - options .. 225
 - crop delivery .. 234
 - double draper drive (DDD) kit 236
- double windrow attachment (DWA) 236
- draper deflector (narrow) 234
- draper deflector (wide) 234
- draper extension kit 236
- HC10 hay conditioner 238
- swath forming rods (center delivery) 237
- swath rods
 - center delivery .. 237
 - end delivery ... 237
- upper cross auger (UCA) 83, 235
- case drain kit for SDD 239
- hydraulic kit for DDD 238
- cutterbars .. 227
- cutterbar wearplates 227
- extended center filler 228
- knifehead shield ... 227
- rock retarder kit ... 228
- stub guard conversion kit 228
- vertical knife mount kit 229
- header ... 230
- backsheet extension kit 232
- center skid shoes .. 232
- divider latch kits .. 230
- rice divider rods .. 236
- stubble light kit (John Deere only) 231
- wheels
 - secondary stabilizer wheel 231
 - stabilizer wheels 230
 - stabilizer wheels and slow speed transport
 - package .. 231
 - hydraulic deck shift package 238
 - knifehead shields 135
 - installing ... 135
- PR15 pick-up reels
 - reel endshield kit 226
 - tine tube reel conversion kits 225
 - reel drive sprockets 61
 - reels ... 225
 - lodged crop reel finger kits 225
 - multi-crop rapid reel conversion kit 225
 - reel endshield kit 226
 - tine tube reinforcing kit 226
- transport systems .. 222
- ORB
 - definition ... 23
 - owner responsibilities 31

P
- pick-up reels ... 65
- PR15 pick-up reels 184
 - adjusting reel frown 187
 - centering
 - double reels .. 188
 - single reel ... 189
INDEX

drive chains
 replacing (DR) 218
 using break the chain method 220
 using reel drive method 218
frown .. 187
options 225
reel cam
 adjusting reel cam 66
 settings and guidelines 65
reel clearance 184
 adjusting 186
 measuring 184
reel drive motors 216
reel drives
 adjusting chain tension 210
 covers 208
 installing 209
 removing 208
 double reel U-joint 214
 installing 215
 removing 214
 drive sprockets 213
 installing 213
 removing 213
 installing motor 217
 loosening chain 210
 removing motor 216
 replacing chain – single reel 221
 tightening chain 211
reel endshields 203
 replacing endshield supports 206
 replacing endshields 203
 replacing right reel on double-reel header 205
reel fingers 189
 installing plastic fingers 191
 installing steel fingers 190
 removing plastic fingers 190
 removing steel fingers 189
reel height 63
reel height sensor 122
reel safety props 33
 disengaging 34
 engaging 33
reel speed 61
reel system 208
 reel tine pitch 64
tine tube bushings 192
 installing on 5-, 6- or 9-bat reels 192
 removing from 5-, 6-, or 9-bat reels 192
preseason servicing 111
product overview 23

R
raking .. 80

recommended fluids and lubricants 277
recommended settings
 header 43
 reels 53
reel clearance
 adjusting 186
 measuring 184
reel drive chains
 loosening 210
 replacing on single reel drive 221
 tightening 211
reel drive motors 216
 installing 217
 removing 216
reel drive chains
 double reel U-joint 214
 installing 215
 removing 214
drive chains
 replacing chain (DR) 218
 using break the chain method 220
 using reel drive method 218
sprockets 61
reel endshields 203
 kit ... 226
 replacing endshield supports 206
 replacing endshields 203, 205
reel fingers 189
 plastic
 installing 191
 removing 190
 steel
 installing 190
 removing 189
reel fore-aft positions 63–64
 adjusting 64
reel frown 187
 adjusting 187
reel safety props 33
 disengaging 34
 engaging 33
reel speeds 61
reel system 208
reels
 centering 188
 double reel 188
 single reel 189
 centering the reel 188
 fore-aft positions
 adjusting 64
recommended settings 53
reference
 maintenance requirements 109
rice divider rods (option) 236
rock retarder kits 228
Recommended Fluids and Lubricants

Ensure your machine operates at top efficiency by using clean fluids and lubricants only.

- Use clean containers to handle all fluids and lubricants.
- Store fluids and lubricants in an area protected from dust, moisture, and other contaminants.

Table .16 Recommended Fluids and Lubricants

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>SAE multi-purpose</td>
<td>High temperature extreme pressure (EP) performance with 1% max. Molybdenum Disulphide (NLGI Grade 2) lithium base</td>
<td>As required unless otherwise specified</td>
<td>—</td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>SAE 85W-140</td>
<td>API service class GL-5</td>
<td>Knife drive box</td>
<td>2.2 liters (2.3 quarts)</td>
</tr>
</tbody>
</table>