MacDon A40-D Self-Propelled Auger Header and A30-D Pull-Type Mower Conditioner

Published: May, 2015
Introduction

This Operator’s Manual describes the operating and maintenance procedures for MacDon model A30-D Pull-Type Mower Conditioners and A40-D Self-Propelled Auger Headers, including a Grass Seed version.

These auger headers are designed to cut, condition, and lay windrows in a wide variety of grasses and hay crops. The double-knife feature expands the operational envelope, especially in heavier crops.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Configuration</th>
<th>Knife</th>
<th>Size (ft.)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>A30-D</td>
<td>Mower conditioner</td>
<td>Pull-type</td>
<td>Double</td>
<td>14, 16, 18</td>
<td>Mechanical drive</td>
</tr>
<tr>
<td>A40-D</td>
<td>Auger header with conditioner</td>
<td>Self-propelled only</td>
<td>Double</td>
<td>14, 16, 18</td>
<td>Separate hydraulic auger, knife, and reel drives, grass seed option</td>
</tr>
</tbody>
</table>

Use this manual as your first source of information about the machine. Use the Table of Contents and the Index to guide you to specific topics. Study the Table of Contents to familiarize yourself with how the information is organized. If you follow the instructions provided here, your header will work well for many years.

Keep this manual handy for frequent reference, and to pass on to new Operators or Owners. Contact your Dealer if you need assistance, information, or additional copies of this manual.

CAREFULLY READ THE INFORMATION PROVIDED IN THIS MANUAL BEFORE ATTEMPTING TO OPERATE OR MAINTAIN AN A30-D MOWER CONDITIONER OR AN A40-D AUGER HEADER.

NOTE:
Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).

NOTE:
A Russian translation of this manual can be ordered from MacDon, downloaded from the MacDon Dealer Portal (https://portal.macdon.com) (login required), or downloaded from the MacDon international website (http://www.macdon.com/world).
Model and Serial Number

Record the model number, serial number, and model year of the header and the articulated power turn (APT) in the space below. The header serial number plate is located on the top of the left-hand end frame (A).

Header Model Number: ____________
Header Serial Number: ____________
Year: ______
(If 2015, indicate early-build or later-build unit: ____________)

NOTE:
Early-build 2015 model A40-D SP windrower headers have a round reel motor (as do 2014 and earlier model year units). Later-build 2015 models have a square-shaped reel motor. For a visual, refer to 2.2.2 A40-D, page 27.

APT Serial Number (Pull-Type):

The APT Serial Number plate is located at the top aft end of the APT (A).

PTO Speed:
• 540 rpm [____]
• 1000 rpm [____]
List of Revisions

The following list provides an account of major changes from the previous version of this document.

<table>
<thead>
<tr>
<th>Summary of Change</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed EC Declaration of Conformity</td>
<td></td>
</tr>
<tr>
<td>Updated safety sign (decal) location illustration</td>
<td>1 Safety, page 1</td>
</tr>
<tr>
<td>Revised Product Specifications</td>
<td>2.3 Product Specifications, page 29</td>
</tr>
<tr>
<td>Added Product Overview chapter</td>
<td>2 Product Overview, page 23</td>
</tr>
<tr>
<td>Updated Setting Up Drawbar Hitch illustrations</td>
<td>3.1.3 Setting Up Drawbar Hitch, page 34</td>
</tr>
<tr>
<td>Added Setting Knife Speed section to A30-D operating variables</td>
<td>3.7.2 Setting Knife Speed, page 57</td>
</tr>
<tr>
<td>Updated factory setting information for reel fore-aft position for A30-D</td>
<td>Setting Reel Fore-Aft Position, page 68</td>
</tr>
<tr>
<td>Updated factory setting information for reel vertical position for A30-D</td>
<td>Setting Reel Vertical Position, page 69</td>
</tr>
<tr>
<td>Updated float setting information for A30-D</td>
<td>3.7.10 Setting Float, page 76</td>
</tr>
<tr>
<td>Updated conditioner roll gap factory settings for A30-D</td>
<td>3.7.12 Adjusting Conditioner Roll Gap, page 77</td>
</tr>
<tr>
<td>Updated conditioner roll gap factory settings for A40-D</td>
<td>4.5.10 Adjusting Conditioner Roll Gap, page 147</td>
</tr>
<tr>
<td>Updated factory settings and added new illustration for adjusting conditioner roll tension for A30-D</td>
<td>3.7.13 Adjusting Conditioner Roll Tension, page 78</td>
</tr>
<tr>
<td>Updated factory settings and added new illustration for adjusting conditioner roll tension for A40-D</td>
<td>4.5.11 Adjusting Conditioner Roll Tension, page 148</td>
</tr>
<tr>
<td>Updated factory setting information for reel fore-aft position for A40-D</td>
<td>Adjusting Reel Fore-Aft Position, page 141</td>
</tr>
<tr>
<td>Updated factory setting information for reel vertical position for A40-D</td>
<td>Adjusting Reel Vertical Position, page 142</td>
</tr>
<tr>
<td>Added information on unplugging self-propelled header if reverser is installed on windrower</td>
<td>4.7 Unplugging Conditioner and Knife: Self-Propelled, page 155</td>
</tr>
<tr>
<td>Checking knife hold-downs added to daily maintenance checklist for pull-type headers</td>
<td>6.4.1 Maintenance Schedule/Record: Pull-Type, page 171</td>
</tr>
<tr>
<td>Checking knife hold-downs added to daily maintenance checklist for self-propelled headers</td>
<td>6.4.2 Maintenance Schedule/Record: Self-Propelled, page 173</td>
</tr>
<tr>
<td>Summary of Change</td>
<td>Location</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Added Reference Chapter that includes Torque Specifications and Conversion Chart</td>
<td>10 Reference, page 305</td>
</tr>
<tr>
<td>Updated figure titles</td>
<td>Throughout the publication</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>i</td>
</tr>
<tr>
<td>Model and Serial Number</td>
<td>ii</td>
</tr>
<tr>
<td>List of Revisions</td>
<td>iii</td>
</tr>
<tr>
<td>1 Safety</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Safety Alert Symbols</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Signal Words</td>
<td>2</td>
</tr>
<tr>
<td>1.3 General Safety</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Maintenance Safety</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Hydraulic Safety</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Tire Safety</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Safety Signs</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1 Installing Safety Decals</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Safety Sign Locations: Pull Type Mower Conditioner</td>
<td>9</td>
</tr>
<tr>
<td>1.9 Safety Sign Locations: Self-Propelled Windrower Header</td>
<td>12</td>
</tr>
<tr>
<td>1.10 Understanding Safety Signs</td>
<td>14</td>
</tr>
<tr>
<td>1.11 Owner/Operator Responsibilities</td>
<td>21</td>
</tr>
<tr>
<td>1.12 Operational Safety</td>
<td>22</td>
</tr>
<tr>
<td>2 Product Overview</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Definitions</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Model Identification</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1 A30-D</td>
<td>26</td>
</tr>
<tr>
<td>2.2.2 A40-D</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Product Specifications</td>
<td>29</td>
</tr>
<tr>
<td>3 Operation: A30-D Pull-Type Mower Conditioner</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Preparing Tractor for Mower Conditioner</td>
<td>33</td>
</tr>
<tr>
<td>3.1.1 Tractor Requirements</td>
<td>33</td>
</tr>
<tr>
<td>3.1.2 Adjusting Drawbar</td>
<td>33</td>
</tr>
<tr>
<td>3.1.3 Setting Up Drawbar Hitch</td>
<td>34</td>
</tr>
<tr>
<td>3.1.4 Installing Three-Point Hitch Yoke (Cat. II, III, or IIIN)</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Attaching Mower Conditioner to Tractor</td>
<td>37</td>
</tr>
<tr>
<td>3.2.1 Attaching Drawbar</td>
<td>37</td>
</tr>
<tr>
<td>3.2.2 Attaching Three-Point Hitch (Cat. II, III, or IIIN)</td>
<td>38</td>
</tr>
<tr>
<td>3.2.3 Connecting Hydraulics</td>
<td>41</td>
</tr>
<tr>
<td>3.3 Detaching Mower Conditioner from Tractor</td>
<td>43</td>
</tr>
<tr>
<td>3.3.1 Unhooking Drawbar</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2 Unhooking Three-Point Hitch</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Engaging the Power Take-Off (PTO)</td>
<td>48</td>
</tr>
<tr>
<td>3.5 Lift Cylinder Lock-Outs</td>
<td>49</td>
</tr>
<tr>
<td>3.6 Steering the Pull-Type Mower Conditioner</td>
<td>50</td>
</tr>
<tr>
<td>3.6.1 Right-Side Operation</td>
<td>51</td>
</tr>
<tr>
<td>3.6.2 Left-Side Operation</td>
<td>52</td>
</tr>
<tr>
<td>3.6.3 Avoiding Obstacles</td>
<td>53</td>
</tr>
<tr>
<td>3.6.4 Turning Square Corners</td>
<td>54</td>
</tr>
<tr>
<td>3.6.5 Turning 180 Degrees</td>
<td>54</td>
</tr>
<tr>
<td>3.7 Operating Variables for A30-D</td>
<td>56</td>
</tr>
<tr>
<td>3.7.1 Setting Lean Bar</td>
<td>57</td>
</tr>
<tr>
<td>3.7.2 Setting Knife Speed</td>
<td>57</td>
</tr>
<tr>
<td>3.7.3 Setting Auger Speed</td>
<td>60</td>
</tr>
<tr>
<td>3.7.4 Setting Reel Speed</td>
<td>61</td>
</tr>
<tr>
<td>3.7.5 Setting Auger Position</td>
<td>62</td>
</tr>
<tr>
<td>Setting Auger Fore-Aft Position</td>
<td>62</td>
</tr>
<tr>
<td>Setting Auger Vertical Position</td>
<td>65</td>
</tr>
<tr>
<td>3.7.6 Setting Reel Position</td>
<td>67</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

3.7.7 Setting Cutting Height .. 72
3.7.8 Setting Tine Aggressiveness .. 73
3.7.9 Setting Header Angle .. 74
3.7.10 Setting Float .. 76
3.7.11 Setting Feed Pan and Rock Drop Tine Position 77
3.7.12 Adjusting Conditioner Roll Gap ... 77
3.7.13 Adjusting Conditioner Roll Tension .. 78
3.7.14 Positioning the Forming Shields ... 80
3.7.15 Positioning Side Deflectors .. 80
3.7.16 Positioning Rear Deflector (Fluffe Shield) 81
3.8 Recommended Operating Settings ... 83
3.9 Transporting the A30-D Mower Conditioner 85
3.9.1 Towing A30-D Mower Conditioner 85
3.9.2 Transporting A30-D on a Flatbed Trailer 89
3.9.3 Loading Mower Conditioner on Flatbed Trailer 89
3.9.4 Unloading Mower Conditioner from Flatbed Trailer 95
3.10 Unplugging Conditioner and Knife: Pull-Type 101
4 Operation: A40-D Self-Propelled Windrower Auger Header 103
4.1 Attaching A40-D Header to SP Windrower 103
4.1.1 Attaching to M100 or M105 ... 103
4.1.2 Attaching to M150, M155, or M155E4 108
4.1.3 Attaching to M200 ... 113
4.1.4 Attaching to M205 ... 118
4.1.5 Configuring Reverser Valve Jumper Hose 123
4.1.6 Hydraulic Drive Hose Routing (Early-Build 2015, 2014 and Earlier A40-D for use on M100, M105 and M205 Windrows Only) 124
4.1.7 Hydraulic Drive Hose Routing (Later-Build 2015 A40-D Units Only) 126
4.2 Detaching A40-D Header from Windrower 131
4.3 Transporting A40-D Header with Windrower 135
4.4 Lift Cylinder Lock-Outs: Self-Propelled 136
4.5 Operating Variables for A40-D .. 137
4.5.1 Setting Lean Bar ... 138
4.5.2 Adjusting Auger Speed .. 138
4.5.3 Adjusting Reel Speed .. 138
4.5.4 Setting Auger Position .. 138
4.5.5 Setting Reel Position .. 141
4.5.6 Setting Tine Aggressiveness .. 145
4.5.7 Adjusting Header Angle of A40-D ... 146
4.5.8 Setting Cutting Height ... 146
4.5.9 Checking/Adjusting Float ... 147
4.5.10 Adjusting Conditioner Roll Gap .. 147
TABLE OF CONTENTS

4.5.11 Adjusting Conditioner Roll Tension ..148
4.5.12 Positioning the Forming Shields ...149

5 Operation: Mower Conditioner and Self-Propelled Auger Header161
5.1 Selecting Ground Speed ...161
5.2 Tall Crop Dividers ...162
5.2.1 Adjusting Tall Crop Dividers ...162
5.2.2 Removing Tall Crop Dividers ...163
5.3 Haying ...165
5.3.1 Haying Tips ...165
Curing ..165
Topsoil Moisture ...165
Weather and Topography ..165
Windrow Characteristics ...165
Driving on Windrow ..166
Raking and Tedding ...166
Using Chemical Drying Agents ..166

6 Maintenance and Servicing ..167
6.1 Preparing for Servicing ..167
6.2 Driveshields ..168
6.3 Maintenance Specifications ..169
6.3.1 Recommended Fluids and Lubricants ...169
6.4 Maintenance Requirements ..170
6.4.1 Maintenance Schedule/Record: Pull-Type ..171
6.4.2 Maintenance Schedule/Record: Self-Propelled ..173
6.4.3 Break-In Inspection: Pull-Type ..175
6.4.4 Break-In Inspection: Self-Propelled ..175
6.4.5 Preseason Checks ...176
6.4.6 Storage ...176
6.5 Lubrication ..178
6.5.1 Greasing Procedure ..178
6.5.2 Lubrication Points ...179

6.5.3 Oiling ...187
6.5.4 Installing Sealed Bearings ...188
6.6 Hydraulics ...189
6.6.1 Servicing A40-D Hydraulics ...189
6.6.2 Servicing A30-D Hydraulics ...189

Positioning Rear Deflector (Fluffer Shield) ...151

Positioning Side Deflectors — Self-Propelled ...150

5.4 Reel ...164
5.4.1 Adjusting Reel ...164
5.4.2 Removing Reel ..165

5.5 Haying Tips ...165

4.8 Grass Seed Special A40-D ...156
4.8.1 Stub Guards and Hold-Downs ...156
4.8.2 Special Auger Design for Grass Seed Special A40-D156
4.8.3 Seven-Bat Reel ...157
4.8.4 Auger Pan Extensions ..157

Adjusting Pan Extensions: Grass Seed Special ...158

4.8.5 Windrow Forming Rods ..159

4.7 Unplugging Conditioner and Knife: Self-Propelled155
4.8.6 Auger Pan Extensions ..157

6.6.1 Servicing A40-D Hydraulics ...189
6.6.2 Servicing A30-D Hydraulics ...189

Checking Hydraulic Oil Level ...189

Lubrication Points: Hay Conditioner ..180
Lubrication Points: A40-D SP Windrower Headers ..182
Lubrication Points: A30-D Mower Conditioners ...180
Lubrication Points: Drivelines ...185
Lubrication Points: Pull-Type Carrier Frame ..186

6.6.3 Installing Sealed Bearings ..188

6.6.4 Checking Hydraulic Oil Level ...189

6.5.2 Lubrication Points ...179

Lubrication Points: A30-D Mower Conditioners ...180
Lubrication Points: A40-D SP Windrower Headers ..182
Lubrication Points: Hay Conditioner ..184
Lubrication Points: Drivelines ...185
Lubrication Points: Pull-Type Carrier Frame ..186

6.5.3 Oiling ...187

6.6.1 Servicing A40-D Hydraulics ...189

6.6.2 Servicing A30-D Hydraulics ...189

Checking Hydraulic Oil Level ...189
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.3</td>
<td>Checking Hoses and Lines</td>
<td>192</td>
</tr>
<tr>
<td>6.7</td>
<td>Cutterbar</td>
<td>193</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Replacing Knife Section</td>
<td>193</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Removing Knife</td>
<td>193</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Installing Knife</td>
<td>194</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Removing Knifehead Bearing</td>
<td>195</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Installing Knifehead Bearing</td>
<td>196</td>
</tr>
<tr>
<td>6.7.6</td>
<td>Removing Spare Knife from Storage</td>
<td>196</td>
</tr>
<tr>
<td>6.7.7</td>
<td>Guards</td>
<td>197</td>
</tr>
<tr>
<td>6.7.8</td>
<td>Hold-Downs</td>
<td>206</td>
</tr>
<tr>
<td>6.7.9</td>
<td>Knife Drive Box</td>
<td>208</td>
</tr>
<tr>
<td>6.7.10</td>
<td>Adjusting Knife Timing</td>
<td>213</td>
</tr>
<tr>
<td>6.8</td>
<td>A30-D Drive Systems</td>
<td>216</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Knife Drive – A30-D</td>
<td>216</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Reel Drive – A30-D</td>
<td>223</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Auger Drive – A30-D</td>
<td>226</td>
</tr>
<tr>
<td>6.9</td>
<td>A40-D Drive Systems</td>
<td>228</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Knife Drive – A40-D</td>
<td>228</td>
</tr>
</tbody>
</table>

6.7.10 Adjusting Knife Timing

- Adjusting Knife Hold-Down: Pointed Guard – Double-Knife Header/Mower Conditioner .. 207
- Adjusting Center Knife Hold-Down: Stub Guard – Double-Knife Header .. 207

6.7.9 Knife Drive Box

- Mounting Bolts .. 208
- Removing Knife Drive Box 209
- Installing Knife Drive Box 210
- Removing Pulley ... 212
- Installing Pulley ... 212
- Changing Knife Drive Box Oil 213

6.6.3 Checking Hoses and Lines

- Changing Pressure Relief Valve 192
- Checking Hydraulic Oil Filter 191
- Changing Hydraulic Oil – Articulated Hitch 190
- Adding Hydraulic Oil ... 190

6.7.8 Hold-Downs

- Adjusting Knife Hold-Down: Pointed Guard – Double-Knife Header/Mower Conditioner .. 207
- Adjusting Center Knife Hold-Down: Stub Guard – Double-Knife Header .. 207

6.7.9 Knife Drive Box

- Mounting Bolts .. 208
- Removing Knife Drive Box 209
- Installing Knife Drive Box 210
- Removing Pulley ... 212
- Installing Pulley ... 212
- Changing Knife Drive Box Oil 213

6.6.3 Checking Hoses and Lines

- Checking/Adjusting Timing Belt Tension on Left Side – A30-D ... 216
- Removing Timing Belt – A30-D Left Side 216
- Installing Timing Belt – A30-D Left Side 217
- Checking/Adjusting V-Belts Tension on Left Side – A30-D ... 219
- Removing Double V-Belts – A30-D Left Side 219
- Installing Double V-Belts – A30-D Left Side 220
- Checking/Adjusting Timing Belt Tension on Right Side .. 220
- Removing Timing Belt – A30-D Right Side 221
- Installing Timing Belt – A30-D Right Side 222

6.8 A30-D Drive Systems

- Checking/Adjusting Timing Belt Tension on Left Side – A30-D ... 216
- Removing Timing Belt – A30-D Left Side 216
- Installing Timing Belt – A30-D Left Side 217
- Checking/Adjusting V-Belts Tension on Left Side – A30-D ... 219
- Removing Double V-Belts – A30-D Left Side 219
- Installing Double V-Belts – A30-D Left Side 220
- Checking/Adjusting Timing Belt Tension on Right Side .. 220
- Removing Timing Belt – A30-D Right Side 221
- Installing Timing Belt – A30-D Right Side 222

6.8.1 Knife Drive – A30-D

- Checking/Adjusting Timing Belt Tension on Left Side – A30-D ... 216
- Removing Timing Belt – A30-D Left Side 216
- Installing Timing Belt – A30-D Left Side 217
- Checking/Adjusting V-Belts Tension on Left Side – A30-D ... 219
- Removing Double V-Belts – A30-D Left Side 219
- Installing Double V-Belts – A30-D Left Side 220
- Checking/Adjusting Timing Belt Tension on Right Side .. 220
- Removing Timing Belt – A30-D Right Side 221
- Installing Timing Belt – A30-D Right Side 222

6.8.2 Reel Drive – A30-D

- Checking/Adjusting Reel Drive Chain Tension – A30-D ... 223
- Removing Reel Drive Chain – A30-D 224
- Installing Reel Drive Chain – A30-D 224
- Checking/Adjusting Reel Drive Belt Tension 224
- Removing Reel Drive Belt 225
- Installing Reel Drive Belt 226

6.8.3 Auger Drive – A30-D

- Checking/Adjusting Auger Drive Chain Tension – A30-D ... 226
- Removing Auger Drive Chain 227
- Installing Auger Drive Chain 227

6.9 A40-D Drive Systems

- Checking/Adjusting V-Belt Tension on Left Side – A40-D ... 228

6.9.1 Knife Drive – A40-D

- Checking/Adjusting V-Belt Tension on Left Side – A40-D ... 228
Table of Contents

7.1.1 Additional Skid Shoes..289
7.1.2 Gauge Roller Kit..289
7.1.3 Hydraulic Header Angle Kits ..290
7.1.4 Replacement Reel Bat Kit...290
7.1.5 Stub Guard Conversion Kit .. 290
7.1.6 Tall Crop Divider Kit...291

8 Unloading and Assembly ...293

9 Troubleshooting...295
9.1 Header/Mower Conditioner Performance..295
9.2 Mechanical...302

10 Reference ...305
10.1 Torque Specifications..305
10.1.1 SAE Bolt Torque Specifications ..305
10.1.2 Metric Bolt Specifications ...307
10.1.3 Metric Bolt Specifications Bolting into Cast Aluminum ..310
10.1.4 Flare-Type Hydraulic Fittings..310
10.1.5 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)...312
10.1.6 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable) ...314
10.1.7 O-Ring Face Seal (ORFS) Hydraulic Fittings ...315
10.2 Conversion Chart..317

Index ..319
1 Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the .

This symbol means:

• ATTENTION!
• BECOME ALERT!
• YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

• Accidents disable and kill
• Accidents cost
• Accidents can be avoided
1.2 Signal Words

Three signal words, DANGER, WARNING, and CAUTION, are used to alert you to hazardous situations. The appropriate signal word for each situation has been selected using the following guidelines:

⚠️ DANGER

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

⚠️ CAUTION

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.
1.3 General Safety

CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all the protective clothing and personal safety devices that could be necessary for the job at hand. Don’t take chances. You may need the following:
 - Hard hat
 - Protective footwear with slip resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - Respirator or filter mask

- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as ear muffs or ear plugs to help protect against objectionable or loud noises.

- Provide a first aid kit for use in case of emergencies.
- Keep a fire extinguisher on the machine. Be sure the fire extinguisher is properly maintained. Be familiar with its proper use.
- Keep young children away from the machinery at all times.
- Be aware that accidents often happen when the Operator is tired or in a hurry. Take the time to consider the safest way. Never ignore the warning signs of fatigue.
• Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.

• Keep all shields in place. Never alter or remove safety equipment. Make sure driveline guards can rotate independently of the shaft and can telescope freely.

• Use only service and repair parts made or approved by the equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

• Keep hands, feet, clothing, and hair away from moving parts. Never attempt to clear obstructions or objects from a machine while the engine is running.

• Do NOT modify the machine. Non-authorized modifications may impair machine function and/or safety. It may also shorten the machine’s life.

• To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

• Keep the service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

• Keep work area well lit.

• Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.

• Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

• When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
1.4 Maintenance Safety

To ensure your safety while maintaining the machine:

- Review the operator’s manual and all safety items before operation and/or maintenance of the machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Use adequate lighting for the job at hand
- Relieve pressure from hydraulic circuits before servicing and/or disconnecting the machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear the area of bystanders, especially children, when carrying out any maintenance, repairs or, adjustments.
- Install transport lock or place safety stands under the frame before working under the.
- If more than one person is servicing the machine at the same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lube fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- Wear protective gear when working on the machine.
- Wear heavy gloves when working on knife components.
1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in the hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do **NOT** attempt any makeshift repairs to the hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.

- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

- Make sure all components are tight and steel lines, hoses, and couplings are in good condition before applying pressure to a hydraulic system.
1.6 Tire Safety

- Follow proper procedures when mounting a tire on a wheel or rim. Failure to do so can produce an explosion that may result in serious injury or death.

- Do **NOT** attempt to mount a tire unless you have the proper training and equipment.

- Have a qualified tire dealer or repair service perform required tire maintenance.

Figure 1.14: Overinflated Tire

Figure 1.15: Safely Filling a Tire with Air
1.7 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or become illegible.
- If original parts on which a safety sign was installed are replaced, be sure the repair part also bears the current safety sign.
- Safety signs are available from your Dealer Parts Department.

1.7.1 Installing Safety Decals

1. Clean and dry the installation area.
2. Decide on the exact location before you remove the decal backing paper.
3. Remove the smaller portion of the split backing paper.
4. Place the sign in position and slowly peel back the remaining paper, smoothing the sign as it is applied.
5. Prick small air pockets with a pin and smooth out.

Figure 1.16: Operator’s Manual Decal
1.8 Safety Sign Locations: Pull Type Mower Conditioner

Figure 1.17: Left Side
A - MD #174632
B - MD #184422
C - MD #166452
D - MD #113482
E - MD #194464
F - MD #174436
G - MD #171297
H - MD #171279
J - MD #36651
K - MD #194521

Figure 1.18: Decals on Left Side
Figure 1.19: Right Side
A - MD #171279
B - MD #184372
C - MD #171287
D - MD #184422
E - MD #174632
F - MD #166452

Figure 1.20: Decals on Right Side
Figure 1.21: Hitch
A - MD #194464
B - MD #113482
C - MD #174436
D - MD #171281
E - MD #171281
F - MD #171286
G - MD #171298

Figure 1.22: Decals on Hitch
1.9 Safety Sign Locations: Self-Propelled Windrower Header

![Diagram showing safety sign locations on a self-propelled windrower header.]

Figure 1.23: Left Side Locations

A - MD #174632
B - MD #184422
C - MD #166452
D - MD #174436
E - MD #171288
F - MD #184372
G - MD #194464
H - MD #194521
J - MD #36651

Figure 1.24: Left Side Decals
Figure 1.25: Right Side Locations
A - MD #184422 B - MD #174632 C - MD #166452

Figure 1.26: Right Side Decals
A B C
1.10 Understanding Safety Signs

MD #36651

Rotating driveline

DANGER

- Rotating driveline contact can cause death—**keep away**!

Do not operate without:

- Stopping the engine and removing the key before opening shield.
- All driveline guards, tractor, and equipment shields in place.

MD #113482

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Shut down the engine and remove the key from ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of header or reel before servicing in the raised position (refer to the header operator’s manual).
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.
MD #166452
Pinch point hazard

WARNING
- To avoid injury, stop the engine and remove the key before opening engine hood.

Figure 1.29: MD #166452

MD #166466
High pressure oil hazard

WARNING
- Do not go near leaks.
- High pressure oil easily punctures skin causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

Figure 1.30: MD #166466

MD #166833
Run-over hazard

WARNING
- Remove key from ignition.
- Read tractor and mower manufacturer’s manuals for inspection and maintenance instructions.
- Read the windrower and header manuals for inspection and maintenance instructions.

Figure 1.31: MD #166425
SAFETY

MD #171279
Crushing hazard

DANGER
- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Rest header on ground or engage hydraulic lock-out valves before going under unit.

Figure 1.32: MD #171279

MD #171281
Hot fluid under pressure

CAUTION
- Coolant is under pressure and may be hot. Never remove radiator cap when engine is hot.

Figure 1.33: MD #171281

MD #171286
Lock pull-type hydraulic for transport

WARNING
- Charge cylinder with oil before towing.
- Rotate valve handle to lock in transport position.
- Maximum towing speed 20 mph (32 km/h).
- Failure to comply could result in death or serious injury.

Figure 1.34: MD #171286
SAFETY

MD #171287
Install lock panel

WARNING
• Rotate valve handle to lock before going under unit.
• Failure to comply could result in death or serious injury.

Figure 1.35: MD #171287

MD #171288
Entanglement hazard

CAUTION
• To avoid injury from entanglement with rotating auger, stand clear of header while machine is running.

Figure 1.36: MD #171288

MD #171298
Pull-type transport lock pin

WARNING
• Transport lock pin must be in place before transport.
• Failure to comply could result in death or serious injury.

Figure 1.37: MD #171298
MD #174436
High pressure oil hazard

WARNING

- Do not go near leaks.
- High pressure oil easily punctures skin causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

MD #174632
Reel entanglement hazard

CAUTION

- To avoid injury from entanglement with rotating reel, stand clear of header while machine is running.

Figure 1.38: MD #174436

Figure 1.39: MD #174632
SAFETY

MD #184372
General hazard pertaining to machine operation and servicing

CAUTION
To avoid injury or death from improper or unsafe machine operation:

- Read the operator’s manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
- Shut off the engine and remove the key from ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #184422
Keep shields in place hazard

WARNING
- Do not place hand.
- To avoid injury, stop the engine and remove the key before opening power drive system shield.
- Keep all shields in place.
MD #194464
Shut down for service

WARNING
• Remove key from ignition.
• Read tractor and mower manufacturer’s manuals for inspection and maintenance instructions.
• Read the windrower and header manuals for inspection and maintenance instructions.

MD #194521
Auger entanglement hazard

CAUTION
• To avoid injury from entanglement with rotating auger, stand clear of header/mower while machine is running.

General hazard pertaining to machine operation and servicing.

CAUTION
• Read the operator’s manual and follow safety instructions. If you do not have a manual, obtain one from your Dealer.
• Do not allow untrained persons to operate the machine.
• Review safety instructions with all Operators every year.
• Ensure that all safety signs are installed and legible.
• Make certain everyone is clear of machine before starting engine and during operation.
• Keep riders off the machine.
• Keep all shields in place and stay clear of moving parts.
• Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator’s position.
• Stop the engine and remove the key from ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
• Engage locks to prevent lowering of header or reel before servicing in the raised position.
• Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.
CAUTION

- It is your responsibility to read and understand this manual completely before operating the header/mower conditioner. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety signs on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header/mower conditioner, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do not modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.
- Safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
- Ensure that tractor is properly equipped to safely operate mower conditioner. This may include adding ballast according to the tractor operator’s manual requirements for attachments of this size and mass.
1.12 Operational Safety

CAUTION

- Follow all safety and operational instructions given in your operator’s manual. If you do not have a tractor/windrower manual, get one from your Dealer and read it thoroughly.
- Never attempt to start tractor/windrower engine or operate the machine, except from the operator’s seat.
- Check the operation of all controls in a safe clear area before starting work.
- Do not allow riders on tractor/windrower or mower conditioner.
- Never start or move the machine until you are sure all bystanders have cleared the area.
- Avoid travelling over loose fill, rocks, ditches or holes.
- Drive slowly through gates and doorways.
- If cutting ditch banks, use extreme caution. If the header/mower conditioner hits an obstruction, front of the tractor will usually swerve towards the ditch.
- When working on inclines, travel uphill or downhill when possible. Be sure to keep tractor transmission in gear when travelling downhill.
- Never attempt to get on or off a moving tractor/windrower.
- Do not get off the tractor/windrower while the machine is in operation.
- To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before adjusting or removing plugged material from the machine.
- Operate only in daylight or good artificial light.

CAUTION

Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect machine. Follow proper shutdown procedure as follows:

- Engage tractor/windrower brake.
- Disengage PTO.
- Turn engine OFF, and remove key.
- Wait for all movement to stop
- Dismount and engage cylinder stops before inspecting raised machine.
2 Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Series header</td>
<td>MacDon auger header</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>APT</td>
<td>Articulated Power Turn</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>Bolt</td>
<td>A headed and externally threaded fastener that is designed to be paired with a nut</td>
</tr>
<tr>
<td>Cab-forward</td>
<td>Windrower operation with the Operator and cab facing in the direction of travel</td>
</tr>
<tr>
<td>CDM</td>
<td>Cab display module on a self-propelled windrower</td>
</tr>
<tr>
<td>Center-link</td>
<td>A hydraulic cylinder link between the header and the machine to which it is attached: It is used to change header angle</td>
</tr>
<tr>
<td>CGVW</td>
<td>Combined vehicle gross weight</td>
</tr>
<tr>
<td>DK</td>
<td>Double knife</td>
</tr>
<tr>
<td>DKD</td>
<td>Double-knife drive</td>
</tr>
<tr>
<td>Finger tight</td>
<td>Finger tight is a reference position where sealing surfaces or components are making contact with each other and the fitting has been tightened to a point where the fitting is no longer loose</td>
</tr>
<tr>
<td>FFFFT</td>
<td>Flats from finger tight</td>
</tr>
<tr>
<td>GSL</td>
<td>Ground speed lever</td>
</tr>
<tr>
<td>GSS</td>
<td>Grass Seed Special</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross vehicle weight</td>
</tr>
<tr>
<td>Hard joint</td>
<td>A joint made with the use of a fastener where the joining materials are highly incompressible</td>
</tr>
<tr>
<td>Header</td>
<td>A machine that cuts and lays crop into a windrow and is attached to a self-propelled windrower</td>
</tr>
<tr>
<td>Hex key</td>
<td>A hex key or Allen key (also known by various other synonyms) is a tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in the head (internal-wrenching hexagon drive)</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>JIC</td>
<td>Joint Industrial Council: A standards body that developed the standard sizing and shape for original 37° flared fitting</td>
</tr>
<tr>
<td>Knife</td>
<td>A cutting device which uses a reciprocating cutter (also called a sickle)</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Nut</td>
<td>An internally threaded fastener that is designed to be paired with a bolt</td>
</tr>
<tr>
<td>N-DETENT</td>
<td>The slot opposite the NEUTRAL position on operator’s console</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread: A style of fitting used for low pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit</td>
</tr>
<tr>
<td>ORB</td>
<td>O-ring boss: A style of fitting commonly used in port opening on manifolds, pumps, and motors</td>
</tr>
<tr>
<td>ORFS</td>
<td>O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal</td>
</tr>
<tr>
<td>PTO</td>
<td>Power take-off</td>
</tr>
<tr>
<td>RoHS (Reduction of Hazardous Substances)</td>
<td>A directive by the European Union to restrict the use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>Screw</td>
<td>A headed and externally threaded fastener that threads into preformed threads or forms its own thread in one of the mating parts</td>
</tr>
<tr>
<td>SK</td>
<td>Single knife</td>
</tr>
<tr>
<td>SKD</td>
<td>Single-knife drive</td>
</tr>
<tr>
<td>Soft joint</td>
<td>A joint made with the use of a fastener where the joining materials are compressible or experience relaxation over a period of time</td>
</tr>
<tr>
<td>spm</td>
<td>Strokes per minute</td>
</tr>
<tr>
<td>Tractor</td>
<td>Agricultural type tractor</td>
</tr>
<tr>
<td>Truck</td>
<td>A four-wheel highway/road vehicle weighing no less than 7500 lbs (3400 kg)</td>
</tr>
<tr>
<td>Timed knife drive</td>
<td>Synchronized motion applied at the cutterbar to two separately driven knives from a single hydraulic motor</td>
</tr>
<tr>
<td>Tension</td>
<td>Axial load placed on a bolt or screw, usually measured in pounds (lb) or Newtons (N)</td>
</tr>
<tr>
<td>TFFT</td>
<td>Turns from finger tight</td>
</tr>
<tr>
<td>Torque</td>
<td>The product of a force X lever arm length, usually measured in foot-pounds (ft-lbf) or Newton-meters (N·m)</td>
</tr>
<tr>
<td>Torque angle</td>
<td>A tightening procedure where the fitting is assembled to a precondition (finger tight) and then the nut is turned further a number of degrees or a number of flats to achieve its final position</td>
</tr>
<tr>
<td>Torque-tension</td>
<td>The relationship between the assembly torque applied to a piece of hardware and the axial load it induces in the bolt or screw</td>
</tr>
<tr>
<td>Untimed knife drive</td>
<td>Unsynchronized motion applied at the cutterbar to two separately driven knives from a single hydraulic motor or two hydraulic motors</td>
</tr>
<tr>
<td>Washer</td>
<td>A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or a locking mechanism</td>
</tr>
<tr>
<td>Windrower</td>
<td>Power unit of a self-propelled header</td>
</tr>
</tbody>
</table>
2.2 Model Identification

This section assists in identifying the various MacDon A-Series auger header models.
2.2.1 A30-D

The A30-D is a double-knife machine with a mechanically-driven auger and reel that can be used on a carrier frame, and pulled by a tractor.

NOTE:
Additional parts are required when installing header onto an M-Series Self-Propelled Windrower.

Figure 2.1: A30-D Left Side

Figure 2.2: A30-D Right Side
2.2.2 A40-D

The A40-D is a double-knife header using a hydraulically-driven auger, reel, and cutterbar that can be used only on an M-Series Self-Propelled Windrower. For the 2015 model year, there are two types: one with a square motor and one with a round reel motor.

Figure 2.3: A40-D Left Side (Early-Build 2015, 2014 and Earlier) (Round Reel Motor)
PRODUCT OVERVIEW

Figure 2.4: A40-D Left Side (Later-Build 2015) (Square Reel Motor)

Figure 2.5: A40-D Right Side (All Years)
2.3 Product Specifications

NOTE:
Specifications and design are subject to change without notice, or obligation to revise previously sold units.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>A30-D Pull-Type</th>
<th>A40-D Self-Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTTERBAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective cutting width</td>
<td>14-foot header</td>
<td>14 ft–9 in. (4496 mm)</td>
</tr>
<tr>
<td></td>
<td>16-foot header</td>
<td>16 ft–3 in. (4953 mm)</td>
</tr>
<tr>
<td></td>
<td>18-foot header</td>
<td>N/A 17 ft–9 in. (5410 mm)</td>
</tr>
<tr>
<td>Double-knife drive: hydraulic motor to two “B” belts/timing belts to enclosed heavy duty (MD) knife drive boxes</td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Knife stroke</td>
<td>No load 3 in. (76 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory Load 1983</td>
<td>1912</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400–1950</td>
</tr>
<tr>
<td>Knife speed (strokes per minute)</td>
<td>No load 1749</td>
<td>Switching pulleys Load 1687</td>
</tr>
<tr>
<td></td>
<td>Factory Load 1912</td>
<td>1400–1950</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double heat-treated forged pointed guards</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Bolted over-serrated knife sections – 9 serrations per inch</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Center overlap</td>
<td>1/8 in. (3 mm)</td>
<td></td>
</tr>
<tr>
<td>Cutterbar lift range (measured at guard tip)</td>
<td>Below ground 4 in. (100 mm)</td>
<td>5-3/4 in. (150 mm)</td>
</tr>
<tr>
<td></td>
<td>Above ground 21 in. (533 mm)</td>
<td>35-3/8 in. (900 mm)</td>
</tr>
<tr>
<td>Guard angle (cutterbar on ground)</td>
<td>8 to 16 degrees</td>
<td>7 to 17-1/2 degrees</td>
</tr>
<tr>
<td>Replaceable, abrasion-resistant cutterbar wear plates</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Inner skid shoes, adjustable set of two (can be relocated to outboard location)</td>
<td>Optional</td>
<td>Standard</td>
</tr>
<tr>
<td>Outer skid shoes or gauge rollers</td>
<td>Standard</td>
<td>Optional</td>
</tr>
<tr>
<td>Outer gauge rollers</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>AUGER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>Overall 20 in. (508 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tube O.D. 10 in. (254 mm)</td>
<td></td>
</tr>
<tr>
<td>Undershot, center feed</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Flighting</td>
<td>Width 5 in. (127 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickness 1/4 in. (6 mm)</td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>23-1/4 in. (590 mm)</td>
<td></td>
</tr>
<tr>
<td>Rubber feed fingers</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Specifications</th>
<th>A30-D Pull-Type</th>
<th>A40-D Self-Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripper bars (three per side)</td>
<td>Mechanical, two “B” belts to No. 60H roller chain</td>
<td>Standard</td>
</tr>
<tr>
<td>Auger drive</td>
<td>Hydraulic, 15.9 cu in. (261 cc) per rev direct mounted motor</td>
<td>N/A</td>
</tr>
<tr>
<td>Auger speed</td>
<td>Pull-type Factory 22T sprocket</td>
<td>No load 271 rpm</td>
</tr>
<tr>
<td></td>
<td>Load 261 rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pull-type Optional 19T sprocket</td>
<td>No load 234 rpm</td>
</tr>
<tr>
<td></td>
<td>Load 225 rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP windrower</td>
<td>N/A</td>
</tr>
<tr>
<td>Replaceable high density polyethylene auger pans: two-piece design</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Rock drop tines at discharge opening with discharge angle adjustment</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Delivery opening width</td>
<td>95-11/16 in. (2430 mm)</td>
<td></td>
</tr>
</tbody>
</table>

REEL

Oval closed section bats with end caps.
NOTE: A40-D Grass Seed Special model has standard seven-bat reel
- 5 bats
- 6 bats optional 6 bat
- 7 bats optional 7 bat

Steel fingers	1/4 in. (6 mm) diameter			
-------------------	-------------------------			
Reel radius (to finger tip)	22 in. (540 mm)			
Single piece tine bar with replaceable polyethylene bearings	Standard	N/A		
Sectioned tine bar with regreasable ball bearings	N/A	Standard		
Drive	Mechanical, two “B” belts from auger to 60H roller chain	Standard	N/A	
	Hydraulic motor: 14.2 cu in. (232 cc) /rev to enclosed gearbox	N/A	Standard	
Reel speed	Pull-type: 22T factory sprocket @ 271 auger rpm	No load 74 rpm	N/A	
	Load 72 rpm			
	Pull-type: 19T optional sprocket @ 271 auger rpm	No load 64 rpm		
	Load 62 rpm			
	Pull-type: 19T optional sprocket @ 234 auger rpm	No load 55 rpm		
	Load 53 rpm			
	M100/M105/M205 SP hydraulic variable	N/A	50–85 rpm	
	M150/M155/M200 SP hydraulic variable	N/A	15–85 rpm	

HAY CONDITIONER

<p>| Roll-type | Intermeshing steel bars | |
|--------------------|-------------------------| |
| Roll size | Length 102 in. (2590 mm) | |
| | Overall 9-3/16 in. (233 mm) | |
| | Tube 6-5/8 in. (168 mm) | |</p>
<table>
<thead>
<tr>
<th>Specifications</th>
<th>A30-D Pull-Type</th>
<th>A40-D Self-Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive: 44 cc. hydraulic piston motor to enclosed gearbox</td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Roll speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pull-type carrier</td>
<td>No Load</td>
<td>766 rpm</td>
</tr>
<tr>
<td></td>
<td>Load</td>
<td>736 rpm</td>
</tr>
<tr>
<td>SP windrower</td>
<td>N/A</td>
<td>601–810 rpm</td>
</tr>
<tr>
<td>PLUG PREVENTION/UNPLUGGING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pull type</td>
<td>Rolls open as header is lifted</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Rolls open 4-1/4 in. (108 mm) tip to tube during operation</td>
<td>Standard</td>
</tr>
<tr>
<td>Self-propelled</td>
<td>Reverse hydraulic flow to three motors (reverses knife, auger, reel, and conditioner)</td>
<td>N/A</td>
</tr>
<tr>
<td>SWATH FORMING SHIELD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swath width range</td>
<td>36 in. (915 mm) to 100 in. (2540 mm)</td>
<td></td>
</tr>
<tr>
<td>Header-mounted adjustable baffle</td>
<td>N/A</td>
<td>Standard</td>
</tr>
<tr>
<td>Attachment</td>
<td>Carrier</td>
<td>Windrower</td>
</tr>
<tr>
<td>Adjustable side defectors</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>FRAME AND STRUCTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two amber transport lights</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Header width</td>
<td>Nominal cut width plus 18-7/8 in. (480 mm)</td>
<td></td>
</tr>
<tr>
<td>Header attachment</td>
<td>Carrier</td>
<td>Windrower</td>
</tr>
<tr>
<td>Spare knife storage</td>
<td>Frame tube</td>
<td>Lean bar</td>
</tr>
<tr>
<td>Tool and parts storage compartment</td>
<td>Standard</td>
<td>N/A</td>
</tr>
<tr>
<td>HEADER HYDRAULICS CONNECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct coupled hoses</td>
<td>Standard</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydraulic quick couplers</td>
<td>N/A</td>
<td>Standard</td>
</tr>
<tr>
<td>ATTACHMENTS AND ACCESSORIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header reversing wrench and guard straightening tool</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Double Windrow Attachment (DWA) M150/M155/M200/M205 windrowers</td>
<td>N/A</td>
<td>Optional</td>
</tr>
<tr>
<td>CARRIER FRAME AND HITCH (Continued on next page)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td>A30-D Pull-Type</td>
<td>A40-D Self-Propelled</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Tractor 1000 rpm PTO</td>
<td>3:1 ratio gearbox to 2.01 cu in. gear pump</td>
<td>Standard</td>
</tr>
<tr>
<td>Hitch</td>
<td>Drawbar adapter with transport safety chain</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>3 point hitch adapter (quick hitch compatible)</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Transport lockout valve for steering cylinder</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Heavy duty jack</td>
<td>Standard</td>
</tr>
<tr>
<td>Header lift and steering</td>
<td></td>
<td>Hydraulic</td>
</tr>
<tr>
<td>Header angle adjustment</td>
<td></td>
<td>Mechanical</td>
</tr>
<tr>
<td>Hydraulc header angle kit, double-acting cylinder and indicator (three remotes required)</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Transport lights: two red complete with seven pole connector</td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>SMV decal</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Wheels</td>
<td>Size 31 x 13.5 x 15 NHS terra tires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tread width 150 in. (3810 mm)</td>
<td></td>
</tr>
<tr>
<td>Transport length</td>
<td>320 in. (8130 mm)</td>
<td></td>
</tr>
<tr>
<td>Transport width</td>
<td>14-foot header 192 in. (4877 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-foot header 210 in. (5334 mm)</td>
<td></td>
</tr>
<tr>
<td>Transport height</td>
<td>86 in. (2185 mm)</td>
<td></td>
</tr>
<tr>
<td>Tractor requirements</td>
<td>14-foot header 75 hp (56 kw)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-foot header 90 hp (68 kw)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydraulic capacity 2000 psi (13,714 kPa)</td>
<td></td>
</tr>
</tbody>
</table>
3 Operation: A30-D Pull-Type Mower Conditioner

This chapter will describe the operating procedures of the A30-D Pull-Type Mower Conditioner.

3.1 Preparing Tractor for Mower Conditioner

3.1.1 Tractor Requirements

<table>
<thead>
<tr>
<th>Header Width feet</th>
<th>Minimum Power HP (kW)</th>
<th>Minimum Drawbar Capacity lbf (N)</th>
<th>Minimum Hydraulics psi (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>90 (68)</td>
<td>1400 (6227)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>110 (83)</td>
<td>1450 (6449)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>130 (98)</td>
<td>1500 (6672)</td>
<td>2000 (13.7)</td>
</tr>
</tbody>
</table>

NOTE:
Tractor must be equipped with a seven-terminal outlet to supply power to the mower conditioner's warning lights.

3.1.2 Adjusting Drawbar

CAUTION

Shut off tractor, engage parking brake, and remove key before working around hitch.

1. Adjust tractor drawbar to meet ASAE Standard specifications as listed below:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>1000 rpm Power Take-Off (PTO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.37 inch diameter</td>
</tr>
<tr>
<td>'X'</td>
<td>16 in. (406 mm)</td>
</tr>
<tr>
<td>'Y'</td>
<td>6–12 in. (152–305 mm)</td>
</tr>
<tr>
<td>'Z'</td>
<td>13–17 in. (330–432 mm)</td>
</tr>
</tbody>
</table>

IMPORTANT:
Improper drawbar length can cause vibration and premature pump gearbox failure.
3.1.3 Setting Up Drawbar Hitch

To set up the drawbar hitch, follow these steps:

1. Secure tractor drawbar so the hitch-pin hole is directly below the driveline.
2. Loosen bolts (A) on extension assembly (B), and slide onto drawbar.
3. Install pin (A) through drawbar and extension from underside, and secure with hairpin (C).
4. Gradually tighten four bolts to 265 ft·lbf (359 N·m).

5. Attach the swivel articulated power turn (APT) member (A) with pin (B) onto the APT.

6. Secure pin with clevis pin (A), washers, and cotter pin.
7. Assemble power take-off (PTO) driveline male half (A) onto PTO shaft (B) on APT. Push male half so that PTO shaft is at its fully compressed length.

8. Place PTO shaft in hook (C).

3.1.4 Installing Three-Point Hitch Yoke (Cat. II, III, or IIIN)

To set up the three-point hitch, follow these steps:

1. Attach the three-point hitch adapter (A) to the articulated power turn (APT) with pin (B). The installation is similar to that described in 3.1.3 Setting Up Drawbar Hitch, page 34.

2. Secure pin (B) with clevis pin (C), washers, and cotter pin.

NOTE:
The arms on the adapter (A) can be set up to suit Category II and IIIN, or Category III tractor hitch arms.
3. Set up the adapter arms:
 a. Remove pins (A).
 b. Remove bolts (B) (three per side).
 c. Flip outer plate (C) and inner plate (D) on each arm.

 IMPORTANT:
 The inner plate (D) has a smaller joggle than the outer plate (C). Always maintain the proper locations.

d. Reinstall bolts (B).
e. Replace pins (A).

 NOTE:
 Bushings (A) on pins can be removed to suit hole size in tractor hitch arms.

4. Assemble power take-off (PTO) driveline male half (A) onto PTO shaft (B) on APT. Push male half so that PTO shaft is at its fully compressed length.

5. Position PTO shaft in hook (C).
3.2 Attaching Mower Conditioner to Tractor

CAUTION
Shut off tractor, engage parking brake, and remove key before working around hitch.

CAUTION
Never attach mower conditioner to tractor rear axle or three-point hitch arms.

3.2.1 Attaching Drawbar

1. Remove pin (A).

2. Position tractor to align drawbar extension (B) with arm (C) on mower conditioner.

3. Lower jack (D) to engage arm (C) on drawbar extension (B).

4. Install hitch-pin (A), and secure with hairpin.

IMPORTANT:
If the tractor has a three-point hitch, lower the lower links as low as possible to prevent damage to the APT.
5. Attach driveline (A) to tractor power take-off (PTO) shaft as follows:
6. Position driveline onto tractor PTO shaft (B).
7. Pull back collar on driveshaft, and push driveshaft until it locks. Release collar.
8. Route safety chain from mower conditioner through chain support (C), around drawbar support, and lock the hook (D) on chain.

IMPORTANT:
Adjust chain length to remove all slack except what is needed for turns.

9. Raise jack (A), pull pin (B), and move jack to storage position on side of APT.
10. Secure jack with pin (B).

11. Proceed to 3.2.3 Connecting Hydraulics, page 41.

3.2.2 Attaching Three-Point Hitch (Cat. II, III, or IIIN)

⚠️ **CAUTION**
Shut off tractor, engage parking brake, and remove key before working around hitch.
1. Position tractor, and align tractor hitch arms (A) with hitch adapter (B).

2. Shut off tractor and remove key.

3. Remove pins (C) from hitch adapter, and use the jack to adjust the height of the articulated power turn (APT) so that pins (C) can be reinstalled.

NOTE:
If tractor is equipped with a quick hitch system, pins (C) do not need to be removed.

4. Secure pins (C) with lynch pins.

5. Install anti-sway bars on tractor hitch to stabilize lateral movement of hitch arms (A). Refer to your tractor operator’s manual for instructions.

6. Check distance ‘X’ between tractor power take-off (PTO) shaft (A) and implement input shaft (B) (without the front half of the driveline attached). The measurement must NOT exceed the dimensions listed below.

<table>
<thead>
<tr>
<th>Driveline Shaft Size</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.375 in. (34 mm)</td>
<td>27 in. (685 mm)</td>
</tr>
<tr>
<td>1.75 in. (43 mm)</td>
<td>31 in. (790 mm)</td>
</tr>
</tbody>
</table>

7. Position driveshaft (A) onto tractor PTO shaft. Driveline should be approximately level.

IMPORTANT:
Front half of driveline (A) for three-point hitch is longer than the driveline for draw-bar hitch. Ensure proper length driveline is used.

9. Rotate driveline storage hook (B) to upward position.

Figure 3.15: Hitch Attached to Tractor

Figure 3.16: Distance between PTO Shaft and Implement Input Shaft

Figure 3.17: Driveshaft and Hitch Attached to Tractor
10. Raise jack (A), pull pin (B), and move jack to storage position on side of APT. Secure jack with pin (B).

11. Secure jack (A) with pin (B).
3.2.3 Connecting Hydraulics

WARNING

Do not use remote hydraulic system pressures over 3000 psi (20,684 kPa). Check your tractor operator’s manual for remote system pressure.

<table>
<thead>
<tr>
<th>System</th>
<th>Hose</th>
<th>Tractor Hydraulics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering</td>
<td>A (2 Hoses)</td>
<td>Control 1</td>
</tr>
<tr>
<td>Lift</td>
<td>B (1 Hose)</td>
<td>Control 2</td>
</tr>
<tr>
<td>Header Tilt</td>
<td>C (2 Hoses)</td>
<td>Control 3</td>
</tr>
</tbody>
</table>

NOTE: Arrows cut into plate indicate system for hoses. LIFT ↑ (up arrow) STEERING ↔ (double-headed arrow).

1. Ensure hoses are routed through guide (A) to provide proper hose arc as shown.

2. Connect two steering cylinder hoses (A) as follows:

<table>
<thead>
<tr>
<th>Control Lever Position</th>
<th>Cylinder Movement</th>
<th>Mower Conditioner Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Extend</td>
<td>Right</td>
</tr>
<tr>
<td>Backward</td>
<td>Retract</td>
<td>Left</td>
</tr>
</tbody>
</table>

![Figure 3.20: Quick Disconnect Couplers](image1)

![Figure 3.21: Hose Routing](image2)

![Figure 3.22: Steering Cylinder Hose Connections](image3)
3. Connect one lift cylinder hose (A) as follows:

<table>
<thead>
<tr>
<th>Control Lever Position</th>
<th>Cylinder Movement</th>
<th>Header Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Retract</td>
<td>Lower</td>
</tr>
<tr>
<td>Backward</td>
<td>Extend</td>
<td>Raise</td>
</tr>
</tbody>
</table>

4. Connect two header tilt cylinder hoses (A) as follows (not required with mechanical center-link):

<table>
<thead>
<tr>
<th>Control Lever Position</th>
<th>Cylinder Movement</th>
<th>Header Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Retract</td>
<td>Lower</td>
</tr>
<tr>
<td>Backward</td>
<td>Extend</td>
<td>Raise</td>
</tr>
</tbody>
</table>

5. Connect the mower conditioner wiring harness connector (B) to tractor. Connector is designed to fit tractors equipped with a round seven-pin receptacle (SAE J560).

IMPORTANT:
Older model tractors will have Pin #4 (A) energized as an accessory circuit. The mower conditioner uses this pin position (B) for brake lights. Check that Pin #4 in the tractor receptacle is NOT constantly energized. Consult your tractor operator’s manual, and then, if required, remove the appropriate fuse.
3.3 Detaching Mower Conditioner from Tractor

This topic applies only to pull-type mower conditioners.

⚠️ CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key. To maintain stability, always lower the machine completely. Block mower conditioner wheels before detaching from tractor.

3.3.1 Unhooking Drawbar

1. Park machine on flat level surface with hitch at an angle to tractor drawbar (to facilitate pump detachment).
2. Lower mower conditioner onto blocks or leave header raised. If leaving in raised position, engage lift cylinder lock-out valves.
3. Move remote cylinder control valve lever back and forth to relieve stored hydraulic pressure.
4. Disconnect hydraulic hoses and electrical harness. Store hose ends in holes at front of articulated power turn (APT) as shown (A).

5. Remove pin (A).

Figure 3.26: Hydraulic Hoses and Electrical Harness

Figure 3.27: Hitch Pin
6. Rotate hook (A) to the lower position.

7. Pull back collar on driveline (A), slide coupler off tractor power take-off (PTO) shaft, and position driveline in hook.

8. Pull pin (B) securing jack (A), and move to working position at front of APT.
9. Secure jack (A) with pin (B).
10. Lower jack to take weight off tractor drawbar.

NOTE:
If ground is soft, place a block under the jack.

11. Remove chain lock (A), and unhook safety chain from tractor. Wrap chain around APT for storage.
12. Lower jack to raise APT clear of drawbar.
13. Slowly drive tractor away from mower conditioner.

14. Replace hitch pin (A), and secure with hairpin.

3.3.2 Unhooking Three-Point Hitch

1. Park machine on flat level surface.
2. Lower mower conditioner onto blocks, or leave header raised. If leaving in raised position, engage lift cylinder lock-out valves.
CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key. To maintain stability, always lower the machine completely. Block mower conditioner wheels before detaching from tractor.

3. Shut off engine and remove key.
4. Move remote cylinder control valve lever back and forth to relieve stored hydraulic pressure.
5. Disconnect hydraulic hoses and electrical harness. Store hose ends in holes at front of articulated power turn (APT) as shown (A).

6. Pull pin (B) securing jack (A) at storage location, and remove jack.
7. Install at working position at front of APT. Secure jack with pin (B).

8. Pull back collar on driveline (A), and slide coupler off tractor power take-off (PTO) shaft.

9. Rotate hook (B) to lower position, and place driveline in hook.

10. Lower jack to raise APT, and take weight off hitch arms.

 NOTE:
 If tractor is equipped with a quick hitch system, pins (C) do not need to be removed.

11. Remove lynch pins (C), and swing hitch arms (D) clear of APT.

12. Slowly drive tractor away from mower conditioner.
3.4 Engaging the Power Take-Off (PTO)

⚠️ DANGER

Be sure all bystanders are clear of the machine before engaging the PTO. Never leave tractor seat with the PTO engaged.

1. Engage PTO slowly, just before the mower conditioner is moved up to the standing crop.
2. Be sure tractor PTO is running at correct rpm before starting to cut (540 or 1000 rpm, as equipped).
3. Disengage PTO when not operating the mower conditioner.
3.5 Lift Cylinder Lock-Outs

1. Raise machine to maximum height by activating remote cylinder control valve in tractor.

IMPORTANT:
Hoses should be connected so that moving control lever (A) backward raises the header.

2. Close lock-out valve on each lift cylinder by turning the handle to the horizontal position (A).

3. To return to normal operation, turn handle on the lock-out valves to the vertical position (B).

![Figure 3.38: Tractor Controls](image)
A - Lever to Lower/Raise Header
B - Lever to Steer Right/Left

![Figure 3.39: Lift Cylinder Lock-Out Valve](image)
A - Closed Operation - Handle in Horizontal Position
B - Normal Operation - Handle in Vertical Position
3.6 Steering the Pull-Type Mower Conditioner

Steering is controlled by the tractor’s remote hydraulic system. This steering system allows the mower conditioner to follow directly behind the tractor, make a full cut to either side, or any position in-between.

IMPORTANT:
Hoses should be connected so that moving the tractor control lever (A) FORWARD steers the machine to the RIGHT, and moving lever (A) BACKWARD steers the machine LEFT.

![Figure 3.40: Tractor Steering Lever](image)

IMPORTANT:
To allow articulated power turn (APT) to swing, the valve on the APT must be in the working or open position (handle in line with APT), and the temporary transport lock pin must be in the storage location.

![Figure 3.41: Open APT Valve](image)

![Figure 3.42: Temporary Transport Lock Pin in Storage Location](image)
3.6.1 Right-Side Operation

Move steering lever FORWARD to achieve desired position of mower conditioner on RIGHT side of tractor.

To adjust tracking of mower conditioner during right side operation, the steering cylinder clevis can be re-positioned.

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

To reposition the steering cylinder clevis, follow these steps:

1. Shut down tractor and remove key.
2. Loosen clamping bolt (A) on clevis (B).
3. Using a wrench on the stroke control (A), rotate cylinder rod so that clevis moves away from or closer to the cylinder. Each turn of the rod changes the tracking by approximately 2 in. (50 mm).

<table>
<thead>
<tr>
<th>Desired Track</th>
<th>Cylinder Extension</th>
<th>Clevis Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further RIGHT</td>
<td>Increase</td>
<td>Clevis (C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Further From Cylinder</td>
</tr>
<tr>
<td>Further LEFT</td>
<td>Decrease</td>
<td>Clevis (C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closer To Cylinder</td>
</tr>
</tbody>
</table>

4. Tighten clamping bolt to 65 ft-lbf (90 N-m).
5. Recheck torque on clamping bolt after 1 hour, and every 100 hours thereafter.
3.6.2 Left-Side Operation

Move steering lever backward to achieve desired position of mower conditioner on left-hand side of tractor.

To adjust tracking of mower conditioner during left-hand side operation, the steering cylinder stroke control can be repositioned.

IMPORTANT:
The adjustment for right-side operation must be done PRIOR to adjustment for left-side operation.

To reposition the steering stroke control, follow these steps:

1. Loosen clamping bolt (A) on stroke control (B), and rotate stroke control to desired position.

NOTE:
Each turn of the stroke control changes tracking by approximately 2 in. (50 mm).

<table>
<thead>
<tr>
<th>Desired Track</th>
<th>Cylinder Stroke</th>
<th>Stroke Control Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further LEFT</td>
<td>Decrease</td>
<td>Rotate Stroke Control (B) Away From Clevis.</td>
</tr>
<tr>
<td>Further RIGHT</td>
<td>Increase</td>
<td>Rotate Stroke Control (B) Towards Clevis.</td>
</tr>
</tbody>
</table>

2. Tighten clamping bolt to 65 ft-lbf (90 N·m).
3. Recheck torque on clamping bolt after 1 hour, and every 100 hours thereafter.
3.6.3 Avoiding Obstacles

Move steering lever as required to avoid obstacles.

Moving the tractor control lever (A) FORWARD steers the machine to the RIGHT, and the moving the lever (A) BACKWARD steers the machine LEFT.
3.6.4 Turning Square Corners

The following procedure is intended only as a guide to developing a turning procedure for the tractor being used. Specific distances are not given due to variances in tractor manoeuvrability.

1. As tractor approaches the corner, guide tractor sharply away from the crop. Steer the mower conditioner to maintain a straight cut ahead, as the tractor moves away from the crop.

2. As soon as the knife cuts past where the new corner will be, raise the header sufficiently for skid shoes to clear the ground, then steer the mower conditioner to the extreme direction away from the uncut crop.

3. As the tractor passes the corner, steer it sharply back towards the uncut crop, taking care that the inside tractor tire does not contact the mower conditioner’s articulated power turn (APT).

4. Guide the tractor to straddle the last cut windrow. As the mower conditioner finishes turning, steer it back towards the uncut crop, align the header with the crop edge, and lower header to cutting height.

3.6.5 Turning 180 Degrees

NOTE:
When cutting back and forth on one side of the field, approximately 50 ft. (15 m) is required at each end of the field to make a 180 degree turnaround.
Figure 3.50: 180 Degree Turn

Refer to illustration above, and proceed as follows:

1. Beginning at position (A), steer the tractor away from the uncut crop, and steer the mower conditioner straight ahead until cutting through the end.

2. As soon as the knife cuts through, raise header to lift the skid shoes clear of the ground, and steer mower conditioner to the extreme direction away from the uncut crop.

NOTE:
For ease of operation, both levers can be activated with one hand, and held until steering cylinder completes its stroke.

3. At position (B), start turning tractor back towards the uncut crop.

IMPORTANT:
When turning, take care that inside tractor tire does NOT contact the articulated power turn (APT) of the mower conditioner.

4. In positions (C) and (D), continue turning towards the uncut crop, (with the mower conditioner steered towards the outside of the turning circle), being aware of APT-to-tire clearance.

5. At position (E), the tractor completes the circle, and front wheels are turned to straddle the last cut windrow. At this point, steer the mower conditioner to line up with the edge of the uncut crop.

6. At position (F), lower mower conditioner to cutting height, and begin a new cut through the field.
3.7 Operating Variables for A30-D

Satisfactory function of the mower conditioner in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and allows cutting of more acres. As well, proper adjustments and timely maintenance will increase the length of service you receive from the machine.

The variables listed below and detailed on the following pages will affect the performance of the mower conditioner. You will quickly become adept at adjusting the machine to give you the desired results.

Table 3.1 Header/Mower Conditioner Adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean bar position</td>
<td>3.7.1 Setting Lean Bar, page 57</td>
</tr>
<tr>
<td>Knife speed</td>
<td>3.7.2 Setting Knife Speed, page 57</td>
</tr>
<tr>
<td>Auger speed</td>
<td>3.7.3 Setting Auger Speed, page 60</td>
</tr>
<tr>
<td>Reel speed</td>
<td>3.7.4 Setting Reel Speed, page 61</td>
</tr>
<tr>
<td>Auger position</td>
<td>3.7.5 Setting Auger Position, page 62</td>
</tr>
<tr>
<td>Reel position</td>
<td>3.7.6 Setting Reel Position, page 67</td>
</tr>
<tr>
<td>Tine aggressiveness adjustment</td>
<td>3.7.8 Setting Tine Aggressiveness, page 73</td>
</tr>
<tr>
<td>Cutting height</td>
<td>3.7.7 Setting Cutting Height, page 72</td>
</tr>
<tr>
<td>Header angle</td>
<td>3.7.9 Setting Header Angle, page 74</td>
</tr>
<tr>
<td>Header float</td>
<td>3.7.10 Setting Float, page 76</td>
</tr>
<tr>
<td>Feed pan / rock drop tine position</td>
<td>3.7.11 Setting Feed Pan and Rock Drop Tine Position, page 77</td>
</tr>
<tr>
<td>Roll tension</td>
<td>3.7.13 Adjusting Conditioner Roll Tension, page 78</td>
</tr>
<tr>
<td>Forming shields</td>
<td>3.7.14 Positioning the Forming Shields, page 80</td>
</tr>
<tr>
<td>Tall crop dividers</td>
<td>5.2.1 Adjusting Tall Crop Dividers, page 162</td>
</tr>
<tr>
<td>Ground speed</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
</tbody>
</table>
3.7.1 Setting Lean Bar

Use the lean bar adjustment to accommodate different crop heights. The lean bar (A) should strike the upper portion of the crop (roughly 2/3 of the crop height), leaning it away from the header, and exposing the stalks to the knife.

IMPORTANT:
To prevent structural damage to the header, do NOT operate with lean bar removed.

To extend or retract lean bar (A), reposition hardware in adjustment holes as required.

In crops over 5 ft. (1.52 m) high, an optional tall crop divider kit (MD #B4690) is available that includes lean bar extensions to raise the lean bar. For more information refer to 5.2.1 Adjusting Tall Crop Dividers, page 162.

3.7.2 Setting Knife Speed

The A30-D is factory configured to run the knife at 1983 strokes per minute (SPM). You can slow down the knife speed to 1749 SPM by swapping the gearbox and countershaft pulley positions.

Table 3.2 A30-D Knife Speed Specifications

<table>
<thead>
<tr>
<th>Knife speed (strokes per minute)</th>
<th>Factory</th>
<th>No load</th>
<th>1983</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td>Switching pulleys</td>
<td>No load</td>
<td>1749</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load</td>
<td>1687</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **CAUTION**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Switch pulley positions as follows:

1. Open left-hand endshield.
2. Remove auger drive chain (A). Refer to *Removing Auger Drive Chain, page 227.*
3. Remove knife drive V-belts (B). Refer to *Removing Double V-Belts – A30-D Left Side, page 219.*
4. Remove the three bolts (A) from hub (B) and remove hub and sprocket. Retain hardware.

5. Remove the three bolts (A) from the tapered bushing (B).

6. Install two bolts (A) in the two threaded holes (C) in bushing (B) and tighten to release the bushing.

7. Remove bushing (C) and key. Retain bushing and hardware.

8. Remove gearbox pulley (D).

9. Remove the three bolts (B) from the countershaft pulley and retain hardware.

10. Remove countershaft pulley.
11. Install gearbox pulley (A) as shown in the illustration at right using retained hardware (B).

12. Locate key (A) in shaft.

13. Place countershaft pulley (B) onto shaft.

14. Place tapered bushing (A) onto shaft, align with key (B) in shaft and push bushing (A) into place.

15. Align slot in countershaft pulley (C) with key (D) in tapered bushing and slide pulley (C) onto bushing (A).

16. Align countershaft pulley (C) and gearbox pulley (F) by placing a straight edge across the pulley faces. Align to within 1/16 in. (1.5 mm).

17. Install three bolts (E) in tapered bushing (A) and tighten to 18 ft·lbf (25 N·m).

18. Tap bushing (A) and re-torque. Repeat until bolts no longer turn at 18 ft·lbf (25 N·m).
19. Install hub (B) and sprocket with three bolts and nuts (A). Tighten to 83 ft·lbf (112 N·m).

20. Install knife drive V-belts (B). Refer to *Installing Double V-Belts – A30-D Left Side, page 220.*

3.7.3 Setting Auger Speed

Optional drive sprockets provide different auger speed ranges.

- Increase auger speed at high ground speed, or in heavy crop conditions.
- Decrease auger speed at low ground speed or in light crop conditions.

NOTE:
Adjusting auger speed can change your windrow shape:

- Higher auger speeds place more crop in the center of the windrow.
- Lower auger speeds place more crop at the edges of the windrow.

A30-D auger speed is fixed to the engine rpm. An optional 19-tooth drive sprocket provides lower auger speeds. Refer to *2.3 Product Specifications, page 29* for available auger speeds at rated tractor rpm.

⚠️ **CAUTION**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
Change auger drive sprockets as follows:

1. Remove auger drive chain (A). Refer to Removing Auger Drive Chain, page 227.
2. Remove three bolts (B) attaching sprocket to pulley, and remove sprocket.
3. Attach applicable sprocket to pulley with three bolts, and torque to 75 ft·lbf (102 N·m).

3.7.4 Setting Reel Speed

Reel speed should be set to match ground speed, or about 10% faster. Optional drive sprockets provide different reel speed ranges.

The A30-D reel speed is fixed to the engine rpm and auger speed. An optional 19-tooth drive sprocket provides lower reel speeds if necessary.

Refer to 2.3 Product Specifications, page 29 for available reel speeds at rated tractor rpm.

Change auger drive sprockets, as follows:

⚠️ CAUTION ⚠️

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove reel drive belt (A) and reel drive chain (B) from drive sprocket. Refer to the following sections:
 • Removing Reel Drive Chain – A30-D, page 224
 • Removing Reel Drive Belt, page 225
2. Remove snap ring (C) from pulley (D), and remove pulley.
3. Remove three bolts attaching sprocket to pulley, and remove sprocket.
4. Attach applicable sprocket to pulley with three bolts, and torque to 75 ft·lbf (102 N·m).
5. Replace pulley, and install snap ring.
6. Replace reel drive chain and belt. Refer to the following sections:
 • Installing Reel Drive Chain – A30-D, page 224
 • Installing Reel Drive Belt, page 226
3.7.5 Setting Auger Position

⚠️ CAUTION

To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

Auger position has been factory-set, and should not normally require adjustment.

For nearly all conditions, the auger performs best when set as close as possible to the stripper bars without rubbing. This is especially important in grass and other crops that have a tendency to wrap.

Component wear may cause clearances to become excessive, resulting in feeding problems and uneven windrows.

To make adjustments to auger position, refer to these sections depending on your equipment:

- Setting Auger Fore-Aft Position, page 62
- Setting Auger Vertical Position, page 65

NOTE:

In heavier crops it may be necessary to remove the front stripper bar for smoother crop flow across the auger. Refer to 6.11.3 Stripper Bar, page 253.

NOTE:

The auger should clear the stripper bars on the auger pan by approximately 1/32–5/32 in. (1–4 mm). Shimming the stripper bars may be required. Refer to 6.11.3 Stripper Bar, page 253.

Setting Auger Fore-Aft Position

⚠️ CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.
1. Open left-hand endshield.

2. Loosen auger drive chain (A) as follows:
 a. Loosen nut (B) on idler sprocket support.
 b. Turn adjuster bolt (C) to loosen chain (A).

3. Loosen four nuts (A).

4. Loosen jam nut on adjuster bolt (B), and turn adjuster bolt (B) to adjust auger fore-aft position.

5. Tighten jam nut and four nuts (A).

6. Tighten auger drive chain (A) as follows:
 a. Turn adjuster bolt (C) to achieve 1/4 in. (6 mm) slack at mid-span of chain (A).
 b. Tighten nut (B) on idler sprocket support.
 c. Rotate auger, and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.
7. Open right-hand endshield.
8. Loosen reel drive belts (A) as follows:
 a. Loosen nuts (C).
 b. Loosen jam nut on adjuster bolt (B), and turn adjuster bolt (B) to loosen reel drive belts.

10. Loosen jam nut on adjuster bolt (B), and turn adjuster bolt (B) to adjust auger fore-aft position.
11. Tighten nuts (A) and jam nut.
12. Check reel drive chain tension. Total chain slack at (A) should be 1/4 in. (6 mm). If necessary, adjust chain slack as follows:
 a. Loosen bolt (B) on sprocket and jam nut on adjuster bolt (C).
 b. Turn adjuster bolt (C) to move idler sprocket downward until chain slack is achieved as above.
 c. Rotate auger, and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.
 d. Tighten jam nut at (C) and nut (B) on sprocket. Recheck tension.

13. Close shields before engaging header.

Setting Auger Vertical Position

⚠️ CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. Open left-hand endshield.
2. Loosen auger drive chain (A) as follows:
 a. Loosen nut (B) on idler sprocket support.
 b. Turn adjuster bolt (C) to loosen chain (A).
3. Loosen four nuts (A).
4. Loosen jam nut on the two adjuster bolts (B), and turn the two adjuster bolts (B) to adjust auger vertical position.
5. Tighten jam nut and four nuts (A).
6. Tighten auger drive chain (A) as follows:
 a. Turn adjuster bolt (C) to achieve 1/4 in. (6 mm)
 slack at mid-span of chain (A).
 b. Tighten nut (B) on idler sprocket support.
 c. Rotate auger, and check chain for slack at tightest
 point. Readjust position of idler sprocket to
 achieve required slack.

Figure 3.72: A30-D Left Side

7. Open right-hand endshield.
8. Loosen reel drive belts (A) as follows:
 a. Loosen nuts (C).
 b. Loosen jam nut on adjuster bolt (B), and turn
 adjuster bolt (B) to loosen reel drive belts (A).

Figure 3.73: A30-D Right Side

10. Loosen jam nuts on adjuster bolts (B), and turn adjuster bolts (B) to adjust auger vertical position.

11. Tighten nuts (A) and jam nuts.

12. Check reel drive chain tension. Total chain slack at (A) should be 1/4 in. (6 mm). If necessary, adjust as follows:
 a. Loosen bolt (B) on sprocket and jam nut on adjuster bolt (C).
 b. Turn adjuster bolt (C) to move idler sprocket downward until chain slack is achieved as above.
 c. Rotate auger, and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.
 d. Tighten jam nut at (C) and nut (B) on sprocket. Recheck tension.

13. Close shields before engaging header.

3.7.6 Setting Reel Position

Reel position has been found to be a critical factor in achieving good results in adverse conditions. Reel position is factory-set for average straight standing crop. It can be adjusted both vertically and horizontally (fore-aft) for different crop conditions.

See table below for recommended reel position in unusual crop conditions:

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Reel Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop down or lodged</td>
<td>Forward and down (also increase reel speed)</td>
</tr>
<tr>
<td>Wet or dead material collects on cutterbar and plugs knife</td>
<td>Back and down (close to guards)</td>
</tr>
<tr>
<td>Short crop</td>
<td>Back</td>
</tr>
<tr>
<td>Thick stemmed or heavy standing</td>
<td>Up and forward</td>
</tr>
</tbody>
</table>

To make adjustments to reel position, refer to the following sections:

- Setting Reel Fore-Aft Position, page 68
- Setting Reel Vertical Position, page 69
Setting Reel Fore-Aft Position

The reel fore-aft offset is factory-set to 32-3/8 in. (816 mm) as measured from the inside edge of the reel tube to the back frame member as shown in Figure 3.76: Reel Fore-Aft Offset, page 68.

NOTE:
The reel must be adjusted equally on both sides.

⚠️ CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. Open left-hand endshield.
2. Loosen four nuts (A).
3. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust fore-aft position.
4. Tighten jam nut, and four nuts (A).

5. Open right-hand endshield.
6. Loosen the reel drive chain (A) as follows:
 a. Loosen nut (B) on sprocket.
 b. Loosen jam nut on adjuster bolt (C), and turn adjuster bolt (C) to loosen chain.
7. Loosen four nuts (A).
8. Loosen jam nut on adjuster bolt (B), and turn adjuster bolt to adjust reel fore-aft position.
9. Tighten jam nut, and four nuts (A).

10. Tighten reel drive chain (A) as follows:
 a. Turn adjuster bolt (C) to tighten chain until total chain slack at (A) is 1/4 in. (6 mm).
 b. Tighten jam nut at (C) and nut (B), and recheck tension.
11. Close shields before engaging the header.

Setting Reel Vertical Position

⚠️ CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. Open left-hand endshield.
2. Loosen four nuts (A).
3. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to raise or lower reel.

4. Tighten jam nuts and nuts.

5. Open right-hand endshield.

6. Loosen reel drive chain (A) as follows:
 a. Loosen nut (B) on sprocket.
 b. Loosen jam nut on adjuster bolt (C), and turn adjuster bolt (C) to loosen chain.

7. Loosen four nuts (A).
8. Loosen jam nuts on adjuster bolts (A), and turn adjuster bolts to raise or lower reel.

NOTE:
The factory setting at forward adjuster bolt should be 15/32 in. (12 mm) lower than at rear adjuster bolt. If tine aggressiveness has changed then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

9. Tighten jam nuts and four nuts.

10. Tighten reel drive chain (A) as follows:
 a. Turn adjuster bolt (C) to tighten chain until total chain slack at (A) is 1/4 in. (6 mm).
 b. Tighten jam nut at (C) and nut (B) and re-check tension.

11. Close shields before engaging header.

12. Check that reel rotates freely.

IMPORTANT:
Manually rotate reel, and ensure that tines do not contact header pan, otherwise damage to pan will result. If necessary, grind off excessive length from tine if tine length varies considerably. Remove any sharp edges or burrs from tine.

13. Check that reel is evenly adjusted.
Checking Reel Tine to Header Pan Clearance

IMPORTANT:
The dimensions at right are provided as guidelines only. Tines may slightly contact the guards, but **NOT** the knife sections or the auger pan.

1. Rotate reel slowly by hand, and check tine clearance at knife and pan. Flex tines to simulate crop-loaded position to ensure tine clearances to knife sections and auger pan are adequate for working conditions.
2. Check that reel rotates freely.

NOTE:
If there are a few reel tines that are touching the pan while the rest are at the correct height, trim the longer tines to match the rest. Be sure to adjust both sides of the reel.

3.7.7 Setting Cutting Height

1. Raise header, and engage lift cylinder lock-outs.
2. Remove pins (A) at each skid shoe or gauge roller.
3. Raise or lower skid shoe or gauge roller to desired position.
4. Replace pins (A).
5. Check that skid shoes or gauge rollers are adjusted to the same position.

6. Check header float, and adjust if required. Refer to 3.7.10 Setting Float, page 76

NOTE:
The two outboard skid shoes are standard equipment.

3.7.8 Setting Tine Aggressiveness

⚠️ CAUTION
To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. Open right-hand endshield.

2. At right side of reel (cam end) ONLY, loosen four nuts (A).
3. Loosen jam nuts on bolts (A), and turn bolts to rotate cam to desired position. Viewed from right side, rotate cam clockwise to obtain more aggressive tine action.

4. Tighten nuts (A), and jam nuts on bolts.

5. Check that chain and/or belt have NOT become over-tight. Adjust to recommended tension if required. Refer to the following:
 - Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223
 - Checking/Adjusting Reel Drive Belt Tension, page 224.

6. Check reel tine to header pan clearance to ensure that there is no contact between reel tines and the header pan. Refer to Checking Reel Tine to Header Pan Clearance, page 72.

3.7.9 Setting Header Angle

Header (or guard) angle can be varied from 8–16 degrees below horizontal. Choose an angle that maximizes performance for your crop and field conditions.

A flatter angle provides better clearance in stony conditions while a steeper angle is required in down crops for better lifting action.
Mechanically Adjusting Header Angle

Mechanical adjustment is standard on the A30-D mower conditioner.

1. Lower header so that cutter bar is resting on the ground.
2. Loosen nut (A).
3. To decrease (flatten) header angle, rotate the turnbuckle sleeve (B) so that the turnbuckle decreases in length.
4. To increase (steepen) header angle, rotate the turnbuckle sleeve (B) so that the turnbuckle increases in length.
5. Snug up nut (A), but do **NOT** over-tighten. A slight tap with a small hammer is sufficient.
6. Check cutting height, and adjust if required. Refer to **3.7.7 Setting Cutting Height, page 72**.
7. Check header float, and adjust if required. Refer to **3.7.10 Setting Float, page 76**.

Hydraulically Adjusting Header Angle

Hydraulic adjustment is optional on the A30-D header. With the hydraulic option installed, header angle can be adjusted from the tractor, without shutting down the mower conditioner.

1. To decrease (flatten) header angle, operate tractor hydraulic control so that cylinder retracts, decreasing the number of holes in the gauge (A) that are exposed.
2. To increase (steepen) header angle, operate tractor hydraulic control so that cylinder extends, increasing the number of holes in the gauge that are exposed.
3.7.10 Setting Float

Float should be set for your field and crop conditions. Float should be light enough to float over obstacles such as mole hills or gopher mounds, but heavy enough so that mower conditioner comes back easily to its former cutting height, and does not skip over crop.

IMPORTANT:
Float setting (or lifting force) must be equal on both ends of the mower conditioner. Left-hand and right-hand ends require different spring lengths to achieve equal float at both ends. Normal flotation settings require 70 lbf (311 N) lifting force to lift header just off the ground. Rough or stony conditions may require changing the flotation settings to 35–50 lbf (156–222 N) of lifting force.

IMPORTANT:
Because mower conditioner weight transfers to outside tire whenever mower conditioner is swung from one side to the other, tires must be fully inflated (30 psi [207 kPa]) to minimize effects on float.

⚠️ **CAUTION**

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. Position mower conditioner directly behind tractor, and raise mower conditioner fully.
2. Stop engine, remove key, and engage lift cylinder lock-outs.
3. Back jam nuts (A) away from spring.
4. **To increase float,** turn adjuster bolts (B) clockwise (further into spring).
5. **To decrease float,** turn adjuster bolts (B) counterclockwise.

NOTE:
Springs must be adjusted in pairs. Each spring pair may have different adjustment settings.
6. Tighten jam nuts (A) against spring inserts to secure the setting.
7. Lower mower conditioner and check header float at each end.

NOTE:
Other operating variable adjustments may affect float setting. Check the float, and readjust if necessary after adjusting reel position, cutting height, or header angle.

NOTE:
If using a tractor with drawbar height different than 16 in. (406 mm) float will be affected. Adjust as required.
3.7.11 Setting Feed Pan and Rock Drop Tine Position

The rear of the feed pan is adjustable up and down to raise or lower the feed pan and rock drop tines.

- Lowering the feed-pan helps prevent plugging in heavy crop.
- Raising the feed-pan helps to form an even windrow in light crop.

WARNING

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under mower conditioner for any reason.

1. Raise mower conditioner fully, and engage header lift cylinder stops.
2. Stop engine and remove key.
3. Loosen nut (A) both sides, and align pointer (B) at each side of rock drop tine support with one of the slots (C) to match crop condition.
4. Tighten hardware on both sides.
5. Disengage header lift cylinder stops.

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Light</th>
<th>Normal</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>Upper</td>
<td>Center</td>
<td>Lower</td>
</tr>
</tbody>
</table>

3.7.12 Adjusting Conditioner Roll Gap

The roll gap determines the amount of conditioning:

- To reduce conditioning, increase roll gap.
- To increase conditioning, decrease roll gap.

The conditioner roll gap is factory-set at 1/4 in. (6 mm).

CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.
1. Loosen and back-off upper jam nut (A), on both sides of conditioner.

2. **To increase roll gap**, turn lower nut (B) to raise link, and increase the gauge (C) setting.

3. **To decrease roll gap**, turn lower nut (B) to lower link, and decrease the gauge (C) setting.

4. Tighten jam nuts (A), both sides.

5. Loosen bolt (A), and rotate cover (B) to expose access port (C).

6. Inspect space between roll bars at both ends of the rolls at access port (C).

IMPORTANT:
Roll timing and alignment are critical when the roll gap is decreased because:
- Conditioning is affected
- The bars may contact each other

7. Check roll timing and alignment when reducing roll gap. Refer to:
 - 6.12.13 Checking/Adjusting Roll Timing, page 278
 - 6.12.12 Checking/Adjusting Roll Alignment, page 277

8. Close cover (B), and tighten bolt (A).

3.7.13 Adjusting Conditioner Roll Tension

The roll tension (the force holding the rolls together) is factory-set, and is adjustable. There is a spring for each end of the roll.
CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. Lower header fully.
2. Stop engine, and remove key.
3. To increase the roll tension, loosen jam nut (B) at spring insert, and turn spring drawbolt (C) clockwise to tighten the spring. Tighten jam nut (B).
4. To decrease the roll tension, loosen jam nut (B) at spring insert, and turn spring drawbolt (C) counterclockwise to loosen the spring. Tighten jam nut (B).
3.7.14 Positioning the Forming Shields

WARNING

Keep hands and feet away from discharge opening. Keep everyone several hundred feet away from your operation. Never direct the discharge toward anyone. Stones or other foreign objects can be ejected with force.

The position of the forming shields controls the width and placement of the windrow. The decision on forming shield position (settings between 36–92 in. [915–2346 mm]) should be made based on the following factors:

- Weather conditions (rain, sun, humidity, wind)
- Type and yield of crop
- Drying time available
- Method of processing ("green-feed", bales, silage)

A wider windrow will generally dry faster and more evenly, resulting in less protein loss. Fast drying is especially important in areas where the weather allows only a few days to cut and bale. Refer to 5.3 Haying, page 165 for more information.

Where weather conditions permit or when drying is not critical, for example, when cutting for silage or green-feed, a narrower windrow may be preferred for ease of pick-up.

Positioning Side Deflectors

The position of the side forming shields controls the width and placement of the windrow.

CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

To ensure windrow placement is centered with respect to carrier/drive wheels, adjust both side deflectors to the same hole position on the adjuster bar.

1. Set forming shield side deflectors to desired width by repositioning adjuster bar.
 a. Remove hairpin and clevis pin (A).
 b. Move adjuster bar (B) to another hole.
 c. Reinstall clevis pin (A) and hairpin.

![Figure 3.101: Forming Shield Side Deflector](image-url)
2. If forming shield attachment is too tight or too loose, back off top nut at (A), and adjust lower nut at (B) as required. Then, holding lower nut with a wrench, tighten top nut securely against lower nut.

![Figure 3.102: Forming Shield Adjustment](image)

Positioning Rear Deflector (Fluffer Shield)

The rear deflector (A) slows the crop exiting the conditioner rolls, directs the flow downward, and fluffs the material.

⚠️ CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

1. For more crop control in light material, lower the deflector (A) by pushing down on one side of the deflector, and then on the other side. Locking handles (B) are located at either end of deflector, and may be loosened slightly.

2. For heavier crops, raise the deflector (A) by pulling up on one side, and then on the other side.

NOTE:
For even windrow formation, be sure the deflector is NOT twisted.

![Figure 3.103: A30-D](image)
3.8 Recommended Operating Settings

These settings are intended as a starting point. Operators should fine-tune to crop and field conditions. Also, refer to the A-Series Auger Header Quick Card that was included in your shipment.

The settings chart continues on the next page.

<table>
<thead>
<tr>
<th>Field Conditions</th>
<th>Operating Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Type</td>
<td>Crop Condition</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>Smooth</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
</tr>
<tr>
<td></td>
<td>Smooth</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
</tr>
<tr>
<td>Timothy</td>
<td>Smooth</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
</tr>
<tr>
<td></td>
<td>Smooth</td>
</tr>
<tr>
<td>Sudan/Tall Crop</td>
<td>Smooth</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
</tr>
<tr>
<td></td>
<td>Smooth</td>
</tr>
</tbody>
</table>
Field Conditions

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Crop Condition (tons per acre)</th>
<th>Terrain</th>
<th>Stubble Height in (mm)</th>
<th>Header Angle</th>
<th>Knife Speed (spm)</th>
<th>Reel Speed (rpm)</th>
<th>Auger Speed</th>
<th>Float</th>
<th>Feed Pan Position</th>
<th>Roll Gap in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticale (winter forage)</td>
<td>>10</td>
<td>Smooth</td>
<td>0</td>
<td>Steep</td>
<td>60–65</td>
<td>Normal/High</td>
<td>Light</td>
<td>Center Slot</td>
<td>1 (25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>10</td>
<td>Rocky</td>
<td></td>
<td>Shallow</td>
<td>1600–1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodged</td>
<td>Smooth</td>
<td>Steep</td>
<td>Middle</td>
<td>70–75</td>
<td>Normal/High</td>
<td>Heavy</td>
<td>Light/Normal</td>
<td>Variable</td>
<td>See Above</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
<td>Shallow</td>
<td></td>
<td>462</td>
<td>1850–1950</td>
<td>65–70</td>
<td>Low/Normal</td>
<td>Upper Slot</td>
<td>1/4 (6)</td>
<td></td>
</tr>
<tr>
<td>Wild/Grass Hay</td>
<td>>3.5</td>
<td>Smooth</td>
<td>Steep</td>
<td>70–75</td>
<td>Normal</td>
<td>Normal</td>
<td>Light</td>
<td>Center Slot</td>
<td>1/4 (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
<td>Shallow</td>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodged</td>
<td>Smooth</td>
<td>Steep</td>
<td>Middle</td>
<td>73–77</td>
<td>Normal/High</td>
<td>Heavy</td>
<td>Light/Normal</td>
<td>Variable</td>
<td>See Above</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revision A
3.9 Transporting the A30-D Mower Conditioner

This section describes the methods and procedures to transport the A30-D mower conditioner. Refer to 4.3 Transporting A40-D Header with Windrower, page 135.

3.9.1 Towing A30-D Mower Conditioner

Preparing A30-D for Transport

Charge the steering circuit as follows:

1. Connect two articulated power turn (APT) steering cylinder hoses to a tractor hydraulic circuit.
2. Steer mower conditioner completely to the left, then right. Repeat three or four times.
3. Steer mower conditioner so that it is centered behind the towing vehicle.
4. Close the lock-out valve (A) on the APT.
5. Raise header fully, and engage both header lift cylinder lock-out valves (A).
OPERATION: A30-D PULL-TYPE MOWER CONDITIONER

⚠️ WARNING

- Do NOT tow unless the steering cylinder is fully charged. If steering cylinder is not fully charged, loss of control can result in injury or death.
- Do NOT tow unless the transport lock pin is in place.

6. Install the transport pin as follows.
7. Remove pin from storage at aft end of APT.

8. Line up holes in APT and frame, and install transport lock pin (A) as shown.
9. Secure with lynch pin (B).
10. Check that jack is properly attached in storage position on APT and secured with pin (B).

11. Keep slow-moving vehicle (SMV) sign, reflectors, and lights clean and visible at rear of mower conditioner.

12. Ensure tires are properly inflated.

13. For towing procedures, refer to one of the following depending on your equipment:
 - Towing A30-D with a Tractor, page 87
 - Towing A30-D with a Truck, page 88

Towing A30-D with a Tractor

This procedure assumes that you have already prepared the mower conditioner for transport. If not, see Preparing A30-D for Transport, page 85.

To tow the mower conditioner with a tractor, follow these steps:

1. Hook up mower conditioner to tractor. For details on attaching the mower conditioner to the tractor, refer to 3.2 Attaching Mower Conditioner to Tractor, page 37.

 NOTE:
 The hydraulic hoses do **NOT** need to be attached to the tractor for towing. Ensure they are securely stored on the articulated power turn (APT).

 NOTE:
 The power take-off (PTO) does not need to be attached for towing purposes. If not attached, lower hook (A), store driveline on hook, and remove forward half (B) of driveline. Store forward half in cab for transport.

2. Ensure that APT safety chain is properly attached to towing vehicle. Provide only enough slack in chain to permit turning.

3. Check local laws for width regulations and lighting or marking requirements before transporting on roads.

4. Do **NOT** exceed 20 mph (32 km/h).
Towing A30-D with a Truck

⚠️ CAUTION

Do not tow with a vehicle weighing less than 7500 lb (3400 kg). Ensure that the capacity of the towing vehicle is sufficient to maintain control.

This procedure assumes that you have already prepared the mower conditioner for transport. If not, see Preparing A30-D for Transport, page 85.

To tow the mower conditioner with a truck, follow these steps:

1. Store hydraulic hoses on the articulated power turn (APT) as shown (C).
2. Lower hook (A), and place driveline in hook.
3. Remove the forward half (B) of driveline, and store in truck for transport.

4. Position towing adapter (A) on APT, and secure with pins (B).
5. Attach mower conditioner to truck.
6. Remove jack from working position, and store on APT. Secure with pin.
7. Wrap safety chain around APT, and attach to truck frame (A).
8. Connect electrical harness (B).
9. Check local laws for width regulations and lighting or marking requirements before transporting on roads.
10. Do **NOT** exceed 20 mph (32 km/h).

3.9.2 Transporting A30-D on a Flatbed Trailer

To transport the mower conditioner on a flatbed trailer, proceed as follows:

⚠️ **CAUTION**

Use the following procedures when transporting the mower conditioner on a flatbed trailer.

Loading Mower Conditioner on Flatbed Trailer

1. Lower mower conditioner to the ground, and move the cylinder lock-out valve handle to the horizontal position at both lift cylinders.

2. Retract header angle control link to minimum.
3. Unhook mower conditioner from tractor. Refer to [3.3.1 Unhooking Drawbar, page 43](#).
4. Tie hoses to articulated power turn (APT).
5. Remove tall crop dividers (if equipped) as follows:
 a. Remove U-bolt (A) and bolts (B) securing crop divider (C) to lean bar, and remove crop divider.
 b. Repeat for crop divider at opposite end.

6. To remove complete forming shield group, remove pins (A).

7. Disassemble adjuster bars (B) from side deflectors (C). Note orientation of hardware.

8. Remove nuts (A), and drop side deflectors from frame (B).
9. Remove ten bolts (A) attaching forming shield cover to frame.

10. Remove two bolts (A), and lower rear of forming shield to ground.

11. Remove two bolts (B), and detach forming shield from frame.

12. Remove pin at rod end of APT steering cylinder, and move cylinder away from frame. Reinsert pin in clevis.
13. Ensure temporary transport lock pin (A) is in storage location.

14. Swing APT to the left as far as possible without damaging hydraulic lines.

WARNING

To avoid tipping over, the header must be resting on the ground prior to swinging the APT.

IMPORTANT:
The APT must NOT widen the shipping package.

15. Secure APT to frame hook to prevent movement. Use cardboard or suitable material under the tie to protect paint.
16. Secure the steering cylinder to the frame with wire. Wrap tie around clevis, and use cardboard or suitable material under the tie to protect paint on the frame.

⚠️ CAUTION

Equipment used for unloading must meet or exceed the requirements specified below. Using inadequate equipment may result in chain breakage, vehicle tipping or machine damage.

Requirements – Lifting Vehicle:
• Minimum Lifting Capacity: 8500 lb (3865 kg)
• Minimum Lifting Height: 15 ft (4.5 m)

Requirements – Chain:
• Type: Overhead Lifting Quality (1/2 in)
• Minimum Working Load: 5000 lb (2270 kg)
17. Attach a chain to each frame hook (A) and a chain
to each end of the lean bar at (B). Chain **MUST** pass
through hole at end of lean bar.

18. Position forklift from either front or back of mower
conditioner, and lift slightly off the ground.

19. Remove the wheels by removing bolt (A), and pulling
wheel/axle assembly from frame.
20. Lift mower conditioner, and back the flatbed trailer under the unit. The mower conditioner can be positioned with the APT towards the front or rear of the flatbed.

21. Lower mower conditioner onto flatbed, so that its weight rests on the frame and sloped edge of header end panels, or cutterbar as shown.

22. Remove four bolts (A), and remove the lean bar to minimize load width. Secure lean bar to the flatbed.

23. Tie the unit and the end of the APT down securely.

Unloading Mower Conditioner from Flatbed Trailer

1. Remove tie downs.
2. Install lean bar onto mower conditioner with four bolts (A).

3. Attach a chain to each frame hook (A), and a chain to each end of the lean bar at (B). Chain **MUST** pass through hole at end of lean bar.
CAUTION

Equipment used for unloading must meet or exceed the requirements specified below. Using inadequate equipment may result in chain breakage, vehicle tipping or machine damage.

Requirements – Lifting Vehicle:
• Minimum Lifting Capacity: 8500 lb (3865 kg)
• Minimum Lifting Height: 15 ft (4.5 m)

Requirements – Chain:
• Type: Overhead Lifting Quality (1/2 in)
• Minimum Working Load: 5000 lb (2270 kg)

4. Position forklift from either front or back of mower conditioner, lift slightly off the flatbed, and move flatbed from beneath mower conditioner.

5. Lower mower conditioner, and install wheel/axle assemblies onto mower conditioner. Secure axle to frame with bolt (A), and tighten to required torque.

6. Lower mower conditioner to ground, and remove lifting chains.

7. Remove tie securing steering cylinder to frame.
8. Remove tie securing articulated power turn (APT) to frame.

9. Swing APT to working position.

10. Attach steering cylinder rod end (A) to frame.
11. Attach forming shield to frame using two bolts (B).

12. Lift lower rear of forming shield off ground, and then install two bolts (A).

13. Use ten bolts (A) to attach forming shield cover to frame.

14. Attach side deflectors to frame (B) with nuts (A).
15. Attach adjuster bars (B) to side deflectors (C).
16. Insert pins (A).

17. Move lift cylinder lock out valve handles to vertical position.
3.10 Unplugging Conditioner and Knife: Pull-Type

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Stop forward movement of the tractor, and stop the power take-off (PTO).
2. Raise the machine, and slowly engage the PTO.

NOTE:

Raising the mower conditioner automatically raises the top roll to ease plug removal.

3. If plug does not clear, with machine still raised, shut off engine, remove key, and lock tractor brakes.

4. Engage lift cylinder lock-out valves.

WARNING

Wear heavy gloves when working around or handling knife.

5. Clean off cutterbar and area under reel by hand.
6. Retrieve wrench from storage inside the left-hand drive compartment.

7. Use wrench on left-hand end of primary driveshaft to turn rolls forward until plug clears.
8. Return wrench to storage location, and secure in place with pin.

WARNING

Return unplug wrench to storage location, and close left-hand driveshield before restarting machine.

NOTE:

If plugging persists, refer to 9 Troubleshooting, page 295.
4 Operation: A40-D Self-Propelled Windrower Auger Header

This chapter will describe the operating procedures of the A40-D SP Auger Header.

4.1 Attaching A40-D Header to SP Windrower

Refer to your windrower operator’s manual for procedures for mechanically attaching the auger header to the self-propelled windrower and for modifications if required to the windrower hydraulic connections.

Refer to the following procedures for electrical and hydraulic connections. Header drive hydraulic hoses and electrical harness are located on the left-hand cab-forward side of the windrower.

IMPORTANT:
For M150, M155, M155E4, and M200 windrowers with Reverser kit MD #B4656 installed, hose plumbing to the reverser valve must be changed if switching between a D-Series draper header with a conditioner and an A40-D auger header to prevent draper header reel damage and improper operation. Refer to 4.1.5 Configuring Reverser Valve Jumper Hose, page 123 and if necessary to instruction MD #169213 (Reverser Kit Installation Instructions), available from our Dealer-only site (https://portal.macdon.com) (login required).

NOTE:
Header reel motor hose routing must be properly configured before attaching the header to a windrower. The header is factory-configured for M150, M155, M155E4, and M200 windrowers. For M100, M105, or M205 windrowers, refer to:
• 4.1.1 Attaching to M100 or M105, page 103
• 4.1.4 Attaching to M205, page 118

4.1.1 Attaching to M100 or M105

⚠️ CAUTION
To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

M100 and M105 Self-Propelled Windrowers are factory-equipped with four header drive hoses on the left-hand side.
1. Disengage rubber latch (A) and open driveline shield (B).

2. Remove the cap (A) from electrical connector and remove connector from support bracket.

3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

4. Move hose/electrical bundle (A) to header.

5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.

6. Remove cover on header electrical receptacle (E).

7. Push connector onto receptacle and turn collar on connector to lock it in place.

8. Attach cover to mating cover on windrower wiring harness.

9. Remove caps from hydraulic couplers. Clean if necessary.
NOTE:
At (C), later-built 2015 will have a “tee” going to case drain on square reel motor only.

10. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

Figure 4.5: Early-Build 2015, 2014 and Earlier Standard Header – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)
A - Reel Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure

Figure 4.6: 2015 Grass Seed Header Hose Connectors
A - Reel and Auger Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure
11. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.

12. Secure with three straps (D), and lower lever (B).

13. If valve blocks are NOT configured as shown, install required fittings as described in the A40-D Auger Self-Propelled Windrower Header Unloading and Assembly Instructions that were supplied with your A40-D Auger Header.
14. Push auger/reel pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

![Figure 4.10: Auger/Reel Pressure and Auger/Reel Return Hose Couplers – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)](image)

15. Open header left driveshield and check hose routing at the reel motor.

NOTE:
Reel drive motor may not be exactly as shown. Later-build 2015 A40-D units have a square reel motor; Early-Build 2014 A40-D (and 2014 and earlier units) have a round reel motor. The image at the right shows a square reel motor and so is a later-build model.

The hose routing depends on which windrower model the header is being attached to. The header is factory-configured for M150, M155, and M200 Windrowers.

![Figure 4.11: Auger/Reel Pressure and Auger/Reel Return Valve Block Receptacles](image)

![Figure 4.12: Factory Routing M150, M155, and M200 – Later-Build 2015 shown](image)

A - Reel Motor
B - Auger Motor
16. For procedure to change hose routing for M100 or M105 Windrowers, refer to the section based on the year of manufacture:

- Later build 2015: 4.1.7 Hydraulic Drive Hose Routing (Later-Build 2015 A40-D Units Only), page 126
- Early-build 2015, 2014 and earlier: 4.1.6 Hydraulic Drive Hose Routing (Early-Build 2015, 2014 and Earlier A40-D for use on M100, M105 and M205 Windrowers Only), page 124

4.1.2 Attaching to M150, M155, or M155E4

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

M150, M155, and M155E4 self-propelled windrowers are factory-equipped with four header drive hoses on the left-hand side.

Figure 4.13: Modified Routing M100, M105, and M205 – Later Build 2015 shown

Figure 4.14: Header Drive Hoses
1. Disengage rubber latch (A) and open driveline shield (B).

2. Remove the cap (A) from electrical connector and remove connector from support bracket.

3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

4. Move hose/electrical bundle (A) to header.

5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.

6. Remove cover on header electrical receptacle (E).

7. Push connector onto receptacle and turn collar on connector to lock it in place.

8. Attach cover to mating cover on windrower wiring harness.

9. Remove caps from hydraulic couplers. Clean if necessary.
NOTE:
At (C), later-built 2015 will have a “tee” going to case drain on square reel motor only.

10. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

Figure 4.18: Early-Build 2015, 2014 and Earlier Standard Header – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)
A - Reel and Auger Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure

Figure 4.19: 2015 Grass Seed Header Hose Connectors
A - Reel and Auger Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure
11. Route auger return and reel pressure hose bundle (A) from header to windrower and position bundle above existing hose support (C) as shown.

12. Secure with three straps (D) and lower lever (B).
13. If valve blocks are **NOT** configured as shown at right, install required fittings as described in the A40-D Auger Self-Propelled Windrower Header Unloading and Assembly Instructions, which were supplied with your A40-D Auger Header.

14. Push auger pressure (A) at port R2 and auger/reel return (B) hose couplers onto mating receptacles on knife valve block port R2 until collar on receptacle snaps into lock position.

15. Proceed to 4.1.5 Configuring Reverser Valve Jumper Hose, page 123.
4.1.3 Attaching to M200

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

The M200 Windrower requires four drive hoses to run an A40-D Auger Header.

If only three drive hoses are present, before following the procedure below, configure the M200 to run an A40-D Auger Header by installing kit MD #B4651. The kit includes an additional hose, hardware, and installation instructions.

1. Disengage rubber latch (A), and open driveline shield (B).

Figure 4.25: Drive Hoses

Figure 4.26: Kit MD #B4651

Figure 4.27: Driveline Shield
2. Remove cap (A) from electrical connector, and remove connector from support bracket.

3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

4. Move hose/electrical bundle (A) to header.

5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.

6. Remove cover on header electrical receptacle (E).

7. Push connector onto receptacle, and turn collar on connector to lock it in place.

8. Attach cover to mating cover on windrower wiring harness.

9. Remove caps from hydraulic couplers. Clean if necessary.

NOTE:
At (C), later-build 2015 units will have a “tee” going to case drain on square reel motor only.

10. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.
Figure 4.31: 2015 Grass Seed Header Hose Connectors
A - Reel and Auger Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure

Figure 4.32: 2015 Grass Seed Header Hose Connectors Side View
11. Route auger return and reel pressure hose bundle (A) from header to windrower and position bundle above existing hose support (C) as shown.

12. Secure with three straps (D) and lower lever (B).
13. If valve blocks are **NOT** configured as shown above, install required fittings as described in the A40-D Auger Self-Propelled Windrower Header Unloading and Assembly Instructions, which were supplied with your A40-D Auger Header.

![Figure 4.35: M200 With Reverser Valve](image1)

![Figure 4.36: M200 Without Reverser Valve](image2)

14. Push auger pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

15. Proceed to **4.1.5 Configuring Reverser Valve Jumper Hose**, page 123.

![Figure 4.37: Auger Pressure and Auger/Reel Return Hose Couplers – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)](image3)
4.1.4 Attaching to M205

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

The M205 windrower must be equipped with an auger drive basic kit and a completion kit as shown at right. If necessary, obtain the following kits from your MacDon Dealer and install them in accordance with the instructions supplied with the kits.

<table>
<thead>
<tr>
<th>Kit Description</th>
<th>MacDon Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Kit</td>
<td>MD #B5491</td>
</tr>
<tr>
<td>Reverser Kit</td>
<td>MD #B5492</td>
</tr>
<tr>
<td>Coupler</td>
<td>MD #B5497</td>
</tr>
</tbody>
</table>

1. Disengage rubber latch (A), and open driveline shield (B).

1. Reverser kit is optional and not required, although most A40-D headers have a Reverser kit (MD #B5492) ordered for the windrower. Check with the your Dealer, and install prior to hook-up if required.
2. Remove cap (A) from the electrical connector and remove the connector from the support bracket.

3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

4. Move hose/electrical bundle (C) to header.

5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.

6. Remove cover on header electrical receptacle (E).

7. Push connector onto receptacle, and turn collar on connector to lock it in place.

8. Attach cover to mating cover on windrower wiring harness.

9. Remove caps from hydraulic couplers. Clean if necessary.

NOTE:
At (C), later-build 2015 units will have a “tee” going to case drain on square reel motor only.

10. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.
Figure 4.43: 2015 Grass Seed Header Hose Connectors
A - Reel and Auger Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure

Figure 4.44: 2015 Grass Seed Header Hose Connectors Side View
A - Reel and Auger Pressure
B - Knife and Conditioner Return
C - Case Drain
D - Knife and Conditioner Pressure
11. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.

12. Secure with three straps (D), and lower lever (B).

13. Push auger/reel pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.
14. Check hose routing at the reel motor. The hose routing depends on which windrower model the header is being attached to. The header is factory-configured for M150, M155, M155E4, and M200 Windrowers.

NOTE:
Reel drive motor may not be exactly as shown.

15. For the procedure to change hose routing for M205 windrowers, refer to the section based on the year of manufacture:

- Later-build 2015: [4.1.7 Hydraulic Drive Hose Routing (Later-Build 2015 A40-D Units Only), page 126](#)
- Early-build 2015, 2014 and earlier: [4.1.6 Hydraulic Drive Hose Routing (Early-Build 2015, 2014 and Earlier A40-D for use on M100, M105 and M205 Windrowers Only), page 124](#)
4.1.5 Configuring Reverser Valve Jumper Hose

An optional reverser valve block (A) to reverse the header drive in the event of plugging may have been installed on M150, M155, and M200 Self-Propelled Windrowers. A jumper hose on this valve block has a specific routing for each model of auger header.

IMPORTANT:
If a reverser valve block (A) has been installed, the jumper hose (B) must be routed for the correct header model. Do **NOT** operate the header unless hose is routed as shown.

IMPORTANT:
ONLY for draper headers with conditioner installed and ONLY for M150, M155 and M200 windrowers: CR is routed to port ‘R4’ (not shown) on reverser block. When switching from draper header to auger header, jumper hose (B) must be routed according to header being operated to prevent draper header reel damage and improper operation.

To reroute jumper hose from A30-D or draper header position to A40-D position, follow these steps:

1. Move left-hand windrower platform to open position to expose hydraulic valve blocks.
2. Disconnect jumper hose (B) from 90 degree fitting (C) at port R4 on the reverser valve block (A).
3. Rotate 90 degree fitting (D) under reverser valve block so that hose can be routed to port C2 at (C) as shown in figure 4.52: Connected Jumper Hose, page 124 on the next page.
4. Remove cap from port C2 fitting (A) on header drive valve block (B).
5. Connect jumper hose (C) to port C2 fitting (A) on header drive valve block (B).
6. Install previously removed cap onto 90 degree fitting in port R4 on reverser valve block (D).
7. Move left-hand windrower platform back to normal operating position.

4.1.6 Hydraulic Drive Hose Routing (Early-Build 2015, 2014 and Earlier A40-D for use on M100, M105 and M205 Windrowers Only)

The A40-D Auger Header drive hose routing depends on the windrower model to which the header is being attached. To determine whether your 2015 A40-D is an early-build or later-build 2015 unit, refer to the IMPORTANT note below.

1. Press screwdriver against latch in opening (A) and lift to open header left-hand driveshield. Shield will latch at (B) to stay open.
2. Check hose routing at the reel motor. The header is factory-configured for M150, M155, and M200 Windrowers as shown in Figure 4.55: Early-Build 2015, 2014 and earlier Factory Configuration (M150, M155, and M200), page 125.
IMPORTANT:
If you have a 2015 A40-D SP windrower header, confirm whether you have an early-build or a later-build 2015 unit. Look at the reel motor (A). If it is **square**, then it is a later-build 2015 model. Refer to *4.1.7 Hydraulic Drive Hose Routing (Later-Build 2015 A40-D Units Only)*, page 126. If the reel motor (A) is **round**, then this procedure should be used.

To route hoses on early-build 2015, 2014 and earlier A40-D headers for use on M100, M105, and M205 windrowers, proceed as follows.

3. Disconnect hoses as follows:
 a. Disconnect hose (A) at tee (C).
 b. Disconnect hose (B) at reel motor upper port.
 c. Disconnect tee (C) at reel motor lower port.

4. Reconnect hoses as follows:
 a. Relocate tee (C) to reel motor upper port.
 b. Connect hose (B) to tee (C).
 c. Connect hose (A) to reel motor lower port.
5. Close driveline shield before engaging header.

4.1.7 Hydraulic Drive Hose Routing (Later-Build 2015 A40-D Units Only)

The A40-D Auger Header hydraulic drive hose routing depends on the windrower model to which the header is being attached. To determine whether your 2015 A40-D is an early-build or later-build 2015 unit, refer to the **IMPORTANT** note below.

The header is factory-configured for M150, M155, M155E4, and M200 SP Windrowers as shown in Figure 4.63: *Factory Configuration (M150, M155, M155E4, and M200)*, page 128. To route hoses for M100, M105, and M205 Windrowers, proceed as follows.

1. Press screwdriver against latch in opening (A) and lift to open header left-hand driveshield. Shield will latch at (B) to stay open.
2. Disengage rubber latch (A), and open driveline shield (B).

3. Loosen bulkhead nut (A) on auger and reel pressure coupler (B). This allows auger and reel pressure hose (C) to rotate freely.
OPERATION: A40-D SELF-PROPELLED WINDROWER AUGER HEADER

IMPORTANT:
If you have a 2015 A40-D SP windrower header, confirm whether you have an early-build or a later-build 2015 unit. Look at the reel motor (A). If it is square, then it is a later-build 2015 model and this procedure should be used. If the reel motor is round, then refer to 4.1.6 Hydraulic Drive Hose Routing (Early-Build 2015, 2014 and Earlier A40-D for use on M100, M105 and M205 Windrows Only), page 124.

4. Disconnect hoses as follows:
 a. Disconnect hose (A) at tee (B).
 b. Disconnect tee (B) at reel motor upper port.
 c. Disconnect hose (C) at reel motor lower port.

5. Cut cable ties (D) at locations shown in illustration.

6. Reconnect hoses as follows:
 a. Reroute hose (E) behind hose (A) and (F) to hose (C) and connect tee (B) to lower port fitting.
 b. Reroute hose (C) above hose (E) and (F) and connect hose (C) to tee (B). Tighten hose (C).
 c. Loosen 45 degree fittings at both ports. This allows room for wrenches when tightening tee (B) to lower port.
 d. Connect hose (A) to upper port fitting as shown and check orientation of 45 degree fitting.

 NOTE:
 Ensure that hose (A) is routed in front of hose (C) and (E).

 e. Confirm orientation of upper port 45 degree fitting, back-off tee (B), and tighten upper port fitting in position determined. Tighten hose (A).
 f. Check orientation of lower port 45 degree fitting and tighten.
 g. Connect tee (B) to lower port 45 degree fitting and tighten.
7. Secure hose routing with cable ties (A) as shown.

IMPORTANT:
Ensure that electrical harness (B) and reel motor case drain hose (C) are secured to hose (D) and that there is at least 1 in. (25 mm) clearance between hose bundle (E) and knife drive timing belt (F).

8. Rotate coupler (B) and hose (C) downward as shown until slack has been sufficiently reduced. Tighten bulkhead nut (A).
9. Close driveline shield (B) and engage rubber latch (A).

10. Close driveshield before engaging header.
4.2 Detaching A40-D Header from Windrower

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. Move left-hand cab-forward platform to rear of windrower.
2. Disconnect the two hydraulic hoses (A) and (B) from windrower valve(s).
OPERATION: A40-D SELF-PROPELLED WINDROWER AUGER HEADER

Figure 4.72: M150 without Reverser Valve (M155 and M155E4 Similar)

Figure 4.73: M200 with Reverser Valve

Figure 4.74: M200 without Reverser Valve
3. Raise lever (B), and undo adjustable straps (D).
4. Move hose bundle (A) to store on header walkway.

5. Install caps on connectors and hose ends (if equipped).
6. At the header, disconnect electrical connector by turning collar counterclockwise, and pulling connector to disengage.
7. Disconnect hoses from hydraulic motor, auger, and reel pressure hose.
8. Move hose bundle (A) from header, and position on
windrower left-hand side with hose ends in support (B)
and under lever (C).

9. Rotate lever (C) clockwise, and push to engage
bracket.

10. Position electrical harness through support (B), and
attach cap to electrical connector.

11. Close driveline shield, and move windrower platform to
closed position.

12. Check to ensure hoses and electrical harness
clear tire.

13. Detach header from windrower. For instructions, refer
to your windrower operator’s manual.
4.3 Transporting A40-D Header with Windrower

Refer to your windrower operator’s manual for information about transporting headers when attached to a windrower. The orientation of the reflectors on the hazard light fixtures is dependent on the direction of travel for Dual Direction® windrowers.

The amber reflectors MUST always face the direction of travel (C), and are changed as follows:

1. Lower header to the ground, shut off engine and remove key from ignition.
2. Remove bolts (A) from reflector assembly (B), and remove assembly from light fixture. Retrieve spacers (nuts).

3. Flip reflector assembly (B), and reinstall ensuring amber side is facing direction of travel (C).

NOTE:
Ensure reflector assembly is installed as shown. Otherwise it will interfere with the driveshield in the open position.

4. Secure with bolts (A), spacers, and nuts.
5. Repeat above steps for other light.
4.4 Lift Cylinder Lock-Outs: Self-Propelled

Refer to your windrower operator’s manual for details on the lift cylinder locks.
4.5 Operating Variables for A40-D

Satisfactory function of the header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and allows cutting of more acres. As well, proper adjustments and timely maintenance will increase the length of service you receive from the machine.

The variables listed below and detailed on the following pages will affect the performance of the mower conditioner. You will quickly become adept at adjusting the machine to give you the desired results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean bar position</td>
<td>3.7.1 Setting Lean Bar, page 57</td>
</tr>
<tr>
<td>Auger speed</td>
<td>4.5.2 Adjusting Auger Speed, page 138</td>
</tr>
<tr>
<td>Reel speed</td>
<td>4.5.3 Adjusting Reel Speed, page 138</td>
</tr>
<tr>
<td>Auger position</td>
<td>4.5.4 Setting Auger Position, page 138</td>
</tr>
<tr>
<td>Reel position</td>
<td>4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td>Tine aggressiveness adjustment</td>
<td>4.5.6 Setting Tine Aggressiveness, page 145</td>
</tr>
<tr>
<td>Cutting height</td>
<td>4.5.8 Setting Cutting Height, page 146</td>
</tr>
<tr>
<td>Header angle</td>
<td>4.5.7 Adjusting Header Angle of A40-D, page 146</td>
</tr>
<tr>
<td>Header float</td>
<td>4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td>Feed pan / rock drop tine position</td>
<td>3.7.11 Setting Feed Pan and Rock Drop Tine Position, page 77</td>
</tr>
<tr>
<td>Roll tension</td>
<td>4.5.11 Adjusting Conditioner Roll Tension, page 148</td>
</tr>
<tr>
<td>Forming shields</td>
<td>3.7.14 Positioning the Forming Shields, page 80</td>
</tr>
<tr>
<td>Tall crop dividers</td>
<td>5.2.1 Adjusting Tall Crop Dividers, page 162</td>
</tr>
<tr>
<td>Ground speed</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
</tbody>
</table>
4.5.1 Setting Lean Bar

Use the lean bar adjustment to accommodate different crop heights. The lean bar (A) should strike the upper portion of the crop (roughly 2/3 of the crop height), leaning it away from the header, and exposing the stalks to the knife.

IMPORTANT:
To prevent structural damage to the header, do NOT operate with lean bar removed.

To extend or retract lean bar (A), reposition hardware in adjustment holes as required.

In crops over 5 ft. (1.52 m) high, an optional tall crop divider kit (MD #B4690) is available that includes lean bar extensions to raise the lean bar. For more information refer to 5.2.1 Adjusting Tall Crop Dividers, page 162.

![Figure 4.82: Auger Header Lean Bar](1004149)

4.5.2 Adjusting Auger Speed

The A40-D auger header features a hydraulic direct drive auger with operating speed range of 230 to 320 rpm, and is controlled from the operator's station on the self-propelled windrower.

For instructions, refer to your windrower operator's manual.

4.5.3 Adjusting Reel Speed

The A40-D auger header features a hydraulic direct drive reel with operating speed range of 15 to 85 rpm (M150 and M155), 50 to 85 rpm (M100, M105, M200, M205), and is controlled from the operator's station on the self-propelled windrower.

For instructions, refer to your windrower operator's manual.

4.5.4 Setting Auger Position

⚠️ **CAUTION**

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

Auger position has been factory-set, and should not normally require adjustment.

For nearly all conditions, the auger performs best when set as close as possible to the stripper bars without rubbing. This is especially important in grass and other crops that have a tendency to wrap.

Component wear may cause clearances to become excessive, resulting in feeding problems and uneven windrows. To make adjustments to auger position, refer to these sections depending on your equipment:

- Adjusting Auger Fore-Aft Position, page 139
- Adjusting Vertical Position, page 140
NOTE:
In heavier crops it may be necessary to remove the front stripper bar for smoother crop flow across the auger. Refer to 6.11.3 Stripper Bar, page 253.

NOTE:
The auger should clear the stripper bars on the auger pan by approximately 1/32–5/32 in. (1–4 mm). Shimming the stripper bars may be required. Refer to 6.11.3 Stripper Bar, page 253.

Adjusting Auger Fore-Aft Position

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. Open left-hand endshield.
2. Loosen four nuts (A).
3. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
4. Tighten jam nut.
5. Tighten nuts (A).
6. Open right-hand endshield.
7. Loosen four nuts (A).
8. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
9. Tighten jam nut.
10. Tighten nuts (A).
11. Close shields before engaging header.

Figure 4.85: A40-D Right Side

Adjusting Vertical Position

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. Open left-hand endshield
2. Loosen four nuts (A).
3. Loosen jam nuts on adjuster bolt (B), and turn bolt (B) to adjust auger vertical position.
4. Tighten jam nuts.
5. Tighten nuts (A).
6. Open right-hand endshield.

7. Loosen four nuts (A).
8. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
9. Tighten jam nut.
10. Tighten nuts (A).
11. Close shields before engaging header.

Figure 4.86: A40-D Left Side

Figure 4.87: A40-D Right Side
4.5.5 Setting Reel Position

Reel position has been found to be a critical factor in achieving good results in adverse conditions. Reel position is factory-set for average straight standing crop. It can be adjusted both vertically and horizontally (fore-aft) for different crop conditions.

See table below for recommended reel position in unusual crop conditions:

<table>
<thead>
<tr>
<th>Crop Condition</th>
<th>Reel Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop down or lodged</td>
<td>Forward and down (also increase reel speed)</td>
</tr>
<tr>
<td>Wet or dead material collects on cutterbar and plugs knife</td>
<td>Back and down (close to guards)</td>
</tr>
<tr>
<td>Short crop</td>
<td>Back</td>
</tr>
<tr>
<td>Thick stemmed or heavy standing</td>
<td>Up and forward</td>
</tr>
</tbody>
</table>

To make adjustments to reel position, refer to the following sections:

- Adjusting Reel Fore-Aft Position, page 141
- Adjusting Reel Vertical Position, page 142

Adjusting Reel Fore-Aft Position

The reel fore-aft offset is factory-set to 32-3/8 in. (816 mm) as measured from the inside edge of the reel tube to the back frame member as shown in the illustration at right.

NOTE:
The reel must be adjusted equally on both sides.

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.
1. Open left-hand endshield.
2. Loosen four nuts (A).
3. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust reel fore-aft position.
4. Tighten jam nut.
5. Tighten nuts (A).

6. Open right-hand endshield.
7. Loosen four nuts (A).
8. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust reel fore-aft position.
9. Tighten jam nut.
10. Tighten nuts (A).
11. Close driveshields before engaging header.

Adjusting Reel Vertical Position

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. Open left-hand endshield.
2. Loosen four nuts (A).
3. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to raise or lower reel.

4. Tighten jam nuts (A).

5. Tighten nuts (A).

6. Open right-hand endshield.

7. Loosen four nuts (A).
8. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to adjust reel vertical position.

NOTE:
The factory setting at forward adjuster bolt should be 15/32 in. (12 mm) lower than at rear adjuster bolt. If tine aggressiveness has changed then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

9. Tighten jam nut.

10. Tighten nuts (A).

11. Close shields before engaging header.

12. Check that the reel rotates freely.

NOTE:
Manually rotate reel, and ensure that tines do not contact header pan, otherwise damage to pan will result. If necessary, grind off excessive length from tine if tine length varies considerably. Remove any sharp edges or burrs from tine.

13. Check that reel is evenly adjusted.

Checking Reel Tine to Header Pan Clearance

IMPORTANT:
The dimensions at right are provided as guidelines only. Tines may slightly contact the guards, but **NOT** the knife sections or the auger pan.

1. Rotate reel slowly by hand, and check tine clearance at knife and pan. Flex tines to simulate crop-loaded position to ensure tine clearances to knife sections and auger pan are adequate for working conditions.

2. Check that reel rotates freely.

NOTE:
If there are a few reel tines that are touching the pan while the rest are at the correct height, trim the longer tines to match the rest. Be sure to adjust both sides of the reel. Ensure that tines do **NOT** contact plastic header pan.
4.5.6 Setting Tine Aggressiveness

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. Open right-hand endshield.
2. At right side of reel (cam end) ONLY, loosen four nuts (A).

3. Loosen jam nuts on bolts (A), and turn bolts to rotate cam to desired position. Viewed from right side, rotate cam clockwise to obtain more aggressive tine action.

NOTE:
The factory setting at forward adjuster bolt should be 0.47 in. (12 mm) lower than at rear adjuster bolt. If tine aggressiveness has changed then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

4. Tighten nuts (A), and jam nuts on bolts.
5. Check that chain and/or belt have NOT become over-tight. Adjust to recommended tension if required. Refer to Checking/Adjusting Reel Drive Belt Tension, page 224.
6. Check reel tine to header pan clearance to ensure that there is no contact between reel tines and the header pan. Refer to Checking Reel Tine to Header Pan Clearance, page 144.
4.5.7 Adjusting Header Angle of A40-D

Header angle can be hydraulically adjusted from the cab using hydraulic cylinder (A), without shutting down the windrower.

To adjust angle, refer to your windrower operator's manual.

![Figure 4.101: Header Angle Hydraulic Cylinder](image)

4.5.8 Setting Cutting Height

1. Raise header, and engage lift cylinder lock-outs.
2. Remove pins (A) at each skid shoe or gauge roller.
3. Raise or lower skid shoe or gauge roller to desired position.
4. Replace pins (A).

![Figure 4.102: Skid Shoe](image)

![Figure 4.103: Gauge Roller](image)

5. Check that skid shoes or gauge rollers are adjusted to the same position.
6. Check header float, and adjust if required. Refer to 4.5.9 Checking/Adjusting Float, page 147 for more information.

NOTE:
The two inboard skid shoes are standard equipment. The inboard shoes can be moved to the outboard position OR outboard positions can be fitted with either gauge rollers or skid shoes.

4.5.9 Checking/Adjusting Float

The windrower float springs are **NOT** used to level the header.

⚠️ **CAUTION**

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

To adjust the float, follow these steps:

1. Check float by grasping the lean bar and lifting. Lifting force should be 75–85 lbf (335–380 N) and should be approximately the same at both ends.

2. If necessary, perform the following steps to adjust the float:
 a. Raise header fully, shut down engine, and remove key.
 b. Turn drawbolt (A) clockwise to increase float (makes header lighter) or counterclockwise to decrease float (makes header heavier).
 c. Recheck the float.

![Figure 4.104: Drawbolt – Top of Windrower Wheel Leg Member Shown](image)

4.5.10 Adjusting Conditioner Roll Gap

The roll gap determines the amount of conditioning:

- To reduce conditioning, increase roll gap.
- To increase conditioning, decrease roll gap.

The conditioner roll gap is factory-set at 1/4 in. (6 mm).

⚠️ **CAUTION**

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.
1. Loosen and back-off upper jam nut (A), on both sides of conditioner.
2. **To increase roll gap,** turn lower nut (B) to raise link, and increase the gauge (C) setting.
3. **To decrease roll gap,** turn lower nut (B) to lower link, and decrease the gauge (C) setting.
4. Tighten jam nuts (A), both sides.

5. Loosen bolt (A), and rotate cover (B) to expose access port (C).
6. Inspect space between roll bars at both ends of the rolls at access port (C).

IMPORTANT:
Roll timing and alignment are critical when the roll gap is decreased because:
- Conditioning is affected
- The bars may contact each other

7. Check roll timing and alignment when reducing roll gap. Refer to:
 - 6.12.13 Checking/Adjusting Roll Timing, page 278
 - 6.12.12 Checking/Adjusting Roll Alignment, page 277
8. Close cover (B), and tighten bolt (A).

4.5.11 Adjusting Conditioner Roll Tension

The roll tension (the force holding the rolls together) is factory-set, and is adjustable. There is a spring for each end of the roll.
Table 4.2 Conditioner Roll Tension Factory Settings

<table>
<thead>
<tr>
<th>Spring Type</th>
<th>Factory Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-hand spring (A)</td>
<td>3-3/16–3-9/16 in. (81–91 mm)</td>
</tr>
<tr>
<td>Right-hand spring (B)</td>
<td>1-5/8–2 in. (41–51 mm)</td>
</tr>
</tbody>
</table>

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. Lower header fully.
2. Stop engine, and remove key.
3. **To increase the roll tension**, loosen jam nut (B) at spring insert, and turn spring drawbolt (C) clockwise to tighten the spring. Tighten jam nut (B).
4. **To decrease the roll tension**, loosen jam nut (B) at spring insert, and turn spring drawbolt (C) counterclockwise to loosen the spring. Tighten jam nut (B).
4.5.12 Positioning the Forming Shields

WARNING

Keep hands and feet away from discharge opening. Keep everyone several hundred feet away from your operation. Never direct the discharge toward anyone. Stones or other foreign objects can be ejected with force.

The position of the forming shields controls the width and placement of the windrow. The decision on forming shield position (settings between 36–92 in. [915–2346 mm]) should be made based on the following factors:

- Weather conditions (rain, sun, humidity, wind)
- Type and yield of crop
- Drying time available
- Method of processing (“green-feed”, bales, silage)

A wider windrow will generally dry faster and more evenly, resulting in less protein loss. Fast drying is especially important in areas where the weather allows only a few days to cut and bale. Refer to 5.3 Haying, page 165 for more information.

Where weather conditions permit or when drying is not critical, for example, when cutting for silage or green-feed, a narrower windrow may be preferred for ease of pick-up.

Positioning Side Deflectors — Self-Propelled

The position of the side forming shields controls the width and placement of the windrow.

CAUTION

To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

To ensure windrow placement is centered with respect to carrier/drive wheels, adjust both side deflectors to the same hole position on the adjuster bar.

1. Set forming shield side deflectors to desired width by repositioning adjuster bars as follows:
 a. Remove lynch pin (A).
 b. Move adjuster bar (B) to another hole.
 c. Reinstall lynch pin (A).

![Figure 4.109: Forming Shield Side Deflector](image-url)
2. If forming shield attachment is too tight or too loose, tighten or loosen nut (A) as required.

Figure 4.110: Forming Shield Adjustment Nut

Positioning Rear Deflector (Fluffer Shield)

The rear deflector (A) slows the crop exiting the conditioner rolls, directs the flow downward, and fluffs the material.

⚠️ CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to N-DETENT, center steering wheel to lock, shut off engine, and remove key.

1. For more crop control in light material, lower the deflector (A) by pushing down on one side of the deflector, and then on the other side. Locking handles (B) are located at either end of deflector, and may be loosened slightly.

2. For heavier crops, raise the deflector (A) by pulling up on one side, and then on the other side.

NOTE:
For even windrow formation, be sure the deflector is NOT twisted.

Figure 4.111: A40-D Rear Deflector
4.6 Recommended Operating Settings

These settings are intended as a starting point. Operators should fine-tune to crop and field conditions. Also, refer to the A-Series Auger Header Quick Card that was included in your shipment.

The settings chart continues on the next page.

<table>
<thead>
<tr>
<th>Field Conditions</th>
<th>Operating Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Type</td>
<td>Crop Condition (tons per acre)</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>>3 Smooth Rocky</td>
</tr>
<tr>
<td></td>
<td>2–3 Smooth Rocky</td>
</tr>
<tr>
<td></td>
<td><2 Smooth Rocky</td>
</tr>
<tr>
<td>Lodged</td>
<td>Smooth Rocky</td>
</tr>
<tr>
<td>Timothy</td>
<td>>2.5 Smooth Rocky</td>
</tr>
<tr>
<td></td>
<td><2 Smooth Rocky</td>
</tr>
<tr>
<td>Lodged</td>
<td>Smooth Rocky</td>
</tr>
</tbody>
</table>
OPERATION: A40-D SELF-PROPELLED WINDROWER AUGER HEADER

<table>
<thead>
<tr>
<th>Field Conditions</th>
<th>Operating Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Type</td>
<td>Crop Condition (tons per acre)</td>
</tr>
<tr>
<td>Triticale (winter forage)</td>
<td>>10</td>
</tr>
<tr>
<td></td>
<td>>10</td>
</tr>
<tr>
<td>Lodged</td>
<td>Smooth</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
</tr>
<tr>
<td></td>
<td>>10</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
</tr>
<tr>
<td>Wild/Grass Hay</td>
<td>>3.5</td>
</tr>
<tr>
<td></td>
<td>2–3</td>
</tr>
<tr>
<td></td>
<td>Wild/Grass Hay</td>
</tr>
<tr>
<td></td>
<td>Wild/Grass Hay</td>
</tr>
<tr>
<td>Lodged</td>
<td>Smooth</td>
</tr>
<tr>
<td>Lodged</td>
<td>Rocky</td>
</tr>
</tbody>
</table>
4.7 Unplugging Conditioner and Knife: Self-Propelled

If your windrower is equipped with the optional Header Drive Reverser (MD #B4656), reverse the hydraulic flow to the knife, auger, reel, and conditioner hydraulic motors to help remove any plugged material from the header.

If reverser is not installed, proceed through the following instructions.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Stop forward movement of windrower, and shut down header.
2. Lift cutterbar about 12 in. (300 mm).
3. Back up about 3 feet (1 metre) while slowly engaging the header.
4. If plug does not clear; raise machine, apply windrower brake, shut off engine, and remove key.
5. Engage lift cylinder lock-outs.

WARNING

Wear heavy gloves when working around or handling knife.

6. Clean off cutterbar and area under reel by hand.
7. Retrieve wrench (A) from storage inside the left-hand drive compartment.

8. Use wrench on left-hand end of primary driveshaft (A) to turn rolls forward until plug clears.
9. Return wrench to storage location, and secure in place with pin.

WARNING

Return unplug wrench to storage location, and close left-hand driveshield before restarting machine.

NOTE:
If plugging persists, refer to 9 Troubleshooting, page 295.
4.8 Grass Seed Special A40-D

The grass seed auger header has several features to adapt it to this special application. These features include:

- 4.8.1 Stub Guards and Hold-Downs, page 156
- 4.8.2 Special Auger Design for Grass Seed Special A40-D, page 156
- 4.8.3 Seven-Bat Reel, page 157
- 4.8.4 Auger Pan Extensions, page 157
- 4.8.5 Windrow Forming Rods, page 159

4.8.1 Stub Guards and Hold-Downs

The cutterbar is equipped with stub guards for effective cutting in tough grass crops. Refer to 6.7.7 Guards, page 197 for maintenance of these components.

4.8.2 Special Auger Design for Grass Seed Special A40-D

The center beaters and beater supports have been removed to reduce auger wrapping.
4.8.3 Seven-Bat Reel

A seventh bat is added to the reel body, for smoother reel action and better crop feed into the header.

4.8.4 Auger Pan Extensions

The grass seed header is equipped with adjustable auger pan extensions that allow adjustment of delivery opening to vary the windrow characteristics.
Adjusting Pan Extensions: Grass Seed Special

The grass seed header auger pan extensions are factory-installed for the widest delivery. Adjust as follows:

1. Remove two bolts (A) and loosen bolt (B).

2. Slide pan extensions (C) and swath forming rods inboard to desired position and align holes.

3. Reinstall two bolts (A). Tighten bolts (A) and (B).

4. Repeat for opposite pan extension.
4.8.5 Windrow Forming Rods

Forming rods are provided to assist in forming the narrow windrows preferred for this application. Bend rods to modify the windrow shape. Use forming rods in conjunction with auger pan extensions to achieve the width and shape of windrows you desire.

Figure 4.119: Windrow Forming Rods
5 Operation: Mower Conditioner and Self-Propelled Auger Header

This chapter describes operating procedures applicable to both the A30-D Mower Conditioner and the A40-D Self-Propelled Auger Header

5.1 Selecting Ground Speed

⚠️ CAUTION

Reduce speed when turning, crossing slopes, or when travelling over rough ground.

Tractor/windrower ground speed SHOULD NOT EXCEED 8 mph (13 km/h). For most crop conditions a ground speed of 5 mph (8 km/h) has been found satisfactory.

Choose a ground speed that allows the knife to cut the crop smoothly and evenly.

The chart below indicates the relationship between ground speed and area cut for three header/mower conditioner sizes. For example, at a ground speed of 5 mph (8 km/h) with a 16-foot header, the area cut would be approximately 10 acres (4 hectares) per hour.

![Figure 5.1: Ground Speed and Area Cut](image)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres/ Hour</td>
<td>Hectares/ Hour</td>
<td>Kilometers/ Hour</td>
<td>Miles/ Hour</td>
</tr>
<tr>
<td>E – 18 ft</td>
<td>F – 16 ft</td>
<td>G – 14 ft</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Tall Crop Dividers

The tall crop dividers attach to the ends of the header/mower conditioner for clean crop dividing, and reel entry in tall crops. They can be easily adjusted to suit the crop, or removed when not required.

5.2.1 Adjusting Tall Crop Dividers

1. Loosen U-bolt (A).
2. Remove bolts (B), and reposition divider (C) to align with alternate hole location (D).
3. Reinstall bolts (B), and tighten.
4. Tighten U-bolt (A)

Figure 5.2: Tall Crop Divider
5.2.2 Removing Tall Crop Dividers

1. Remove U-bolt (A) and bolts (B), and remove divider. Repeat for other divider.
2. Remove bolts attaching lean bar to header.

3. Remove bolts (A) attaching extensions (B) to lean bar (C), and remove extensions.
4. Reposition lean bar on header at desired height, and install existing carriage bolts (A)—two per side. Tighten bolts.

Figure 5.5: Lean Bar
5.3 Haying

5.3.1 Haying Tips

Curing

Curing crops quickly helps maintain the highest quality because for each day that hay lies on the ground, 5% of the protein is lost.

Leaving the windrow as wide and fluffy as possible results in the quickest curing. Cured hay should be baled as soon as possible.

Topsoil Moisture

Table 5.1 Topsoil Moisture Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>% Moisture</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>Over 45%</td>
<td>Soil is muddy</td>
</tr>
<tr>
<td>Damp</td>
<td>25–45%</td>
<td>Shows footprints</td>
</tr>
<tr>
<td>Dry</td>
<td>Under 25%</td>
<td>Surface is dusty</td>
</tr>
</tbody>
</table>

- On wet soil, the general rule of “wide and thin” does not apply. A narrower windrow will dry faster than hay left flat on wet ground.
- When the ground is wetter than the hay, moisture from the soil is absorbed by the hay above it. Determine topsoil moisture level before cutting. Use a moisture tester or estimate level.
- If ground is wet due to irrigation, wait until soil moisture drops below 45%.
- If ground is wet due to frequent rains, cut when weather allows and let the forage lie on wet ground until it dries to the moisture level of the ground.
- Cut hay will dry only to the moisture level of the ground beneath it, so consider moving the windrow to drier ground.

Weather and Topography

- Cut as much hay as possible by midday when drying conditions are best.
- Fields sloping south get up to 100% more exposure to the sun’s heat than do north sloping fields. If hay is baled and chopped, consider baling the south facing fields and chopping those facing north.
- When relative humidity is high, the evaporation rate is low and hay dries slowly.
- If there is no wind, saturated air becomes trapped around the windrow. Raking or tedding will expose the hay to fresh, less saturated air.
- Cut hay perpendicular to the direction of the prevailing winds if possible.

Windrow Characteristics

Producing windrows with the recommended characteristics will achieve the greatest results. Refer to 3.7 Operating Variables for A30-D, page 56 or 4.5 Operating Variables for A40-D, page 137 for instructions on adjusting the mower conditioner/header.
Table 5.2 Recommended Windrow Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High and fluffy</td>
<td>Enables airflow through windrow which is more important to the curing</td>
</tr>
<tr>
<td></td>
<td>process than direct sunlight</td>
</tr>
<tr>
<td>Consistent formation (not bunching)</td>
<td>Permits an even flow of material into the baler, chopper, etc.</td>
</tr>
<tr>
<td>Even distribution of material across</td>
<td>Results in even and consistent bales to minimize handling and</td>
</tr>
<tr>
<td>windrow</td>
<td>stacking problems</td>
</tr>
<tr>
<td>Properly conditioned</td>
<td>Prevents excessive leaf damage</td>
</tr>
</tbody>
</table>

Driving on Windrow

Driving on previously cut windrows that will not be raked can lengthen drying time by a full day. If practical, set forming shields to produce a narrower windrow that the machine can straddle.

NOTE:
Driving on the windrow in high-yield crops may be unavoidable if a full width windrow is necessary.

Raking and Tedding

Raking or tedding speeds up drying; however, the resulting leaf loss may outweigh the benefits. There is little or no advantage to raking or tedding if the ground beneath the windrow is dry.

Large windrows on damp or wet ground should be turned over when moisture levels reach 40–50%. Hay should not be raked or tedded at moisture levels below 25%, however, or excessive yield loss will result.

Using Chemical Drying Agents

Hay drying agents work by removing wax from legume surfaces and enabling water to escape and evaporate faster. However, treated hay lying on wet ground will absorb ground moisture faster.

Before deciding to use a drying agent, carefully compare the relative costs and benefits for your area.
6 Maintenance and Servicing

The following instructions are provided to assist you in the use of the header/mower conditioner. Detailed maintenance, service, and parts information are contained in the technical manual and parts catalog that are available from your Dealer.

6.1 Preparing for Servicing

⚠️ CAUTION

To avoid personal injury, before servicing header/mower conditioner or opening drive covers:

• Fully lower the header. If necessary to service in the raised position, always engage lift cylinder stops.
• Disengage power take-off (PTO) (pull-type mower conditioners only).
• Place all controls in NEUTRAL or PARK.
• Stop engine and remove key.
• Wait for all moving parts to stop.
6.2 Driveshields

This procedure is for opening and closing the endshields at each end of the machine, and the driveshield over the conditioner drivelines.

To open endshields:

⚠️ **CAUTION**

Ensure shield lock engages in the open position as shown at (B) before letting go of shield.

1. Insert screwdriver or equivalent into opening (A) at base of endshield and push to release latch.
2. Pull bottom and lift endshield until shield support (B) engages bolt. Check that support (B) is engaged before releasing hold on shield.

To close endshields:

3. Grasp endshield at top and push slightly and move support (B) inboard to disengage.
4. Lower endshield to about 12 in. (300 mm) from closed position.
5. Release endshield so that it drops to closed position and shield will self-latch.

To open driveline shield:

6. Disengage rubber latch (A).
7. Open shield (B).

To close driveline shield:

8. Lower shield (B).
6.3 Maintenance Specifications

6.3.1 Recommended Fluids and Lubricants

Your machine can operate at top efficiency **ONLY** if clean lubricants are used.
- Use clean containers to handle all lubricants.
- Store in an area protected from dust, moisture, and other contaminants.

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Specification</th>
<th>Description</th>
<th>Use</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>SAE Multi-Purpose</td>
<td>High temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2). Lithium base.</td>
<td>As required unless otherwise specified</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High temperature extreme pressure (EP) performance with 10% max molybdenum disulphide (NLGI Grade 2). Lithium base.</td>
<td>Driveline slip-joints</td>
<td></td>
</tr>
<tr>
<td>Gear lubricant</td>
<td>SAE 85W-140</td>
<td>API service class GL-5</td>
<td>Knife drive box</td>
<td>2.3 quarts (2.2 liters)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conditioner drive gearbox</td>
<td>1.06 quarts (1 liter)</td>
</tr>
<tr>
<td>Hydraulic oil</td>
<td>SAE 15W-40</td>
<td>Compliant with SAE specs for API class SJ And CH-4 engine oil.</td>
<td>Steering, lift, and header drive systems reservoir</td>
<td>33 gal US (126 liters)</td>
</tr>
</tbody>
</table>
6.4 Maintenance Requirements

Periodic maintenance requirements are organized according to service intervals.

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine’s life.

When servicing the machine, refer to the specific headings in this section and use only fluids and lubricants specified in 6.3.1 Recommended Fluids and Lubricants, page 169.

Log hours of operation, use the maintenance record, and keep copies of your maintenance records (depending on your equipment, refer to the following):

- 6.4.1 Maintenance Schedule/Record: Pull-Type, page 171
- 6.4.2 Maintenance Schedule/Record: Self-Propelled, page 173

If a service interval specifies more than one timeframe, e.g., "100 hours or Annually", service the machine at whichever interval is reached first.

IMPORTANT:
Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).

⚠️ **CAUTION**

Carefully follow all safety messages, refer to 1 Safety, page 1.
6.4.1 Maintenance Schedule/Record: Pull-Type

<table>
<thead>
<tr>
<th>Pull-Type Mower Conditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE RECORD</td>
</tr>
<tr>
<td>Hour Meter Reading</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>Serviced By</td>
</tr>
</tbody>
</table>

FIRST USE
Refer to 6.4.3 Break-In Inspection: Pull-Type, page 175

100 HOURS OR ANNUALLY
- ▲ Hydraulic Oil Filter
 - First 100 Hours Only
- ✓ Conditioner Drive Gearbox
 - Lubricant Level
- ✓ Wheel Bolt Torque
- ♦ Wheel Hub Bearings
- ✓ Knife Drive Box Bolt Torque
- ✓ Knife Drive Box
 - Lubricant Level

END OF SEASON
Refer to 6.4.6 Storage, page 176

10 HOURS OR DAILY
- ♦ Auger Drive Chain
- ✓ Hydraulic Hoses and Lines
- ✓ Hydraulic Oil Level
- ♦ Reel Drive Chain
- ♦ Sections, Guards, and Hold-Downs
- ✓ Knife Hold-Downs
- ✓ Knife Assembly
- ✓ Knife Drive Box Bolt Torque
- ✓ Knife Drive Box Bolt Torque
 - First 10 Hours Only

25 HOURS
- ♦ Knifehead

2. A record of daily maintenance is not normally required, but is at the owner/operator’s discretion.
MAINTENANCE AND SERVICING

Pull-Type Mower Conditioner

<table>
<thead>
<tr>
<th>MAINTENANCE RECORD</th>
<th>ACTION:</th>
<th>✓ - Check</th>
<th>♣ - Lubricate</th>
<th>▲ - Change</th>
</tr>
</thead>
</table>

50 HOURS

- ✦ Auger Drive and Jackshaft Bearings
- ✦ Frame-to-Header Pivot
- ✦ Gauge Roller Bearings
- ✦ Lower Float Link Bushings
- ✦ Main Driveshaft Bearings
- ✦ Reel Shaft Bearings
- ▲ Conditioner Gearbox Oil - First 50 Hours Only
- ✦ Conditioner Drivelines
- ✦ Roll Pivots
- ✦ Knife Drive Cross-Shaft
- ✦ Spring Pivots
- ✓ Tire Pressure
- ✦ Articulated Power Turn (APT) Pivot
- ▲ Knife Drive Box Oil - First 50 Hours Only

250 HOURS

- ▲ Hydraulic Oil Filter

500 HOURS OR 3 YEARS

- ▲ Hydraulic Oil

1000 HOURS OR 3 YEARS

- ▲ Conditioner Drive Gearbox Lubricant
- ▲ Knife Drive Box Lubricant
6.4.2 Maintenance Schedule/Record: Self-Propelled

<table>
<thead>
<tr>
<th>Self-Propelled Windrower Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE RECORD</td>
</tr>
<tr>
<td>Hour Meter Reading</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>Serviced By</td>
</tr>
</tbody>
</table>

BREAK-IN
Refer to 6.4.4 Break-In Inspection: Self-Propelled, page 175.

100 HOURS OR ANNUALLY

- ✓ Conditioner Drive Gearbox Lubricant Level
- ✓ Knife Drive Box Bolt Torque
- ✓ Knife Drive Box Lubricant Level

END OF SEASON
Refer to 6.4.6 Storage, page 176.

10 HOURS OR DAILY

- ✓ Hydraulic Hoses and Lines
- ♦ Sections, Guards, and Hold-downs
- ✓ Knife Hold-Downs
- ✓ Knife Assembly
- ✓ Knife Drive Box Bolt Torque - First 10 Hours Only

25 HOURS

- ♦ Knifehead

50 HOURS

- ♦ Auger Shaft Bearings
- ♦ Gauge Roller Bearings
- ♦ Main Driveshaft Bearings
- ♦ Tine Bar Bearings
- ♦ Reel Shaft Bearings
- ♦ Conditioner Gearbox Oil - First 50 Hours Only

3. A record of daily maintenance is not normally required, but is at the owner/operator’s discretion.
Self-Propelled Windrower Header

<table>
<thead>
<tr>
<th>Maintenance Record</th>
<th>Action:</th>
<th>✓ - Check</th>
<th>✦ - Lubricate</th>
<th>▲ - Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 HOURS (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Conditioner Universal Shafts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Roll Pivots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Conditioner Shaft Bearings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✦ Knife Drive Cross-Shaft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Knife Drive Box Oil - First 50 Hours Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 HOURS OR 3 YEARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Conditioner Drive Gearbox Lubricant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ Knife Drive Box Lubricant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.4.3 Break-In Inspection: Pull-Type

<table>
<thead>
<tr>
<th>Hours</th>
<th>Item</th>
<th>Check</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wheel bolts</td>
<td>Torque</td>
<td>120 ft-lbf (160 N·m)</td>
</tr>
<tr>
<td></td>
<td>Steering cylinder clevis and stroke control</td>
<td>Torque</td>
<td>52 ft-lbf (72 N·m)</td>
</tr>
<tr>
<td>5, 25, 50</td>
<td>Reel drive belt</td>
<td>Tension</td>
<td>Checking/Adjusting Reel Drive Belt Tension, page 224</td>
</tr>
<tr>
<td></td>
<td>Knife drive belt</td>
<td></td>
<td>6.8.1 Knife Drive – A30-D, page 216</td>
</tr>
<tr>
<td>5</td>
<td>Hardware</td>
<td>Torque</td>
<td>Recommended Torques</td>
</tr>
<tr>
<td>10</td>
<td>Auger drive chain</td>
<td>Tension / Lubricate</td>
<td>Checking/Adjusting Auger Drive Chain Tension – A30-D, page 226</td>
</tr>
<tr>
<td></td>
<td>Reel drive chain</td>
<td></td>
<td>Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223</td>
</tr>
<tr>
<td></td>
<td>Knife drive box mounting bolts</td>
<td>Torque</td>
<td>200 ft-lbf (270 N·m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.7.9 Knife Drive Box, page 208</td>
</tr>
</tbody>
</table>

6.4.4 Break-In Inspection: Self-Propelled

<table>
<thead>
<tr>
<th>Hours</th>
<th>Item</th>
<th>Check</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Hardware</td>
<td>Torque</td>
<td>Recommended Torques</td>
</tr>
<tr>
<td>5, 25, and 50</td>
<td>Knife drive belt</td>
<td>Tension</td>
<td>6.8.1 Knife Drive – A30-D, page 216</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.9.1 Knife Drive – A40-D, page 228</td>
</tr>
<tr>
<td>10</td>
<td>Knife drive box mounting bolts</td>
<td>Torque</td>
<td>Mounting Bolts, page 208</td>
</tr>
</tbody>
</table>

Replace or tighten any missing or loose hardware. Refer to Recommended Torques.
6.4.5 Preseason Checks

CAUTION

- Review the operator's manual to refresh your memory on safety and operating recommendations.
- Review all safety signs and other decals on the mower conditioner and note hazard areas.
- Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
- Check the first aid kit and fire extinguisher. Know where they are and how to use them.

Perform the following checks at the beginning of each operating season:

1. Adjust tension on drive belts. Refer to the following sections:
 - 6.7 Cutterbar, page 193
 - 6.8.2 Reel Drive – A30-D, page 223
 - 6.8.3 Auger Drive – A30-D, page 226

2. Lubricate chains and adjust tensions. Refer to the following sections:
 - 6.5.3 Oiling, page 187
 - 6.5.2 Lubrication Points, page 179
 - Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223
 - Checking/Adjusting Auger Drive Chain Tension – A30-D, page 226

3. Check tire pressure, and adjust as required. Refer to 6.13.4 Inflating Tire, page 282.

4. Perform all annual maintenance. Refer to:
 - 6.4.1 Maintenance Schedule/Record: Pull-Type, page 171
 - 6.4.2 Maintenance Schedule/Record: Self-Propelled, page 173

6.4.6 Storage

Do the following at the end of each operating season.

CAUTION

Never use gasoline, naphtha or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

CAUTION

Cover cutterbar and knife guards to prevent injury from accidental contact.

1. Clean the header/mower conditioner thoroughly.
2. Store in a dry, protected place if possible. If stored outside, always cover mower conditioner with a waterproof canvas or other protective material.
3. Raise header, and engage lift cylinder lock-outs.
4. If possible, block up the header to take weight off tires.
5. Re-paint all worn or chipped painted surfaces to prevent rust.

7. Lubricate header/mower conditioner thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads, cylinder rods and sliding surfaces of components. Oil knife components to prevent rust.

8. Check for worn components, and repair.

9. Check for broken components and order replacement from your Dealer. Attention to these items right away will save time and effort at beginning of next season.

10. Replace or tighten any missing or loose hardware. Refer to Recommended Torques.

11. Remove divider rods (if equipped) to reduce space required for inside storage.
6.5 Lubrication

CAUTION

To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

CAUTION

Refer to 6.3.1 Recommended Fluids and Lubricants, page 169 for recommended greases.

Log hours of operation and use the Maintenance Checklist provided to keep a record of scheduled maintenance. Refer to:

- 6.4.1 Maintenance Schedule/Record: Pull-Type, page 171
- 6.4.2 Maintenance Schedule/Record: Self-Propelled, page 173

6.5.1 Greasing Procedure

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

The greasing points are marked on the machine by decals showing a grease gun (A) and grease interval (B) in hours of operation.

Use the recommended lubricants specified in this manual. Refer to 6.3.1 Recommended Fluids and Lubricants, page 169.

1. Wipe grease fitting with a clean cloth before greasing, to avoid injecting dirt and grit.
2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted.
3. Leave excess grease on fitting to keep out dirt.
4. Replace any loose or broken fittings immediately.
5. If fitting will not take grease, remove and clean thoroughly. Also clean lubricant passageway. Replace fitting if necessary.

Figure 6.3: Grease Interval Decal
6.5.2 Lubrication Points

Lubrication requirements depend on the model of header/mower conditioner that is being serviced. Refer to lubrication points for your specific model:

- *Lubrication Points: A30-D Mower Conditioners, page 180*
- *Lubrication Points: A40-D SP Windrower Headers, page 182*
- *Lubrication Points: Hay Conditioner, page 184*
- *Lubrication Points: Drivelines, page 185*
- *Lubrication Points: Pull-Type Carrier Frame, page 186*
Lubrication Points: A30-D Mower Conditioners

NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

![Figure 6.4: A30-D Mower Conditioner Right Side](image)

- A - Knife Drive Bearing (1 Place) (50 hours)
- B - Reel Shaft Bearing (1 Place) (50 hours)
- C - Auger Shaft Bearing (1 Place) (50 hours)
- D - Knifehead Bearing (1 Place) (25 hours)
NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do NOT over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 6.5: A30-D Mower Conditioner Left Side
A - Knife Drive Bearing (1 Place) (50 hours)
B - Reel Shaft Bearing (1 Place) (50 hours)
C - Auger Shaft Bearing (1 Place) (50 hours)
D - Knifehead Bearing (1 Place) (25 hours)
MAINTENANCE AND SERVICING

Lubrication Points: A40-D SP Windrower Headers

NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do NOT over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 6.6: A40-D Header Right Side
A - Knife Drive Bearing (1 Place) (50 hours) B - Reel Shaft Bearing (1 Place) (50 hours)
C - Auger Shaft Bearing (1 Place) (50 hours) D - Knifehead Bearing (1 Place) (25 hours)
MAINTENANCE AND SERVICING

NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease.
If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 6.7: A40-D Header Left Side
A - Tine Bar Bearing (4 Places each tine bar) (50 hours)
B - Knifehead Bearing (1 Place) (25 hours)
C - Gauge Roller Bearings (2 Places) both sides - if installed (50 hours)
D - Knife Drive Bearing (1 Place) (50 hours)
Lubrication Points: Hay Conditioner

NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do NOT over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 6.8: Hay Conditioner
A - Roll Shaft Bearings (2 Places) (50 hours)
B - Roll Pivot (1 Place - Both sides) (50 hours)
C - Roll Shaft Bearings (2 Places) (50 hours)
Lubrication Points: Drivelines

NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 6.9: Drivelines: A30-D and A40-D

- A - Driveline Shafts (2 Places) (50 hours) - NOTE: 10% moly grease is recommended for driveline shaft slip joints ONLY.
- B - Cross Shafts (2 Places) (50 hours)
- C - Driveline Universals (2 Places) (50 hours)
- D - Driveline Universals (2 Places) (50 hours)
Lubrication Points: Pull-Type Carrier Frame

NOTE:
High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 6.10: Pull-Type Carrier Frame

A - Tongue Pivot (1 Place) (50 hours)
B - Lift Linkage (2 Places) - both sides (50 hours)
C - Wheel Bearings (1 Place) - both sides
D - Lift Cylinder (1 Place) (50 hours)
E - Frame/Header Pivot (1 Place) - both sides (50 hours)
6.5.3 Oiling

Refer to the following illustration to identify the various locations that require lubrication. See 6.3.1 Recommended Fluids and Lubricants, page 169 for proper oil. Use SAE 30 oil.

Apply oil to upper edge of lower spans when oiling chains. Check oil level with top of knife drive box horizontal.

Figure 6.11: A30-D Mower Conditioner, Left-Hand Side – SAE 30 Oil
A - Knife Drive Box (A30-D / A40-D (2 PLCs) (100 hours) NOTE: Check oil level with top of knife drive box horizontal.
B - Auger Drive Chain (1 PLC) (10 hours)
C - Check Roll Gearbox (1 PLC) (100 hours)
6.5.4 Installing Sealed Bearings

Follow these steps to install sealed bearings:

1. Clean shaft and coat with rust preventative.

2. Install flangette (A), bearing (B), second flangette (C), and lock collar (D).

 NOTE:
 The locking cam is only on one side of the bearing.

3. Install (but do **NOT** tighten) the flangette bolts (E).

4. When the shaft is correctly located, lock the lock collar with a punch.

 NOTE:
 The collar should be locked in the same direction the shaft rotates. Tighten the setscrew in the collar.

5. Tighten the flangette bolts.

6. Loosen the flangette bolts on the mating bearing one turn and retighten. This will allow the bearing to line up.

Figure 6.12: Sealed Bearing
6.6 Hydraulics

This chapter covers hydraulic information and testing for pull-type mower conditioners. For information about self-propelled headers, contact your Dealer.

6.6.1 Servicing A40-D Hydraulics

Refer to your windrower operator’s manual for hydraulic system maintenance procedures for self-propelled windrower headers.

6.6.2 Servicing A30-D Hydraulics

The pull-type mower conditioner is hydraulically-powered using the following systems:

- A self-contained hydraulic system to operate the header mower conditioner functions.
- The tractor remote system to operate the header lift cylinders and steering.

WARNING

Do not use remote hydraulic system pressures over 3000 psi (20,684 kPa). Check your tractor operator’s manual for remote system pressure.

Checking Hydraulic Oil Level

Check oil level daily (before start-up) at the sight gauge on the left side of the articulated power turn (APT).

The oil level should be at or near the FULL mark on the gauge when top surface of APT is level, and oil is cold.

![Figure 6.13: APT Oil Level Sight Gauge](image)
Adding Hydraulic Oil

1. Slowly unscrew filler cap (A) from filler tube.
2. Add SAE 15W40 oil until level is between ADD and FULL marks on sight gauge.
3. Replace filler cap.

Changing Hydraulic Oil – Articulated Hitch

NOTE: Change hydraulic oil every 500 hours, or 3 years.

NOTE: A drain pan with a capacity of 35 US gallons (130 liters) will be required.

NOTE: Mower conditioner must be disconnected from tractor. Refer to 3.3 Detaching Mower Conditioner from Tractor, page 43.

1. Remove filler cap (A) at aft end of hitch.
2. Disconnect pump suction hose (A) from pump, and drain into container.
3. Reconnect pump suction hose to pump.

4. Fill reservoir to recommended level with SAE 15W–40 oil. Capacity is 33 US gallons (126 liters).

Changing Hydraulic Oil Filter

NOTE:
Change hydraulic oil filter after the first 100 hours operation, and every 250 hours thereafter.

1. Clean around filter head (A).
2. Remove filter (B), and clean gasket surface of the filter head.
3. Apply a thin film of clean oil to the gasket on the new filter.
4. Install new filter. Turn filter onto the mount until the gasket contacts the filter head. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT:
Do NOT use a filter wrench to install the filter. Over-tightening can damage gasket and filter.
Checking Pressure Relief Valve

A possible cause of poor cutting performance and/or excessive heating of hydraulic oil is low relief pressure. The relief valve (A) is factory-set at 4000 psi (27.6 MPa). See your Dealer for adjustment or service. A pressure gauge can be installed at the gauge port (B).

6.6.3 Checking Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines.
- Tighten all connections before applying pressure. Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.
- Use a piece of cardboard or paper to search for leaks.

IMPORTANT:

Keep hydraulic coupler tips and connectors clean. Dust, dirt, water and foreign material are the major causes of hydraulic system damage. DO NOT attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.

Figure 6.18: Pressure Relief Valve

Figure 6.19: Hydraulic Pressure Hazard

Figure 6.20: Cardboard to Search for Leaks
6.7 Cutterbar

⚠️ CAUTION

To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

⚠️ WARNING

Wear heavy gloves when working around or handling knife.

⚠️ WARNING

Keep hands clear of the area between guards and knife at all times.

6.7.1 Replacing Knife Section

Check daily that sections are firmly bolted to the knife back, and are not worn or broken. Replace as required. A worn or broken knife section can be replaced without removing knife from cutterbar.

1. Stroke knife as required to expose knife sections.
2. Remove lock nuts (A), and lift section (B) off of bolts.

IMPORTANT:

Do NOT mix heavy and light knife sections on same knife.

3. Clean any dirt off of knife back, and position new knife section on bolts.
4. Secure with lock nuts, and tighten to required torque.

6.7.2 Removing Knife

⚠️ WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.
Manually stroke knife to its outer limit and clean area around the knifehead.

1. Wrap a chain around knifehead and pull knife out.

6.7.3 Installing Knife

WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

IMPORTANT:
Align guards, and reset knife hold-downs while replacing knife.

1. If knifehead pin (A) is installed in the knifehead (B), remove the pin.
2. Slide knife into place, and align knifehead (B) with pitman arm (C).
3. Install knifehead pin (A) in pitman arm (C), and tap it down into the knifehead, ensuring pin is bottomed out in the knifehead.
4. Tap underside of the knifehead until pin is flush with the upper face of the pitman arm (C).
5. Carefully adjust to achieve a 0.010 in. (.25 mm) gap at (D) with the knife laying flat on the first few guards.
6. Replace bolt (E) and nut.
7. Tighten nut to 160 ft·lb (220 N·m).
8. Replace grease zerk (A) in pin.
9. Grease bearing (if it has been replaced).

6.7.4 Removing Knifehead Bearing

1. Remove knife. Refer to 6.7.2 Removing Knife, page 193.
2. Using a flat-ended tool (A) with approximately the same diameter as the plug (D), tap out the seal (B), bearing (C), plug (D), and O-ring (E) from the underside of the head.

NOTE:
The seal can be replaced without removing the bearing. When changing seal, check pin and needle bearing for wear. Replace if necessary.
6.7.5 Installing Knifehead Bearing

To install the knifehead bearing, follow these steps:

1. Place O-ring (E) and plug (D) in knifehead.
 IMPORTANT:
 Install the bearing with the stamped end (the end with identification markings) facing up.

2. Using a flat-ended tool (A) with approximately the same diameter as the bearing (C), push the bearing into the knifehead until the top of the bearing is flush with the step in knifehead.

3. Install seal (B) into the knifehead with the lip facing outwards.
 IMPORTANT:
 To avoid premature knifehead or knife drive box failure, be sure there is no looseness in the fit of the knifehead pin and the needle bearing, and the fit of the knifehead pin and output arm.

4. Install knife. Refer to .

6.7.6 Removing Spare Knife from Storage

For single knife headers/mower conditioners, a spare knife with knifehead may be stored inside the lean bar (A):
- The left knife is stored at the left end of the lean bar
- The right knife is stored at the right end of the lean bar.

Figure 6.27: Knifehead Bearing Assembly

Figure 6.28: Spare Knife Location – Double Knife
CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Remove bolts (A) from lean bar end cap.
2. Pull out end cap and plastic storage tube assembly with the knife inside.
3. Slide knife from storage tube.
4. Replace storage tube inside lean bar.
5. Reinstall bolts (A), and tighten.

6.7.7 Guards

Guards protect the knife from damage from rocks and other objects and provide a surface for the knife to cut against, much like a pair of scissors. It is important that guards are adjusted properly.

Auger headers can be equipped with two types of guards: pointed or stub.

- Pointed guards are suitable for most standing crops and cutting conditions.
- Stub guards improve cutting performance in tough, stringy grass type crops, and crops that need to be cut close to the ground.

Guards are also designed slightly differently depending on where they are installed along the cutterbar:

- **Outboard Left** – Located at left end of cutterbar. Does not have a ledger to allow for slight fore/aft motion from the knife drive box.
- **Outboard Right** – Located at right end of cutterbar. Does not have a ledger to allow for slight fore/aft motion from the knife drive box (double-knife headers/mower conditioners).
- **Center** – Located at center of cutterbar on double-knife headers/mower conditioners. Has a stepped ledger to allow for knife overlap.
- **Drive End** – Located at the drive end of cutterbar, next to outboard guard. Similar to standard but does not have a ledger to allow for slight fore/aft motion from the knife drive box.
- **Standard** – Standard guard used at all other locations.
MAINTENANCE AND SERVICING

Figure 6.30: Guard Configurations

A - Pointed Standard (MD #118344)
B - Pointed Drive End (no ledger) (MD #118345)
C - Pointed Right Outboard (MD #118302)
D - Pointed Left Outboard (MD #118301)
E - Pointed Center (MD #124338)
F - Stub Standard (MD #118346)
G - Stub Drive End (no ledger) (MD #118347)
H - Stub Center (MD #124775)

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar.
Aligning Guard

Check **DAILY** that guards are aligned to obtain proper shear cut between knife section and guard. Knife sections should contact shear surface of each guard.

1. Retrieve tool from left-hand side of header/mower conditioner.

2. To adjust guard tips downward, position tool as shown at right, and push down.

3. To adjust guard tips upward, position tool as shown at right, and pull up.

TIP: If trouble is encountered cutting tangled, or fine-stemmed material, replace guards with stub guards.

If material is tough to cut, install stub guards with top guard and adjuster plate. A stub guard conversion kit for the header/mower conditioner is available from your Dealer.

Figure 6.31: Wrench Location

Figure 6.32: Guard Tip – Downward Adjustment

Figure 6.33: Guard Tip – Upward Adjustment
Replacing Pointed Guards and Hold-Downs

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure describes the replacement of pointed guards and hold-downs on single and double knife headers.

Pointed Standard Guard and Hold-Down

Follow this procedure to replace standard pointed guards and hold-downs on single- and double-knife headers, except the double knife center guard and hold-down. Refer to *Double Knife Pointed Center Guard and Hold-Down* in this section.

1. Stroke the knife so that knife sections are spaced midway between the guards.
2. Remove two nuts (A), and carriage bolts (B) that attach guard (C), and hold-down (D) to the cutterbar.
3. Remove the guard (C), and the hold-down (D).
4. Position new guard (B) on cutterbar, and install carriage bolts (B).
5. Install hold-down (D), and secure with nuts (A). Tighten nuts to 50 ft·lbf (68 N·m).
6. Check and adjust clearance between hold-down and knife. Refer to 6.7.8 Hold-Downs, page 206.

IMPORTANT:
The second, third, and fourth outboard guards (A) on drive side of the header do **NOT** have a ledger (B) as shown for normal guard (C). Ensure that the proper replacement is installed.

Double Knife Pointed Center Guard and Hold-Down
IMPORTANT:
Ensure center guard (B) has offset (A) in ledgers and that hold-down accommodates overlapping knives.

NOTE:
Replace adjacent guards when replacing center guard.

7. Remove two nuts (A), and carriage bolts (B) that attach guard (C), adjuster bar (D) and hold-down (E) to the cutterbar.

8. Remove the guard (C), the hold-down (E) and adjuster bar (D).

9. Position new guard (C) on cutterbar, and install carriage bolts (B).

10. Install adjuster bar (D) and hold-down (E), and secure with nuts (A). Tighten nuts to 50–68 ft·lbf (68–92 N·m).

11. Check that cutting surfaces (A) of center and adjacent guards are aligned. Adjust as required as per Aligning Guard, page 199

12. Check and adjust clearance between hold-down and knife. Refer to 6.7.8 Hold-Downs, page 206.
Replacing Pointed Center Guard on Double-Knife Header

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure applies to the center guard where the two knives overlap on a double knife header.

IMPORTANT:
Replace adjacent guards when replacing center guard.

IMPORTANT:
Ensure center guard (A) has offset (B) cutting surface.

IMPORTANT:
Ledger surfaces of center, and adjacent guards must be vertically aligned to avoid interference with knife sections.

IMPORTANT:
Hold-down (A) must accommodate the two overlapping knives at center guard location on double-knife header/mower conditioner. Ensure replacement is the correct part.

Figure 6.39: Center Guard: Double Knife

Figure 6.40: Center Hold-Down: Double Knife
1. Stroke the knife so that knife sections are spaced midway between the guards.

2. Remove two nuts (A), and bolts (B) that attach center guard (C), and hold-down (D) to cutterbar.

3. Remove guard (C), hold-down (D), and adjuster bar (E).

4. Position new guard (C) on cutterbar and install two 7/16 x 2-3/4 in. carriage bolts (B).

5. Position adjuster bar (E) and hold-down (D) on cutterbar and install nuts (A).

6. Torque nuts to 50–68 lbf-ft (68–92 N·m).

7. Check clearance between hold-down (D) and section. Refer to Adjusting Knife Hold-Down: Pointed Guard – Double-Knife Header/Mower Conditioner, page 207.
Replacing Center Stub Guard on Double-Knife Header

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure applies to the center guard where the two knives overlap on a double-knife header/mower conditioner.

IMPORTANT:
Replace adjacent guards when replacing center guard.

IMPORTANT:
Ensure center guard (A) has offset cutting surface (B).

IMPORTANT:
Ledger surfaces of center, and adjacent guards must be vertically aligned to avoid interference with knife sections.

IMPORTANT:
Hold-down (A) must accommodate the two overlapping knives at center guard location on double-knife header/mower conditioner. Ensure replacement is the correct part. Hold-down is actually an inverted stub guard (MD # 118346).
1. Remove two nuts (A) and bolts that attach center guard (B) and top guide (C) to cutterbar.

2. Remove guard, top guide, and adjuster bar (D).

IMPORTANT:
Ensure center guard (B) has offset cutting surfaces. Refer to illustration.

NOTE:
Top guide (C) (which is an inverted stub guard) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is correct part.

IMPORTANT:
Ledger surfaces of center, and adjacent guards must be vertically aligned to avoid interference with knife sections.

3. Position replacement guard (B), adjuster bar (D), top guide (C), and install bolts and nuts (A). Do **NOT** tighten.

4. Check and adjust clearance between hold-down, and knife. Refer to **6.7.8 Hold-Downs, page 206**.
6.7.8 Hold-Downs

Hold-downs, also referred to as guides, keep the knife in contact with the guard cutting surface. It is important that the hold-downs are adjusted properly.

Hold-downs are designed to accommodate specific guard locations and guard types:
- Center – Located at center of cutterbar on double-knife headers/mower conditioners. Allows for knife overlap.
- Standard – Used at all other locations.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Check daily that knife hold-downs are set to prevent knife sections from lifting off guards, but still permit the knife to slide without binding.
Adjusting Knife Hold-Down: Pointed Guard – Double-Knife Header/Mower Conditioner

1. Torque nuts (A) to 35 ft·lbf (46 N·m).
2. Turn adjuster bolts (B). Using feeler gauge, clearance from hold-down to knife section (C) should be:
 - 0.004–0.016 in. (0.1–0.4 mm) at the guide tip (C)
 - 0.004–0.040 in. (0.1–1.0 mm) at rear of guide (D)
3. Torque nuts (A) to 53 ft·lbf (72 N·m).
4. After adjusting all hold-downs, run header at a low engine speed, and listen for noise due to insufficient clearance. Insufficient clearance will also result in overheating of the knife and guards.

Adjusting Center Knife Hold-Down: Stub Guard – Double-Knife Header

1. Torque nuts (A) to 35 ft·lbf (46 N·m).
2. Turn adjuster bolts (B). Using a feeler gauge, clearance from hold-down to knife section should be:
 - 0.004–0.016 in (0.1–0.4 mm) at the guide tip (C)
 - 0.004–0.040 in. (0.1–1.0 mm) at rear of guide (D)
3. Torque nuts (A) to 53 ft·lbf (72 N·m).
4. After adjusting all hold-downs, run header at a low engine speed, and listen for noise due to insufficient clearance. Insufficient clearance will also result in overheating of the knife and guards.
6.7.9 Knife Drive Box

The knife drive box converts rotational motion from the tractor or windrower header driveshaft to reciprocating motion for the knife.

The heavy-duty, oil bath, knife drive box uses tapered roller bearings on the input shaft and yoke for increased durability. The pulley and drive arm connections are straight splines with clamping bolts to ensure a tight fit.

The oil level in the knife drive box is checked with a dipstick that is incorporated into the breather.

Mounting Bolts

⚠️ **CAUTION**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Check torque of four knife drive box mounting bolts (A) after the first 10 hours operation, and every 100 hours thereafter. Torque bolts to 200 ft·lbf (270 N·m). When tightening, start with the side mounting bolts.
Removing Knife Drive Box

1. Loosen knife drive belt (B), and slip off knife drive box pulley. Refer to one of the following sections, depending on your equipment:

 • Checking/Adjusting Timing Belt Tension on Left Side – A30-D, page 216
 • Checking/Adjusting Timing Belt Tension on Right Side, page 220
 • Checking/Adjusting Timing Belt Tension – A40-D Left Side, page 229
 • Checking/Adjusting Timing Belt Tension on Right Side, page 233

2. Stroke knife to its outer limit.

3. Clean area around knifehead.

4. Remove grease zerk (A) from knifehead pin (B).

5. Remove nut and bolt (C).

6. Insert screwdriver in groove of pin (B), and pry up on pin to free knife. Pin does not have to be removed from arm.

7. Remove bolt (A) from pitman arm.

8. Remove pitman arm (B) from knife drive box output shaft.
9. Remove bolts (A) attaching knife drive box to frame.
10. Remove knife drive box.

Installing Knife Drive Box

1. Position knife drive box as shown, and install four bolts (A). Torque side bolts, and then torque bottom bolts to 200 ft-lbf (270 Nm).

 IMPORTANT:
 Use only Grade L9 bolts and flat washers.

2. Apply Loctite® #243 adhesive (or equivalent) in two bands (B) around shaft as shown, with one band at end of shaft, and one band approximately mid-way.

3. Slide pitman arm (B) onto knife drive box output shaft.
4. Rotate knife drive box pulley to ensure pitman arm just clears frame to ensure proper placement on splines. Remove arm (B), and reposition on splines as required.
5. Rotate knife drive box pulley to locate pitman arm at furthest outboard position.
6. Slide pitman arm (C) up or down on shaft until it just contacts knifehead (B), (0.010 in. [0.25 mm]) gap.

7. Install bolt (E) and nut, and torque to 160 ft·lbf (217 N·m).

8. Align knifehead (B) with pitman arm (C).

9. Install knifehead pin (A) in pitman arm (C), and tap it down into the knifehead, ensuring pin is bottomed out in the knifehead.

10. Tap underside of the knifehead until the pin is flush with the upper face of the pitman arm (C).

11. Carefully adjust to achieve a 0.010 in. (.25 mm) gap at (D) with the knife laying flat on the first few guards.

12. Replace bolt (C) and nut.

13. Tighten nut to 160 ft·lbf (220 N·m).

14. Replace grease zerk (A) in pin.

15. Install drive belt onto knife drive box pulley and tighten. Refer to one of the following sections, depending on your equipment:

 • Checking/Adjusting Timing Belt Tension on Left Side – A30-D, page 216
 • Checking/Adjusting Timing Belt Tension on Right Side, page 220
 • Checking/Adjusting Timing Belt Tension – A40-D Left Side, page 229
 • Checking/Adjusting V-Belt Tension on Left Side – A40-D, page 228
 • Checking/Adjusting Timing Belt Tension on Right Side, page 233
Removing Pulley

1. Remove knife drive box. Refer to Removing Knife Drive Box, page 209.
2. Loosen nut and bolt from pulley.
3. Remove pulley using a three-jaw puller.

Installing Pulley

1. Remove any rust or paint from inner spline. For replacement parts, remove oil/grease with degreasing agent.
2. Apply Loctite® #243 adhesive (or equivalent) in two bands around shaft as shown, with one band at end of spline, and one band approximately mid-way.
3. Install pulley on shaft until flush with end of shaft, and secure with bolt and nut. Torque bolts to 160 ft·lbf (217 N·m).
Changing Knife Drive Box Oil

Change knife drive box lubricant after the first 50 hours operation, and every 1000 hours (or 3 years) thereafter.

To change lubricant, follow these steps:

1. Raise header/mower conditioner, and then place a suitable container under the knife drive box drain to collect oil.

 CAUTION

 To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

2. Engage header lift cylinder stops.

3. Remove breather/dipstick and drain plug, and allow oil to drain.

4. Replace drain plug and add oil to required level. Use Gear Lubricant, SAE 85W-140, API Service Class GL-5, 2.3 quarts (2.2 liters).

5. Disengage lift cylinder stops.

6.7.10 Adjusting Knife Timing

Double-knife A30-D and A40-D headers/mower conditioners require that the knives are properly timed to move in opposite directions. Knives moving in the same direction will result in unnecessary vibration.

To adjust the knife timing, follow these steps:

1. Remove the right-side knife drive belt (A), if it is not already removed.
2. Rotate the left-side knife drive box driven pulley (A) clockwise until the left-side knife is at the center of the inboard stroke (moving towards center of header).

NOTE:
Center stroke is when the knife points are centered between guard points.

3. Rotate the right-side knife drive box pulley counterclockwise until the right-side knife is at the center of the inboard stroke.

NOTE:
Secure knives to prevent movement when installing the belts.
4. Install the right-side knife drive box drive belt and tension.

⚠️ CAUTION

To maintain timing, knife drive box driver and driven pulleys must NOT rotate as the belt is tightened.

5. Check that the timing belt (A) is properly seated in the grooves on both driver and driven pulley on the right-hand side, and is tensioned correctly. The belt should be tensioned to a 9/16 in. (14 mm) deflection, this is achieved by applying 5–6.5 lbf (22–30 N) to the belt at mid-span.

6. Check for correct knife timing by rotating the driveshaft (A) slowly with an unplugging wrench (B), and observe knives where they overlap at the center of the header.

IMPORTANT:
Knives must move in opposite directions, and must begin moving at exactly the same time.

7. If timing is correct, skip the remaining steps.

8. If timing is off, loosen right-side timing belt sufficiently to allow skipping the belt one or more teeth as required.
 a. **If right knife LEADS left knife,** rotate RIGHT HAND driven pulley (C) clockwise.
 b. **If right knife LAGS left knife,** rotate RIGHT HAND driven pulley (C) counterclockwise.
 c. Tighten right-side timing belt.

Figure 6.69: Timing Belt – Right Side

Figure 6.70: Knife Timing

Figure 6.71: Knife Timing
6.8 A30-D Drive Systems

6.8.1 Knife Drive – A30-D

The A30-D double-knife mower conditioner is driven by a tractor-powered hydraulic motor that drives each knife with two belt-driven knife drive boxes.

Checking/Adjusting Timing Belt Tension on Left Side – A30-D

IMPORTANT:
To prolong belt and drive life, do not overtighten belts.

CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open left endshield.
2. Apply a force of 5–6.5 lbf (22–30 N) on belt (D) at mid-span. Belt should deflect 9/16 in. (14 mm). If necessary, adjust as follows:
 a. Loosen three nuts (A).
 b. Loosen jam nut on adjuster bolt (B).
 c. Turn adjuster bolt (B) to move pulley (C) to achieve required deflection.
 d. Tighten jam nut at (B), and three nuts (A).
3. Close endshield.

NOTE:
Readjust tension of new belts after about 5 hours of operation.

Removing Timing Belt – A30-D Left Side

1. Open left-hand endshield.
2. Remove auger drive chain (A). Refer to **Removing Auger Drive Chain, page 227.**
3. Remove auger drive v-belts (B). Refer to **Removing Double V-Belts – A30-D Left Side, page 219.**
4. Loosen three nuts (A).

5. Loosen jam nut on adjuster bolt (B), and turn adjuster bolt (B) so that knife drive belt (C) can be slipped off pulley (D) and clear of sprocket.

6. Remove bolt (A) and remove cover (B) in left endsheet.

7. Slip belt off knife drive box pulley, and route belt through opening to remove it.

Installing Timing Belt – A30-D Left Side

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Route knife drive timing belt from inboard side of endsheet through opening (A).
2. Locate knife drive belt (A) onto knife drive box pulley (B).

3. Route knife drive belt (A) over sprocket and onto knife drive pulley (C).

NOTE:
When installing new belt, never pry belt over pulley. Ensure drive pulley (C) is fully forward.

IMPORTANT:
To prolong belt and drive lift, do not overtighten belts.

4. Tension knife drive belt. Refer to *Checking/Adjusting Timing Belt Tension on Left Side – A30-D, page 216.*

5. Install knife drive V-belts (B) and tension. Refer to *Installing Double V-Belts – A30-D Left Side, page 220.*

6. Install auger drive chain (A) and tension. Refer to *Installing Auger Drive Chain, page 227.*

7. Install plate (B) in left endsheet with bolt (A).

8. Readjust tension of a new belt after a short run-in period (about 5 hours).

Checking/Adjusting V-Belts Tension on Left Side – A30-D

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open left endshield.

NOTE:
Minor belt tension adjustments may be made without affecting chain tension. For major adjustments, such as repositioning or auger, adjust belt tension BEFORE chain tension.

2. Apply a force of 8–12 lbf (35–50 N) on each belt (C) at mid-span. Belt should deflect 3/16 in. (4 mm). If necessary, adjust as follows:
 a. Loosen three bolts (A).
 b. Loosen jam nut on adjuster bolt (B).
 c. Turn adjuster bolt (B) to achieve required deflection.
 d. Tighten bolts (A), and jam nut at (B).

3. Check reel drive chain tension, and adjust if necessary. See Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223.

4. Close shield before engaging header.

NOTE:
Readjust tension of new belts after about 5 hours of operation.

Removing Double V-Belts – A30-D Left Side

1. Open left endshield.

2. Remove auger drive chain. Refer to Removing Auger Drive Chain, page 227.

3. Loosen three bolts (A).

4. Loosen jam nut on adjuster bolt (B).

5. Turn adjuster bolt (B) to loosen V-belts (C).

6. Remove belts (C).
MAINTENANCE AND SERVICING

Installing Double V-Belts – A30-D Left Side

IMPORTANT:
Belts are a matched set. Replace both drive belts even if only one needs replacing.

NOTE:
When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

IMPORTANT:
To prolong belt and drive life, do not overtighten belts.

1. Position drive belts (C) as shown in illustration.
2. Turn adjuster bolt (B) so that belts (C) deflect 3/16 in. (4 mm) at mid-span when a load of 8–12 lbf (35–50 N) is applied to each belt.
3. Tighten bolts (A) and jam nut at (B).
4. Install auger drive chain. Refer to Installing Auger Drive Chain, page 227.
5. Readjust tension of a new belt after a short run-in period (about 5 hours).

Figure 6.82: Left Knife Drive Belt

Checking/Adjusting Timing Belt Tension on Right Side

IMPORTANT:
To prolong belt and drive lift, do not overtighten belts. Belt slippage is used to protect the reel in an overload situation.

CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open right endshield.
2. Apply a force of 5–6.5 lbf (22–30 N) on belt (D) at mid-span. Belt should deflect 9/16 in. (14 mm). If necessary, adjust as follows:
 a. Loosen three nuts (A), and jam nut on adjuster bolt (B).
 b. Turn adjuster bolt (B) to move pulley (C) until required deflection is achieved.
 c. Tighten jam nut at (B), and three nuts (A).
3. Close endshield.

NOTE:
Readjust tension of new belt after about 5 hours of operation.
Removing Timing Belt – A30-D Right Side

1. Open shield on header right side.
2. Remove the reel drive belts (A). Refer to Removing Reel Drive Belt, page 225.
3. Loosen three nuts (A), and jam nut on adjuster bolt (B).
4. Turn adjuster bolt (B) so that knife drive belt (D) can be slipped off pulley (C) and knife drive box pulley (E).
5. Remove bolt (A) and remove cover (B) in left endsheet.
6. Slip belt off knife drive box pulley, and route belt through opening to remove it.
Installing Timing Belt – A30-D Right Side

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Route knife drive timing belt from inboard side of endsheet through opening (A).

![Figure 6.87: Right Inboard Opening](image)

2. Locate knife drive belt (A) onto knife drive box pulley (B) and drive pulley (C).

NOTE:
When installing new belt, never pry belt over pulley. Ensure drive pulley (C) is fully forward.

IMPORTANT:
To prolong belt and drive life, do not overtighten belt.

3. Tension knife drive belt. Refer to Checking/Adjusting Timing Belt Tension on Right Side, page 220.

![Figure 6.88: Right Knife Drive Belt](image)

4. Install reel drive belts (A). Refer to Installing Reel Drive Belt, page 226.

![Figure 6.89: Reel Drive Belt](image)
5. Install plate (B) in right endsheet with bolt (A).
6. Close endshield.
7. Readjust tension of a new belt after a short run-in period (about 5 hours).

6.8.2 Reel Drive – A30-D

⚠️ CAUTION
To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

Checking/Adjusting Reel Drive Chain Tension – A30-D

⚠️ CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open right endshield.

IMPORTANT:
When making major adjustments, such as repositioning the reel or auger, adjust belt tension **BEFORE** chain tension.

2. Slack in chain at mid-point (A) of lower span should be 1/4 in. (6 mm). If necessary, adjust as follows:
 a. Loosen nut (B) on idler sprocket support.
 b. Turn adjuster bolt (C) to give required slack at mid-span (A) of chain. Tighten nut (B) on idler sprocket support.
 c. Rotate auger, and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.

3. Close endshield.
Removing Reel Drive Chain – A30-D

Remove reel drive chain (A) as follows:
1. Open shield on header right-hand side.
2. Remove reel drive belt (D) from pulley (E). Refer to Removing Reel Drive Belt, page 225.
3. Loosen nut (B) on idler sprocket.
4. Loosen then back off jam nut on adjuster bolt (C).
5. Turn adjuster bolt (C) to loosen chain.
6. Remove chain from sprockets.

Installing Reel Drive Chain – A30-D

Install reel drive chain (A) as follows:
1. Position chain (A) around sprockets as shown.
2. Install and tighten reel drive belts (D). Refer to Installing Reel Drive Belt, page 226.
3. Turn adjuster bolt (C) to move idler sprocket downward until total chain slack at (A) is 1/4 in. (6 mm).
4. Rotate auger, and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.
5. Tighten jam nut at (C) and nut (B), then recheck tension.
6. Close shield before engaging header.

Checking/Adjusting Reel Drive Belt Tension

IMPORTANT:
To prolong drive life, do not over-tighten belts. Belt slippage is used to protect the reel in an overload situation.

⚠️ CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open right endshield.

 IMPORTANT:
 When making major adjustments, such as repositioning the reel or auger, adjust belt tension BEFORE chain tension.
2. Apply a force of 8–12 lbf (35–50 N) on each belt at mid-span (D). Belt should deflect 3/16 in. (4 mm). If necessary, adjust as follows:
 a. Loosen jam nut on adjuster bolt (A), and nuts (B).
 b. Turn adjuster bolt (A) to move pulley (C) to achieve required tension.
 c. Tighten jam nut on adjuster bolt (A), and nuts (B).
3. Check reel drive chain tension, and adjust if necessary. Refer to Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223.
4. Close shield before engaging header.

NOTE:
Readjust tension of new belts after about five hours of operation.

Removing Reel Drive Belt

Remove reel drive belts (A) as follows:
1. Open shield on header right-hand side.
2. Loosen jam nut on adjuster bolt (B) and nuts (C) at reel drive arm.
3. Turn adjuster bolt (B) to loosen reel drive belts (A).
4. Remove drive belts (A).
Installing Reel Drive Belt

IMPORTANT:
Reel drive belts are a matched set. Replace BOTH drive belts even if only one needs replacing.

To install a reel drive belt (D) on an A30-D mower conditioner, follow these steps:

1. Position drive belts (D) on pulleys, ensuring both belts are identical.
2. Turn adjuster bolt (A) to move pulley (C) so that each belt (D) deflects 3/16 in. (4 mm) when a load of 8–12 lbf (35–40 N) is applied to each belt at mid-span.
3. Tighten jam nut on adjuster bolt (A), and nuts (B).

NOTE:
Readjust tension of new belts after about five hours of operation.

4. Check reel drive chain tension, and adjust if necessary. Refer to Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223.

5. Close shield before engaging header.

6.8.3 Auger Drive – A30-D

The auger on an A30-D mower conditioner is mechanically-driven.

Checking/Adjusting Auger Drive Chain Tension – A30-D

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open left endshield.

IMPORTANT:
Do NOT adjust V-belt belt tension after chain tension is set. Ensure v-belt tension is set before adjusting chain tension.
2. Slack in chain at mid-point (A) of lower span should be 3/16 in. (5 mm). If necessary, adjust as follows:
 a. Loosen nut (B) on idler sprocket support.
 b. Turn adjuster bolt (C) to give required slack at mid-span (A) of chain. Tighten nut (B) on idler sprocket support.
 c. Rotate auger, and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.

3. Close endshield.

Removing Auger Drive Chain

To remove the auger drive chain from an A30-D mower conditioner, follow these steps:

1. Open left endshield.
2. Loosen nut (B) on idler sprocket support.
3. Turn adjuster bolt (C) to loosen chain (A) so that it can be removed from small sprocket.
4. Remove chain (A) from large sprocket.

Installing Auger Drive Chain

1. Position chain (A) around sprockets as shown.
2. Turn adjuster bolt (C) to give 3/16 in. (5 mm) slack at mid-span of chain. Tighten nut (B) on idler sprocket support.
3. Rotate auger and check chain for slack at tightest point. Readjust position of idler sprocket to achieve required slack.
4. Close endshield before engaging header.
6.9 A40-D Drive Systems

6.9.1 Knife Drive – A40-D

The A40-D double-knife header is driven by a windrower-powered hydraulic motor that drives each knife with two belt-driven knife drive boxes.

Checking/Adjusting V-Belt Tension on Left Side – A40-D

⚠️ CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open left endshield.
2. Apply a force of 8–12 lbf (35–50 N) on each belt at mid-span (D). Belt should deflect 3/16 in. (4 mm). If necessary, adjust as follows:
 a. Loosen three nuts (A), and jam nut on adjuster bolt (B).
 b. Turn adjuster bolt (B) to move pulley (C) to achieve required deflection at (D).
 c. Tighten jam nut at (B), and three nuts (A).
3. Close endshield.

NOTE:
Readjust tension of new belts after about 5 hours of operation.

Removing Double V-Belts on Left Side – A40-D

This procedure is applicable to A40-D Grass Seed and A40-D standard headers.

⚠️ CAUTION
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Open left endshield.

2. Loosen three nuts (A), and jam nut on adjuster bolt (B).

3. Turn adjuster bolt (B) so that drive belts (C) can be slipped off pulleys (D) and (E).

Installing Double V-Belts – A40-D Left Side

This procedure is applicable to A40-D Grass Seed and A40-D standard headers.

IMPORTANT:
Belts are a matched set. Replace both drive belts even if only one needs replacing.

NOTE:
When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

IMPORTANT:
To prolong belt and drive life, do not overtighten belts.

1. Slip belts (A) onto pulleys (B) and (C).
2. Turn adjuster bolt (D) to move pulley (B) until a force of 8–12 lbf (35–50 N) applied at mid-span to each belt deflects each belt (A) 3/16 in. (4 mm).
3. Tighten jam nut at (D), and three nuts (E).

NOTE:
Readjust tension of a new belt after a short run-in period (about 5 hours).

Checking/Adjusting Timing Belt Tension – A40-D Left Side

IMPORTANT:
To prolong belt and drive lift, do not overtighten belt.
CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open left endshield.
2. Apply a force of 5–6.5 lbf (22–30 N) on belt (A) at mid-span. Belt should deflect 9/16 in. (14 mm). If necessary, adjust as follows:
 a. Loosen three nuts (B), and jam nut on adjuster bolt (C).
 b. Turn adjuster bolt (C) to move pulley (D) until required tension is achieved.
 c. Tighten jam nut at (C), and three nuts (B).
3. Close endshield.

NOTE:
Readjust tension of new belt after about 5 hours of operation.

Removing Timing Belt on Left Side

To remove the knife drive timing belt from the left side of an A40-D header, follow these steps:

1. Open shield on left-hand of the header.
2. Loosen the three bolts (A) that lock the bottom drive pulley in place.
3. Loosen adjusting bolt (B); this will loosen the belts.
4. Loosen the three bolts (A) that lock the pulley in position.

5. Loosen adjusting bolt (B); this will loosen the knife drive belt.

6. Remove the two belts (C) that drive the cross shaft.

7. Remove the knife drive timing belt (D) from the rear pulley.

8. Open the access panel located beside the knife drive box. Line up the belt with the notch machined into the knife drive box pulley. Rotate the pulley with the belt in the notch until it is free for removal.

NOTE:
Mark the ports and hoses and place port caps or plastic bags with tie wraps to prevent contamination.

9. To completely remove the belt, you will need to remove the two hoses (A) off of the auger drive motor, and disconnect the knife speed harness (B).
Installing Timing Belt - A40-D Left Side

This procedure is applicable to A40-D Grass Seed and A40-D Standard headers.

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Route knife drive timing belt from inboard side of endsheet through opening (A).

2. Locate knife drive belt (D) onto knife drive box pulley (F).

3. Route knife drive belt (D) onto knife drive pulley (E).

 NOTE:
 When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

 IMPORTANT:
 To prolong belt and drive life, do not overtighten belts.

4. Turn adjuster bolt (C) to move pulley (E) until a force of 5–6.5 lbf (22–30 N) deflects belt 9/16 in. (14 mm) at mid-span (D).

5. Tighten jam nut at (C), and three nuts (B).

8. Install cover (B) in endsheet and secure with bolt (A).

NOTE:
Readjust tension of a new belt after a short run-in period (about 5 hours).

Checking/Adjusting Timing Belt Tension on Right Side

IMPORTANT:
To prolong belt and drive life, do not overtighten belt.

⚠️ **CAUTION**
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Open right endshield.
2. Apply a force of 5–6.5 lbf (22–30 N) on belt (D) at mid-span. Belt should deflect 9/16 in. (14 mm). If necessary, adjust as follows:
 a. Loosen three nuts (A), and jam nut on adjuster bolt (B).
 b. Turn adjuster bolt (B) to move pulley (C) until required tension is achieved.
 c. Tighten jam nut at (B), and three nuts (A).
3. Close endshield.

NOTE:
Readjust tension of new belt after about 5 hours of operation.

Removing Timing Belt – A40-D Right Side

⚠️ **CAUTION**
To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Remove bolt (A) and remove cover (B) in right endsheet.

![Image](image1.png)

Figure 6.112: Right Inboard Cover

2. Open right endshield.
3. Loosen three nuts (A), and jam nut on adjuster bolt (B).
4. Turn adjuster bolt (B) so that knife drive belt (C) can be slipped off pulley (D).
5. Remove belt (C) from pulley (E) and remove belt through hole in endsheet.

![Image](image2.png)

Figure 6.113: Right Timing Belt

Installing Timing Belt – A40-D Right Side

⚠️ **CAUTION**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Route knife drive timing belt from inboard side of endsheet through opening (A).

![Image](image3.png)

Figure 6.114: Right Inboard Opening
2. Locate belt (C) onto knife drive box pulley (E) and knife drive pulley (D) as shown.

NOTE:
When installing new belt, **NEVER** pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

3. Turn adjuster bolt (B) to move pulley (C) until a force of 5–6.5 lbf (22–30 N) deflects belt (C) 9/16 in. (14 mm) at mid-span.

4. Tighten jam nut at (B), and three nuts (A).

5. Install cover (B) in endsheet at knife drive box and secure with bolt (A).

6. Close endshield.

NOTE:
Readjust tension of a new belt after a short run-in period (about 5 hours).

6.9.2 Reel Drive – A40-D

The reel drive gearbox and hydraulic motor are a factory-assembled unit. The gearbox is sealed, and requires no scheduled maintenance. If service is required for either the gearbox or motor, see your Dealer.

6.9.3 Auger Drive – A40-D

The A40-D header auger is driven directly from a hydraulic motor that is powered by the windrower hydraulics.
6.10 Reel Tines and Tine Bar Bearings

⚠️ CAUTION
To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

6.10.1 Reel Tines and Tine Bar Bearings – A30-D

IMPORTANT:
Keep reel tines in good condition. Straighten or replace as required.

Separate procedures are required to replace reel tines, depending on their location on the reel.

Removing Tines and Bearings – A30-D: Cam End

⚠️ WARNING
Wear heavy gloves when working around or handling knife.

NOTE:
It is recommended that a light coating of anti-sieze compound be applied to tine tube connections and all bolts prior to reassembly.

1. Loosen bolt on cover (A), and slide cover to expose hole in cam disc. Rotate reel, and align bearing with hole.

![Figure 6.117: Cam Disc Cover](image-url)
2. Remove cam follower bearing bolt (A), bearing (B), and nut.
3. Disengage cam arm (C) from the cam track with a pry bar.
4. Remove bolt (D), bolt (E), and keeper (F) that connect cam arm (C) and end tines to tine bar.
5. Remove bolts (G) securing tine bar bearing support (H) to reel arm.
6. Position end of tine bar clear of cam disc, and remove cam arm assembly (C).
7. Slide bearing support (H) off tine bar, and remove bearing halves (J).
8. Remove nut, bolt, and keeper on each tine to be removed, and slide tine off the bar.

Removing Tines and Bearings – A30-D: Opposite Cam End

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Remove bolts (A) securing tine bar bearing support (B) to reel arm.
2. Remove bolt (C), and keeper (D) that connect end tines to tine bar.
3. Remove bolt (E) securing bearing halves to tine bar.
4. Position end of tine bar clear of cam disc, and slide tines off bar.
5. Slide bearing support (B) off tine bar, and remove bearing halves (F).
6. Remove nut, bolt, and keeper on each tine to be removed, and slide tine off the bar.

Installing Tines and Bearings – A30-D: Opposite Cam End

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.
1. Slide tines and bearing support (A) onto tine bar.

2. Locate bearing halves (B) inside the bearing support (A).

 NOTE:
 Ensure bearings are installed with flanges of bearing facing the centerline of the header/mower conditioner.

3. Install bolt (C) through the bearings, tine bar and cam arm shaft. Secure with nut, and torque to 2–3 ft·lbf (2.5–4 N·m).

4. Attach bearing support to reel arm with bolts and nuts (D). Torque nuts to 21 ft·lbf (29 N·m).

5. Secure tines on tine bar with bolt (E) and keeper (F). Install nut with tapered side against tine bar.

6.10.2 Reel Tines and Tine Bar Bearings – A40-D

Separate procedures are required to replace reel tines, depending on their location on the reel.

IMPORTANT:
Keep reel tines in good condition. Straighten or replace as required.

Replacing Tine and Bearing – A40-D: Cam End – Disc #1

NOTE:
It is recommended that a light coating of anti-sieze compound be applied to tine tube connections and all bolts prior to re-assembly.
Replace tines and bearing at disc #1 (A) as follows:

1. Loosen bolt on cover (A), and slide cover to expose hole in cam disc. Rotate reel, and align bearing with hole.

2. Remove cam follower bearing bolt (A), bearing (B), and nut.

3. Disengage cam arm (C) from the cam track with a pry bar.

4. Remove flangette mounting bolts (D).
5. Remove nuts (A), keepers (B), and shoulder bolts (C) that connect cam arm (D) and end tines (E) to tine bar.

IMPORTANT:
Tine attachment hardware and configuration may vary. Identify locations so that tine hardware will be reinstalled at same locations.

6. Position end of tine bar clear of cam disc, and remove cam arm assembly (D), complete with bearing assembly.

7. Replace bearing (A). Refer to **6.5.4 Installing Sealed Bearings, page 188**.
8. Replace tines as follows:
 a. Remove bolt (A) and keeper (B) on tine to be replaced.
 b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 c. Slide tines off tine bar.
 d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
 e. Slide remaining tines onto tine bar and attach to tine bar. Do NOT install bolts in end tines at this time.

9. Install cam arm assembly (A), complete with bearing onto tine bar.

10. Engage cam arm (A) into cam track as shown.

11. Attach bearing flangettes with bolts (B). Tighten bolts to 23–26 ft·lb (31–36 N·m).

12. Lock the bearing.

IMPORTANT:
It is recommended to replace hardware at cam end of tine bar with hardware as specified in the following steps.

13. Position tines as shown and install bolts (A) with keepers, spacers (B) and nuts (C).

14. Install bolts (D), spacers (B), and nuts (C) between tines as shown.

15. Alternate hardware configuration for later-build 2015:
 a. 5/16 x 2-1/2 Carriage Bolt (A), MD #136348
 b. Spacer (B), MD #170622
 c. Lock Nut (C), MD #018690
 d. 5/16 x 2 Hex Head Bolt (D), MD #021569
16. Install cam follower bearing (A) with bolt (B). Apply Loctite® #262 (or equivalent) to bolt threads, and torque to 90 ft·lbf (122 N·m).

IMPORTANT:
Install nut with distorted thread **TOWARDS** bolt head.

17. Reposition cover (A) on cam, and tighten bolt.
Replacing Tine and Bearing – A40-D: Disc #2

Replace Tine and Bearing at disc #2 (B) as follows:

Type A Tine Bars

1. Remove flangette mounting bolts (A) at reel disc #2.
2. Remove shoulder bolts (B) and keeper (C) from tine bar.
3. Separate left tine bar (D) with bearing from center tine bar (E).
4. Remove tine from center tine bar (E).

5. Remove bearing (A) from tine bar connecting shaft (B). Refer to 6.5.4 Installing Sealed Bearings, page 188.
6. Remove nuts (C), shoulder bolts (D), keepers (E) from left tine bar (F) and remove tines (G).
7. Replace tines as follows:
 a. Remove bolt (A) and keeper (B) on tine to be replaced.
 b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 c. Slide tines off tine bar.
 d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
 e. Slide remaining tines onto tine bar and attach to tine bar. Do NOT install bolts in end tines at this time.

8. Install end tines (G) onto left tine bar (F) with shoulder bolts (D), keepers (E) and nuts (C).

9. Assemble new bearing (A) with flangettes onto connecting shaft (B). Refer to 6.5.4 Installing Sealed Bearings, page 188.

10. Slip new tine onto center tine bar (E).

11. Assemble left tine bar (D) to center tine bar (E) and secure with shoulder bolts (B), keeper (C), and nuts.

12. Install tine bar onto reel disc with hardware (A). Tighten bolts to 23–26 ft·lbf (31–36 N·m).
Type B Tine Bars

13. Remove flangette mounting bolts (A) at reel disc #2.
14. Remove shoulder bolts (B) and keeper (C) from tine bar.
15. Separate left tine bar (D) with bearing from center tine bar (E).
16. Remove tine from center tine bar (E).

17. Remove bearing (A) from tine bar connecting shaft (B). Refer to 6.5.4 Installing Sealed Bearings, page 188.
18. Remove nut (C), shoulder bolt (D), keeper (E) from left tine bar (F) and remove tine (G).

19. Install new tine (G) onto left tine bar (F) with shoulder bolt (D), keeper (E) and nut (C).
20. Assemble new bearing (A) with flangettes onto connecting shaft (B). Refer to 6.5.4 Installing Sealed Bearings, page 188.
21. Replace tines as follows:
 a. Remove bolt (A) and keeper (B) on tine to be replaced.
 b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 c. Slide tines off tine bar.
 d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
 e. Slide remaining tines onto tine bar and attach to tine bar. **Do NOT** install bolts in end tines at this time.

22. Slip new tine onto center tine bar (E).

23. Assemble left tine bar (D) to center tine bar (E) and secure with shoulder bolt (B) and nut.

24. Secure tine onto center tine bar (E) with shoulder bolt (B), keeper (C) and nut.

25. Install tine bar onto reel disc with hardware (A). Tighten bolts to 23–26 ft·lb (31–36 N·m).

Replacing Tine and Bearing – A40-D: Center Section X
1. Remove flangette mounting bolts (A) at reel discs #3 and #4.

2. Remove shoulder bolts (B) and keeper (C) connecting tine bar sections ‘X’ and ‘Y’ at reel disc #3.

3. Lift tine bar away from reel arms, and remove complete tine bar section ‘Y’ (including reel bearings at discs #3 and #4).

4. To replace tine bar bearing, refer to 6.5.4 Installing Sealed Bearings, page 188.

5. Remove tine as follows:
 a. Remove bolt (A) and keeper (B) on tine to be replaced.
 b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 c. Slide tines off tine bar.
 d. Install tines on tine bar, and secure with bolts (A) and keepers (B). Install nut with tapered side against tine bar. Do **NOT** install bolts in end tines at this time.
6. Assemble tine bar section ‘\(Y\)’ (including reel bearings at discs #3 and #4) to tine bar section ‘\(X\)’ at reel disc #3.

7. Position tines as shown, and install shoulder bolts (B) with keeper (C).

8. Attach bearing flangettes to reel arm at discs #3 and #4 with bolts (A). Tighten bolts to 23–26 ft lb (31–36 N m).

Replacing Tine and Bearing – A40-D: Opposite Cam – Section Y
1. Remove shoulder bolts (A) and keeper (B) connecting tine bar sections ‘Z’ and ‘Y’ at reel disc #4.

2. Remove flangette mounting bolts (C) at reel disc #4.

3. Lift tine bar away from reel arms, and remove complete tine bar section ‘Z’, complete with bearing assembly.

4. To replace tine bar bearing, refer to **6.5.4 Installing Sealed Bearings, page 188**.

5. Replace tine as follows:
 a. Remove bolt (A) and keeper (B) on tine to be replaced.
 b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 c. Slide tines off tine bar.
 d. Install tines on tine bar, and secure with bolts (A) and keepers (B). Install nut with tapered side against tine bar. Do **NOT** install bolts in end tines at this time.

6. Install tine bar extension ‘Z’ including bearing to section ‘Y’ at reel disc #4.
7. Install shoulder bolts (A) and keeper (B) with tine to connect tine bar extension.

8. Install flangette mounting bolts (C) at reel disc #4. Tighten to 16–20 ft·lb (21–27 N·m).

Figure 6.153: Disc #4

- A - Shoulder Bolts
- B - Keeper
- C - Flangette Mounting Bolts
- Y - Section Y
- Z - Section Z

Replacing Tine – A40-D: Tine Bar Extension – Section Z

Figure 6.154: Tine Bar Extension - Section Z

- A - Disc #3
- B - Disc #4
- Y - Section Y
- Z - Section Z
MAINTENANCE AND SERVICING

1. Remove bolt (A) and keepers (B) on tine to be replaced, and slide tines off tine bar.

2. Install tines on tine bar, and secure with bolt (A) and two keepers (B). Tine (C) must be clamped between keepers (B). Install nut with flat side against tine bar extension.
6.11 Auger Drive – A30-D

The auger on an A30-D mower conditioner is mechanically-driven.

6.11.1 Straightening Auger Pans – A30-D

The high density polyethylene auger pans are repairable and replaceable. Refer to your Dealer for details on replacing the pans.

IMPORTANT:
To prolong the life of the auger pan, be sure to check that reel tines do not contact the pans when adjusting the reel position or tine pitch.

Stones and other debris can deform the polyethylene pans. If this occurs, the pans can be straightened.

⚠️ CAUTION
To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167, and 1 Safety, page 1.

1. Heat the deformed area with a heat gun until the poly is almost sticky.
2. Push out the dent, and then apply a cold wet rag. Keep wetting the rag in cold water, and applying it on the area until cool. This ensures the poly retains its shape.

NOTE:
If the dent is too severe, and has stretched the poly, it may be necessary to locally remove the poly. Use a plastic welder to rejoin the material. Replacement pans are also available from your Dealer.

6.11.2 Replacing Rubber Fingers – A30-D

Rubber fingers should be replaced if missing or damaged.

To replace a rubber finger, follow these steps:
1. Remove nut and bolt (A), and then remove finger (B).
2. Position new finger in holder, and then install bolt and nut. Rubber finger should be free to move after bolt is tightened.
6.11.3 Striper Bar

Stripper bars help prevent the crop from wrapping around the auger and improve crop flow into the conditioner.

To maintain 1/32–5/32 in. (1–4 mm) clearance (B) between auger (A) flighting and stripper bars, bars may need replacing due to wear or damage. Shims may also need to be installed to compensate for local irregularities in the structure.

If after adjusting stripper bars, auger position needs to be adjusted, refer to 3.7.5 Setting Auger Position, page 62.

Removing Stripper Bar

Heavy crops may cause plugging across the auger due to restricted flow at the stripper bars. To address this problem, remove the lower stripper bar (A), and if necessary, the center stripper bar (B) at each end of the header.

WARNING

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under mower conditioner for any reason.

To remove a stripper bar, follow these steps:

1. Remove bolts attaching stripper bar to pan.
2. Remove stripper bar.
3. Replace bolts in pan.

NOTE:

Special countersunk bolts are available from your Dealer.

Replacing Stripper Bars

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.
MAINTENANCE AND SERVICING

1. Remove four nuts and bolts (A) that secure each stripper bar (B) (left-hand and right-hand) to the pan, and remove bars. There are six bars in total.

2. Position new bars (B) on pan as shown, with upper flange on front bar facing forward.

3. Install three bolts and nuts (A) in each bar, and torque to 150 ft·lbf (203 N·m).

4. Check clearance between auger and stripper bars.

5. Loosen bolts (A), and add shims between stripper bars and pan at bolt locations as required to obtain clearance as shown.

6. Retighten bolts to specified torque.

Installing Front Stripper Bar Extensions

Extensions for the front stripper bar are provided for installation (if required for certain crop conditions), especially in tall crops that cause material to bunch up at the ends of the conditioner rolls.

Stripper bar extensions will allow the auger to carry the crop more towards the center, rather than prematurely feeding it to the conditioner.

To install front stripper bar extensions, follow these steps:

1. Raise header, and engage lift cylinder stops.

2. Remove nuts and carriage bolts (A) securing the two extensions (B) to underside of header pan support, and retain for reinstallation.
3. Position extension (D) at inboard end of front stripper bars (E), and mark locations of the two holes onto the plastic pan.

4. Drill two 5/16 in. (8 mm) holes at these locations.

5. Install extension with previously removed carriage bolts (C).

6. Repeat above steps for other extension.
6.12 Conditioner

⚠️ CAUTION

To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

6.12.1 Changing Gearbox Oil

NOTE:
Change conditioner drive gearbox lubricant after the first 50 hours of operation, and every 1000 hours (or 3 years) thereafter.

To change the oil in the conditioner gearbox, follow these steps:
1. Lower header/mower conditioner to ground.
2. Open driveline shield (A).

Figure 6.163: Driveline Shield
3. Place a suitable container under gearbox drain to collect oil.

4. Remove breather (A), and check plug (B).

5. Remove drain plug (C) and allow oil to drain.

6. Replace drain plug (C), and add oil at (A) to required level. Use Gear Lubricant, SAE 85W-140, API Service Class GL-5, 1.5 quarts (1.4 liters).

7. Oil is at required level when it runs out of check plug (B).
6.12.2 Removing Forming Shield (A40-D)

1. Remove hairpins (B), and washers that secure straps (A) to frame.
2. Hold onto forming shield, and slip straps off pins. Lower forming shield to ground.

3. Remove two clevis pins (B) from forming shield forward end.
4. Lift forming shield off bolts (A) in windrower legs, and lower to ground. Replace clevis pins in forming shield.
5. Slide forming shield out from under windrower, or drive windrower away from forming shield.

Figure 6.167: Forming Shield

Figure 6.168: Forming Shield
6.12.3 Disassembling Forming Shield (A40-D)

To disassemble the forming shield, follow these steps:

1. Invert forming shield onto top.
2. Remove lynch pin (A) from adjuster rods (B), and disassemble rods from side deflectors (C).

3. Disassemble nut (A) from bolt (B), and lift deflector (C) and washer (D) off forming shield. Repeat for other deflector.
4. Disassemble locking handles (A), and remove bolts.
5. Disassemble fluffer shield (B) from forming shield cover.

6. Remove bolts (A) to remove deflector fins (B) from cover.

6.12.4 Assembling Forming Shield (A40-D)

To assemble the forming shield, follow these steps:

1. Attach deflector fins (B) to forming shield cover with bolts (A).
2. Attach fluffer shield (B) to forming shield cover.
3. Attach locking handles (A) to forming shield cover with bolts.

4. Attach deflectors (C) and washers (D) to forming shield cover with nuts (A) and bolts (B).
5. Attach adjuster rods (B) to side deflectors (C) with lynch pin (A).

6.12.5 Installing Forming Shield (A40-D)

To install forming shield, follow these steps:

1. Remove two clevis pins (A) from forming shield forward end.

2. Position forming shield (A) under the windrower frame.
3. Lift forming shield onto bolts (A) in windrower legs, and secure with clevis pins (B) and hairpin.

4. Lift aft end of forming shield, and attach straps (A) to pins (B) on windrower frame. Install washer and hairpin to secure strap. Use the middle hole, and adjust height to suit the crop.
5. Set forming shield side deflectors to desired width by repositioning adjuster bars (A). Use the same hole location on both sides.

6. Adjust fluffer shield (B) to middle position. Loosen handles (C) if required.

![Figure 6.181: Forming Shield](image)

6.12.6 Removing Header Drive Motor: A30-D, A40-D

This procedure applies to A30-D and A40-D (except Grass Seed) double-knife headers/mower conditioners.

⚠️ **CAUTION**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

1. Shut down the engine and remove key from ignition.
2. Open conditioner drive shield.

IMPORTANT:

Mark hoses and make a diagram of hose routing. This is useful during reassembly.

3. For **PULL-TYPE units**, disconnect hydraulic hoses from the motor, and install caps on hose ends and motor ports.
4. For **SELF-PROPELLED units**, disconnect hoses at couplers on motor.
5. Remove two bolts (A) securing motor to gearbox, and remove motor.

![Figure 6.182: Header Drive Motor](image)
6.12.7 Installing Header Drive Motor: A30-D, A40-D

This procedure applies to A30-D and A40-D (except Grass Seed) double-knife headers/mower conditioners.

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

Install hydraulic motor onto the gearbox as follows:

1. Apply light coat of silicone to motor flange, and position motor on gearbox as shown until mounting holes are aligned, and pinion engages gear in gearbox.

2. Clean off excess sealant from motor flange and gearbox face.

3. Install bolts (A) and washers, and torque to 75 ft·lbf (102 N·m).

4. Reconnect hoses to motor.

6.12.8 Removing Conditioner Gearbox – A30-D

To remove the conditioner drive gearbox from an A30-D header, follow these steps:

1. Open the conditioner driveshield.
2. Remove two bolts (A) and nuts securing channel (B) to the frame.

3. Remove two hex bolts (A), and one carriage bolt (B) securing channel (C) to endsheet, and remove channel (C).

4. Remove two bolts (A) securing motor (B) to gearbox. Do NOT disconnect hoses.

 NOTE:
 Hoses not shown for clarity.

5. Carefully pull motor (B) from gearbox and move it clear of work area.
6. Remove two bolts (A) in upper driveline (B).
7. Pull driveline (B) off gearbox. If necessary, use a screwdriver or equivalent to spread yoke. Move driveline clear of work area.
8. Remove four bolts (C) from flange on lower driveline (D) and remove driveline from gearbox. Move driveline clear of work area.

11. Remove the three bolts (A) from hub (B) and remove hub and sprocket.
12. Remove the three bolts (A) from the tapered bushing (B).
13. Install two bolts (A) in the two threaded holes (C) in bushing (B) and tighten to release the bushing.
14. Remove bushing (C) and key.
15. Remove pulley (D).

16. Remove three nuts (A) securing gearbox (B) to frame and remove gearbox (B).

⚠️ **CAUTION**

Be sure to support the gearbox when removing the bolts. Gearbox weighs 79 lb. (34 kg).

6.12.9 Installing Conditioner Gearbox – A30-D

To install the conditioner drive gearbox on an A30-D header, follow these steps:

1. Position gearbox (B) as shown, picking up the three holes in the end sheet and secure with three flanged lock nuts (A). Do not fully tighten.
2. Locate key (A) in shaft.
3. Place pulley (B) onto shaft.

4. Place tapered bushing (A) onto shaft, align with key (B) in shaft and push bushing (A) into place.

5. Align slot in pulley (C) with key (D) in tapered bushing and slide pulley (C) onto bushing (A).

6. Align pulley (C) and countershaft pulley (F) faces to within 1/16 in. (1.5 mm).

7. Install three bolts (E) in tapered bushing (A) and tighten to 18 ft·lbf (25 N·m).

8. Tap bushing (A) and re-torque. Repeat until bolts no longer turn at 18 ft·lbf (25 N·m).

9. Install hub (B) and sprocket with three bolts and nuts (A). Tighten to 83 ft·lbf (112 N·m).
10. Install knife drive V-belts (B). Refer to Installing Double V-Belts – A30-D Left Side, page 220.

12. Remove oil level check plug in gearbox. If oil does not run out, add oil to required level. Refer to your header operator’s manual.

13. Align keyway in upper driveline yoke (B) with key in gearbox shaft and attach yoke (B) to shaft.

14. Install two hex head bolts (A) and flanged lock nuts to secure yoke. Tighten bolts.

15. Install timing flange on lower driveline (D) onto lower shaft on gearbox with four hex head bolts (C), two flat washers (E) under each bolt head, lock washers (F) and plain nuts (G). Do not tighten.
16. Apply a light coat of silicone to motor flange.

17. Position hydraulic motor (A) onto gearbox as shown and secure with two hex head bolts (B) with thread locking compound, two flat washers (C), and two lock washers (D). Torque to 83 lbf-ft (112 N·m).

19. Position channel against endsheet as shown, picking up the three holes in endsheet.

20. Install two carriage bolts and nuts in lower two holes.

21. Install carriage bolt and nut in upper hole (B) with head facing inboard.

22. Install two hex bolts with lock washers, and flat washers in remaining locations (A).

23. Tighten hardware on channel (C).

24. Close conditioner driveline shield and endshield.

6.12.10 Removing Conditioner Gearbox – A40-D

To remove the conditioner drive gearbox from an A40-D header, follow these steps:

1. Open the conditioner drive shield and header left endshield.
2. Remove two bolts (A) securing channel (B) to frame.

3. Remove two hex bolts (A), and one carriage bolt (B) securing channel (C) to endsheet and remove channel (C).

4. Remove two bolts (A) securing motor (B) to gearbox. Do **NOT** disconnect hoses.

 NOTE:
 Hoses not shown for clarity.

5. Carefully pull motor (B) from gearbox and move it clear of work area.
6. Remove two bolts (A) in upper driveline (B).

7. Pull driveline (B) off gearbox. If necessary, use a screwdriver or equivalent to spread yoke. Move driveline clear of work area.

8. Remove four bolts (C) from flange on lower driveline (D) and remove driveline from gearbox. Move driveline clear of work area.

10. Remove the three bolts (B) from the tapered bushing (D).

11. Install two bolts (B) in the two threaded holes (C) in bushing (D) and tighten to release the bushing.

12. Remove bushing (D) and key.

13. Remove pulley (E).

 CAUTION

Be sure to support the gearbox when removing the nuts. Gearbox weighs 79 lb (34 kg).

14. Remove three nuts (A) securing gearbox (B) to frame and remove gearbox (B).
6.12.11 Installing Conditioner Gearbox – A40-D

To install the conditioner drive gearbox on an A40-D header, follow these steps:

1. Position gearbox (B) as shown, picking up the three holes in the end sheet and secure with three flanged lock nuts (A). Do not fully tighten.

2. Locate key (A) in shaft.

3. Place pulley (B) onto shaft.

4. Place tapered bushing (A) onto shaft, align with key (B) in shaft and push bushing (A) into place.

5. Align slot in pulley (C) with key (D) in tapered bushing and slide pulley (C) onto bushing (A).

6. Align pulley (C) and countershaft pulley (F) faces to within 1/16 in. (1.5 mm).

7. Install three bolts (E) in tapered bushing (A) and tighten to 18 ft·lbf (25 N·m).

8. Tap bushing (A) and torque bolts. Repeat until bolts no longer turn at 18 ft·lbf (25 N·m).

10. Remove oil level check plug in gear box. If oil does not run out, add oil to required level. Refer to your header operator’s manual.

11. Align keyway in upper driveline yoke (B) with key in gearbox shaft and attach yoke (B) to shaft.

12. Install two hex head bolts (A) and flanged lock nuts to secure yoke. Tighten bolts.

13. Install timing flange on lower driveline (D) onto lower shaft on gearbox with four hex head bolts (C), two flat washers (E) under each bolt head, lock washers (F) and plain nuts (G). Do not tighten.
14. Apply a light coat of silicone to motor flange.

15. Position hydraulic motor (A) onto gearbox as shown and secure with two hex head bolts (B) with thread locking compound, two flat washers (C), and two lock washers (D). Torque to 83 lbf-ft (112 N·m).

16. Time the rolls. Refer to **6.12.13 Checking/Adjusting Roll Timing, page 278.**

17. Position channel against endsheet as shown, picking up the three holes in endsheet.

18. Install two carriage bolts and nuts in lower two holes.

19. Install carriage bolt and nut in upper hole (B) with head facing inboard.

20. Install two hex bolts with lock washers, and flat washers in remaining locations (A).

21. Tighten hardware.

22. Close conditioner driveline shield and endshield.

Figure 6.215: Hydraulic Motor

Figure 6.216: Conditioner Drive

Figure 6.217: Header Drive
6.12.12 Checking/Adjusting Roll Alignment

Rolls are aligned at the factory, but adjustment is provided in case the rolls become misaligned during operation.

1. Lower header until it rests on the ground.
2. Open conditioner driveshield.
3. Locate roll alignment cover (A).

4. Loosen bolt (A), and rotate cover (B) to expose access port.

5. Examine roll bar spacing 'X' at each end of the rolls. The rolls are aligned if 'X' varies less than 1/16 in. (1.6 mm) from one end to the other.
6. If ‘\(X \)' varies more than 1/16 in. (1.6 mm), align rolls as follows:
 a. Remove nuts and bolts (A), and remove shims (B). The shims can be lifted off the pivot rod.
 b. Move upper roll until dimension ‘\(X \)' at both ends looking through port (as shown in previous step 4. above) is within 1/16 in (1.6 mm).
 c. Reinstall shims, ensuring hardened washer (C) is against the pivot tube.
 d. Reinstall bolts (A) and nuts.

7. Operate header/mower conditioner, and recheck alignment.

8. Close cover (B), and tighten bolt (A).

6.12.13 Checking/Adjusting Roll Timing

The rolls must be correctly timed with each steel bar on one roll centered between two bars of the other roll.

⚠️ WARNING

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under mower conditioner for any reason.
1. Open conditioner driveshield at left end of conditioner.
2. Loosen bolt (A), and rotate cover (B) to expose access port (C) at each end of conditioner.

3. Examine roll timing (distance ‘X’) at each end of the rolls with header fully lowered. Each steel bar on one roll should be centered between two bars of the other roll so that distance ‘X’ is 1/2 in. (12 mm).

NOTE:
If the distance ‘X’ varies more than 1/16 in. (1.6 mm) from one end to the other, the rolls should be re-aligned. Refer to **6.12.12 Checking/Adjusting Roll Alignment, page 277**.

4. If required, adjust the roll timing as follows:
 a. Loosen four bolts (A) in slots of yoke plate on lower driveline.
 b. Turn rolls to achieve best timing.
 c. When roll timing is satisfactory, tighten bolts (A) to secure the position.

Recheck distance between the bars at both ends of the rolls at (C).
5. Close cover (B), and tighten bolt (A).

Figure 6.226: Access Cover
6.13 Wheels and Tires

CAUTION

To avoid personal injury, before servicing header/mower conditioner or opening drive covers, follow procedures in 6.1 Preparing for Servicing, page 167.

6.13.1 Checking Wheel Bolts

IMPORTANT:
Check and tighten wheel bolts after the first hour of operation, and every 100 hours thereafter.

IMPORTANT:
Whenever a wheel is removed and reinstalled, check torque after one hour of operation. Maintain 120 ft·lbf (160 N·m) torque.

6.13.2 Removing Wheel

To remove a wheel from a pull-type mower conditioner, follow these steps:

1. Lower header to the ground.
2. Retrieve jack (minimum 5000 lb. [2270 kg] capacity) from storage position on articulated power turn (APT).
3. Position jack on mount (A) provided on frame leg as shown, and raise tire just off the ground. Place block under frame leg (B).
4. Remove wheel bolts.
5. Remove wheel.

6.13.3 Installing Wheel

CAUTION

When installing wheel be sure to use the holes that are countersunk to match bolt head profile. The uncountersunk holes do NOT seat the bolts correctly.
MAINTENANCE AND SERVICING

IMPORTANT:
Follow proper bolt tightening sequence shown. Be sure valve stem (A) points away from wheel support.

1. Position wheel on spindle, and install bolts. Partially tighten.
2. Remove blocks, and raise jack until tire contacts the ground.
3. Torque bolts to 120 ft\(\cdot \)lbf (160 N\(\cdot \)m) in accordance with tightening sequence shown.
4. Raise jack completely, remove from leg and store on articulated power turn (APT).

Figure 6.228: Bolt Pattern

6.13.4 Inflating Tire

Check tire pressure daily. Maintain 30 psi (207 kPa).

⚠️ WARNING

Service tires safely:
- A tire can explode during inflation and cause serious injury or death.
- Do NOT stand over tire. Use a clip-on chuck and extension hose.
- Never increase air pressure beyond 35 psi (241 kPa) to seat the bead on the rim.
- Replace the tire if it has a defect.
- Replace a wheel rim that has cracks, wear, or severe rust.
- Never weld a wheel rim.
- Never use force on an inflated or partially inflated tire.
- Make sure the tire is correctly seated before inflating to operating pressure.
- If the tire is not in correct position on the rim, or is too full of air, the tire bead can loosen on one side, causing air to leak at high speed and with great force. An air leak of this nature can thrust the tire in any direction, endangering anyone in the area.
- Make sure all the air is removed from a tire before removing the tire from a rim.
- Do not remove, install or make repairs to a tire on a rim unless you have the proper equipment and experience to perform the job.
- Take the tire and rim to a qualified tire repair shop.

Figure 6.229: Overinflated Tire
6.14 Replacing Skid Shoe Wear Plate

Skid shoes are equipped with replaceable wear plates that can be reversed for increased service life. It is recommended that wear plates be replaced when the skid shoe weldment becomes exposed.

To replace skid shoe wear plates, follow these steps:

1. Raise header, and engage lift cylinder stops.

 CAUTION

 To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

2. Remove bolts and clips (A) from forward edge of skid shoe.

 NOTE:
 Use a socket and ratchet wrench to access the nuts.

3. Remove clevis pins (B), and disengage tabs on skid shoe from slots in cutterbar.

4. Remove eight bolts (A), and remove wear plates (B).

5. Position replacement wear plate (B) as shown. (The same wear plate can be reinstalled, but in the reverse position).

 IMPORTANT:
 If bolt heads are worn down, replace them with new 1/2 in. x 1 carriage bolts.

7. Insert tabs on skid shoe into slots (A) on cutterbar at inboard mounting locations on frame, and secure with clevis pin (B).
8. Reinstall clips (A) with bolts and nuts removed at Step 2, page 283 to secure skid shoe to cutterbar.

NOTE:
Use a socket and ratchet wrench to access the nuts.

9. Remove clevis pin (B), adjust skid shoe to desired height, and reinstall two clevis pins. Secure with lynch pins.

Figure 6.233: Skid Shoe
6.15 Gauge Rollers

Gauge rollers can be removed for replacement or repair.

6.15.1 Removing Gauge Rollers

1. Raise header/mower conditioner, and engage lift cylinder stops.

⚠️ CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator’s seat for any reason.

2. Remove bolts and clips (A) from forward edge of gauge roller assembly.

NOTE:
Use a socket and ratchet wrench to access the nuts.

3. Remove hairpins on pins (B).

4. Support gauge roller, and remove pins (B).

5. Disengage tabs on mounting plate from slots in cutterbar to remove roller assembly.

6.15.2 Installing Gauge Rollers

To install gauge rollers, follow these steps:

1. Position gauge roller assembly below cutterbar, and insert tabs on roller assembly into slots (A) in frame.
2. Secure with two pins (B) at lowest position.

3. Attach clips (A) with bolts and nuts to secure roller assembly to cutterbar.

NOTE:
Use a socket and ratchet wrench to access the nuts.

4. Tighten nuts.

5. Remove pins (A), and adjust rollers to desired height. Reinstall the two pins (A).

6. Ensure that nut (B) on each pin registers in adjacent hole in support bracket.

7. Secure pins with hairpins (C).
6.16 Maintaining the Electrical System

Use electrical tape and wire clips as required to prevent wires from dragging or rubbing.

Keep lights clean, and replace defective bulbs.

To replace light bulbs, follow these steps:
1. Using a Phillips screwdriver, remove screws (A) from fixture, and remove plastic lens.
2. Replace bulb, and reinstall plastic lens and screws.

Figure 6.238: A30-D Tail Light

Figure 6.239: A40-D Hazard Light
7 Optional Equipment

7.1 Options and Attachments

7.1.1 Additional Skid Shoes

In addition to the standard skid shoes, two additional skid shoes may be added for extra control of cutting height and protection of cutting components.

7.1.2 Gauge Roller Kit

The gauge roller kit replaces the outer skid shoes with rollers. They can be adjusted for varying cutting heights.
7.1.3 Hydraulic Header Angle Kits

NOTE:
This kit is only available for A30-D Pull-Type Mower Conditioners.

This kit allows the header angle to be adjusted hydraulically with a cylinder that replaces the standard mechanical link. A separate hydraulic circuit is required or the existing articulated power turn (APT) steering cylinder hydraulic circuit can be used, depending on the tractor hydraulics. Installation instructions are included with the kits.

Figure 7.3: MD #B4894

7.1.4 Replacement Reel Bat Kit

This kit consists of one complete bat assembly for ease of replacement. Separate kits are available for different header widths.

Figure 7.4: Reel Bat Assembly

7.1.5 Stub Guard Conversion Kit

Stub guards, complete with top guides and adjuster plates are designed to cut tough crops.

Separate kits are available for different header widths. Installation and adjustment instructions are included with the kit.

Figure 7.5: Stub Guards
7.1.6 Tall Crop Divider Kit

Tall crop dividers attach to the ends of the header for clean crop dividing and reel entry in tall crops. The kit includes left and right dividers, lean bar extensions and attachment hardware.

Figure 7.6: MD #B4690
8 Unloading and Assembly

Header-specific instructional manuals for unloading, assembly and set-up procedures are included with your shipment.

<table>
<thead>
<tr>
<th>Header Description</th>
<th>Used on</th>
<th>Instruction Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A30-D</td>
<td>Pull-Type Mower Conditioner</td>
<td>MD #169001</td>
</tr>
<tr>
<td>A40-D</td>
<td>Self-Propelled Windrower</td>
<td>MD #147676</td>
</tr>
</tbody>
</table>
Troubleshooting

Header/Mower Conditioner Performance

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carryover of crop on reel</td>
<td>Reel speed too fast.</td>
<td>Reduce reel speed (sprocket size).</td>
<td>A30-D: 3.7.4 Setting Reel Speed, page 61 or A40-D: 4.5.3 Adjusting Reel Speed, page 138</td>
</tr>
<tr>
<td>Material build-up on header frame</td>
<td>Auger speed too fast.</td>
<td>Reduce auger speed (sprocket size).</td>
<td>A30-D: 3.7.3 Setting Auger Speed, page 60 or A40-D: 4.5.2 Adjusting Auger Speed, page 138</td>
</tr>
<tr>
<td></td>
<td>Very light crop.</td>
<td>Reduce tractor / windrower rpm.</td>
<td></td>
</tr>
<tr>
<td>Insufficient conditioning of stems</td>
<td>Roll gap too large.</td>
<td>Decrease roll gap.</td>
<td>A30-D: 3.7.12 Adjusting Conditioner Roll Gap, page 77 or A40-D: 4.5.10 Adjusting Conditioner Roll Gap, page 147</td>
</tr>
<tr>
<td></td>
<td>Reel speed too fast.</td>
<td>Reduce reel speed.</td>
<td>A30-D: 3.7.4 Setting Reel Speed, page 61 or A40-D: 4.5.3 Adjusting Reel Speed, page 138</td>
</tr>
<tr>
<td>Leaves damaged, crushed or stripped off stems</td>
<td>Roll gap too small.</td>
<td>Increase roll gap.</td>
<td>A30-D: 3.7.12 Adjusting Conditioner Roll Gap, page 77 or A40-D: 4.5.10 Adjusting Conditioner Roll Gap, page 147</td>
</tr>
<tr>
<td></td>
<td>Rolls improperly timed.</td>
<td>Adjust roll timing.</td>
<td>6.12.13 Checking/Adjusting Roll Timing, page 278</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Slow crop drying</td>
<td>Rolls not crimping crop sufficiently.</td>
<td>Decrease roll gap.</td>
<td>A30-D: 3.7.12 Adjusting Conditioner Roll Gap, page 77 or A40-D: 4.5.10 Adjusting Conditioner Roll Gap, page 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop is spread too narrow.</td>
<td>Adjust forming shields for wider swath.</td>
<td>4.5.12 Positioning the Forming Shields, page 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop is bunched in windrow.</td>
<td>Adjust forming shields/baffle.</td>
<td></td>
</tr>
<tr>
<td>Excessive drying or bleaching of crop</td>
<td>Excessive crimping.</td>
<td>Increase roll gap.</td>
<td>A30-D: Adjusting Conditioner Roll Gap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop is spread too wide in windrow.</td>
<td>Adjust forming shields.</td>
<td>4.5.12 Positioning the Forming Shields, page 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaving small strip of flattened, uncut material</td>
<td>Crowding of the uncut material.</td>
<td>Steer tractor slightly away from uncut crop.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Reel position incorrect.</td>
<td>Move reel forward and down.</td>
<td>A30-D: 3.7.6 Setting Reel Position, page 67 or A40-D: 4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td></td>
<td>Knife sections or guards are worn or broken.</td>
<td>Replace worn or broken parts.</td>
<td>6.7.1 Replacing Knife Section, page 193 and 6.7.7 Guards, page 197</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long stubble in down crop</td>
<td>Cutting height too high.</td>
<td>Lower cutting height with skid shoes.</td>
<td>A30-D: 3.7.7 Setting Cutting Height, page 72 or A40-D: 4.5.8 Setting Cutting Height, page 146</td>
</tr>
<tr>
<td></td>
<td>Ground speed too fast.</td>
<td>Slow down.</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
<tr>
<td></td>
<td>Header angle too flat for guards to pick up down crop.</td>
<td>Increase header angle.</td>
<td>A30-D: 3.7.9 Setting Header Angle, page 74 or A40-D: 4.5.7 Adjusting Header Angle of A40-D, page 146</td>
</tr>
<tr>
<td></td>
<td>Reel position incorrect.</td>
<td>Move reel forward and down.</td>
<td>A30-D: 3.7.6 Setting Reel Position, page 67 or A40-D: 4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td></td>
<td>Tine aggressiveness too low.</td>
<td>Rotate cam clockwise (viewed from RH end) for more aggressive tine action.</td>
<td>A30-D: 3.7.8 Setting Tine Aggressiveness, page 73 or A40-D: 4.5.6 Setting Tine Aggressiveness, page 145</td>
</tr>
<tr>
<td>Pulling material by the roots or tall material leaning into machine</td>
<td>Ground speed too slow.</td>
<td>Increase ground speed.</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
<tr>
<td></td>
<td>Reel position incorrect.</td>
<td>Move reel forward and down.</td>
<td>A30-D: 3.7.6 Setting Reel Position, page 67 or A40-D: 4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bent or misaligned guards</td>
<td>causing poor shearing action.</td>
<td>Align guards for proper shearing action.</td>
<td>Aligning Guard, page 199</td>
</tr>
<tr>
<td>Bent knife causing binding.</td>
<td></td>
<td>Straighten bent knife. Check alignment, and adjust if necessary.</td>
<td>6.7.2 Removing Knife, page 193</td>
</tr>
<tr>
<td>Ground speed too fast.</td>
<td></td>
<td>Slow down. Ground speed should not exceed 8 mph (13 km/h).</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
<tr>
<td>Header angle too flat</td>
<td>for guards to pick up down crop.</td>
<td>Increase header angle.</td>
<td>A30-D: 3.7.9 Setting Header Angle, page 74 or A40-D: 4.5.7 Adjusting Header Angle of A40-D, page 146</td>
</tr>
<tr>
<td>Header float too light</td>
<td>causing bouncing.</td>
<td>Adjust to heavier float setting.</td>
<td>A30-D: 3.7.10 Setting Float, page 76 or A40-D: 4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td>PTO speed too slow (pull-type)</td>
<td></td>
<td>Maintain proper RPM on PTO. Check for proper match of pump and gear-drive at PTO.</td>
<td>2.3 Product Specifications, page 29</td>
</tr>
<tr>
<td>Reel drive chain too loose</td>
<td>(except A40-D).</td>
<td>Increase chain tension.</td>
<td>Checking/Adjusting Reel Drive Chain Tension – A30-D, page 223</td>
</tr>
<tr>
<td>Reel position incorrect.</td>
<td></td>
<td>Move reel forward and down.</td>
<td>A30-D: 3.7.6 Setting Reel Position, page 67 or A40-D: 4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td>Relief valve pressure too low.</td>
<td></td>
<td>Replace valve.</td>
<td>See Dealer</td>
</tr>
<tr>
<td>Knife drive belt too loose.</td>
<td></td>
<td>Increase belt tension.</td>
<td>A30-D: 6.8.1 Knife Drive – A30-D, page 216 or A40-D: 6.9.1 Knife Drive – A40-D, page 228</td>
</tr>
<tr>
<td>Knife sections or guards</td>
<td>are worn or broken.</td>
<td>Replace worn or broken parts.</td>
<td>6.7.1 Replacing Knife Section, page 193 and 6.7.7 Guards, page 197</td>
</tr>
</tbody>
</table>

Ragged or uneven cutting of crop (cont’d)
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground speed too fast.</td>
<td>Slow down.</td>
<td></td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
<tr>
<td>Roll gap too large for proper feeding.</td>
<td>Decrease roll gap.</td>
<td></td>
<td>A30-D: 3.7.12 Adjusting Conditioner Roll Gap, page 77 or A40-D: 4.5.10 Adjusting Conditioner Roll Gap, page 147</td>
</tr>
<tr>
<td>Roll gap too small in thick stemmed cane-type crops.</td>
<td>Increase roll gap.</td>
<td></td>
<td>6.12.13 Checking/Adjusting Roll Timing, page 278</td>
</tr>
<tr>
<td>Rolls improperly timed.</td>
<td>Adjust roll timing.</td>
<td></td>
<td>A30-D: 3.7.7 Setting Cutting Height, page 72 or A40-D: 4.5.8 Setting Cutting Height, page 146</td>
</tr>
<tr>
<td>Extremely thick or wet undergrowth.</td>
<td>Raise cutting height to clear undergrowth.</td>
<td></td>
<td>6.7.7 Guards, page 197</td>
</tr>
<tr>
<td>Header float too heavy.</td>
<td>Adjust to lighter float setting.</td>
<td></td>
<td>A30-D: 3.7.10 Setting Float, page 76 or A40-D: 4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td>PTO speed too slow (pull-type).</td>
<td>Maintain proper rpm on PTO. Check for proper match of pump and gear-drive at PTO.</td>
<td></td>
<td>2.3 Product Specifications, page 29</td>
</tr>
<tr>
<td>Wet undergrowth.</td>
<td>Cut when undergrowth is dry.</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Reel position incorrect.</td>
<td>Move reel back and down (close to guards).</td>
<td></td>
<td>A30-D: 3.7.6 Setting Reel Position, page 67 or A40-D: 4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td>Knife drive belt too loose.</td>
<td>Adjust belt tension.</td>
<td></td>
<td>6.8.1 Knife Drive – A30-D, page 216 or 6.9.1 Knife Drive – A40-D, page 228</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife hold-downs improperly adjusted.</td>
<td>Adjust hold-downs so knife works freely.</td>
<td>6.7.8 Hold-Downs, page 206</td>
<td></td>
</tr>
<tr>
<td>Knife sections or guards are worn or broken.</td>
<td>Replace worn or broken parts.</td>
<td>6.7.1 Replacing Knife Section, page 193, Replacing Guards, page 206</td>
<td></td>
</tr>
<tr>
<td>Reel not feeding properly in heavy crops.</td>
<td>Decrease ground speed.</td>
<td>5.1 Selecting Ground Speed, page 161</td>
<td></td>
</tr>
<tr>
<td>Bent or misaligned guards causing poor shearing action.</td>
<td>Align guards for proper shearing action.</td>
<td>Aligning Guard, page 199</td>
<td></td>
</tr>
<tr>
<td>Forming shields improperly adjusted - fluffer too low.</td>
<td>Adjust forming shields, raise fluffer.</td>
<td>4.5.12 Positioning the Forming Shields, page 150</td>
<td></td>
</tr>
<tr>
<td>Fluffer bypassing or dragging crop.</td>
<td>Adjust fluffer for proper crop control.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auger to stripper clearance too wide.</td>
<td>Adjust auger to stripper bars clearance.</td>
<td>A30-D: 3.7.5 Setting Auger Position, page 62 or A40-D: 4.5.4 Setting Auger Position, page 138</td>
<td></td>
</tr>
<tr>
<td>Roll gap too large.</td>
<td>Adjust roll gap.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditioner running too slow.</td>
<td>Maintain rated knife/conditioner speed.</td>
<td>2.3 Product Specifications, page 29</td>
<td></td>
</tr>
<tr>
<td>Uneven crop flow across auger.</td>
<td>Remove front stripper bar or stripper bar extension if installed.</td>
<td>6.11.3 Stripper Bar, page 253</td>
<td></td>
</tr>
<tr>
<td>Excessive center feeding of crop.</td>
<td>Remove front stripper bar extensions if installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build up of crop at ends of rolls, especially in tall crops.</td>
<td>Add front stripper bar extension.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uneven windrow formation in light crop</td>
<td>Rear of feed pan too low.</td>
<td>Raise rock drop tine bar.</td>
<td>3.7.11 Setting Feed Pan and Rock Drop Tine Position, page 77</td>
</tr>
</tbody>
</table>

Conditioner plugging. Knife, plugging. Uneven formation and bunching of windrow (cont’d)
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel causes seed loss (e.g. Grass seed)</td>
<td>Reel speed too fast.</td>
<td>Adjust flow control on tractor / windrower.</td>
<td>A30-D: 3.7.4 Setting Reel Speed, page 61 or A40-D: 4.5.3 Adjusting Reel Speed, page 138</td>
</tr>
<tr>
<td></td>
<td>Header angle too steep, causing tines to contact ground.</td>
<td>Flatten header angle, and check header float.</td>
<td>3.7.9 Setting Header Angle, page 74, and for A30-D: 3.7.10 Setting Float, page 76 or for A40-D: 4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td></td>
<td>Reel not correctly positioned.</td>
<td>Lower reel speed, move reel rearward, as close as possible to auger, and downward as close as possible to knife and pan.</td>
<td>A30-D: 3.7.4 Setting Reel Speed, page 61 or A40-D: 4.5.3 Adjusting Reel Speed, page 138 and 4.5.5 Setting Reel Position, page 141</td>
</tr>
<tr>
<td>Auger plugging in heavy grass seed</td>
<td>Poor crop flow across auger.</td>
<td>Remove lower stripper bar and middle stripper bar if necessary.</td>
<td>6.11.3 Stripper Bar, page 253</td>
</tr>
<tr>
<td>Plugging at delivery opening in heavy grass seed</td>
<td>Opening too narrow.</td>
<td>Move pan extensions to widest position.</td>
<td>4.8 Grass Seed Special A40-D, page 156</td>
</tr>
<tr>
<td>Grass seed windrow too wide or too narrow</td>
<td>Pan extensions not adjusted properly.</td>
<td>Adjust pan extensions.</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

9.2 Mechanical

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auger and/or conditioner rolls damaged by stones</td>
<td>Feed pan doesn't allow stones to fall through.</td>
<td>Lower rock-drop tines.</td>
<td>3.7.11 Setting Feed Pan and Rock Drop Tine Position, page 77</td>
</tr>
<tr>
<td>Excessive breakage of knife sections or guards</td>
<td>Ground speed too high in stony conditions.</td>
<td>Reduce ground speed.</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
<tr>
<td></td>
<td>Cutting height too low in stony conditions.</td>
<td>Raise cutting height with skid shoes.</td>
<td>A30-D: 3.7.7 Setting Cutting Height, page 72 or A40-D: 4.5.8 Setting Cutting Height, page 146</td>
</tr>
<tr>
<td></td>
<td>Header angle too steep in stony conditions.</td>
<td>Decrease header angle.</td>
<td>A30-D: 3.7.9 Setting Header Angle, page 74 or A40-D: 4.5.7 Adjusting Header Angle of A40-D, page 146</td>
</tr>
<tr>
<td></td>
<td>Header float too heavy in stony conditions.</td>
<td>Adjust to lighter float setting.</td>
<td>A30-D: 3.7.10 Setting Float, page 76 or A40-D: 4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td></td>
<td>Knife speed too slow.</td>
<td>Maintain proper rpm on PTO. Check for proper match of pump and gear-drive at PTO.</td>
<td>2.3 Product Specifications, page 29</td>
</tr>
<tr>
<td></td>
<td>Guards, knife and hold-downs misaligned.</td>
<td>Straighten guards, align hold-downs.</td>
<td>6.7.7 Guards, page 197 6.7.8 Hold-Downs, page 206</td>
</tr>
<tr>
<td>Excessive heating of hydraulic oil</td>
<td>Relief pressure too low.</td>
<td>Replace relief valve.</td>
<td>See Dealer</td>
</tr>
</tbody>
</table>

Excessive breakage of knife sections or guards

- Ground speed too high in stony conditions.
- Reduce ground speed.
- A30-D: 3.7.7 Setting Cutting Height, page 72 or A40-D: 4.5.8 Setting Cutting Height, page 146

- Cutting height too low in stony conditions.
- Raise cutting height with skid shoes.
- A30-D: 3.7.7 Setting Cutting Height, page 72 or A40-D: 4.5.8 Setting Cutting Height, page 146

- Header angle too steep in stony conditions.
- Decrease header angle.
- A30-D: 3.7.9 Setting Header Angle, page 74 or A40-D: 4.5.7 Adjusting Header Angle of A40-D, page 146

- Header float too heavy in stony conditions.
- Adjust to lighter float setting.
- A30-D: 3.7.10 Setting Float, page 76 or A40-D: 4.5.9 Checking/Adjusting Float, page 147

- Knife speed too slow.
- Maintain proper rpm on PTO. Check for proper match of pump and gear-drive at PTO.
- 2.3 Product Specifications, page 29

- Guards, knife and hold-downs misaligned.
- Straighten guards, align hold-downs.
- 6.7.7 Guards, page 197 6.7.8 Hold-Downs, page 206

Excessive heating of hydraulic oil

- Relief pressure too low.
- Replace relief valve.
- See Dealer
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header stalling in extremely tall, heavy crop (6+ tons per acre)</td>
<td>Insufficient crop clearance at rear of feed pan.</td>
<td>Lower rock drop tines (rear of header pan).</td>
<td>3.7.11 Setting Feed Pan and Rock Drop Tine Position, page 77, or A30-D Float: 3.7.10 Setting Float, page 76 or A40-D Float: 4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remove rubber fingers from auger at delivery opening.</td>
<td>6.11.2 Replacing Rubber Fingers – A30-D, page 252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase roll gap.</td>
<td>Adjusting Conditioner Roll Gap</td>
</tr>
<tr>
<td>Feeding aids for shorter, lighter crop impede flow of heavy or thick</td>
<td></td>
<td>Remove front set of stripper bars.</td>
<td>6.11.3 Stripper Bar, page 253</td>
</tr>
<tr>
<td>stemmed crops (cane, sudan grass etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header turns while unloaded but slows or stops when starting to cut</td>
<td>Low reservoir oil level.</td>
<td>Add oil to reservoir.</td>
<td>Adding Hydraulic Oil, page 190</td>
</tr>
<tr>
<td></td>
<td>Defective motor.</td>
<td>Repair motor.</td>
<td>See Dealer</td>
</tr>
<tr>
<td></td>
<td>Defective O-ring inside relief valve.</td>
<td>Replace relief valve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective pump.</td>
<td>Repair pump.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective relief valve.</td>
<td>Repair relief valve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTO slipping on tractor.</td>
<td>Repair tractor PTO system.</td>
<td></td>
</tr>
<tr>
<td>Knocking in knife drive</td>
<td>Worn needle bearing in knifehead.</td>
<td>Replace.</td>
<td>6.7.4 Removing Knifehead Bearing, page 195</td>
</tr>
<tr>
<td></td>
<td>Worn knifehead pin.</td>
<td></td>
<td>6.7.3 Installing Knife, page 194</td>
</tr>
<tr>
<td></td>
<td>Incorrect end guards.</td>
<td>Replace with special end guards.</td>
<td>6.7.7 Guards, page 197</td>
</tr>
<tr>
<td>Header turns while unloaded but slows or stops when starting to cut</td>
<td>Cold oil in system.</td>
<td>Reduce ground speed until oil reaches operating temperature.</td>
<td>5.1 Selecting Ground Speed, page 161</td>
</tr>
<tr>
<td>Knife back breakage</td>
<td>Dull knife.</td>
<td>Replace.</td>
<td>6.7.4 Removing Knifehead Bearing, page 195</td>
</tr>
<tr>
<td></td>
<td>Worn knife head pin.</td>
<td></td>
<td>6.7.3 Installing Knife, page 194</td>
</tr>
<tr>
<td></td>
<td>Bent or broken guard.</td>
<td>Straighten or replace.</td>
<td>6.7.7 Guards, page 197</td>
</tr>
<tr>
<td></td>
<td>Incorrect end guards at knifehead.</td>
<td>Replace with correct number of special guards.</td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem</td>
<td>Solution</td>
<td>Section</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Windrower side drift</td>
<td>Header is dragging on one end and pulling to that side.</td>
<td>Adjust skid shoes to prevent cutterbar dragging.</td>
<td>A30-D: 3.7.7 Setting Cutting Height, page 72 or A40-D: 4.5.8 Setting Cutting Height, page 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A30-D: 3.7.10 Setting Float, page 76 or A40-D: 4.5.9 Checking/Adjusting Float, page 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjust header float.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low tire pressure on one side (pull-type).</td>
<td>Check and correct tire pressure (30 psi [(207 kPa)].)</td>
<td>6.13.4 Inflating Tire, page 282</td>
</tr>
<tr>
<td>Lights malfunctioning</td>
<td>Improper ground.</td>
<td>Check for proper grounding between light base and header.</td>
<td>6.16 Maintaining the Electrical System, page 287</td>
</tr>
<tr>
<td></td>
<td>Burned out bulb.</td>
<td>Replace bulb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor connection.</td>
<td>Check connector at tractor / windrower.</td>
<td>3.2.3 Connecting Hydraulics, page 41</td>
</tr>
</tbody>
</table>
10 Reference

10.1 Torque Specifications

The following tables provide the correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to the torque values specified in the charts (unless otherwise noted throughout this manual).
- Replace hardware with the same strength and grade of bolt.
- Use the torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

10.1.1 SAE Bolt Torque Specifications

Torque values shown in the following tables are valid for non-greased, or non-oiled threads and heads; therefore, do NOT grease or oil bolts or cap screws unless otherwise specified in this manual.

Table 10.1 SAE Grade 5 Bolt and Grade 5 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft·lbf) (*in·lbf)</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>*106</td>
<td>*117</td>
</tr>
<tr>
<td>5/16-18</td>
<td>*218</td>
<td>*241</td>
</tr>
<tr>
<td>3/8-16</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>7/16-14</td>
<td>52</td>
<td>57</td>
</tr>
<tr>
<td>1/2-13</td>
<td>79</td>
<td>87</td>
</tr>
<tr>
<td>9/16-12</td>
<td>114</td>
<td>126</td>
</tr>
<tr>
<td>5/8-11</td>
<td>157</td>
<td>173</td>
</tr>
<tr>
<td>3/4-10</td>
<td>281</td>
<td>311</td>
</tr>
<tr>
<td>7/8-9</td>
<td>449</td>
<td>496</td>
</tr>
<tr>
<td>1-8</td>
<td>611</td>
<td>676</td>
</tr>
</tbody>
</table>

Figure 10.1: Bolt Grades

A - Nominal Size B - SAE-8
C - SAE-5 D - SAE-2
Table 10.2 SAE Grade 5 Bolt and Grade F Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft-lbf) (*in-lbf)</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>*72</td>
<td>*80</td>
</tr>
<tr>
<td>5/16-18</td>
<td>*149</td>
<td>*164</td>
</tr>
<tr>
<td>3/8-16</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>7/16-14</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>1/2-13</td>
<td>54</td>
<td>59</td>
</tr>
<tr>
<td>9/16-12</td>
<td>77</td>
<td>86</td>
</tr>
<tr>
<td>5/8-11</td>
<td>107</td>
<td>118</td>
</tr>
<tr>
<td>3/4-10</td>
<td>192</td>
<td>212</td>
</tr>
<tr>
<td>7/8-9</td>
<td>306</td>
<td>338</td>
</tr>
<tr>
<td>1-8</td>
<td>459</td>
<td>507</td>
</tr>
</tbody>
</table>

Figure 10.2: Bolt Grades

A - Nominal Size
B - SAE-8
C - SAE-5
D - SAE-2

Table 10.3 SAE Grade 8 Bolt and Grade G Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft-lbf) (*in-lbf)</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>1/4-20</td>
<td>*150</td>
<td>*165</td>
</tr>
<tr>
<td>5/16-18</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>3/8-16</td>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td>7/16-14</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>1/2-13</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>9/16-12</td>
<td>109</td>
<td>121</td>
</tr>
<tr>
<td>5/8-11</td>
<td>151</td>
<td>167</td>
</tr>
<tr>
<td>3/4-10</td>
<td>268</td>
<td>296</td>
</tr>
<tr>
<td>7/8-9</td>
<td>432</td>
<td>477</td>
</tr>
<tr>
<td>1-8</td>
<td>647</td>
<td>716</td>
</tr>
</tbody>
</table>

Figure 10.3: Bolt Grades

A - Nominal Size
B - SAE-8
C - SAE-5
D - SAE-2
Table 10.4 SAE Grade 8 Bolt and Grade 8 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft·lbf) (*in·lbf)</th>
<th>Torque (N·m) Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4-20</td>
<td>*150 *165</td>
<td>16.8</td>
<td>18.6</td>
</tr>
<tr>
<td>5/16-18</td>
<td>26 28</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>3/8-16</td>
<td>46 50</td>
<td>61</td>
<td>68</td>
</tr>
<tr>
<td>7/16-14</td>
<td>73 81</td>
<td>98</td>
<td>109</td>
</tr>
<tr>
<td>1/2-13</td>
<td>111 123</td>
<td>150</td>
<td>166</td>
</tr>
<tr>
<td>9/16-12</td>
<td>160 177</td>
<td>217</td>
<td>239</td>
</tr>
<tr>
<td>5/8-11</td>
<td>221 345</td>
<td>299</td>
<td>330</td>
</tr>
<tr>
<td>3/4-10</td>
<td>393 435</td>
<td>531</td>
<td>587</td>
</tr>
<tr>
<td>7/8-9</td>
<td>633 700</td>
<td>855</td>
<td>945</td>
</tr>
<tr>
<td>1-8</td>
<td>863 954</td>
<td>1165</td>
<td>1288</td>
</tr>
</tbody>
</table>

10.1.2 Metric Bolt Specifications

Table 10.5 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft·lbf) (*in·lbf)</th>
<th>Torque (N·m) Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0.5</td>
<td>*13 *14</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>*20 *22</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>4-0.7</td>
<td>*29 *32</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>5-0.8</td>
<td>*59 *66</td>
<td>6.7</td>
<td>7.4</td>
</tr>
<tr>
<td>6-1.0</td>
<td>*101 *112</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>8-1.25</td>
<td>20 23</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>10-1.5</td>
<td>40 45</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>12-1.75</td>
<td>70 78</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>14-2.0</td>
<td>113 124</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>16-2.0</td>
<td>175 193</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>20-2.5</td>
<td>341 377</td>
<td>460</td>
<td>509</td>
</tr>
<tr>
<td>24-3.0</td>
<td>589 651</td>
<td>796</td>
<td>879</td>
</tr>
</tbody>
</table>
Table 10.6 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft·lbf) (*in·lbf)</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>*14</td>
<td>*15</td>
</tr>
<tr>
<td>4-0.7</td>
<td>*20</td>
<td>*22</td>
</tr>
<tr>
<td>5-0.8</td>
<td>*40</td>
<td>*45</td>
</tr>
<tr>
<td>6-1.0</td>
<td>*69</td>
<td>*76</td>
</tr>
<tr>
<td>8-1.25</td>
<td>*167</td>
<td>*185</td>
</tr>
<tr>
<td>10-1.5</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>12-1.75</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>14-2.0</td>
<td>77</td>
<td>85</td>
</tr>
<tr>
<td>16-2.0</td>
<td>119</td>
<td>132</td>
</tr>
<tr>
<td>20-2.5</td>
<td>233</td>
<td>257</td>
</tr>
<tr>
<td>24-3.0</td>
<td>402</td>
<td>444</td>
</tr>
</tbody>
</table>

Table 10.7 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft·lbf) (*in·lbf)</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>*18</td>
<td>*19</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>*27</td>
<td>*30</td>
</tr>
<tr>
<td>4-0.7</td>
<td>*41</td>
<td>*45</td>
</tr>
<tr>
<td>5-0.8</td>
<td>*82</td>
<td>*91</td>
</tr>
<tr>
<td>6-1.0</td>
<td>*140</td>
<td>*154</td>
</tr>
<tr>
<td>8-1.25</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>10-1.5</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>12-1.75</td>
<td>97</td>
<td>108</td>
</tr>
<tr>
<td>14-2.0</td>
<td>156</td>
<td>172</td>
</tr>
<tr>
<td>16-2.0</td>
<td>242</td>
<td>267</td>
</tr>
<tr>
<td>20-2.5</td>
<td>472</td>
<td>521</td>
</tr>
<tr>
<td>24-3.0</td>
<td>815</td>
<td>901</td>
</tr>
</tbody>
</table>
Table 10.8 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Torque (ft·lbf) (*in·lbf)</th>
<th>Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3-0.5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>3.5-0.6</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>4-0.7</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>5-0.8</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>6-1.0</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>8-1.25</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>10-1.5</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>12-1.75</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>14-2.0</td>
<td>106</td>
<td>117</td>
</tr>
<tr>
<td>16-2.0</td>
<td>165</td>
<td>182</td>
</tr>
<tr>
<td>20-2.5</td>
<td>322</td>
<td>356</td>
</tr>
<tr>
<td>24-3.0</td>
<td>556</td>
<td>614</td>
</tr>
</tbody>
</table>

Figure 10.8: Bolt Grades
10.1.3 Metric Bolt Specifications Bolting into Cast Aluminum

Table 10.9 Metric Bolt Bolting into Cast Aluminum

<table>
<thead>
<tr>
<th>Nominal Size (A)</th>
<th>Bolt Torque 8.8 (Cast Aluminum)</th>
<th>Bolt Torque 10.9 (Cast Aluminum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft·lb f</td>
<td>N·m</td>
</tr>
<tr>
<td>M3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>M10</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>M12</td>
<td>52</td>
<td>70</td>
</tr>
<tr>
<td>M14</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M16</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

10.1.4 Flare-Type Hydraulic Fittings

1. Check flare (A) and flare seat (B) for defects that might cause leakage.

2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between the flared surfaces.

3. Torque the fitting nut (E) to the specified number of flats from finger tight (FFFT) or to a given torque value in Table 10.10 Flare-Type Hydraulic Tube Fittings, page 311.

4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on the fitting body (D) and tighten nut (E) with the other wrench to the torque shown.

5. Assess the final condition of the connection.
Table 10.10 Flare-Type Hydraulic Tube Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>4</sup></th>
<th>Flats from Finger Tight (FFFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ft·lbf</td>
<td>N·m</td>
</tr>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>3–4</td>
<td>4–5</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>5–6</td>
<td>7–8</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>13–14</td>
<td>18–19</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>14–15</td>
<td>19–21</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>22–24</td>
<td>30–33</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>42–46</td>
<td>57–63</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>60–66</td>
<td>81–89</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>83–91</td>
<td>113–124</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/16–12</td>
<td>100–110</td>
<td>136–149</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>118–130</td>
<td>160–176</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>168–184</td>
<td>228–250</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>195–215</td>
<td>264–291</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>265–291</td>
<td>359–395</td>
</tr>
<tr>
<td>-40</td>
<td>3–12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

⁴ Torque values shown are based on lubricated connections as in reassembly.
10.1.5 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.

2. Back off the lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward the lock nut (C) as far as possible.

3. Check that O-ring (A) is **NOT** on the threads and adjust if necessary.

4. Apply hydraulic system oil to the O-ring (A).

5. Install fitting (B) into port until back up washer (D) and O-ring (A) contact the part face (E).

6. Position angle fittings by unscrewing no more than one turn.

7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and the other on lock nut (C).

8. Check the final condition of the fitting.
<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>5</sup> *
ft·lbf (*in·lbf)</th>
<th>N·m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>*53–62</td>
<td>6–7</td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>*106–115</td>
<td>12–13</td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>14–15</td>
<td>19–21</td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>15–24</td>
<td>21–33</td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>19–21</td>
<td>26–29</td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>34–37</td>
<td>46–50</td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>55–60</td>
<td>75–82</td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>88–97</td>
<td>120–132</td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>113–124</td>
<td>153–168</td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>130–142</td>
<td>176–193</td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>163–179</td>
<td>221–243</td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>199–220</td>
<td>270–298</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>245–269</td>
<td>332–365</td>
</tr>
</tbody>
</table>

5. Torque values shown are based on lubricated connections as in reassembly.
10.1.6 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
2. Check that O-ring (A) is NOT on the threads and adjust if necessary.
3. Apply hydraulic system oil to the O-ring.
4. Install fitting (C) into port until fitting is hand tight.
5. Torque fitting (C) according to the values in Table 10.12 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable), page 314.
6. Check the final condition of the fitting.

Table 10.12 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Torque Value<sup>6</sup></th>
<th>ft·lbf (*in·lbf)</th>
<th>N·m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>5/16–24</td>
<td>*53–62</td>
<td>6–7</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>3/8–24</td>
<td>*106–115</td>
<td>12–13</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>7/16–20</td>
<td>14–15</td>
<td>19–21</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>1/2–20</td>
<td>15–24</td>
<td>21–33</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>9/16–18</td>
<td>19–21</td>
<td>26–29</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>3/4–16</td>
<td>34–37</td>
<td>46–50</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>7/8–14</td>
<td>55–60</td>
<td>75–82</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>1-1/16–12</td>
<td>88–97</td>
<td>120–132</td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td>1-3/8–12</td>
<td>113–124</td>
<td>153–168</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td>1-5/16–12</td>
<td>130–142</td>
<td>176–193</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td>1-5/8–12</td>
<td>163–179</td>
<td>221–243</td>
<td></td>
</tr>
<tr>
<td>-24</td>
<td>1-7/8–12</td>
<td>199–220</td>
<td>270–298</td>
<td></td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2–12</td>
<td>245–269</td>
<td>332–365</td>
<td></td>
</tr>
</tbody>
</table>

⁶ Torque values shown are based on lubricated connections as in reassembly.
10.1.7 O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that the sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

2. Apply hydraulic system oil to the O-ring (B).

3. Align the tube or hose assembly so that the flat face of the sleeve (A) or (C) comes in full contact with O-ring (B).

4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.

5. Torque fittings according to the values in Table 10.13 O-Ring Face Seal (ORFS) Hydraulic Fittings, page 316.

NOTE:
If applicable, hold the hex on the fitting body (E) to prevent rotation of fitting body and hose when tightening the fitting nut (D).

6. Use three wrenches when assembling unions or joining two hoses together.

7. Check the final condition of the fitting.
Table 10.13 O-Ring Face Seal (ORFS) Hydraulic Fittings

<table>
<thead>
<tr>
<th>SAE Dash Size</th>
<th>Thread Size (in.)</th>
<th>Tube O.D. (in.)</th>
<th>Torque Value⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ft·lbf</td>
</tr>
<tr>
<td>-3</td>
<td>Note⁸</td>
<td>3/16</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>9/16</td>
<td>1/4</td>
<td>18–21</td>
</tr>
<tr>
<td>-5</td>
<td>Note⁸</td>
<td>5/16</td>
<td>–</td>
</tr>
<tr>
<td>-6</td>
<td>11/16</td>
<td>3/8</td>
<td>29–32</td>
</tr>
<tr>
<td>-8</td>
<td>13/16</td>
<td>1/2</td>
<td>41–45</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
<td>5/8</td>
<td>59–65</td>
</tr>
<tr>
<td>-12</td>
<td>1-3/16</td>
<td>3/4</td>
<td>85–94</td>
</tr>
<tr>
<td>-14</td>
<td>Note⁸</td>
<td>7/8</td>
<td>–</td>
</tr>
<tr>
<td>-16</td>
<td>1-7/16</td>
<td>1</td>
<td>111–122</td>
</tr>
<tr>
<td>-20</td>
<td>1-11/16</td>
<td>1-1/4</td>
<td>151–167</td>
</tr>
<tr>
<td>-24</td>
<td>1–2</td>
<td>1-1/2</td>
<td>232–256</td>
</tr>
<tr>
<td>-32</td>
<td>2-1/2</td>
<td>2</td>
<td>376–414</td>
</tr>
</tbody>
</table>

⁷ Torque values and angles shown are based on lubricated connection as in reassembly.
⁸ O-ring face seal type end not defined for this tube size.
10.2 Conversion Chart

Table 10.14 Conversion Chart

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Inch-Pound Units</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Name</td>
<td>Abbreviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factor</td>
</tr>
<tr>
<td>Area</td>
<td>Acres</td>
<td>acres</td>
</tr>
<tr>
<td>Flow</td>
<td>US gallons per minute</td>
<td>gpm</td>
</tr>
<tr>
<td>Force</td>
<td>Pounds force</td>
<td>lbf</td>
</tr>
<tr>
<td>Length</td>
<td>Inch</td>
<td>in.</td>
</tr>
<tr>
<td></td>
<td>Foot</td>
<td>ft.</td>
</tr>
<tr>
<td>Power</td>
<td>Horsepower</td>
<td>hp</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pounds per square inch</td>
<td>psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x .0069 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ 14.5038 =</td>
</tr>
<tr>
<td>Torque</td>
<td>Pound feet or foot pounds</td>
<td>ft·lbf</td>
</tr>
<tr>
<td></td>
<td>Pound inches or inch pounds</td>
<td>in·lbf</td>
</tr>
<tr>
<td>Temperature</td>
<td>Degrees Fahrenheit</td>
<td>°F</td>
</tr>
<tr>
<td>Velocity</td>
<td>Feet per minute</td>
<td>ft/min</td>
</tr>
<tr>
<td></td>
<td>Feet per second</td>
<td>ft/s</td>
</tr>
<tr>
<td></td>
<td>Miles per hour</td>
<td>mph</td>
</tr>
<tr>
<td>Volume</td>
<td>US gallons</td>
<td>US gal</td>
</tr>
<tr>
<td></td>
<td>Ounces</td>
<td>oz.</td>
</tr>
<tr>
<td></td>
<td>Cubic inches</td>
<td>in.³</td>
</tr>
<tr>
<td>Weight</td>
<td>Pounds</td>
<td>lbs</td>
</tr>
</tbody>
</table>
Index

A

A30-D
identifying an A30-D pull-type mower conditioner ... 26
A40-D, See windrower headers
identifying an A40-D SP windrower header ... 27
API
definitions ... 23
ASTM
definitions ... 23
attaching/detaching
A30-D pull-type mower conditioner
attaching to tractor .. 37
connecting hydraulics .. 41
drawbar .. 33–34, 37
preparing tractor ... 33
three-point hitch .. 35, 38
tractor requirements ... 33
detaching from tractor .. 43
unhooking drawbar .. 43
unhooking three-point hitch ... 45
transporting on a flatbed trailer, See trailers
A40-D SP windrower header
attaching to windrower ... 103
hydraulic hose routing – early-build 2015 and earlier for M100, M105, M205 only .. 124
hydraulic hose routing – later-build 2015 headers for M100, M105, M205 only .. 126
M100 or M105 .. 103
M150, M155, or M155E4 .. 108
M200 ... 113
M205 .. 118
reverser valve jumper hose - M150, M155, M200 only .. 123
detaching A40-D from windrower .. 131
auger and auger drives
A30-D .. 226, 252
auger drive chain
adjusting chain tension ... 226
oiling drive chain ... 187
installing auger drive chain ... 227
removing auger drive chain ... 227
A30-D pull-type mower conditioner
changing drive sprockets .. 60
A40-D .. 235
auger pan
auger pan extensions for grass seed special A40-D .. 157
adjusting extensions ... 158
straightening auger pan .. 252
grass seed special auger design .. 156
replacing rubber fingers ... 252
stripper bar .. 253
installing front stripper bar extensions ... 254
removing stripper bar ... 253
replacing stripper bar ... 253
auger positions .. 62, 138
adjusting on A30-D
auger fore-aft position ... 62
auger vertical position ... 65
adjusting on A40-D
auger fore-aft position ... 139
auger vertical position ... 140
auger speeds
adjusting on A30-D ... 60
adjusting on A40-D ... 138
B
bearings ... 188
belts, See knife drive belts
A30-D knife drive belt ... 216
A40-D knife drive belt ... 228
removing LH side ... 230
break-in inspections
A30-D .. 175
A40-D .. 175
C
center-links .. 23
clearances
auger to stripper bar clearance .. 62, 138, 253
hold-down to knife section – DK ... 207
reel tine to header pan clearance .. 72, 144
conditioners .. 256
conditioning
conditioner drive gearboxes, See gearboxes
conditioner rolls
adjusting conditioner roll gap .. 77, 147
adjusting conditioner roll tension ... 78, 148
conditioner roll alignment ... 277
conditioner roll timing ... 278
forming shield, See forming shields
hydraulic motor, See hydraulic motors
conversion charts ... 317
cutting heights
adjusting on A30-D ... 72
INDEX

adjusting on A40-D ... 146

definition of terms .. 23
deflectors
 forming shield
 assembling – A40-D 260
 disassembling – A40-D 259
 installing – A40-D 262
 self-propelled windrower headers
 removing shield 258
rear deflector (fluffer shield)
 positioning rear deflector 81, 151
side deflectors
 positioning side deflectors 80, 150
dividers, See tall crop dividers
DK
 definitions .. 23
drawbars
 adjusting drawbar 33
 attaching drawbar 37
 setting up drawbar hitch 34
 unhooking drawbar 43
drive systems
 A30-D .. 216
 A40-D .. 228
driveshields
 opening and closing driveshields 168
drying agents .. 166
electrical
 maintaining the electrical system 287
feed pans
 adjusting position 77
flatbed trailers, See trailers
float
 adjusting for A30-D 76
 adjusting for A40-D 147
fluffer shields, See deflectors
fluids and lubricants 169
forming rods
 grass seed special A40-D 159
forming shields ... 80, 150
 assembling forming shield – A40-D 260
 disassembling forming shield – A40-D 259
 installing forming shield – A40-D 262
 positioning side forming shields 80, 150
 removing forming shield – A40-D 258

G
 gauge rollers
 adjusting cutting height on A30-D 72
 adjusting cutting height on A40-D 146
 installing ... 285
 kit .. 289
 removing .. 285

gearboxes
 A30-D conditioner drive gearbox
 installing ... 268
 removing .. 265
 A40-D conditioner drive gearbox
 installing ... 274
 removing .. 271
 changing conditioner gearbox oil 256
 oiling the check roll gearbox 187
glossary ... 23
grass seed special A40-D 156
 auger pan extensions 157
 adjusting extensions 158
 seven-bat reel (standard) 157
 special auger design 156
 stub guards and hold-downs 156
 windrow forming rods 159
ground speed ... 161

guards, See stub guards
 aligning guard 199
 description .. 197
grass seed special, See guards
 pointed guards
 adjusting hold-down – DK 207
 replacing pointed center guard – DK 202
 replacing pointed guard 200
 stub guard conversion kit 290

stub guards
 adjusting center hold-down – DK 207
 replacing center stub guard – DK 204

H
hay conditioners, See conditioning
 roll timing .. 278
haying tips .. 165
chemical drying agents 166
curing .. 165
driving on windrows 166
raking and tedding 165
topsoil moisture 165
weather and topography 165
windrow characteristics 165
header angles
 adjusting on A30-D 74
 hydraulic (option) 75
 hydraulic header angle kit (option) 290
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mechanical (standard)</td>
<td>75</td>
</tr>
<tr>
<td>adjusting on A40-D</td>
<td>146</td>
</tr>
<tr>
<td>header float, See float headers</td>
<td></td>
</tr>
<tr>
<td>definitions</td>
<td>23</td>
</tr>
<tr>
<td>header specifications</td>
<td>29</td>
</tr>
<tr>
<td>model identification</td>
<td>25</td>
</tr>
<tr>
<td>hitches</td>
<td></td>
</tr>
<tr>
<td>drawbar hitch</td>
<td>34</td>
</tr>
<tr>
<td>three-point hitch</td>
<td></td>
</tr>
<tr>
<td>attaching hitch</td>
<td>38</td>
</tr>
<tr>
<td>installing hitch yoke</td>
<td>35</td>
</tr>
<tr>
<td>unhooking hitch</td>
<td>45</td>
</tr>
<tr>
<td>hold-downs</td>
<td>206</td>
</tr>
<tr>
<td>adjusting on header with pointed guards – DK header</td>
<td>207</td>
</tr>
<tr>
<td>adjusting on header with stub guards</td>
<td></td>
</tr>
<tr>
<td>center hold-down – DK header</td>
<td>207</td>
</tr>
<tr>
<td>grass seed special</td>
<td>156</td>
</tr>
<tr>
<td>hoses</td>
<td></td>
</tr>
<tr>
<td>checking for leaks</td>
<td>192</td>
</tr>
<tr>
<td>hydraulic drive hoses</td>
<td></td>
</tr>
<tr>
<td>routeing for M100, M105, M205 only</td>
<td></td>
</tr>
<tr>
<td>early-build 2015, 2014 and earlier</td>
<td>124</td>
</tr>
<tr>
<td>later-build 2015</td>
<td>126</td>
</tr>
<tr>
<td>reverser valve jumper hose</td>
<td></td>
</tr>
<tr>
<td>configuring for M150, M155, M155E4, M200</td>
<td>123</td>
</tr>
<tr>
<td>only</td>
<td></td>
</tr>
<tr>
<td>hydraulic header angle kits (A30-D)</td>
<td>290</td>
</tr>
<tr>
<td>hydraulic motors</td>
<td></td>
</tr>
<tr>
<td>installing hydraulic motor on gearbox</td>
<td>265</td>
</tr>
<tr>
<td>removing hydraulic motor from gearbox</td>
<td>264</td>
</tr>
<tr>
<td>hydraulic oil and filter</td>
<td></td>
</tr>
<tr>
<td>adding oil</td>
<td>190</td>
</tr>
<tr>
<td>changing oil</td>
<td>190</td>
</tr>
<tr>
<td>changing oil filter</td>
<td>191</td>
</tr>
<tr>
<td>checking oil level</td>
<td>189</td>
</tr>
<tr>
<td>pressure relief valve</td>
<td>192</td>
</tr>
<tr>
<td>hydraulics</td>
<td></td>
</tr>
<tr>
<td>A30-D hydraulics servicing</td>
<td>189</td>
</tr>
<tr>
<td>A40-D hydraulics servicing</td>
<td>189</td>
</tr>
<tr>
<td>checking for leaks</td>
<td>192</td>
</tr>
<tr>
<td>connecting hydraulics</td>
<td>41</td>
</tr>
<tr>
<td>fittings</td>
<td></td>
</tr>
<tr>
<td>flare-type</td>
<td>310</td>
</tr>
<tr>
<td>O-ring boss (ORB) adjustable</td>
<td>312</td>
</tr>
<tr>
<td>O-ring boss (ORB) non-adjustable</td>
<td>314</td>
</tr>
<tr>
<td>O-ring face seal (ORFS)</td>
<td>315</td>
</tr>
<tr>
<td>hydraulic safety</td>
<td>6</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>knife and knife drives</td>
<td></td>
</tr>
<tr>
<td>A30-D pull-type mower conditioner</td>
<td></td>
</tr>
<tr>
<td>changing pulley positions</td>
<td>57</td>
</tr>
<tr>
<td>cutterbar</td>
<td>193</td>
</tr>
<tr>
<td>stub guards and hold-downs</td>
<td>156</td>
</tr>
<tr>
<td>knife</td>
<td></td>
</tr>
<tr>
<td>adjusting knife timing – DK header</td>
<td>213</td>
</tr>
<tr>
<td>installing knife</td>
<td>194</td>
</tr>
<tr>
<td>removing spare knife from storage</td>
<td>196</td>
</tr>
<tr>
<td>replacing knife section</td>
<td>193</td>
</tr>
<tr>
<td>knife drive</td>
<td></td>
</tr>
<tr>
<td>A30-D pull-type mower conditioner</td>
<td>216</td>
</tr>
<tr>
<td>A40-D windrower header</td>
<td>228</td>
</tr>
<tr>
<td>knife guards, See guards</td>
<td></td>
</tr>
<tr>
<td>knifehead bearing</td>
<td></td>
</tr>
<tr>
<td>installing</td>
<td>196</td>
</tr>
<tr>
<td>removing</td>
<td>195</td>
</tr>
<tr>
<td>unplugging conditioner and knife</td>
<td></td>
</tr>
<tr>
<td>A30-D</td>
<td>101</td>
</tr>
<tr>
<td>A40-D</td>
<td>155</td>
</tr>
<tr>
<td>knife drive belts</td>
<td></td>
</tr>
<tr>
<td>A30-D pull-type mower conditioner</td>
<td></td>
</tr>
<tr>
<td>left side</td>
<td></td>
</tr>
<tr>
<td>adjusting double V-belt tension</td>
<td>219</td>
</tr>
<tr>
<td>adjusting timing belt tension</td>
<td>216</td>
</tr>
<tr>
<td>installing double V-belts</td>
<td>220</td>
</tr>
<tr>
<td>installing timing belt</td>
<td>217</td>
</tr>
<tr>
<td>removing double V-belts</td>
<td>219</td>
</tr>
<tr>
<td>removing drive belt</td>
<td>216</td>
</tr>
<tr>
<td>right side</td>
<td></td>
</tr>
<tr>
<td>adjusting timing belt tension</td>
<td>220</td>
</tr>
<tr>
<td>installing timing belt</td>
<td>222</td>
</tr>
<tr>
<td>removing timing belt</td>
<td>221</td>
</tr>
<tr>
<td>A40-D SP windrower header</td>
<td></td>
</tr>
<tr>
<td>left side</td>
<td></td>
</tr>
<tr>
<td>adjusting timing belt tension</td>
<td>229</td>
</tr>
<tr>
<td>adjusting v-belt tension</td>
<td>228</td>
</tr>
<tr>
<td>installing double V-belts</td>
<td>232</td>
</tr>
<tr>
<td>installing timing belt</td>
<td>232</td>
</tr>
<tr>
<td>removing double V-belts</td>
<td>228</td>
</tr>
<tr>
<td>right side</td>
<td></td>
</tr>
<tr>
<td>adjusting timing belt tension</td>
<td>233</td>
</tr>
<tr>
<td>installing timing belt</td>
<td>234</td>
</tr>
<tr>
<td>removing timing belt</td>
<td>233</td>
</tr>
<tr>
<td>knife drive boxes</td>
<td>208</td>
</tr>
<tr>
<td>changing oil</td>
<td>213</td>
</tr>
<tr>
<td>installing knife drive box</td>
<td>210</td>
</tr>
<tr>
<td>installing pulley</td>
<td>212</td>
</tr>
<tr>
<td>mounting bolts</td>
<td>208</td>
</tr>
<tr>
<td>oiling</td>
<td>187</td>
</tr>
<tr>
<td>removing knife drive box</td>
<td>209</td>
</tr>
<tr>
<td>removing pulley</td>
<td>212</td>
</tr>
<tr>
<td>knife guards, See guards</td>
<td></td>
</tr>
<tr>
<td>knives</td>
<td></td>
</tr>
<tr>
<td>adjusting on A30-D</td>
<td>57</td>
</tr>
<tr>
<td>knife speeds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDEX

operating variables
 roll alignment .. 277
 roll timing .. 278
 tall crop dividers, See tall crop dividers

options
 additional gauge roller 289
 additional skid shoes 289
 hydraulic header angle kit (A30-D) 290
 replacement reel bat kits 290
 stub guard conversion kit 290
 tall crop divider kit 291
 owner/operator responsibilities 21

P
 pointed guards, See guards
 power take-off (PTO)
 engaging on A30-D 48
 PTO speed ... ii
 preseason checks 176
 pressure relief valves 192
 pull-type mower conditioners
 attaching to tractor 33
 detaching from tractor 43
 steering the mower conditioner 50
 transporting
 on a flatbed trailer 89
 loading onto flatbed trailer 89
 unloading from flatbed trailer 95
 towing with a tractor 87
 towing with a truck 88
 troubleshooting mechanical issues 302
 troubleshooting performance issues 295
 unplugging conditioner and knife 101
 pulleys
 installing ... 212
 removing .. 212

R
 raking ... 166
 reel and reel drives
 A30-D pull-type mower conditioner 223
 replacing reel sprocket 61
 A40-D SP windrower header
 reel drive ... 235
 replacement reel bat kit 290
 seven-bat reel
 standard on grass seed special 157
 reel drive belts
 A30-D pull-type mower conditioner
 adjusting belt tension 224
 installing belt 226
 removing belt 225
 reel drive chains
 A30-D
 adjusting reel drive chain tension 223
 installing reel drive chain 224
 removing reel drive chain 224
 reel positions
 adjusting on A30-D
 reel fore-aft position 68
 reel position 67
 reel tine to header pan clearance 72
 reel vertical position 69
 adjusting on A40-D
 reel fore-aft position 141
 reel position 141
 reel tine to header pan clearance 144
 reel vertical position 142
 reel speeds
 adjusting on A30-D 61
 adjusting on A40-D 138
 reel tines and tine bar bearings 236
 A30-D pull-type mower conditioner 236
 adjusting reel tine aggressiveness 73
 adjusting rock drop tine position 77
 installing on opposite cam end 237
 removing from cam end 236
 removing from opposite cam end 237
 A40-D SP windrower header 238
 adjusting reel tine aggressiveness 145
 replacing – disc #2 243
 replacing cam end – disc #1 238
 replacing center section X 246
 replacing opposite cam – section Y 248
 replacing tine bar extension – section Z 250
 reference
 header specifications 170
 maintenance requirements 29
 references
 conversion chart 317
 definition of terms 23
 model identification 25
 reservoirs
 checking oil level 189
 rock drop tine position
 adjusting position 77
 roll alignment 277
 roll gap .. 77, 147
 roll tension .. 78, 148
 roll timing ... 278
 rpm
 definitions ... 23
rubber fingers .. 252

S

SAE
 bolt torques ... 305
 definitions ... 23

safety
 alert symbols ... 1
 general safety ... 3
 hydraulic safety 6
 maintenance and servicing 5
 operational ... 22
 owner/operator responsibilities 21
 safety sign decals 8
 installing decals 8
 interpreting decals 14
 locations on pull-type mower conditioner 9
 locations on SP windrower headers 12
 signal words ... 2
 tire safety ... 7
 sealed bearings
 installing ... 188

self-propelled windrower headers, See
 windrower headers

serial numbers ... ii

servicing, See maintenance and servicing

seven-bat reels
 standard on grass seed special 157

sickles, See knife and knife drives

side deflectors
 positioning side forming shields 80, 150

SK
 definitions ... 23

skid shoes
 additional skid shoes (optional) 289
 adjusting cutting height on A30-D 72
 adjusting cutting height on A40-D 146
 replacing skid shoe wear plate 283

specifications
 fluids and lubricants 169
 header .. 29
 maintenance specifications 169
 torque specifications 305

SPM
 definitions ... 23

steering circuit
 charging steering circuit for transport 85

steering pull-type mower conditioners
 avoiding obstacles 53
 how it works ... 50
 left-side operation 52
 repositioning steering cylinder clevis for RH
 operation .. 51

 right-side operation 51
 turning 180 degrees 54
 turning square corners 54

steering stroke controls
 repositioning steering stroke control 52

storage .. 176

stripper bars
 description .. 253
 installing front extensions 254
 removing stripper bar 253
 replacing stripper bar 253

T

tall crop dividers 162
 adjusting dividers 162
 removing dividers 163
tall crop divider kit 291

teddng .. 166

three-point hitches, See hitches

topography .. 165
torque specifications 305
 flare-type hydraulic fittings 310
 metric bolt specifications 307
 bolting into cast aluminum 310
 O-ring boss (ORB) fittings
 (non-adjustable) 314
 O-ring boss (ORB) hydraulic fittings
 (adjustable) 312
 O-ring face seal (ORFS) fittings 315
 SAE bolt torque specifications 305

tractors
 attaching to tractor 37
 definitions ... 23
drawbar, See drawbars
 setting up tractor 33
towing with a tractor 87
 tractor requirements 33

trailers
 for use with A30-D
 transporting on a flatbed trailer
 loading onto a flatbed trailer 89
 steering cylinders 89
 transport locks 89
 unloading from flatbed trailer 95
 transporting on a flatbed trailer 89

transporting A30-D pull-type mower conditioner
 85
transporting on a flatbed trailer, See trailers

transporting A40-D SP windrower header 135

transporting the A-Series
 A30-D pull-type mower conditioner
 charging steering circuit for transport 85
 preparing for transport 85
INDEX

- **towing with a tractor**, See tractors
- **towing with a truck**, See trucks
- **troubleshooting**: 295
- **header/mower conditioner performance**: 295
- **mechanical issues**: 302
- **trucks definitions**: 23
- **towing A30-D with a truck**: 88
- **turns**: 180 degree turn 54
- **square corners**: 54

U

- **unloading and assembly instructions**: 293
- **unplugging conditioner and knife A30-D**: 101
- **A40-D**: 155

W

- **weather**: 165
- **wheels and tires**: 281
- **inflating tire**: 282
- **installing wheel**: 281
- **removing wheel**: 281
- **safety**: 7
- **wheel bolts**: 281
- **windrower headers**
 - attaching A40-D to SP windrower: 103
 - detaching A40-D from SP windrower: 131
 - grass seed special A40-D: 156
 - auger pan extensions: 157
 - adjusting extensions: 158
 - seven-bat reel (standard): 157
 - special auger design: 156
 - stub guards and hold-downs: 156
 - windrow forming rods: 159
- **hydraulic hose routing**
 - for M100, M105, M205 only
 - early-build 2015, 2014 and earlier: 124
 - later-build 2015: 126
 - reverser valve jumper hose configuration
 - M150, M155, M155E4, M200 only: 123
 - transporting A40-D with SP windrower: 135
 - troubleshooting mechanical issues: 302
 - troubleshooting performance issues: 295
 - unplugging conditioner and knife: 155
 - windrow forming rods: 159
- **windrows**
 - driving on windrows: 166
 - windrow characteristics: 165
- **wobble boxes**, See knife drive boxes