Model 5010
POWER-TONGUE
WINDROWER

OPERATOR’S
MANUAL

MacDon Industries Ltd.
680 Moray Street
Winnipeg, Manitoba R3J 3S3
(204) 885-5590, Fax 832-7749

MacDon, Inc.
9700 NW Conant Avenue
Kansas City, Missouri 64153-1832
(816) 891-7313, Fax 891-7323
Inside Front Cover
(blank)
INTRODUCTION

Your new MacDon Model 5010 Power-Tongue Windrower is designed to cut, condition and lay in windrows, a wide variety of grasses and hay crops.

Use this manual as your first source of information about the machine. If you follow the instructions given in this manual, your Windrower will work well for many years.

The manual contains instructions for “Safety”, “Operation”, and “Maintenance/Service”. In addition, “Unloading and Assembly” information is given towards the back of this book.

CAREFULLY READ ALL THE MATERIAL PROVIDED BEFORE ATTEMPTING TO UNLOAD, ASSEMBLE, OR USE THE MACHINE.

Use the Table of Contents and the Index to guide you to specific areas. Study the Table of Contents to familiarize yourself with how the material is organized.

Keep this manual handy for frequent reference and to pass on to new operators or owners. Call your Dealer if you need assistance, information, or additional copies of this manual.

NOTE: Right hand (R/H) and left hand (L/H) designations are determined from the operator's position, facing forward.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFETY</td>
<td></td>
</tr>
<tr>
<td>Safety Alert Symbol</td>
<td>5</td>
</tr>
<tr>
<td>Signal Words</td>
<td>5</td>
</tr>
<tr>
<td>Safety Signs</td>
<td>6</td>
</tr>
<tr>
<td>General Farm Safety</td>
<td>7, 8</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td></td>
</tr>
<tr>
<td>Power Tongue Windrower</td>
<td>9, 10</td>
</tr>
<tr>
<td>Tractor Requirements</td>
<td>10</td>
</tr>
<tr>
<td>Hardware Torque Specifications</td>
<td>11</td>
</tr>
<tr>
<td>Hydraulic Fitting Torque Specifications</td>
<td>12</td>
</tr>
<tr>
<td>OPERATION</td>
<td></td>
</tr>
<tr>
<td>Your Responsibilities as an Owner/Operator</td>
<td>13</td>
</tr>
<tr>
<td>To the New Operator</td>
<td>13</td>
</tr>
<tr>
<td>Preparing the Tractor</td>
<td>14</td>
</tr>
<tr>
<td>Preparing the Windrower</td>
<td>15</td>
</tr>
<tr>
<td>Attaching Windrower to Tractor</td>
<td>16, 17</td>
</tr>
<tr>
<td>Detaching Windrower from Tractor</td>
<td>17</td>
</tr>
<tr>
<td>Break-In Period</td>
<td>18</td>
</tr>
<tr>
<td>Pre-Starting Checks: Annual</td>
<td>19</td>
</tr>
<tr>
<td>Pre-Starting Checks: Daily</td>
<td>20</td>
</tr>
<tr>
<td>Operate Correctly</td>
<td>21</td>
</tr>
<tr>
<td>Engaging the PTO</td>
<td>21</td>
</tr>
<tr>
<td>Lift Cylinder Stop (Raising and Lowering the Machine)</td>
<td>22</td>
</tr>
<tr>
<td>Steering</td>
<td>23</td>
</tr>
<tr>
<td>180° Turn</td>
<td>24</td>
</tr>
<tr>
<td>Turning Square Corners</td>
<td>25</td>
</tr>
<tr>
<td>Operating Variables</td>
<td>25-33</td>
</tr>
<tr>
<td>Lean Bar Position</td>
<td>26</td>
</tr>
<tr>
<td>Ground Speed</td>
<td>26</td>
</tr>
<tr>
<td>Reel Speed</td>
<td>27</td>
</tr>
<tr>
<td>Reel Position</td>
<td>27, 28</td>
</tr>
<tr>
<td>Cutting Height (Skid Plates)</td>
<td>29</td>
</tr>
<tr>
<td>Cutterbar Angle</td>
<td>30</td>
</tr>
<tr>
<td>Header Flotation</td>
<td>31</td>
</tr>
<tr>
<td>Roll Gap</td>
<td>32</td>
</tr>
<tr>
<td>Forming Shields</td>
<td>33</td>
</tr>
<tr>
<td>Rear Deflector</td>
<td>33</td>
</tr>
<tr>
<td>Haying Tips</td>
<td>34, 35</td>
</tr>
<tr>
<td>Topsoil Moisture</td>
<td>34</td>
</tr>
<tr>
<td>Climate and Topography</td>
<td>34</td>
</tr>
<tr>
<td>Windrow Characteristics</td>
<td>34, 35</td>
</tr>
<tr>
<td>Running Tractor Tire on Previously Cut Windrow</td>
<td>35</td>
</tr>
<tr>
<td>Raking and Tedding</td>
<td>35</td>
</tr>
<tr>
<td>Chemical Drying Agents</td>
<td>35</td>
</tr>
<tr>
<td>Unplugging the Windrower: Sickle</td>
<td>36</td>
</tr>
<tr>
<td>Unplugging the Windrower: Rolls</td>
<td>36</td>
</tr>
<tr>
<td>Shut-Down Procedure</td>
<td>37</td>
</tr>
<tr>
<td>Transporting the Windrower: Towing</td>
<td>37</td>
</tr>
<tr>
<td>Transporting the Windrower: Flatbed</td>
<td>38</td>
</tr>
<tr>
<td>Storage Procedure</td>
<td>39</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>MAINTENANCE/SERVICE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Procedures</td>
<td>39</td>
</tr>
<tr>
<td>Recommended Fluids and Lubricants</td>
<td>40</td>
</tr>
<tr>
<td>Capacities of Enclosed Drives and Reservoir</td>
<td>40</td>
</tr>
<tr>
<td>Bearing Installation</td>
<td>40</td>
</tr>
<tr>
<td>Closing Drive Shields</td>
<td>41</td>
</tr>
<tr>
<td>Greasing the Windrower</td>
<td>41-44</td>
</tr>
<tr>
<td>Center Link Ball Joints</td>
<td>44</td>
</tr>
<tr>
<td>Spring Pivots</td>
<td>44</td>
</tr>
<tr>
<td>Hitch Pin Lock Nut</td>
<td>44</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>45,46</td>
</tr>
<tr>
<td>System Safety</td>
<td>45</td>
</tr>
<tr>
<td>Hoses and Lines</td>
<td>45</td>
</tr>
<tr>
<td>Hydraulic Reservoir</td>
<td>45,46</td>
</tr>
<tr>
<td>Hydraulic Oil Filter</td>
<td>46</td>
</tr>
<tr>
<td>Electrical</td>
<td>46</td>
</tr>
<tr>
<td>Sickle and Sickle Drive</td>
<td>47-51</td>
</tr>
<tr>
<td>Sickle Lubrication</td>
<td>47</td>
</tr>
<tr>
<td>Sickle Sections</td>
<td>47</td>
</tr>
<tr>
<td>Sickle Removal</td>
<td>47</td>
</tr>
<tr>
<td>Sickle Head Needle Bearing Installation</td>
<td>48</td>
</tr>
<tr>
<td>Sickle Installation</td>
<td>48</td>
</tr>
<tr>
<td>Guards</td>
<td>49</td>
</tr>
<tr>
<td>Excessive Breakage</td>
<td>49</td>
</tr>
<tr>
<td>Sickle Hold-Downs</td>
<td>49</td>
</tr>
<tr>
<td>Sickle Drive Belt Tension</td>
<td>50</td>
</tr>
<tr>
<td>Sickle Drive Belt Replacement</td>
<td>50</td>
</tr>
<tr>
<td>Wobble Box Maintenance</td>
<td>51</td>
</tr>
<tr>
<td>Reel and Reel Drive</td>
<td>52</td>
</tr>
<tr>
<td>Reel Drive Chain Lubrication</td>
<td>52</td>
</tr>
<tr>
<td>Reel Drive Chain Tension</td>
<td>52</td>
</tr>
<tr>
<td>Reel Drive Belt Tension</td>
<td>52</td>
</tr>
<tr>
<td>Reel Tines</td>
<td>52</td>
</tr>
<tr>
<td>Auger and Auger Drive</td>
<td>53-55</td>
</tr>
<tr>
<td>Auger Position</td>
<td>53</td>
</tr>
<tr>
<td>Stripper Bars</td>
<td>54</td>
</tr>
<tr>
<td>Auger Drive Chain Lubrication</td>
<td>55</td>
</tr>
<tr>
<td>Auger Drive Chain Tension</td>
<td>55</td>
</tr>
<tr>
<td>Rolls and Roll Drive</td>
<td>56,57</td>
</tr>
<tr>
<td>Roll Drive Chain Tension</td>
<td>56</td>
</tr>
<tr>
<td>Roll Drive Chain Case Lubricant</td>
<td>56</td>
</tr>
<tr>
<td>Roll Timing</td>
<td>57</td>
</tr>
<tr>
<td>Roll Drive Chain Removal & Installation</td>
<td>58,59</td>
</tr>
<tr>
<td>Wheels and Tires</td>
<td>60</td>
</tr>
<tr>
<td>Wheel Bolts</td>
<td>60</td>
</tr>
<tr>
<td>Wheel Removal - 12 & 14 ft. Windrows</td>
<td>60</td>
</tr>
<tr>
<td>Tire Inflation</td>
<td>60</td>
</tr>
<tr>
<td>Maintenance Schedule</td>
<td>61</td>
</tr>
<tr>
<td>Maintenance Record</td>
<td>62</td>
</tr>
<tr>
<td>TROUBLE SHOOTING</td>
<td>63-66</td>
</tr>
<tr>
<td>OPTIONS AND ATTACHMENTS</td>
<td></td>
</tr>
<tr>
<td>Additional Skid Plates, PTO Conversion Kits</td>
<td></td>
</tr>
<tr>
<td>Crop Divider, Auger Paddle Kit, Stub Guard Conversion Kit</td>
<td>67</td>
</tr>
<tr>
<td>UNLOADING & ASSEMBLY</td>
<td>68-76</td>
</tr>
<tr>
<td>INDEX</td>
<td>77,78</td>
</tr>
</tbody>
</table>
Record the serial number in the space provided.

Model 5010 Power Tongue Windrower:

__

Serial number plate (A) is located on the side of the left hand end frame.

__

Tongue:

__

Serial number plate (B) is located at rear of tongue.

NOTE: When ordering parts and service, be sure to give your dealer the complete and proper serial number.
SAFETY

SAFETY ALERT SYMBOL

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

ATTENTION!
BECOME ALERT!
YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is SAFETY important to you?

· ACCIDENTS DISABLE AND KILL

3 BIG REASONS
· ACCIDENTS COST
· ACCIDENTS CAN BE AVOIDED

SIGNAL WORDS

Note the use of the signal words DANGER, WARNING, and CAUTION with safety messages. The appropriate signal word for each message has been selected using the following guidelines:

⚠️ DANGER – Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It is also used to alert against unsafe practices.

⚠️ CAUTION – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It is also used as a reminder of good safety practices.
SAFETY SIGNS

- The safety signs reproduced below appear on the windrower at the locations listed.
- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or become illegible.
- If original parts on which a safety sign was installed are replaced, be sure the repair part also bears the current safety sign.
- Safety signs are available from your Dealer Parts Department.

To install safety signs:
1. Be sure the installation area is clean and dry.
2. Decide on the exact location before you remove the decal backing paper.
3. Remove the smaller portion of the split backing paper.
4. Place the sign in position and slowly peel back the remaining paper, smoothing the sign as it is applied.
5. Small air pockets can be smoothed out or pricked with a pin.
SAFETY

GENERAL SAFETY

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

1. Protect yourself.

When assembling, operating and servicing machinery, wear all the protective clothing and personal safety devices that COULD be necessary for the job at hand. Don't take chances.

You may need:
- a hard hat.
- protective shoes with slip resistant soles.
- protective glasses or goggles.
- heavy gloves.
- wet weather gear.
- respirator or filter mask.
- hearing protection. Be aware that prolonged exposure to loud noise can cause impairment or loss of hearing. Wearing a suitable hearing protective device such as ear muffs (A) or ear plugs (B) protects against objectionable or loud noises.

2. Provide a first-aid kit for use in case of emergencies.

3. Keep a fire extinguisher on the machine. Be sure the extinguisher is properly maintained and be familiar with its proper use.

4. Keep young children away from machinery at all times.

5. Be aware that accidents often happen when the operator is tired or in a hurry to get finished. Take the time to consider the safest way. Never ignore warning signs of fatigue.
GENERAL SAFETY (continued)

6. Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.

7. Keep hands, feet, clothing and hair away from moving parts. Never attempt to clear obstructions or objects from a machine while the engine is running.

8. Keep all shields in place. Never alter or remove safety equipment. Make sure driveline guards can rotate independently of the shaft and can telescope freely.

9. Use only service and repair parts made or approved by the equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

10. Do not modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.

11. Stop engine and remove key from ignition before leaving operator’s seat for any reason. A child or even a pet could engage an idling machine.

12. Keep the area used for servicing machinery clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

13. Use adequate light for the job at hand.

14. Keep machinery clean. Straw and chaff on a hot engine are a fire hazard. Do not allow oil or grease to accumulate on service platforms, ladders or controls. Clean machines before storage.

15. Never use gasoline, naphtha or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

16. When storing machinery, cover sharp or extending components to prevent injury from accidental contact.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>12 FT.</th>
<th>14 FT.</th>
<th>16 FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Width:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Position</td>
<td>13.5 ft. (4103 mm)</td>
<td>15.5 ft. (4713 mm)</td>
<td>17.5 ft. (5323 mm)</td>
</tr>
<tr>
<td>Field Position</td>
<td>18.1 ft. (5531 mm)</td>
<td>21.1 ft. (6446 mm)</td>
<td>24.1 ft. (7360 mm)</td>
</tr>
<tr>
<td>Overall Length:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Position</td>
<td>20.7 ft. (6320 mm)</td>
<td>22.1 ft. (6740 mm)</td>
<td>24.9 ft. (7573 mm)</td>
</tr>
<tr>
<td>Field Position</td>
<td>15.8 ft. (4816 mm)</td>
<td>16.3 ft. (4975 mm)</td>
<td>18.2 ft. (5557 mm)</td>
</tr>
<tr>
<td>Overall Height</td>
<td>Transport Position</td>
<td>6.2 ft. (1896 mm)</td>
<td>Field Position</td>
</tr>
<tr>
<td>Weight</td>
<td>5400 lbs. (2450 kg)</td>
<td>5800 lbs. (2630 kg)</td>
<td>6200 lbs. (2812 kg)</td>
</tr>
</tbody>
</table>

CUTTERBAR

Cutterbar Width	12.25 ft. (3734 mm)	14.25 ft. (4343 mm)	16.25 ft. (4953 mm)
Cutting Height (on skids)	1.5 to 4 in. (38 to 100 mm)		
Guard Angle (adjustable)	6° to 11.5° below horizontal		
Cutterbar Range	2.0 in. below ground to 21 in. above ground (to guard tip) (-50 mm to +533 mm)		

MAIN DRIVE

| 540 or 1000 RPM PTO tractor driven pump to hydraulic motor driving primary shaft |

SICKLE

Drive Type	Belt driven wobble box (enclosed oil bath)
Speed	1450 strokes or 725 cycles per minute
Stroke	3 in. (76 mm)
Sections	Over-serrated, low shoulder
Guards	Double heat treated, forged steel

REEL

Drive Type	V-belt drive from R/H auger shaft to chain final drive
Reel Type	5 bats (4 or 6 bats optional), replaceable steel pick-up tines, cam action, polymer tine tube bearings
Radius	22 in. (1560 mm) to finger tip
Speed	66 RPM as assembled / 53 RPM with pulley exchange / 60 RPM optional

NOTE: Specifications listed only under 14 ft. column are common to all sizes.
SPECIFICATIONS

AUGER

<table>
<thead>
<tr>
<th>Diameter</th>
<th>12 FT.</th>
<th>14 FT.</th>
<th>16 FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Type</td>
<td>Chain final drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overload Protection</td>
<td>Hydraulic motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auger Type</td>
<td>20 in. (508 mm) diameter variable pitch, center feed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auger Speed</td>
<td>230 RPM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONDITIONER ROLLS

<table>
<thead>
<tr>
<th>Diameter</th>
<th>10 in. (254 mm)</th>
<th>10 in. (254 mm)</th>
<th>10 in. (254 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Type</td>
<td>Drivelines from enclosed oil bath chain drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll Type</td>
<td>Helical intermeshing steel bars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll Diameter</td>
<td>10 in. (254 mm)</td>
<td>10 in. (254 mm)</td>
<td>10 in. (254 mm)</td>
</tr>
<tr>
<td>Roll Length</td>
<td>93 in. (2360 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll Speed</td>
<td>750 RPM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WHEELS

<table>
<thead>
<tr>
<th>Diameter</th>
<th>119 in. (3030 mm)</th>
<th>143 in. (3640 mm)</th>
<th>167 in. (4250 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tread Width</td>
<td>119 in. (3030 mm)</td>
<td>143 in. (3640 mm)</td>
<td>167 in. (4250 mm)</td>
</tr>
<tr>
<td>Tires</td>
<td>31 x 13.5 - 15 NHS 8 ply Terra-Rib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire Pressure</td>
<td>30 psi (207 kPa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DISCHARGE

<table>
<thead>
<tr>
<th>Diameter</th>
<th>30 in. (760 mm)</th>
<th>92 in. (2346 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Width</td>
<td>30 in. (760 mm)</td>
<td></td>
</tr>
<tr>
<td>Maximum Width</td>
<td>92 in. (2346 mm)</td>
<td></td>
</tr>
<tr>
<td>Rear Fluffing Shield</td>
<td>Adjustable</td>
<td></td>
</tr>
</tbody>
</table>

OPERATING SPEED

<table>
<thead>
<tr>
<th>Diameter</th>
<th>5 mph (8 km/h)</th>
<th>20 mph (30 km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Field Speed</td>
<td>5 mph (8 km/h)</td>
<td></td>
</tr>
<tr>
<td>Recommended Transport Speed</td>
<td>20 mph (30 km/h)</td>
<td></td>
</tr>
</tbody>
</table>

TRACTOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Diameter</th>
<th>60 hp (45 kw)</th>
<th>75 hp (56 kw)</th>
<th>90 hp (68 kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Power</td>
<td>60 hp (45 kw)</td>
<td>75 hp (56 kw)</td>
<td>90 hp (68 kw)</td>
</tr>
<tr>
<td>PTO</td>
<td>540 or 1000 RPM - ASAE standard location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Capacity</td>
<td>1750 psi (12000 kPa), two hydraulic circuits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(SPECIFICATIONS AND DESIGN ARE SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION TO REVISE UNITS PREVIOUSLY SOLD.)
TORQUE SPECIFICATIONS

CHECKING BOLT TORQUE

The tables shown below give correct torque values for various bolts and capscrews. Tighten all bolts to the torques specified in chart unless otherwise noted throughout this manual. Check tightness of bolts periodically, using bolt torque chart as a guide. Replace hardware with the same strength bolt.

ENGLISH TORQUE SPECIFICATION

<table>
<thead>
<tr>
<th>Bolt Dia. "A"</th>
<th>NC Bolt Torque*</th>
<th>SAE 5</th>
<th>SAE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m [lb-ft]</td>
<td>N·m [lb-ft]</td>
<td></td>
</tr>
<tr>
<td>5/16"</td>
<td>24 [18]</td>
<td>34 [25]</td>
<td></td>
</tr>
<tr>
<td>3/8"</td>
<td>43 [32]</td>
<td>56 [41]</td>
<td></td>
</tr>
<tr>
<td>7/16"</td>
<td>68 [50]</td>
<td>95 [70]</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>102 [75]</td>
<td>142 [105]</td>
<td></td>
</tr>
<tr>
<td>9/16"</td>
<td>149 [110]</td>
<td>202 [149]</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>203 [150]</td>
<td>271 [200]</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>359 [265]</td>
<td>495 [365]</td>
<td></td>
</tr>
<tr>
<td>7/8"</td>
<td>569 [420]</td>
<td>813 [600]</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>867 [640]</td>
<td>1205 [890]</td>
<td></td>
</tr>
</tbody>
</table>

Torque figures indicated above are valid for non-greased or non-oiled threads and heads unless otherwise specified. Do not grease or oil bolts or capscrews unless specified in this manual. When using locking elements, increase torque values by 5%.

* Torque value for bolts and capscrews are identified by their head markings.
TORQUE SPECIFICATIONS

TIGHTENING HYDRAULIC O-RING FITTINGS*

1. Inspect O-ring and seat for dirt or obvious defects.
2. On angle fittings, back the lock nut off until washer bottoms out at top of groove.
3. Hand tighten fitting until back up washer or washer face (if straight fitting) bottoms on face and O-ring is seated.
4. Position angle fittings by unscrewing no more than one turn.
5. Tighten straight fittings to torque shown.
6. Tighten angle fittings to torque shown while holding body of fitting with a wrench.

* The torque values shown are based on lubricated connections as in reassembly.

<table>
<thead>
<tr>
<th>Thread Size (in.)</th>
<th>Nut Size Across Flats (in.)</th>
<th>Torque Value* N·m</th>
<th>Recommended Turns to Tighten (after finger tightening) Flats Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>1/2</td>
<td>8 [6]</td>
<td>2 1/3</td>
</tr>
<tr>
<td>7/16</td>
<td>9/16</td>
<td>12 [9]</td>
<td>2 1/3</td>
</tr>
<tr>
<td>1/2</td>
<td>5/8</td>
<td>16 [12]</td>
<td>2 1/3</td>
</tr>
<tr>
<td>9/16</td>
<td>11/16</td>
<td>24 [18]</td>
<td>2 1/3</td>
</tr>
<tr>
<td>3/4</td>
<td>7/8</td>
<td>46 [34]</td>
<td>2 1/3</td>
</tr>
<tr>
<td>7/8</td>
<td>1</td>
<td>62 [46]</td>
<td>1-1/2 1/4</td>
</tr>
<tr>
<td>1-1/16</td>
<td>1-1/4</td>
<td>102 [75]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>1-3/16</td>
<td>1-3/8</td>
<td>122 [90]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>1-5/16</td>
<td>1-1/2</td>
<td>142 [105]</td>
<td>3/4 1/8</td>
</tr>
<tr>
<td>1-5/8</td>
<td>1-7/8</td>
<td>190 [140]</td>
<td>3/4 1/8</td>
</tr>
<tr>
<td>1-7/8</td>
<td>2-1/8</td>
<td>217 [160]</td>
<td>1/2 1/12</td>
</tr>
</tbody>
</table>

TIGHTENING HYDRAULIC FLARE-TYPE TUBE FITTINGS*

1. Check flare and flare seat for defects that might cause leakage.
2. Align tube with fitting before tightening.
3. Lubricate connection and hand tighten swivel nut until snug.
4. To prevent twisting the tube(s), use two wrenches. Place one wrench on the connector body and with the second tighten the swivel nut to the torque shown.

* The torque values shown are based on lubricated connections as in reassembly.

<table>
<thead>
<tr>
<th>Tube Size O.D. (in.)</th>
<th>Nut Size Across Flats (in.)</th>
<th>Torque Value* N·m</th>
<th>Recommended Turns to Tighten (after finger tightening) Flats Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16</td>
<td>7/16</td>
<td>8 [6]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>1/4</td>
<td>9/16</td>
<td>12 [9]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>5/16</td>
<td>5/8</td>
<td>16 [12]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>3/8</td>
<td>11/16</td>
<td>24 [18]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>1/2</td>
<td>7/8</td>
<td>46 [34]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>5/8</td>
<td>1</td>
<td>62 [46]</td>
<td>1 1/6</td>
</tr>
<tr>
<td>3/4</td>
<td>1-1/4</td>
<td>102 [75]</td>
<td>3/4 1/8</td>
</tr>
<tr>
<td>7/8</td>
<td>1-3/8</td>
<td>122 [90]</td>
<td>3/4 1/8</td>
</tr>
</tbody>
</table>
YOUR RESPONSIBILITIES AS AN OWNER/OPERATOR

CAUTION:

1. It is your responsibility to read and understand this manual completely before operating the windrower. Contact your dealer if an instruction is not clear to you.

2. Follow all safety messages in the manual and on safety signs on the machine.

3. Remember that YOU are the key to safety. Good safety practices protect you and the people around you.

4. Before allowing anyone to operate the windrower, for however short a time or distance, make sure they have been instructed in its safe and proper use.

5. Review the manual and all safety related items with all operators annually.

6. Be alert for other operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.

7. Do not modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.

8. The safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.

TO THE NEW OPERATOR

It's natural for an operator to be anxious to get started with a new machine. Please take the time to familiarize yourself with the windrower by reading the Operator's Manual and safety signs before attempting operation.
OPERATION

PREPARING THE TRACTOR

1. Select proper tractor size. The minimum power required is:
 - 12 ft. - 60 hp (45 kW)
 - 14 ft. - 75 hp (56 kW)
 - 16 ft. - 90 hp (68 kW)

 Also, minimum hydraulics required are 1750 psi (12000 kPa) pressure with double acting, dual remote capability.

2. Adjust tractor drawbar to meet ASAE Standard specifications as listed below. An improperly located drawbar may affect header flotation and guard angle.
 - (A) 14 in. (356 mm) for 540 rpm.
 16 in. (406 mm) for 1000 rpm.
 - (B) 6 to 12 in. (152 to 305 mm) with 8 in. (203 mm) recommended.
 - (C) 13 to 17 in. (330 to 432 mm) from ground with 16 in. (406 mm) recommended.

3. Secure the drawbar so the hitch pinhole is directly below the driveline.

 NOTE: If the tractor has a three-point hitch, raise the lower links as high as possible to prevent damage.

4. Attach the drawbar extension (D) to the tractor drawbar.

 IMPORTANT: To prevent damage to the pump and hose assembly, do not operate the machine without the drawbar extension. Use washers (E) as required depending on drawbar thickness.

 Tighten 5/8 nut (F) to 160 ft.lbs. (215 N m) torque.

 Tighten 1 inch slotted nut (G) to 630 ft.lbs. (850 N m) torque. Further tighten nut (G) to align slot with hole and install cotter pin.

 Back off nuts (J) and turn in four bolts (K) until snug against tractor drawbar. Tighten nuts (J) to secure the position.

5. Use proper PTO speed (540 or 1000) depending on windrower options.

6. Tractor must be equipped with a seven terminal outlet (H) to supply power to the windrower's warning lights.
OPERATION

PREPARING THE WINDROWER

1. Check the tires and inflate if necessary. Recommended pressure is 30 psi (207 kPa).

 CAUTION: When inflating tires, use a clip-on chuck and extension hose long enough to allow you to stand to one side and not facing the tire.

2. Check for proper assembly and adjustment and make sure all bolts are tightened securely.

3. Check the tension of the reel drive belt and the sickle drive belt. Adjust if required. See Maintenance/Service section.

4. Lubricate the machine completely and check the oil level of the sickle drive box. See Maintenance/Service section.

5. Check hydraulic oil level at dipstick. Add oil if required. See Maintenance/Service section.

6. Install quick coupler tips (matching the tractor to be used) on the remote hydraulic hoses.
ATTACHING WINDROWER TO TRACTOR

CAUTION: Shut off tractor, engage parking brake and remove key before working around hitch.

CAUTION: Never attach windrower to tractor rear axle or three-point hitch arms.

1. Using the jack, raise windrower tongue to clear the hitch pin in drawbar extension. Position tractor to align ball joint on tongue with hitch pin and lower tongue. Secure with lock pin (A).

2. Route hitch chain from windrower through chain support (B), around drawbar support and lock hook (C) on chain.

 IMPORTANT: Adjust chain length to remove all slack except what is needed for turns.

3. Remove weight from jack. Pull pin securing jack and move to storage position (D) on top of frame tube.

4. NOTE: Pump attachment is easier if hitch is angled to tractor, not straight on.

 Slide the hydraulic pump assembly onto the PTO shaft of the tractor. Adjust the torque arm (E) so that it rests on the right side of the drawbar.

 IMPORTANT:
 • Pump outlets must remain vertical. Loop the torque arm chain (F) around the drawbar and lock the chain in keyhole slot in torque arm mounting plate.
 • To prevent hose damage, route hoses through guide (G) to provide proper hose arc as shown.
 • Full engagement of PTO shaft into pump is required to prevent damage to pump spline. Pump should slide 2 ½” (64 mm) onto shaft.
 • The pump must never be keyed or fastened to the PTO shaft. If the drawbar pin should become disengaged, the pump must be free to slip off.
ATTACHING WINDROWER TO TRACTOR
(cont'd)

5. Connect remote hydraulic hoses as follows:

a. Connect the two tongue swing hoses (H) so that when the tractor control is moved forward, the swing cylinder will extend, moving the windrower to the right. When the tractor control handle is moved back, the swing cylinder will retract, moving the windrower to the left.

b. Connect the two lift cylinder hoses (J) so that when the tractor control is moved back, the lift cylinder will extend, raising the header. When the tractor control is moved forward, the lift cylinder will retract, lowering the header.

6. Connect the windrower wiring harness plug (K) to outlet on tractor.

DETACHING WINDROWER FROM TRACTOR

CAUTION: To prevent accidental movement of tractor, shut off engine, engage parking brake, and remove key.

To maintain stability, always lower the machine completely. Block windrower wheels before detaching from tractor.

Park machine on flat level surface.

Move remote cylinder control valve lever back and forth to relieve stored hydraulic pressure.

1. Pull pin securing jack and move to working position (A) at front of tongue.

2. Lower jack to take weight off tractor drawbar.

3. Unlock torque arm chain from keyhole slot in torque arm mounting plate. Remove hydraulic pump assembly and store at (B).

4. Disconnect hydraulic hoses and electrical harness. Store with ends off ground.

5. Remove hitch pin lock (C) and unhook chain (D) from tractor. Wrap chain around windrower tongue for storage. Raise windrower tongue with jack to clear hitch pin.

6. Slowly drive tractor away from windrower.
BREAK-IN PERIOD

1. After attaching windrower to tractor for the first time, operate the machine slowly for 5 minutes, watching and listening FROM THE TRACTOR SEAT for binding or interfering parts.

 CAUTION: Before investigating an unusual sound or attempting to correct a problem, shut off tractor, engage parking brake and remove key.

2. Check wheel bolt torque after 1 hour operation and periodically thereafter (at least every 100 hours). Torque to 120 ft.lbs. (160 N-m).

3. Check sickle drive belt (A), auger primary drive belt (H) and reel drive belt (G) after 5 hours operation for initial stretch. Tighten as necessary. (See Maintenance/Service section). Continue to check the belts periodically for the first 50 hours.

4. Check hitch pin nut (B) after 5 hours operation and every 50 hours thereafter. Torque to 350 ft.lbs. (475 N-m).

5. Check hardware after 5 hours operation. Tighten as necessary. See Specifications section for recommended torques.

6. Tighten the four wobble box mounting bolts (C) after 10 hours operation and every 100 hours thereafter. Torque to 200 ft.lbs. (270 N-m), starting with the side mounting bolts.

7. Check reel drive chain (D), auger drive chain (E) and roll drive chain (F) after 10 hours operation for proper tension and lubrication. See Maintenance/Service section.

8. Change wobble box lubricant after 50 hours operation and every 1000 hours (or 3 years) thereafter. See Maintenance/Service section.

9. Change hydraulic oil filter after 100 hours operation and every 250 hours thereafter. See Hydraulics in Maintenance/Service section.

10. Until you become familiar with the sound and feel of your new windrower, be extra alert and attentive.
OPERATION

PRE-STARTING CHECKS

Do the following at the start of each operating season:

CAUTION:

1. Review the Operator's Manual to refresh your memory on safety and operating recommendations.

2. Review all safety signs and other decals on the windrower and note hazard areas.

3. Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.

4. Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.

5. Check the first aid kit and fire extinguisher. Know where they are and how to use them.

Also:

6. Adjust tension on drive belts. See Maintenance/Service section.

7. Perform all Annual maintenance. See Maintenance/Service section.
OPERATION

PRE-STARTING CHECKS

Do the following each day before start-up:

CAUTION:

1. Clear the area of other persons, pets etc. Keep children away from machinery. Walk around the windrower to be sure no one is under, on or close to it.

2. Remove foreign objects from the machine and surrounding area.

3. Wear close fitting clothing and protective shoes with slip resistant soles.
 As well, carry with you any protective clothing and personal safety devices that COULD be necessary through the day. Don’t take chances.
 You may need:
 - a hard hat
 - protective glasses or goggles
 - heavy gloves
 - respirator or filter mask
 - wet weather gear.

4. Protect against noise. Wear a suitable hearing protective device such as ear muffs or ear plugs to protect against objectionable or uncomfortable loud noises.

5. Check the machine for leaks or any parts that are missing, broken, or not working correctly.
 NOTE: Use proper procedure when searching for pressurized fluid leaks. See “Hydraulics" in Maintenance/Service section.

6. Be sure tractor and windrower are properly attached, all controls are in neutral and tractor brake is engaged.

7. Clean all lights and reflective surfaces on the machine. Check lights for proper operation.

OPERATION

OPERATE CORRECTLY

CAUTION:

1. Follow all safety and operational instructions given in your tractor Operator's Manual. If you do not have a tractor manual, get one from your dealer and read it thoroughly.

2. Never attempt to start the tractor engine or operate the windrower except from the tractor seat.

3. Check the operation of all controls in a safe clear area before starting work.

4. Do not allow riders on tractor or windrower.

5. Never start or move the machine until you are sure all bystanders have cleared the area.

6. Avoid travelling over loose fill, rocks, ditches or holes.

7. Drive slowly through gates and doorways.

8. If cutting ditch banks, use extreme caution. If the windrower hits an obstruction, the front of the tractor will usually swerve towards the ditch.

9. When working on inclines, travel uphill or downhill when possible. Be sure to keep tractor transmission in gear when travelling downhill.

10. Never attempt to get on or off a moving tractor.

11. Do not get off the tractor while the windrower is in operation.

12. Stop tractor engine and remove key before adjusting or removing plugged material from the machine. A child or even a pet could engage the drive.

13. Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect the machine. Follow proper shutdown procedure:
 - engage tractor brake
 - disengage PTO
 - turn off engine and remove key
 - wait for all movement to stop
 - dismount and engage cylinder stops before inspecting raised machine.

14. Operate only in daylight or good artificial light.

ENGAGING THE PTO

DANGER: Be sure all bystanders are clear of the machine before engaging the PTO. Never leave tractor seat with the PTO engaged.

- Engage the PTO slowly, just before the windrower is moved up to the standing crop.
- Be sure tractor PTO is running at correct rpm before starting to cut. (540 or 1000, as equipped.)
- Disengage the PTO when not operating the windrower.
LIFT CYLINDER STOP
(RAISING AND LOWERING WINDROWER)

WARNING: To avoid bodily injury or death from fall of raised machine, always engage lift cylinder stops before going under windrower for any reason.

To engage cylinder stops:
1. Raise machine to maximum height by activating remote cylinder control valve in tractor.
 NOTE: Hoses should be connected so that moving control lever (A) back raises the header.
2. Remove cylinder stops from storage position and install in engaged position (B).
3. Lower machine slightly so stops take some weight.

To lower windrower:
1. Raise machine to maximum height to take weight off stops.
2. Remove stops from cylinders and store in position (C).
3. Lower machine by activating remote cylinder control valve in tractor.
STEERING

Steering the windrower is controlled by the tractor remote hydraulic system. This steering system allows the windrower to follow directly behind the tractor, make a full cut to either side, or any position in between.

NOTE: To allow hitch to swing, latch rod must be in field position (D). If rod is in transport position (A), pivot rod retainer (C) up to allow moving rod from (A) to (D).

NOTE: Hoses should be connected so that moving tractor control lever (E) forward steers the machine to the right and moving the lever back steers the windrower left.

The control is operated momentarily for steering and must be returned to OFF or NEUTRAL position as soon as the windrower reaches the desired path of travel.

The center pivot provides the operator the opportunity to move the windrower into field position easily, allows right angle turns in either direction, steering around objects on both sides and straight line field cutting on either side of the tractor.

NOTE: Before steering the windrower, the header should be raised enough that the skid shoes clear the ground.

OPERATING ON LEFT SIDE

OPERATING ON RIGHT SIDE

STRAIGHT LINE FIELD CUTTING

STEERING AROUND AN OBSTRUCTION

TRACTOR CONTROL LEVER - TYPICAL

MOVE LATCH ROD TO FIELD POSITION (D)
OPERATION

180° TURN

When cutting back and forth on one side of the field, approximately 50 ft. (15 m) is required at each end of the field to make a 180° turn-around.

Proceed as follows:

1. Beginning at position (A), the tractor is guided away from the uncut crop while the windrower is guided straight ahead until cutting through the end.

2. As soon as the sickle cuts through, raise the header to lift the skid shoes clear of the ground, and steer the windrower to the extreme direction away from the uncut crop.

NOTE: For ease of operation, both levers can be activated with one hand and held until steering cylinder completes its stroke.

3. At position (B), start turning the tractor back towards the uncut crop.

IMPORTANT: When turning, take care that the inside tractor tire does not contact tongue of windrower.

4. In positions (C) and (D), continue turning towards the uncut crop, (with the windrower steered towards the outside of the turning circle), being aware of tongue-to-tire clearance.

5. At position (E), the tractor completes the circle and the front wheels are turned to straddle the last cut windrow. At this point, steer the windrower to line up with the edge of the uncut crop.

6. At position (F), lower header to cutting height and begin a new cut through the field.
OPERATION

TURNING SQUARE CORNERS

The following procedure is intended only as a guide to developing a turning procedure for the tractor being used. Specific distances are not given due to the variances in tractor maneuverability.

1. As the tractor approaches the corner, guide the tractor sharply away from the crop. Steer the windrower to maintain a straight cut ahead as the tractor moves away from the crop.

2. As soon as the sickle cuts past where the new corner will be, raise the header sufficiently for skid shoes to clear the ground, then steer the windrower to the extreme direction away from the uncut crop.

3. As the tractor passes the corner, steer it sharply back towards the uncut crop, taking care that the inside tractor tire does not contact the windrower tongue.

4. Guide the tractor to straddle the last cut windrow. As the windrower finishes turning, steer it back towards the uncut crop, align the header with the crop edge and lower header to cutting height.

OPERATING VARIABLES

Satisfactory function of the windrower in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and allows cutting of more acres. As well, proper adjustments and timely maintenance will increase the length of service you receive from the machine.

The nine variables listed here and detailed on the following pages will affect the performance of the windrower. You will quickly become adept at adjusting the machine to give you the desired results.

1. Lean Bar Position
2. Ground Speed
3. Reel Speed
4. Reel Position
5. Cutting Height
6. Cutterbar Angle
7. Header Flotation
8. Roll Gap
9. Forming Shields

OPERATING VARIABLES
OPERATION

LEAN BAR POSITION

IMPORTANT: To prevent structural damage to the header, do not operate with lean bar removed.

Use the lean bar adjustment to accommodate different crop heights.

The lean bar should strike the upper portion of the crop, leaning it away from the header and exposing the stalks to the sickle.

To extend or retract lean bar, re-position hardware (A) in adjustment holes as required.

GROUND SPEED

⚠️ CAUTION: Reduce speed when turning, crossing slopes, or when traveling over rough ground.

Tractor ground speed should not exceed 8 mph (13 km/h). For most crop conditions a ground speed of 5 mph (8 km/h) has been found satisfactory.

Choose a ground speed that allows the sickle to cut the crop smoothly and evenly.

The chart below indicates the relationship between ground speed and area cut for three header sizes. Example: At ground speed of 5 mph (8 km/h) with a 14 ft. windrower, the area cut would be approximately 9 acres (3.7 hectares) per hour.
REEL SPEED

For best feeding of the crop into the auger, reel speed should be just faster than ground speed. This gently sweeps material across the sickle into the auger.

The reel speed is factory set at 66 rpm.

With a pulley position exchange, other reel speeds are possible. (See chart.) A slower reel speed will reduce excessive crop carry-over, while a faster reel speed will result in a more even stubble height in down and tangled crops.

To change reel speed:

a. Slacken belt at tension adjuster (C) and remove belt.

b. Remove three flange locknuts at position (A).

c. Remove three bolts and lockwashers at position (B).

d. Position pulleys to achieve desired reel speed, (see chart). Replace hardware.

NOTE: For 60 rpm reel speed it will be necessary to purchase an additional 10 1/2 inch O.D. pulley from your Dealer.

e. Replace reel drive belt and tighten. Check reel drive chain tension. See Maintenance/Service section for recommended belt and chain tension.

9 ½” OD Pulley Position	10 ½” OD Pulley Position	Reel Speed
B | A | 53 rpm
A | B | 66 rpm
none | A & B | 60 rpm

REEL SPEED CHART
(for positions (A) & (B) see photo below)

REEL POSITION

Reel position has been found to be a critical factor in achieving good results in adverse conditions. The reel position is factory set for average straight standing crop. It can be adjusted both vertically and horizontally (fore-aft) for different crop conditions. See the chart below for recommended reel position in unusual crop conditions. (Continued next page.)

<table>
<thead>
<tr>
<th>Unusual Crop Condition</th>
<th>Reel Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop down or lodged</td>
<td>Forward & down (also increase reel speed)</td>
</tr>
<tr>
<td>Wet or dead material collects on cutterbar, plugging sickle.</td>
<td>Back & down (close to guards)</td>
</tr>
<tr>
<td>Short crop.</td>
<td>Back</td>
</tr>
<tr>
<td>Thick stemmed or heavy standing crop.</td>
<td>Up and forward</td>
</tr>
</tbody>
</table>

REEL POSITION CHART

CHANGING REEL SPEED
53 rpm CONFIGURATION SHOWN
REEL POSITION (continued)

NOTE: The reel must be adjusted equally on both sides, both horizontally and vertically.

To adjust reel horizontal (fore-aft) position:

a. Loosen nuts (A) and (B). Back off nut (C) until reel drive chain and belt are loose.
b. Loosen nuts (D), three on left side, four on right side.
c. Loosen jam nut on bolt (E), both sides, and turn adjuster nuts to move reel fore or aft to desired position. Tighten jam nut.
d. Tighten nuts (D), then tighten chain and belt to recommended tension. See Maintenance/Service section.

To adjust reel vertical position:

a. Loosen nuts (A) and (B). Back off nut (C) until reel drive chain and belt are loose.
b. Loosen nuts (D), three on left side, four on right side.
c. Loosen nuts (F) (left side only), and use push bolts (G), two per side, to move reel up or down to desired position. Tighten nuts (F).
d. Tighten nuts (D), then tighten chain and belt to recommended tension. See Maintenance/Service section.

To adjust tine aggressiveness:

a. At right side of reel (cam end) only, loosen four nuts (C).
b. Use push bolts (F) to rotate cam to desired position. Viewed from right side, rotate cam clockwise to obtain more aggressive tine action.
c. Tighten nuts (C), then check that chain and/or belt have not become too tight. Adjust to recommended tension if required. See Maintenance/Service section.

After adjusting reel position:

a. Check that the reel rotates freely. Tines must not contact auger, guards or ground.
b. Check that the reel is adjusted to the same position on both sides. Reel tube should appear parallel to header beam from both side and front.
c. Check header float and adjust if required. See "Header Flotation" in this section.
CUTTING HEIGHT

Control cutting height with skid plates, not with the hydraulic cylinder. Having the header "ride" on the skid plates allows the float linkage to float header over obstacles and follow ground contours, rather than supporting the header with the cylinder.

NOTE: Lowering the skid plates raises the cutting height. This may be desirable in stony conditions, to reduce damage to cutting components. Also, a longer stubble length helps material dry faster.

To adjust cutting height:

WARNING: To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key and engage lift cylinder stop before going under machine to adjust skid plates or for any reason.

a. Remove pin (A) at each skid plate.

b. Raise or lower skid plate (B) to desired position.

c. Replace pin (A).

After adjusting cutting height:

a. Check that skid plates are adjusted to the same position.

b. Check header float and adjust if required. See "Header Flotation" in this section.

NOTE: Left and right skid plates are standard equipment. An additional two inner skid plates may be added if required.

WARNING: Stones or other foreign objects carried into the conditioner rolls can be ejected with force in ANY direction. Keep everyone several hundred feet away from your operation and be sure you are adequately protected. See "General Safety" in Safety section for recommended protective wear.
CUTTERBAR ANGLE

Cutterbar angle can be varied from 6° to 11.5° below horizontal. Choose an angle that maximises performance for your crop and field conditions. A flatter guard angle provides better clearance in stony conditions while a steeper guard angle is required in down crops for better lifting action.

To adjust cutterbar angle:

a. Loosen nut (A).

b. To decrease (flatten) cutterbar angle, turn nut (B) clockwise.

c. To increase (steepen) cutterbar angle, turn nut (B) counter-clockwise.

d. Tighten nut (A) to 160 ft.lbs. (210 N.m)

After adjusting cutterbar angle:

a. Check cutting height and adjust if required. See "Cutting Height" in this section.

b. Check header float and adjust if required. See "Header Flotation" in this section.
HEADER FLOTATION

Header flotation springs are normally set so 70 lbs. force (311 N) is required to lift either end of the header just off the ground.

In rough or stony conditions, it may be desirable to change setting to 35-50 lbs. (156-222 N) to protect cutting components.

NOTE: When float setting is light, it may be necessary to use a slower ground speed to avoid excessive bouncing and leaving a ragged cut.

To increase header flotation, which decreases the force required to lift header:

a. Raise header fully.

b. Back jam nut (A) away from spring.

c. Turn adjuster bolt (B) further into spring to increase flotation.

d. Tighten jam nut (A) against spring insert (C) to secure the setting.

e. Lower header and check header flotation at each end.

IMPORTANT: Float setting (or lifting force) must be equal on both springs. Weight difference between left and right ends requires different spring lengths to achieve equal float at both ends. Note that other operating variable adjustments may affect float setting. Check the float and readjust if necessary after adjusting reel position, cutting height, or cutterbar angle. Also, if using a tractor with drawbar height different than 16 inches (406 mm) flotation will be affected. Adjust as required.
OPERATION

ROLL GAP

WARNING: To avoid bodily injury or death from unexpected start-up or fall of raised machine; stop engine, remove key and engage lift cylinder stop before going under machine to examine rolls or for any other reason.

Steel rolls "condition" the crop by crimping the stem in several places. This allows moisture release for quicker drying. The degree to which the crop is conditioned as it passes through the rolls is controlled by roll gap (A), measured from bar to roll tube. The gap is factory set at 3/8 inch (10 mm) for normal operation.

Correct conditioning of alfalfa, clover and other legumes is usually indicated when 90% of the stems show cracking, but no more than 5% of the leaves are damaged. Use only enough roll gap to achieve this result.

A slightly larger gap (up to 7/8 inch [22 mm]) may be desirable in thick stemmed cane-type crops; however, too large a gap will cause feeding problems.

Grass type crops may require less gap for proper feeding.

To adjust roll gap:

a. Raise header fully.

b. Loosen jam nut (B), both sides.

c. To increase roll gap, turn nut (C) clockwise.

d. To decrease roll gap, turn nut (C) counterclockwise.

e. Tighten jam nut (B), both sides.

f. Lower header and inspect roll gap along the length of the rolls.

IMPORTANT: Gap settings must be equal at both ends of roll.

NOTE: Roll tension (the force holding the rolls together) is factory set and non-adjustable.
OPERATION

FORMING SHIELDS

WARNING: Keep hands and feet away from discharge opening. Keep everyone several hundred feet away from your operation. Never direct the discharge toward anyone. Stones or other foreign objects can be ejected with force.

The position of the forming shields controls the width and placement of the windrow. The decision on forming shield position (infinite settings between 30 and 92 inches [760 - 2346 mm]) should be based on the following factors:

- weather conditions (rain, sun, humidity, wind)
- type and yield of crop
- drying time available
- method of processing (bales, silage, "green-feed")

A wide windrow will generally dry faster and more evenly, resulting in less protein loss. Fast drying is especially important in areas where the weather allows only a few days to cut and bale. See "Haying Tips" in this section for more information.

Where weather conditions permit or when drying is not critical, for example, when cutting for silage or "green-feed", a narrower windrow may be preferred for ease of pick-up.

To adjust windrow width and placement:

IMPORTANT:
Position L/H and R/H forming shields (B) so they are the same distance from centerline of tongue pivot. Measure at rear of deflector. (Decal (E) on top forming shield provides base line for measurement). Adjust to desired width.

NOTE: If forming shields (B) are too loose, or too difficult to move, adjust torque of lower nut (A) to 100 ft.lbs. (135 N·m). Then, holding nut (A) with a wrench, tighten top nut (D) securely against nut (A).

Rear Deflector
The rear deflector (C) slows the crop exiting the conditioner rolls, directs the flow downward, and "fluffs" the material.

The rear deflector can be adjusted down for more crop control in light material, and up for clearance in heavier crops.

To adjust rear deflector, pull up or push down one side of deflector (C), then repeat at the other side. There is no hardware to be loosened.

NOTE: For even windrow formation, be sure the deflector is not twisted.
OPERATION

HAYING TIPS

There is one certainty when making hay - a quick cure will maintain top quality. It is critical to have the cured hay baled as quickly as possible, for two reasons:

1. Every day hay lies on the ground, 5% of the protein is lost.
2. The sooner the cut hay is off, the earlier the start for next growth.

Generally, leaving the windrow as wide and thin as possible makes for the quickest curing, however there are other factors which affect curing time:

1. TOPSOIL MOISTURE

When the ground is wetter than the hay, moisture from the soil is absorbed by the hay above it. Determine topsoil moisture level before cutting. Use a moisture tester or estimate level:

Over 45% - WET - Soil will be muddy
25 - 45% - DAMP - Walking on soil leaves tracks
Under 25% - DRY - Soil will be dusty on top

When ground is wet due to irrigation, wait until soil moisture drops below 45%. When ground is wet due to frequent rains, cut when weather allows and let the forage lie on wet ground until it dries to the moisture level of the ground. At this point, the cut hay will dry no more until the ground under it dries, so consider moving the windrow to drier ground.

On wet soil, the general rule of "wide and thin" does not apply. A narrower windrow will dry faster than hay left flat on wet ground.

2. CLIMATE AND TOPOGRAPHY

a. Try to have as much hay cut as possible by midday, when drying conditions are best.

b. Fields sloping south get up to 100% more exposure to the sun's heat than do north sloping fields. If you bale and chop, consider baling the south facing fields and chopping those facing north.

c. When relative humidity is high, the evaporation rate is low and hay dries slower. If there is no wind, saturated air becomes trapped around the windrow, further hindering the drying process. Raking or tedding will expose the hay to fresher, less saturated air. Cutting hay perpendicular to the direction of the prevailing winds may also help.
OPERATION

HAYING TIPS (continued)

3. WINDROW CHARACTERISTICS

See “Operating Variables” in this section. Control the factors listed to produce a windrow with the following characteristics:

a. High and fluffy for good air flow. The movement of air through the windrow is more important to the curing process than direct sunlight.

b. Consistent formation, not bunchy. A uniform windrow permits an even flow of material into the baler, chopper etc.

c. Even distribution, not piled in the middle or higher on one side. A windrow that is higher or heavier on one side could cause stacks to lean, round bales to have one end smaller and loose, or small square bales to be heavy on one side, causing handling and stacking problems.

d. Properly conditioned without excessive leaf damage.

4. RUNNING TRACTOR ON PREVIOUSLY CUT WINDROW:

This can lengthen drying time by a full day in hay that will not be raked. If practical, set forming shields for a narrower windrow that can be straddled. However, in high-yielding alfalfa, driving on the hay may be unavoidable if a full width windrow is necessary.

5. RAKING AND TEDDING

Raking or tedding will speed up drying, however the benefits must be weighted against the additional leaf losses which will result. When the ground beneath the down hay is dry, raking or tedding is probably not worthwhile.

Big windrows on damp or wet ground should be turned over when they reach 40-50% moisture. Hay should not be raked or tedded at less than 25% moisture, or excessive yield losses will result.

6. CHEMICAL DRYING AGENTS

Hay drying agents work by removing wax from legume surfaces, enabling water to escape and evaporate faster. However, treated hay lying on wet ground will also absorb ground moisture faster.

Before deciding to use a drying agent, costs and benefits relative to your area should be carefully compared.
OPERATION

UNPLUGGING THE WINDROWER

WARNING: Stop tractor engine and remove key before removing plugged material from windrower. A child or even a pet could engage the drive.

If the sickle plugs:
1. Stop forward movement of the tractor and stop the PTO.
2. Lift the cutterbar about 12 inches (300 mm).
3. Back up about 3 feet (1 metre) while slowly engaging the PTO.
4. If the plug does not clear; raise machine, shut off engine, remove key and lock tractor brakes.
5. Engage lift cylinder stop.

WARNING: Wear heavy gloves when working around sickle.

6. Clean off cutterbar by hand.

If sickle plugging persists, see Trouble Shooting section.

If the rolls plug:
1. Stop forward movement of the tractor and stop the PTO.
2. Raise the machine and slowly engage the PTO.

NOTE: Raising the windrower automatically reduces roll tension, to ease plug removal.

3. If plug does not clear: with machine still raised, shut off engine, remove key and lock tractor brakes.
4. Engage lift cylinder stop.

WARNING: Wear heavy gloves when working around sickle.

5. Clean off cutterbar and area under reel by hand.

6. Use wrench on left-hand end of primary drive shaft (A) to turn rolls forward until plug clears.

NOTE: Store wrench in toolbox (B) at right end of main frame, secured with hairpin (C) as shown.

If roll plugging persists, see Trouble Shooting section.
OPERATION

SHUT-DOWN PROCEDURE

CAUTION: Before leaving the tractor seat for any reason:

1. Park on level ground if possible.
2. Lower the windrower fully.
3. Place all controls in NEUTRAL or PARK.
4. Disengage PTO.
5. Engage the park brake.
6. Stop engine and remove key from ignition.
7. Wait for all movement to stop.
8. Lock tractor anti-vandalism covers and closures when leaving the machine unattended.

TRANSPORTING THE WINDROVER: TOWING

WARNING: To avoid injury or death from loss of control, engage transport lock pin before transporting machine. Use correct transport procedure as detailed:

1. The hitch steering cylinder and hoses must be full of oil before towing the windrower. If not previously done, fill steering circuit as follows:
 - Connect the two hitch steering cylinder hoses to a tractor hydraulic circuit.
 - Steer the header completely to the left, then right. Repeat three or four times.

2. Place transport latch rod in transport position (A) and engage rod retainer (C).

3. Slowly shift hitch into transport position so the machine is centered directly behind the tractor. See “Steering” in this section. Hitch will lock when it reaches center position. Oscillate the header left and right a small amount to ensure transport lock pin (B) is properly engaged in the plate on carrier frame.

 WARNING: The transport lock pin locks the machine to tow directly behind the tractor and prevents inadvertent movement to either side due to accidental operation of the remote hydraulic control levers or to a malfunctioning hydraulic system.

4. Raise the windrower fully and engage lift cylinder stop. See “Lift Cylinder Stop”.

5. Do not tow with a vehicle weighing less than 5000 lbs. (2300 kg).

6. Be sure hitch chain is properly attached to towing vehicle. Provide only enough slack in chain to permit turning. See “Attaching Windrower to Tractor” in this section.

7. Be sure jack is properly attached in storage position on windrower hitch.

8. Check local laws for width regulations and lighting or marking requirements before transporting on roads.

10. Be aware of roadside obstructions, oncoming traffic and bridges.

11. Travel speed should be such that complete control and machine stability are maintained at all times. Do not exceed 20 mph (30 km/h). Reduce speed for corners and slippery conditions.

12. When transporting on roads, use tractor lights and windrower flashing amber and red taillights to provide adequate warning to operators of other vehicles.

13. Do not transport the windrower on a road or highway at night, or in conditions, which reduce visibility, such as fog or rain.
TRANSPORTING THE WINDROWER: FLATBED

CAUTION: Use the following procedure when shipping the windrower on a flatbed trailer.

1. Raise header with tractor hydraulics and install lift cylinder stops.

2. Position lean bar to hang vertically downward. Install only one bolt per side. (Remove divider rods, if equipped.)

3. Remove complete rear forming shield group, in whole.

4. At tongue pivot, back off two 5/8 nuts (B) approximately 3/4 inch (20 mm). This clears the stop to allow pivoting the tongue past the normal travel range.

 NOTE: If tongue does not raise up as nuts (B) are loosened, lift rear of tongue with forklift to clear stops.

5. Swing tongue to the right until no part of tongue extends forward of header R/H end panel (that is, the tongue must not widen the shipping package).

 CAUTION: Be sure forklifts are large enough to lift the windrower safely. See Specifications section for weight of the unit.

6. Position two forklifts as shown, lift windrower and back the flatbed trailer under the unit.

 IMPORTANT: To allow windrower to rest securely on header panels, hitch end of tongue must extend over rear of flatbed by approximately 2 feet (0.6 m).

7. Lower windrower onto flatbed so its weight rests on the tires and sloped edge (C) of header end panels.

8. Block wheels and tie the unit down securely.
OPERATION

STORAGE PROCEDURE

Do the following at the end of each operating season:

CAUTION:

1. Clean the windrower thoroughly. Never use gasoline, naphtha or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

2. Cover cutterbar and sickle guards to prevent injury from accidental contact.

Also:

3. Store in a dry, protected place if possible. If stored outside, always cover windrower with a waterproof canvas or other protective material.

4. Raise header and engage lift cylinder stops.

5. If possible, block up the windrower to take weight off tires.

6. Repaint all worn or chipped painted surfaces to prevent rust.

7. Loosen drive belts.

8. Lubricate the windrower thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads, cylinder rods and sliding surfaces of components. Oil sickle components to prevent rust.

9. Check for worn components and repair.

10. Check for broken components and order replacement from your dealer. Attention to these items right away will save time and effort at beginning of next season.

11. Replace or tighten any missing or loose hardware. See Specifications section for torque charts.

12. Remove divider rods (if equipped) to reduce space required for inside storage.

MAINTENANCE/SERVICE

SERVICE PROCEDURES

CAUTION: To avoid personal injury, before servicing windrower or opening drive covers:

1. Fully lower the windrower. If necessary to service in the raised position, always engage lift cylinder stops.

2. Disengage PTO.

3. Stop engine and remove key.

4. Engage park brake.

5. Wait for all moving parts to stop.

Park on level surface when possible. Block wheels securely if windrower is parked on an incline. Follow all recommendations in your Tractor Operator’s Manual.

Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.

Wear protective shoes with slip-resistant soles, a hard hat, protective glasses or goggles and heavy gloves.

Be prepared if an accident should occur. Know where the first aid kit and fire extinguishers are located and how to use them.

Keep the service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.

Use adequate light for the job at hand.

Replace all shields removed or opened for service.

Use only service and repair parts made or approved by the equipment manufacturer. Substituted parts may not meet strength, design or safety requirements.

Keep the machine clean. Never use gasoline, naphtha or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
RECOMMENDED FLUIDS AND LUBRICANTS

GREASE
Use an SAE Multi-Purpose High Temperature Grease with Extreme Pressure (EP) Performance and containing at least 1.5% molybdenum disulphide. (NLGI Grade 2)

Also acceptable is an SAE Multi-Purpose Lithium Base Grease.

HYDRAULIC OIL
Use single grade trans-hydraulic oil. To prevent machine damage, do not use engine oil.

The following oil company and equipment manufacturer brand names are recommended:
- Petro Canada Duratran
- Case IH Hy-Tran Plus®
- John Deere Quatrol® J20C
- Agco Power Fluid 821XL

The following oil company and equipment manufacturer brand names are acceptable:
- New Holland Hydraul
- Esso/Exxon Hydraul 56
- Shell Donax TD

WOBBLE BOX LUBRICANT
In sickle drive wobble box, use SAE 85W-140 gear lubricant (API Service Classification GL-5)

ROLL DRIVE CHAIN CASE
See “Grease”, above.

CAPACITIES
- Wobble Box (Sickle Drive) - 2.2 litres (2.3 U.S. quarts)
- Roll Drive Chain Case - 2000 grams (5 tubes)
- Hydraulic Reservoir -
 - 12 ft. windrower: 93 litres (25 U.S. gallons)
 - 14 ft. windrower: 104 litres (27 U.S. gallons)
 - 16 ft. windrower: 126 litres (33 U.S. gallons)

STORING LUBRICANTS
Your machine can operate at top efficiency only if clean lubricants are used. Use clean containers to handle all lubricants. Store them in an area protected from dust, moisture, and other contaminants.

SEALED BEARING INSTALLATION
1. Clean shaft and coat with rust preventative.
2. Install flangette, bearing, second flangette and lock collar.
 NOTE: The locking cam is only on one side of the bearing.
3. Install (but do not tighten) the flangette bolts.
4. When the shaft is correctly located, lock the lock collar with a punch. The collar should be locked in the same direction the shaft rotates. Tighten the set screw in the collar.
5. Tighten the flangette bolts.
6. Loosen the flangette bolts on the mating bearing one turn and re-tighten. This will allow the bearing to line up.
MAINTENANCE/SERVICE

DRIVE SHIELDS

The left and right side drive shields, in the open position, rest in a hinge "pocket" to prevent them from falling. To close drive shields, lift up on shield to clear hinge pocket at (F), then lower shield and secure with rubber latch.

GREASING THE WINDROWER

See "Recommended Lubricants" in this section for recommended greases.

The following greasing points are marked on the machine by decals showing a grease gun (A), and grease interval (B) in hours of operation. Log your hours of operation and use the "Maintenance Checklist" provided to keep a record of scheduled maintenance.

Procedure:
1. Wipe grease fitting with a clean cloth before greasing, to avoid injecting dirt and grit.
2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted.
3. Leave excess grease on fitting to keep out dirt.
4. Replace any loose or broken fittings immediately.
5. If fitting will not take grease, remove and clean thoroughly. Also clean lubricant passageway. Replace fitting if necessary.

10 Hours or Daily

1. Upper Roll Universal Shaft (C) - three fittings
2. Lower Roll Universal Shaft (D) - three fittings

25 Hours

1. Sickle Head (E) - one fitting

IMPORTANT: To prevent binding and/or excessive wear caused by sickle pressing on guards, do not over grease.
MAINTENANCE/SERVICE

GREASING THE WINDROWER (continued)

50 Hours:

1. Main Drive Shaft Bearings (A) & (B) - two fittings

2. Reel Shaft Bearings (C) & (D) - two fittings

3. Auger Shaft Bearings (E) & (F) - two fittings

4. Roll Shaft Bearings (G) & (H) - four fittings
MAINTENANCE/SERVICE

GREASING THE WINDROWER

50 Hours: (continued)

5. Frame-to-Header Pivot (J) - two fittings

6. Lower Float Link Bushings (K) - two fittings

7. Tongue Pivot (L) - one fitting

8. Transport Lock Pin (M) - one fitting

9. Auger Drive Jackshaft Bearings (N)
 - one fitting (on sprocket hub)
MAINTENANCE/SERVICE

GREASING THE WINDROWER (continued)

100 Hours:
1. Wheel Hub Bearings (D) - two fittings

CENTER LINK BALL JOINTS
Applying SAE 30 or equivalent lightweight oil to the center link ball joints (A) every 50 hours.

HITCH PIN LOCK NUT
Check hitch pin nut (C) every 50 hours. Maintain 350 ft. lbs. (475 N\cdot m) torque.

SPRING PIVOTS
Applying SAE 30 or equivalent lightweight oil to the spring pivots (B) every 50 hours.
HYDRAULICS

The windrower is hydraulically powered using:
1. A self-contained hydraulic system to operate the header functions.
2. The tractor remote system to operate the header lift cylinder and steering cylinder.

Hydraulic Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

WARNING: Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines. Tighten all connections before applying pressure. Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure. Use a piece of cardboard or paper to search for leaks. If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

IMPORTANT: Keep hydraulic coupler tips and connectors clean. Dust, dirt, water and foreign material are the major causes of hydraulic system damage. DO NOT attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.

Hydraulic Reservoir

The windrower's self-contained hydraulic system uses the tongue of the machine for the hydraulic oil reservoir.

Check oil level daily (before start-up) at dipstick (A) at rear of tongue. Oil level should be between high and low marks on the dipstick when top surface (D) of tongue is level and oil is cold.

WARNING: To avoid injury from contact with hot oil, do not remove dipstick when system is hot. When removing dipstick (A), unscrew it slowly to vent the build-up of air pressure in the reservoir.

To add hydraulic oil:
1. Loosen hydraulic fitting (C) to make adding oil easier.
2. Slowly unscrew dipstick from filler tube (B).
3. Add oil until level is between high and low marks on dipstick (A). (See page 40 for oil specs).
4. Replace dipstick and tighten fitting (C).
HYDRAULICS: Hydraulic Reservoir (continued)

Change hydraulic oil every 600 hours or 3 years.

To drain the reservoir:
1. Loosen hydraulic fitting and remove filler plug as described under “To add hydraulic oil”, previous page.
2. Disconnect the pump supply hose (A) from the pump.

NOTE: A drain pan with a capacity of 130 litres (35 U.S. gallons) will be required.

Hydraulic Oil Filter

Change hydraulic oil filter (B) after the first 100 hours operation and every 250 hours thereafter.

To change:
1. Clean around the filter head.
2. Remove the filter and clean the gasket surface of the filter head.
3. Apply a thin film of clean oil to the gasket on the new filter.
4. Install new filter. Turn the filter onto the mount until the gasket contacts the filter head. Tighten the filter an additional 1/2 to 3/4 turn by hand.

IMPORTANT: Do not use a filter wrench to install the filter. Over-tightening can damage gasket and filter.

Hydraulic Relief Pressure

A possible cause of poor cutting performance and/or excessive heating of hydraulic oil is low relief pressure. To check relief pressure, install pressure gauge at tapped elbow (C). Pressure should be 4000 psi (27.6 MPa) with tractor engine at operating speed and PTO engaged. If relief pressure is low, replace relief valve cartridge (D).

ELECTRICAL

Use electrical tape and wire clips as required to prevent wires from dragging or rubbing.

Keep lights clean and replace burnt bulbs.

To replace light bulbs:
1. Using a phillips screwdriver, remove screws (B) from fixture, freeing amber cover.
2. Replace bulb, plastic lens, and reinstall screws.

NOTE: Bulb trade #1156.

Wiring Harness:

- White - ground
- Brown - red tail light
- Yellow - L/H amber
- Green - R/H amber

REPLACING LIGHT BULBS

DRAIN RESERVOIR AT PUMP SUPPLY HOSE

OIL FILTER & RELIEF VALVE

(SMV SIGN REMOVED FOR PHOTOGRAPHIC PURPOSES ONLY)
SICKLE AND SICKLE DRIVE

WARNING: Keep hands clear of the area between guards and sickle at all times.

CAUTION: Wear heavy gloves when working around or handling sickles.

Sickle Lubrication

Apply SAE 10 or equivalent light weight oil daily (one or two drops per section) along entire length of sickle.

NOTE: Do not oil sickle if operating in sandy conditions. Oil will cause sand to adhere to sickle components, resulting in excessive wear.

Sickle Sections

Check daily that sections are firmly bolted to the sickle back and are not worn or broken. Replace as required.

To replace sickle section:

1. A worn or broken sickle section (C) can be replaced without removing sickle from cutterbar.
2. Remove lock nuts and lift section off of bolts.
 IMPORTANT: Do not mix heavy and light sickle sections on same sickle.
3. Clean any dirt off of sickle back and position new sickle section on bolts. Secure with lock-nuts.

To Remove Sickle

WARNING: Always stand to rear of sickle during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling sickle.

1. Clean area around sickle head. Stroke sickle to its outer limit and remove bolt (A).
2. Insert screwdriver in slot (B) and pry up on sickle head pin to free sickle.
3. Pull sickle out.
4. Cover sickle head to shield bearing from dirt.
SICKLE AND SICKLE DRIVE (continued)

Sickle Head Needle Bearing Installation

Using a flat-ended tool (A) with approximately the same diameter as the bearing, push the bearing into the sickle head until the top of the bearing is flush with the step (B) in sickle head.

IMPORTANT: Assemble the bearing with the stamped end (the end with identification markings) against the tool.

Install seal (C) in top of sickle head with lip facing outwards.

IMPORTANT: To avoid premature sickle head or wobble box failure, be sure there is no looseness in:
 a) Fit of sickle head pin and needle bearing.
 b) Fit of sickle head pin and pitman arm.

To Install Sickle

WARNING: Always stand to rear and grasp rear edge of sickle during installation to reduce risk of injury from cutting edges. Wear heavy gloves when handling sickle.

IMPORTANT: Always align guards and re-set sickle hold-downs while replacing sickle.

1. Slide sickle into place and replace bolt (D).

 NOTE: Bottom of groove in sickle head pin must be flush with top face (E) of pitman arm.

2. Tighten bolt (D) to 160 ft.lbs. (220 N.m)
MAINTENANCE/SERVICE

SICKLE AND SICKLE DRIVE (continued)

Guards

Check daily that guards are aligned to obtain proper shear cut between sickle section and guard. Sickle sections should contact shear surface of each guard.

Align guards with guard straightening tool provided as shown:

To bend guard tips up, position tool as shown at (A) and pull up.

To bend tips down, position tool as at (B) and push down.

NOTE: Tool is stored in toolbox at right end of main frame.

TIP: If trouble is encountered cutting tangled, but easy to cut material (canola, peas, grain) replace guards with stub guards and install a sickle hold-down on every guard. If material is tough to cut, install stub guards with top guard and adjuster plate. A stub guard conversion kit for the 5010 Windrower is available from your dealer.

Excessive Breakage

Excessive breakage of sickle sections and guards can be controlled by several factors. See "Cutting Height", "Cutterbar Angle" and "Header Flotation" in Operation section for recommendations.

Sickle Hold-Downs

Check daily that sickle hold-downs are set to prevent sickle sections from lifting off guards but still permit sickle to slide without binding. Set hold-downs after guards are aligned.

To set hold-downs:
1. Use the unplug wrench (A) with the flattened end against the front edge of hold down. Strike wrench with a hammer. This allows adjustment of hold-down arch (B) without "pinching" sickle. Clearance from hold-down to sickle section should be .020 inch (0.5 mm).

2. After adjusting all hold-downs, run header at a low engine speed and listen for noise due to insufficient clearance. Re-adjust as necessary by placing a .020 inch (0.5 mm) shim between hold-down and section, then striking the hold-down arch (B) with a hammer.
SICKLE AND SICKLE DRIVE (continued)

Sickle Drive Belt Tension

IMPORTANT: To prolong belt and drive life, do not over-tighten belt.

To adjust:

1. Loosen nut (A) securing idler pulley.
2. Using a punch or screwdriver in pry holes (B), raise idler until a force of 12 lbs. (55 N) deflects belt 1/2 inch (13 mm) at mid-span.
3. Tighten nut (A).
4. Re-adjust tension of a new belt after a short run-in period, (about 5 hours).

Sickle Drive Belt Replacement

To remove belt:

1. Loosen chain idler sprocket (C) and remove chain from drive sprocket behind pulley (D).
2. Loosen nuts (E), then loosen and remove auger drive belt.
3. Loosen sickle drive belt idler pulley (A).
4. Remove belt from sickle drive pulley.
5. Remove bolt-in plate in left end sheet at wobble box (F), and route belt through this hole.

When installing new belt, never pry belt over pulley. Be sure idler is fully loosened, then tension belt as above.
SICKLE AND SICKLE DRIVE (continued)

Wobble Box Maintenance

Mounting Bolts - Check four wobble box mounting bolts (B) torque after the first 10 hours operation and every 100 hours thereafter. Torque should be 200 ft.lbs. (270 N·m). When tightening, start with the side mounting bolts.

Lubricant - Check wobble box lubricant level before first operation and every 100 hours thereafter. To check:

1. Raise header to a point where the wobble box base is approximately level.
2. Remove breather/dipstick (A). Oil level must be between end of dipstick and bottom hole (or groove) in dipstick.
3. Add as required. See “Recommended Lubricants” for specified gear lube and capacity of box.
4. Replace breather/dipstick.

Change wobble box lubricant after the first 50 hours operation and every 1000 hours (or 3 years) thereafter.

To drain wobble box, raise header fully and engage header lift cylinder stops. Remove breather/dipstick (A) and drain plug (D).

Assembly/Disassembly

If removing wobble box pulley, a 3-jaw puller is recommended.

When reinstalling drive arm or pulley:

1. Remove any rust or paint from inner spline. For replacement parts, remove oil/grease with degreasing agent.
2. Before assembly, apply Loctite® #243 adhesive (or equivalent) to spline. Apply in two bands (C) as shown, with one band at end of spline and one band approximately mid-way.
MAINTENANCE/SERVICE

REEL AND REEL DRIVE

Reel Drive Chain Lubrication

Lubricate chain daily with a light weight oil (SAE 30). Apply oil to upper edge of lower chain span (A).

Reel Drive Chain Tension

To tighten reel drive chain:

1. Loosen nuts (A) and (D) securing reel drive arm to frame.
2. Push pulley (B) up and back until total chain slack at (C) is 1/2 in. (13 mm). Be sure chain tension is sufficient to remove excess belt play.
3. Tighten nut (A).
4. Adjust reel drive belt tension (see below).

Reel Drive Belt Tension

IMPORTANT: To prolong drive life, do not overtighten belt. Belt slippage is used to protect the reel in an overload situation.

NOTE: Minor belt tension adjustments may be made without affecting chain tension. For major adjustments, like after repositioning reel or auger, adjust chain tension before belt tension.

To adjust reel drive belt tension:

1. Loosen nut (D) on inboard side of right end-frame
2. Turn nut (E), (on top of right end-frame) on adjusting bolt until a force of:
 NEW BELT - 20 lbs. (80 N)
 USED BELT - 12 lbs. (55 N)
 deflects belt 1/4 in. (6 mm) at mid-span (F).
3. Tighten nut (D).
4. Re-adjust tension of a new belt after about 5 hours of operation to used belt specifications.

Reel Tines

Keep reel tines in good condition. Straighten or replace as required.
MAINTENANCE/SERVICE

AUGER AND AUGER DRIVE

Auger Position

The auger position has been factory set and should not normally require adjustment. For nearly all conditions, the auger performs best when set as close as possible to the stripper bars without rubbing. This is especially important in grass and other crops which have a tendency to wrap. Component wear may cause clearances to become excessive, resulting in feeding problems and uneven windrows.

Should adjustment be required:

1. Loosen nut (A), left side, securing auger drive chain idler sprocket. Loosen nuts (F) (G) and (H) on right side until reel drive chain and belt are loose. **NOTE:** Nut (H) is on inboard face of panel.

2. Loosen bolts (B), four per side.

3. To adjust auger fore-aft:
 a. Loosen jam nuts on bolt (C), both sides.
 b. Turn adjuster nuts to move auger fore or aft to desired position.
 c. Tighten jam nuts on bolt (C).

4. To adjust auger vertical position:
 a. Loosen jam nuts (D), two per side.
 b. Turn push bolts (E), two per side, to lower or raise auger.
 c. Tighten jam nuts (D).

NOTE: The auger should clear the stripper bars on the auger pan by approximately 1/16 inch (1.5 mm).

5. Tighten bolts (B) to secure the position.

6. Adjust tension of auger drive chain, reel drive chain, and reel drive belt. Tighten hardware.

7. Adjust stripper bars (see below).
Stripper Bars

To adjust:

1. Position auger for clearance to strippers (A) and (B), as shown.

2. Loosen bolts (H) along upper stripper bar.

3. Slide extension bars (J) in or out to obtain approximately 1/8 inch (3 mm) clearance to auger flighting (K) along entire auger length.

4. Tighten bolts (H).
AUGER AND AUGER DRIVE (continued)

Auger Drive Chain Lubrication

Lubricate chain (A) daily with lightweight oil (SAE 30).

Auger Drive Chain Tension

To tighten auger drive chain:

1. Loosen idler sprocket mounting bolt (K).
2. Using a punch or screwdriver in pry holes (L), move sprocket upward until deflection at (M) is 1/4 inch (6 mm).
3. Tighten bolt (K).

Auger Drive Belt Tension

IMPORTANT: To prolong drive life, do not overtighten belt. Belt slippage is used to protect the auger in an overload situation.

NOTE: Minor belt tension adjustments may be made without affecting chain tension. For major adjustments, like after repositioning reel or auger, adjust chain tension before belt tension.

To adjust auger drive belt tension:

1. Loosen nuts (P) one or two turns.
2. Back off jam nut (R), then turn nut (S) to adjust hook bolt until a force of:
 - NEW BELT - 20 lbs. (80 N)
 - USED BELT - 12 lbs. (55 N)
 deflects belt 1/4 in. (6 mm) at mid-span.
3. Tighten jam nut (R) against nut (S) to secure the position, then tighten nuts (P).
4. Re-adjust tension of a new belt after about 5 hours of operation to used belt specifications.
ROLLS AND ROLL DRIVE

Roll Drive Chain Tension

Check chain tension after the first 10 hours operation and every 100 hours or annually thereafter, as follows:

1. Remove rubber plug at left side of chain case. (See "Roll Drive Chain Case Lubricant" below.)

2. Chain should deflect a maximum 1/4 inch (6 mm) each way.

3. If adjustment is required:
 a. Loosen nut (B).
 b. Loosen two bolts (C).
 c. To tighten chain, rotate cam clockwise, using a 15/16 wrench on welded nut (D). (To loosen chain, rotate cam counterclockwise.)
 d. Tighten nut (B) and bolts (C).

4. Check chain deflection as in step 2, and replace plug (A).

Roll Drive Chain Case Lubricant

Check chain lubrication after the first 10 hours operation and every 100 hours or annually thereafter, as follows:

1. Remove rubber plug (A) from chain case.

2. Chain should be coated with grease.

3. If required, add one complete tube (400 g) of SAE Multi-Purpose (EP) Lithium Base Grease (NLGI Grade 2) to the chain case. Case capacity is 2000 grams (5 tubes).

4. Replace plug (A).
ROLLS AND ROLL DRIVE (continued)

Roll Timing

For proper conditioning, the rolls must be timed with each steel bar on one roll centered between two bars of the other roll as shown.

WARNING: To avoid bodily injury or death from unexpected start-up or fall of raised machine; stop engine, remove key and engage lift cylinder stops before going under machine to examine roll timing, or for any reason.

Examine roll timing along the length of the rolls and adjust to desired position as follows:

1. Adjust roll drive chain tension (previous page).
2. Loosen two bolts (A) in slots of yoke plate on either upper or lower roll universal shaft.
3. Remove bolt (B) from one of the series of holes in yoke plate.
4. Turn rolls to achieve best timing.
5. When roll timing is satisfactory, align any of the holes in yoke plate with a hole in mating plate at drive case and install and tighten bolt (B). Tighten bolts (A) to secure the position.

NOTE: This adjustment should be made in conjunction with the "Roll Gap" adjustment, detailed in Operation section.
ROLLS AND ROLL DRIVE (continued)

Roll Drive Chain Removal

1. Raise header. Stop engine, remove key and engage lift cylinder stops.

2. Remove bolts securing upper cover (A) to chain case. Loosen clamp bolt (B) and slide the cover down the drive shaft shield.

3. Remove bolts securing lower cover (C) and remove cover.

4. Loosen two bolts (D) and nut (L) at chain tensioner.

5. Rotate tensioner cam counter-clockwise, using a 15/16 wrench on welded nut (E).

6. Remove the chain tensioner sprocket from inside chain case.
 NOTE: Be careful not to lose the three washers between the sprocket and inner cam disc.

7. Rotate upper or lower roll universal joint to position chain connector link (F) as shown.

8. Remove connector link (F).

9. Turn lower roll u-joint to rotate lower sprocket (G) counter-clockwise until chain is free of the lower sprocket.

10. Lift excess chain up and bring it out of the chain case through the upper cover hole.

11. Turn sickle drive pulley at left end of header to rotate driver sprocket (H) clockwise until chain is free of driver sprocket.
MAINTENANCE/SERVICE

ROLLS AND ROLL DRIVE (continued)

Roll Drive Chain Installation

IMPORTANT: To ensure proper chain quality, service with Genuine MacDon Part only.

1. Feed the chain into chain case.

2. Lift chain up to driver sprocket (H) and engage on first few teeth.

3. Turn sickle drive pulley at left end of header to rotate driver sprocket counter-clockwise until chain engages upper roll sprocket (J) as shown.

4. Turn upper roll u-joint to rotate upper sprocket (J) clockwise until chain engages lower roll sprocket (G) as shown.

5. Turn the lower roll u-joint to rotate lower sprocket (G) counter-clockwise while holding the first link of the chain against sprocket (G). Continue turning until chain is engaged sufficiently to install connector link.

6. Install connector link (F) and install the chain tensioner sprocket (K).

7. Tension chain as described on page 56, "Roll Drive Chain Tension".

8. Scrape old silicone off of chain case and covers, and clean these surfaces with solvent.

9. Apply new silicone to mating surfaces of chain case, upper and lower covers, and drive shaft shield.

10. Bolt covers to chain case and tighten bolt which clamps upper cover to drive shaft shield.

11. Replace chain case grease to capacity shown on page 56, "Roll Drive Chain Case Lubricant".
WHEELS AND TIRES

Wheel Bolts
Check and tighten wheel bolts after the first 1 hour operation and every 100 hours thereafter.

Whenever a wheel is removed and re-installed, check torque after one hour of operation. Maintain 120 ft. lbs. (160 N.m) torque.

Follow proper bolt tightening sequence shown. Be sure valve stem (A) points away from wheel support.

CAUTION: When installing wheel be sure to use the holes that are countersunk to match bolt head profile. The second set of “straight-through” holes do not seat the bolts correctly.

Wheel Removal - 12 & 14 ft. windrower
To remove either wheel on 12 foot windrower, or left wheel on 14 foot windrower:
1. Raise header fully and engage lift cylinder stops.
2. Jack side of unit to raise tire just off the ground.
3. Remove spindle retaining bolt (A) and slide spindle outboard until clearance to vertical float spring is adequate for wheel removal.
4. Remove wheel bolts and wheel.
5. When replacing wheel, torque nut on bolt (A) to 80 ft.lbs. (110 N.m).

Tire Inflation
Check tire pressure daily. Maintain pressures recommended in Specifications section.

WARNING: Service tires safely. A tire can explode during inflation and cause serious injury or death. Do not stand over tire. Use a clip-on chuck and extension hose. Never increase air pressure beyond 35 psi (241 kPa) to seat the bead on the rim. Replace the tire if it has a defect. Replace a wheel rim, which has cracks, wear or severe rust. Never weld a wheel rim. Make sure all the air is removed from a tire before removing the tire from a rim. Never use force on an inflated or partially inflated tire. Make sure the tire is correctly seated before inflating to operating pressure.

Do not remove, install or make repairs to a tire on a rim unless you have the proper equipment and experience to perform the job. Take the tire and rim to a qualified tire repair shop. If the tire is not in correct position on the rim, or is too full of air, the tire bead can loosen on one side, causing air to leak at high speed and with great force. An air leak of this nature can thrust the tire in any direction, endangering anyone in the area.
MAINTENANCE/SERVICE

MAINTENANCE SCHEDULE The following maintenance schedule is a listing of periodic maintenance procedures, organized by service intervals. For detailed instructions, see the specific headings in Maintenance/Service section. Use "Recommended Fluids and Lubricants" as specified under that heading.

Service Intervals The recommended service intervals are in hours of operation.

IMPORTANT: Recommended intervals are for average conditions. Service the machine more often if operated under adverse conditions (severe dust, extra heavy loads, etc.).

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following this schedule will increase machine life. Where a service interval is given in more than one time frame, eg. "100 hours or Annually", service the machine at whichever interval is reached first. CAUTION: Carefully follow safety messages given under "Service Procedures".

AT FIRST USE: See "Preparing the Windrower" and "Break-In Period" in Operation section.

10 HOURS OR DAILY

1. Grease roll universal shafts.
2. Check hydraulic oil level.
3. Check hydraulic hoses and lines for leaks.
4. Oil sickle (except in sandy conditions).
5. Check sickle sections, guards, & hold-downs.
6. Oil reel drive chain.
7. Oil auger drive chain.
8. Check tire pressure.

25 HOURS

1. Grease sickle head.

50 HOURS

1. Grease tongue pivot and transport lock pin.
2. Grease main drive shaft bearing.
3. Grease reel shaft bearings.
4. Grease auger shaft bearings.
5. Grease roll shaft bearings.
7. Grease lower float link bushings.
8. Grease auger drive jackshaft bearings.
9. Oil center link ball joints.
10. Oil spring pivots.
11. Check hitch pin lock nut torque.

100 HOURS OR ANNUALLY *

1. Check roll drive chain tension.
2. Check roll drive chain case lubricant level.
3. Check wobble box mounting bolt torques.
4. Check wobble box lubricant level.
5. Check wheel bolt torques.

* It is recommended that Annual Maintenance be done prior to start of operating season.

END OF SEASON: See "Storage Procedure" in Operation section.

250 HOURS

1. Change hydraulic oil filter.

600 HOURS or 3 YEARS

1. Change hydraulic oil.

1000 HOURS or 3 YEARS

1. Change wobble box lubricant.
Maintenance Record

<table>
<thead>
<tr>
<th>Action</th>
<th>Action 4 - Check</th>
<th>Action λ - Lubricate</th>
<th>Action σ - Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour Meter Reading:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviced By:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break-In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See “Preparing the Windrower” and “Break-In Period” (Pages 15 & 18) for checklist.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 Hours or Daily

- **λ** Roll Universal Shafts
- **λ** Hydraulic Oil Level
- **λ** Hydraulic Hoses & Lines
- **λ** Sickle Assembly
- **λ** Sections, Guards, Hold-downs
- **λ** Reel Drive Chain
- **λ** Auger Drive Chain
- **λ** Tire Pressure

25 Hours

- **λ** Sickle Head

50 Hours

- **λ** Tongue Pivot, Transport Lock
- **λ** Main Drive Shaft Bearings
- **λ** Reel Shaft Bearings
- **λ** Auger Shaft Bearings
- **λ** Roll Shaft Bearings
- **λ** Frame-to-Header Pivot
- **λ** Lower Float Link Bushings
- **λ** Auger Drive Jackshaft Brngs.
- **λ** Center Link Ball Joints
- **λ** Spring Pivots
- **λ** Hitch Pin Nut Torque

100 Hours or Annually

- **λ** Wheel Hub Bearings
- **λ** Roll Drive Chain Tension
- **λ** Roll Drive Case Lube Level
- **λ** Wobble Box Bolt Torque
- **λ** Wobble Box Lubricant Level
- **λ** Wheel Bolt Torque

250 Hours

- **σ** Hydraulic Oil Filter

600 Hours or 3 Years

- **σ** Hydraulic Oil

1000 Hours or 3 Years

- **σ** Wobble Box Lubricant
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive breakage of sickle sections or guards.</td>
<td>Cutting height too low in stony conditions.</td>
<td>Raise cutting height with skid plates.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Cutterbar angle too steep in stony conditions.</td>
<td>Decrease cutterbar angle</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Header flotation too heavy in stony conditions</td>
<td>Adjust to lighter float setting.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Guards, sickle and hold-downs misaligned.</td>
<td>Straighten guards, align hold-downs.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Ground speed too high in stony conditions.</td>
<td>Reduce ground speed.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Sickle speed too slow.</td>
<td>Maintain proper RPM on PTO. Check for proper match of pump & gear-drive at PTO.</td>
<td>---</td>
</tr>
<tr>
<td>Sickle back breakage.</td>
<td>Bent or broken guard.</td>
<td>Straighten or replace.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Worn sickle head pin.</td>
<td>Replace.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Dull sickle.</td>
<td>Replace.</td>
<td>48</td>
</tr>
<tr>
<td>Ragged or uneven cutting of crop.</td>
<td>Cutterbar angle too flat for guards to pick up down crop.</td>
<td>Increase cutterbar angle.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Reel position incorrect.</td>
<td>Move reel forward and down.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>PTO speed too slow.</td>
<td>Maintain proper RPM on PTO. Check for proper match of pump & gear-drive at PTO.</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Relief valve pressure too low.</td>
<td>Replace valve.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Sickle sections or guards are worn or broken.</td>
<td>Replace worn or broken parts.</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Bent sickle causing binding.</td>
<td>Straighten a bent sickle. Check alignment and adjust if necessary.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Sickle hold-downs improperly adjusted.</td>
<td>Adjust hold-downs so sickle works freely, but still keep sections from lifting off guards.</td>
<td>49</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem</th>
<th>Solution</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ragged or uneven cutting of crop. (continued)</td>
<td>Bent or misaligned guards causing poor shearing action.</td>
<td>Align guards for proper shearing action.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Header flotation too light, causing bouncing.</td>
<td>Adjust to heavier float setting.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Ground speed too fast.</td>
<td>Slow down. Ground speed should not exceed 8 mph (13 km/h).</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Sickle drive belt too loose.</td>
<td>Increase belt tension.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Reel drive chain too loose.</td>
<td>Increase chain tension.</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Long stubble in down crop.</td>
<td>Reel position incorrect.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Cutterbar angle too flat for guards to pick up down crop.</td>
<td>Increase cutterbar angle.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Ground speed too fast.</td>
<td>Slow down.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Cutting height too high.</td>
<td>Lower cutting height with skid plates.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Excessive vibration of cutting parts.</td>
<td>Incorrect PTO speed.</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Excessive looseness of sickle and sickle drive parts.</td>
<td>Remove all excessive play from cutterbar and sickle drive to reduce vibration, then adjust cutting components and drive.</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Knocking in sickle drive.</td>
<td>Worn sickle head pin.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Worn needle bearing in sickle head.</td>
<td>Replace.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Pulling material by the roots or tall material leaning into machine.</td>
<td>Reel position incorrect.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Ground speed too slow.</td>
<td>Increase ground speed.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Reel speed too fast.</td>
<td>Reduce reel speed.</td>
<td>27</td>
</tr>
</tbody>
</table>
TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaving small strip of flattened, uncut material.</td>
<td>Ground speed too fast.</td>
<td>Slow down.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Crowding of the uncut material.</td>
<td>Steer tractor slightly away from uncut crop.</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Reel position incorrect.</td>
<td>Move reel forward and down.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Sickle sections or guards are worn or broken.</td>
<td>Replace worn or broken parts.</td>
<td>47</td>
</tr>
<tr>
<td>Sickle plugging</td>
<td>Extremely thick or wet undergrowth.</td>
<td>Raise cutting height to clear undergrowth.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Move reel back and down (close to guards).</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Cut when undergrowth is dry.</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Sickle sections or guards are worn or broken.</td>
<td>Replace worn or broken parts.</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Bent or misaligned guards.</td>
<td>Align guards.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Sickle hold-downs improperly adjusted.</td>
<td>Adjust hold-downs so sickle works freely.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Sickle drive belt too loose.</td>
<td>Adjust belt tension.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Header flotation too heavy.</td>
<td>Adjust to lighter float setting.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>PTO speed too slow.</td>
<td>Maintain proper RPM on PTO. Check for proper match of pump & gear-drive at PTO.</td>
<td>---</td>
</tr>
<tr>
<td>Header turns while unloaded but slows or stops when starting to cut.</td>
<td>Low reservoir oil level.</td>
<td>Add oil to reservoir.</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Defective O-ring inside relief valve.</td>
<td>Replace relief valve.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Defective relief valve.</td>
<td>Repair relief valve.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Defective motor</td>
<td>Repair motor.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Defective pump</td>
<td>Repair pump.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>PTO slipping on tractor.</td>
<td>Repair tractor PTO system.</td>
<td>*</td>
</tr>
</tbody>
</table>

(* - See your Dealer)
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heating of hydraulic oil.</td>
<td>Relief pressure too low.</td>
<td>Replace relief valve.</td>
<td>46</td>
</tr>
<tr>
<td>Rolls plugging.</td>
<td>Roll gap too large for proper feeding.</td>
<td>Decrease roll gap.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Roll gap too small in thick stemmed cane-type crops.</td>
<td>Increase roll gap.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Ground speed too fast.</td>
<td>Slow down.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Rolls improperly timed.</td>
<td>Adjust roll timing.</td>
<td>57</td>
</tr>
<tr>
<td>Header stalling in extremely tall, heavy crop (6+ tons per acre)</td>
<td>Feeding aids for shorter, lighter crop impede flow of heavy or thick stemmed crops (cane, sudan grass etc.).</td>
<td>Remove front set of stripper bars. Remove rubber fingers from auger at delivery opening. Increase roll gap. Install tall crop divider. Raise lean bar to maximum height.</td>
<td>54</td>
</tr>
<tr>
<td>Leaves damaged, crushed or stripped off stems.</td>
<td>Roll gap too small.</td>
<td>Increase roll gap.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Rolls improperly timed.</td>
<td>Adjust roll timing.</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Reel speed too fast.</td>
<td>Reduce reel speed.</td>
<td>27</td>
</tr>
<tr>
<td>Insufficient conditioning of stems.</td>
<td>Roll gap too large.</td>
<td>Decrease roll gap.</td>
<td>32</td>
</tr>
<tr>
<td>Uneven formation and bunching of windrow.</td>
<td>Rear deflector bypassing or dragging crop.</td>
<td>Adjust rear deflector for proper crop control.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Auger to stripper clearance too wide.</td>
<td>Adjust auger to stripper bars clearance.</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Reel not feeding properly in heavy crops.</td>
<td>Decrease ground speed.</td>
<td>26</td>
</tr>
<tr>
<td>Windrower side drift.</td>
<td>Low tire pressure on one side.</td>
<td>Check and correct tire pressure (30 psi, 207 kPa).</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Header is dragging on one end and pulling to that side.</td>
<td>Adjust header flotation.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjust skid plates to prevent cutterbar dragging.</td>
<td>29</td>
</tr>
<tr>
<td>Auger and/or conditioner rolls damaged by stones.</td>
<td>Feed pan doesn't allow stones to fall through.</td>
<td>Modify feed pan, install fingers.</td>
<td>75</td>
</tr>
</tbody>
</table>
OPTIONS & ATTACHMENTS

The following attachments and optional equipment are available from your Dealer:

ADDITIONAL SKID PLATES WholeGoods order number: B2149
In addition to the standard two outer skid plates, two inner plates may be added for extra control of cutting height and protection of cutting components. See "Cutting Height" in Operation section.

PTO CONVERSION KITS Parts order number:
- 540 rpm PTO pump kit – 36909
- 1000 rpm PTO pump kit – 36859
Kits are for converting from 540 to 1000 RPM or vice-versa.

CROP DIVIDERS
WholeGoods order number: B2539
Crop dividers mount to lean bar for clean crop dividing and reel entry in tall crops. Left and right dividers are included in the kit.

The amount of crop "gathered" by the divider is adjustable. For the most aggressive gathering, mount the divider at the two forward holes (A) and position the U-bolt (B) farther inboard on the lean bar.

For the least aggressive gathering, mount the divider at the two rearward holes (C) and position the U-bolt (B) farther outboard on the lean bar.

Use minor adjustments of U-bolt position to achieve best results in specific conditions.

Crop dividers should be removed for flat-bed transport or for storage.

STUB GUARD CONVERSION KIT
WholeGoods order number:
- 12’ – B2515
- 14’ – B2516
- 16’ – B2517
Stub guards, complete with top guides and adjuster plates are designed to cut tough crops.

Installation and adjustment instructions are included with the kit.
UNLOADING & ASSEMBLY

PREPARE TO UNLOAD

CAUTION: To avoid injury to bystanders from being struck by machinery, do not allow persons to stand in unloading area.

1. Move trailer into position and block trailer wheels.
2. Lower trailer storage stands.

CAUTION: Unloading equipment must meet or exceed the specified requirements. Using inadequate equipment may result in chain breakage, vehicle tipping or machine damage.

LIFTING VEHICLE REQUIREMENTS
Use a lifting vehicle with a minimum 8000 lb. (3630 kg) lifting capacity and minimum 15 ft. (4.5 m) lifting height.

CHAIN REQUIREMENTS
Use overhead lifting quality chain (1/2 inch) with minimum 5000 lb. (2270 kg) working load limit.

UNLOAD WINDROWER

WARNING: Be sure forks are secure before moving away from load. Stand clear when lifting.

IMPORTANT: Do not unload using lean bar for lifting. Chain hook slots in lean bar are only for laying the machine over into working position after it is on the ground.

1. Approach windrower from either its "underside" as in (A) or "topside" (B) and slide forks in underneath lifting framework as far as possible. Take care not to bend parts on back tube.
2. Remove hauler's tie down straps and chains.
3. Raise windrower off deck, back up until unit clears trailer and slowly lower to 6 inches (150 mm) from ground.
4. Take to storage or set-up area.
5. Set machine down securely on level ground. Check for shipping damage and missing parts.
UNLOADING & ASSEMBLY

UNLOAD TONGUE

Attach chain to two brackets (A) on top of tongue.

LOWER WINDROWER TO WORKING POSITION

1. Choose an area with level ground. Rest each tire on two 2x4’s (side by side) or one 2x6 (B) to provide ground clearance and prevent damage to conditioner shield when windrower is lowered.

2. Block wheels at (C) and set 14 inch (350 mm) blocks (D) for support at rear of skid plates.

3. Remove deflectors (E). Leave the lifting framework in place to support the top cover as windrower is lowered.

4. Drive lifting vehicle to approach windrower from its "underside". Attach chain hooks to lean bar at slots (F).

 NOTE: Do not lift at lean bar when unloading from trailer. This procedure is only for laying the machine over into working position.

 IMPORTANT: See "Chain Requirements" in this section for minimum chain specifications. Also, chain length must be sufficient to provide a minimum 4 feet (1.2 m) vertical chain height.

5. Raise forks to take most of the weight off windrower frame and back up SLOWLY to lower machine onto blocks (D).

 CAUTION: Stand clear when lowering, as machine may swing.

6. Remove chain hooks and yellow lifting framework.

POSITION LEAN BAR

1. Remove hardware and install lean bar in field position at height appropriate for crop.
INSTALL TONGUE

IMPORTANT: If there is more than one machine to be assembled, and they are different sizes (12 ft., 14 ft., 16 ft.), be sure the proper tongue is matched to each unit. Tongues are identified on a plastic tag tied to the hose support near the front end. Should this tag be missing, tongues can be identified by length as follows:

<table>
<thead>
<tr>
<th>HEADER SIZE</th>
<th>TONGUE LENGTH *</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ft.</td>
<td>17' 7" (5360 mm)</td>
</tr>
<tr>
<td>14 ft.</td>
<td>19' (5780 mm)</td>
</tr>
<tr>
<td>16 ft.</td>
<td>21' 7 1/2" (6590 mm)</td>
</tr>
</tbody>
</table>

* Tongue length is measured from center of pivot hole at back end to center of hitch pin hole at front end.

1. Ensure plastic bushings are installed in pivot hole at back end of tongue. Remove shipping wire.
 NOTE: The two shorter bushings (A) install from top of tongue, the longer one (F) from the bottom.

2. Install jack in working position at front of tongue.

3. Attach chain from lifting vehicle or hoist to tongue as described on page 69. Lower tongue (B) onto pivot pin. **NOTE:** Use the jack to adjust the pitch of the tongue for proper alignment when installing onto pivot pin.

4. Install retainer (C) on top of tongue, over pivot pin bolts (D).

5. Install two 5/8 lock nuts (E) and tighten to 160 ft.lbs. (215 N⋅m).

6. Remove lifting brackets from tongue when complete.

INSTALL WHEELS IN FIELD POSITION

1. Raise rear of machine and move wheels from shipping position (A) to field position (B).
 NOTE: For 12 ft. unit (both wheels) and 14 ft. unit (left wheel only), remove spindle retaining bolt and nut (C) and slide spindle outboard until clearance to vertical float spring is adequate for wheel removal from spindle. When reinstalling wheel bolts, torque to 120 ft.lbs. (160 N⋅m)

2. Torque the 1/2 inch lock nut (C) to 80 ft.lbs. (110 N⋅m).

3. Lower machine onto the tires.

4. Check tire inflation pressure. Adjust to 30 psi (207 kPa).
ATTACH HYDRAULICS AND ELECTRICAL

1. Attach barrel end (A) of shift cylinder to bracket on hitch. Attach rod end (B) to bracket on frame tube. Secure pins with cotter pins.

 NOTE: It may be necessary to loosen a fitting to allow extension of cylinder rod.

2. Attach lift cylinder hoses to hydraulic lines at (N) and (P) on top of tongue.

 NOTE: Connect hose from left lift cylinder to left hydraulic line, right cylinder hose to right hydraulic line.

3. Connect electrical wiring harness at (R).

 ATTACH LIFT HOSES AND ELECTRICAL HARNESS

 INSTALL SHIFT CYLINDER
ATTACH HYDRAULICS AND ELECTRICAL (continued)

4. Attach motor to header primary drive:

 NOTE: For easier installation of motor onto shaft, hoses may be completely removed from motor at swivel fittings. A minimal amount of oil will drip out, however extreme care must be taken to prevent dirt from entering at hose ends and motor ports. If removing hoses, go to step (c).

 a) Complete the following steps to increase clearance for motor installation:
 - **Before lowering header,** remove spring pin (A) at L/H roll gap adjustment rod.
 - **Lower header to ground:** Connect the two lift cylinder hoses (T) to tractor so that when the tractor control is moved back, the lift cylinder will extend, raising the header. When the tractor control is moved forward, the lift cylinder will retract, lowering the header. Move the lift cylinder stops to storage position (U) and lower header. Before header will lower, cycle the control up and down a few times to fill lines. It may be necessary to loosen float springs to allow header to lower.
 - **Rotate conditioner rolls** so that keyway slot in drive shaft is at the top. Remove roll gap adjustment rod (B) as follows:
 - Measure exposed thread at top of rod and record for reassembly.
 - Unscrew adjustment tube (L) from rod (B).
 - Remove rod (B) from left support arm (C).
 - **Remove two bolts (N) securing support bar to frame and pivot the bar rearward.**
 - **Remove torque arm (H) from header frame.**

 b) Loosen fittings on motor about 1/2 turn to allow hoses to swivel.

 c) Install motor on drive shaft using key (D) between two clamp halves (E):
 - **IMPORTANT:** Push motor onto shaft so that key (D) bottoms out in motor shaft keyway at (F).
 - If motor shaft will not slide into drive shaft bore, use a large screwdriver or bar to spread the drive shaft keyway.
 - When positioning motor for installation, motor shaft should be in cut-out (P) in frame.
 - Position clamps for 1/4" (6 mm) clearance (G) between clamp and bearing lock collar (when installed in step d).
 - Torque clamp bolts to 75 ft.lbs. (100 N·m).
ATTACH HYDRAULICS AND ELECTRICAL
(continued)

4. Attach motor to header primary drive, cont’d:

* See previous page for illustrations and photos.

d) Attach torque arm (H) to motor:
- Orient torque arm with 21/32" (17 mm) dimension as shown.
- Position free end of arm to achieve dimension (S) = 8.75" (222 mm) and torque hex nut (J) to 50 ft.lbs. (68 N-m), then securely tighten lock nut (K) against hex nut.

e) Reattach torque arm (H) to frame, tightening hardware as in step 4d.

f) Reattach support bar to frame with bolts (removed in step 4a). Attach motor hoses and wiring harness to support between holders (M, see photo next page). To avoid damage to hoses and harness, do not over-tighten holder hardware.

g) Re-tighten hose fittings on motor.

h) Replace adjustment rod (removed in step 4a) and secure with spring pin. Adjust "Roll Gap" as described in Operation section, or adjust to dimension measured in step 4a.

5. Attach lights as follows:

a) Install one 5/16 NC x 1/2" screw (A) into the pre-drilled hole in the light support tube.

b) Insert light support tube through welded tube on header frame.

c) Install one 3/8 NC x 3/4" hex head bolt (B) and one 3/8" NC hex nut (C).

NOTE: Tighten bolt (B) to secure light firmly. Do not overtighten bolt. Light must be able to be turned with minimal force. Lock jam nut (C) against tube to secure the position.

d) Install one 1/4 NC x 5/8" hex head bolt (D), along with one 1/4" NC lock washer through ground wire eyelet, and attach through frame using one 1/4" NC lock nut.
6. Tie wiring harness to motor hoses with 3 large plastic ties evenly spaced. Secure any excess harness with small plastic ties at (R) (see top photo, page 72).

7. Remove top clamp (Y) and place 2-lift cylinder hoses (U). Replace top clamp.

8. Mount pump (S) in storage position at front of tongue.

INSTALL SMV SIGN
Install Slow Moving Vehicle sign at rear of unit with hardware provided.

REMOVE SHIPPING BLOCKS
Remove and discard shipping blocks.

ATTACH WINDROWER TO TRACTOR
See "Attaching Windrower to Tractor" in Operation section for details.
UNLOADING & ASSEMBLY

INSTALL HOOD AND DEFLECTORS

1. Loosen hardware J/K and F/G.
2. Swing hood into position.
3. Install hardware.
4. Install side deflectors.
5. Tighten all hardware.
6. Position rear edges of left and right-hand side deflectors an equal distance from center pivot. (See decal (L) on top cover).

B WASHER - lock, 1/2
C BOLT - hex head, 1/2 NC x 1 inch
D NUT - lock, smooth flange 3/8 NC
E BOLT - round hd, square neck 3/8 NC x 3/4"
F NUT - serrated flange, 1/2 NC
G BOLT - round hd, square neck 1/2 NC x 1"
H NUT - hex, 3/4 NC (Tighten lower nut to 100 ft.lbs. Then, holding lower nut with a wrench, tighten top nut against lower nut.)
J WASHER - flat, 21/32 inch I.D.
K NUT - hex, 5/8 NC

ADJUST FLOAT

Adjust center float link to center of slot (A) and adjust float.

See "Cutterbar Angle" and "Header Flotation" in Operation section.
ADJUSTMENTS AND CHECKS

Perform the final checks and adjustments as listed on the "Pre-Delivery Checklist" (yellow sheet) to ensure the machine is field-ready.

IMPORTANT: To avoid machine damage, check that no shipping dunnage has fallen down between auger and pans.
INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>68</td>
</tr>
<tr>
<td>Attaching the Windrower</td>
<td>16</td>
</tr>
<tr>
<td>Attachments</td>
<td>67</td>
</tr>
<tr>
<td>Auger Drive Chain Lubrication</td>
<td>55</td>
</tr>
<tr>
<td>Auger Drive Chain Tension</td>
<td>55</td>
</tr>
<tr>
<td>Auger Position</td>
<td>53</td>
</tr>
<tr>
<td>Auger Paddle Kit</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Joints, center link</td>
<td>44</td>
</tr>
<tr>
<td>Bearing Installation</td>
<td>40</td>
</tr>
<tr>
<td>Break-In Period</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacities, Enclosed drives & reservoir</td>
<td>40</td>
</tr>
<tr>
<td>Chemical Drying Agents</td>
<td>35</td>
</tr>
<tr>
<td>Climate and Topography Effects</td>
<td>34</td>
</tr>
<tr>
<td>Corners, square</td>
<td>25</td>
</tr>
<tr>
<td>Cutterbar Angle</td>
<td>30</td>
</tr>
<tr>
<td>Cutting Height</td>
<td>29</td>
</tr>
<tr>
<td>Cylinder Stop</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detaching the Windrower</td>
<td>17</td>
</tr>
<tr>
<td>Divider, crop</td>
<td>67</td>
</tr>
<tr>
<td>Deflector, rear</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming Shields</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greasing the Windrower</td>
<td>41</td>
</tr>
<tr>
<td>Ground Speed</td>
<td>26</td>
</tr>
<tr>
<td>Guards, sickle</td>
<td>49</td>
</tr>
<tr>
<td>Guard Straightening Tool</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haying Tips</td>
<td>34</td>
</tr>
<tr>
<td>Header Flotation</td>
<td>31</td>
</tr>
<tr>
<td>Hitch Pin Lock Nut</td>
<td>44</td>
</tr>
<tr>
<td>Hydraulic Hoses and Lines</td>
<td>45</td>
</tr>
<tr>
<td>Hydraulic Oil Filter</td>
<td>46</td>
</tr>
<tr>
<td>Hydraulic Oil, recommended</td>
<td>40</td>
</tr>
<tr>
<td>Hydraulic Reservoir</td>
<td>45</td>
</tr>
<tr>
<td>Hydraulic System Safety</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean Bar Position</td>
<td>26</td>
</tr>
<tr>
<td>Lubricants, recommended</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Record</td>
<td>62</td>
</tr>
<tr>
<td>Maintenance Schedule</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Operator</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate Correctly</td>
<td>21</td>
</tr>
<tr>
<td>Operating Variables</td>
<td>25</td>
</tr>
<tr>
<td>Owner/Operator Responsibility</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparing the Tractor</td>
<td>14</td>
</tr>
<tr>
<td>Preparing the Windrower</td>
<td>15</td>
</tr>
<tr>
<td>Pre-Starting Checks: Annual</td>
<td>19</td>
</tr>
<tr>
<td>Pre-Starting Checks: Daily</td>
<td>20</td>
</tr>
<tr>
<td>PTO Engagement</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raising and Lowering the Machine</td>
<td>22</td>
</tr>
<tr>
<td>Raking and Tedding</td>
<td>35</td>
</tr>
<tr>
<td>Reel Drive Belt Tension</td>
<td>52</td>
</tr>
<tr>
<td>Reel Drive Chain Lubrication</td>
<td>52</td>
</tr>
<tr>
<td>Reel Drive Chain Tension</td>
<td>52</td>
</tr>
<tr>
<td>Reel Position</td>
<td>27</td>
</tr>
<tr>
<td>Reel Speed</td>
<td>27</td>
</tr>
<tr>
<td>Reel Tines</td>
<td>52</td>
</tr>
<tr>
<td>Roll Drive Chain Case Lubricant</td>
<td>56</td>
</tr>
<tr>
<td>Roll Drive Chain Removal & Installation</td>
<td>58</td>
</tr>
<tr>
<td>Roll Drive Chain Tension</td>
<td>56</td>
</tr>
<tr>
<td>Roll Gap</td>
<td>32</td>
</tr>
<tr>
<td>Roll Timing</td>
<td>57</td>
</tr>
<tr>
<td>Rolls, unplugging</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety - Alert Symbol</td>
<td>5</td>
</tr>
<tr>
<td>- Cylinder Stop</td>
<td>22</td>
</tr>
<tr>
<td>- General Farm</td>
<td>7</td>
</tr>
<tr>
<td>- Hydraulic System</td>
<td>45</td>
</tr>
<tr>
<td>- Operating</td>
<td>21</td>
</tr>
<tr>
<td>- Pre-Starting Checks: Annual</td>
<td>19</td>
</tr>
<tr>
<td>- Pre-Starting Checks: Daily</td>
<td>20</td>
</tr>
<tr>
<td>- PTO</td>
<td>21</td>
</tr>
<tr>
<td>- Service Procedures</td>
<td>39</td>
</tr>
<tr>
<td>- Shut-Down Procedure</td>
<td>37</td>
</tr>
<tr>
<td>- Signal Words</td>
<td>5</td>
</tr>
</tbody>
</table>

77
INDEX

S

<table>
<thead>
<tr>
<th>Safety (continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Signs</td>
<td>6</td>
</tr>
<tr>
<td>- Storage Procedure</td>
<td>39</td>
</tr>
<tr>
<td>- Transporting</td>
<td>37</td>
</tr>
<tr>
<td>- Your Responsibilities</td>
<td>13</td>
</tr>
<tr>
<td>Serial Number Locations</td>
<td>4</td>
</tr>
<tr>
<td>Service Procedures</td>
<td>39</td>
</tr>
<tr>
<td>Shields, closing</td>
<td>41</td>
</tr>
<tr>
<td>Shut-Down Procedure</td>
<td>37</td>
</tr>
<tr>
<td>Sickle Drive Belt Replacement</td>
<td>50</td>
</tr>
<tr>
<td>Sickle Drive Belt Tension</td>
<td>50</td>
</tr>
<tr>
<td>Sickle Guards and Hold-Downs</td>
<td>49</td>
</tr>
<tr>
<td>Sickle Head Needle Bearing Installation</td>
<td>48</td>
</tr>
<tr>
<td>Sickle Installation</td>
<td>48</td>
</tr>
<tr>
<td>Sickle Lubrication</td>
<td>47</td>
</tr>
<tr>
<td>Sickle Removal</td>
<td>47</td>
</tr>
<tr>
<td>Sickle Sections</td>
<td>47</td>
</tr>
<tr>
<td>Sickle Stub Guard Kit</td>
<td>67</td>
</tr>
<tr>
<td>Sickle, unplugging</td>
<td>36</td>
</tr>
<tr>
<td>Skid Plates</td>
<td>29</td>
</tr>
<tr>
<td>Specifications: Hardware Torque</td>
<td>11</td>
</tr>
<tr>
<td>Specifications: Hydraulic Fitting Torque</td>
<td>12</td>
</tr>
<tr>
<td>Specifications: Tractor Requirements</td>
<td>10</td>
</tr>
<tr>
<td>Specifications: Windrower</td>
<td>9</td>
</tr>
<tr>
<td>Spring Pivots</td>
<td>44</td>
</tr>
<tr>
<td>Steering the Windrower</td>
<td>23</td>
</tr>
<tr>
<td>Storage Procedure</td>
<td>39</td>
</tr>
<tr>
<td>Stripper Bars</td>
<td>54</td>
</tr>
</tbody>
</table>

T

Tire Inflation and Maintenance	60
Topsoil Moisture	34
Tractor - Preparation	14
Tractor - Requirements	10
Transporting the Windrower: Flatbed	38
Transporting the Windrower: Towing	37
Trouble Shooting	63
Turning, 180°	24
Turning Square Corners	25

U

Unloading the Windrower	68
Unplugging the Rolls	36
Unplugging the Sickle	36

W

Wheel Bolts	60
Wheel Removal	60
Windrow Characteristics	35
Windrow, running on previously cut	35
Wobble Box Maintenance	51
Power-Tongue Windrower
Pre-Delivery Checklist

Perform these checks and adjustments prior to delivery to your customer. See the Operator's Manual for adjustment details.

⚠️ CAUTION: Carefully follow the instructions given. Be alert for safety related messages which bring your attention to hazards and unsafe practices.

Windrower Serial Number:
Tongue Serial Number:

- Check for shipping damage or missing parts. Be sure all shipping dunnage is removed.
- Check sickle drive belt tension. (P. 50)
- Check reel drive belt tension. (P. 52)
- Check auger stripper bar clearance. (P. 54)
- Set header flotation. (70 lbs. [311 N]) (P. 31)
- Set cutterbar angle to middle of adjustment range. (P. 30)
- Check skid plates are evenly adjusted at a setting appropriate for first crop. (P. 29)
- Grease all bearings and drivelines. (P. 41)
- Check wobble box lube level. (P. 51)
- Check speed of wobble box pulley (725 rpm). If not to spec, check for mismatch of pump and gearbox at tractor PTO.
- Check tire pressure. (30 psi [207 kPa])
- Check wheel bolt torque. (120 ft.lbs. [160 N•m])
 (If roading machine, re-torque wheel bolts after one hour.)
- Check hydraulic oil level at dipstick at rear of tongue. (P. 45)
- Adjust side forming shields to wide open position. See decal on top cover and ensure side shields are equal distance from center line of tongue pivot. (P. 33)
- Set rear deflector about half way down. (P. 33)
- Run machine for 15 minutes, STOP ENGINE and check belt and chain drives for idler alignment and heated bearings. Check knife sections for discoloration caused by misalignment of components.
- Check hydraulic hose and wiring harness routing.
- Check lights are functional.

Date Checked: ________________ Checked by: